]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/xfs/xfs_iget.c
da3c94c230db6b61a9061ce4466ccdf08e591806
[mirror_ubuntu-eoan-kernel.git] / fs / xfs / xfs_iget.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir_sf.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_btree.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_quota.h"
42 #include "xfs_utils.h"
43
44 /*
45 * Initialize the inode hash table for the newly mounted file system.
46 * Choose an initial table size based on user specified value, else
47 * use a simple algorithm using the maximum number of inodes as an
48 * indicator for table size, and clamp it between one and some large
49 * number of pages.
50 */
51 void
52 xfs_ihash_init(xfs_mount_t *mp)
53 {
54 __uint64_t icount;
55 uint i, flags = KM_SLEEP | KM_MAYFAIL;
56
57 if (!mp->m_ihsize) {
58 icount = mp->m_maxicount ? mp->m_maxicount :
59 (mp->m_sb.sb_dblocks << mp->m_sb.sb_inopblog);
60 mp->m_ihsize = 1 << max_t(uint, 8,
61 (xfs_highbit64(icount) + 1) / 2);
62 mp->m_ihsize = min_t(uint, mp->m_ihsize,
63 (64 * NBPP) / sizeof(xfs_ihash_t));
64 }
65
66 while (!(mp->m_ihash = (xfs_ihash_t *)kmem_zalloc(mp->m_ihsize *
67 sizeof(xfs_ihash_t), flags))) {
68 if ((mp->m_ihsize >>= 1) <= NBPP)
69 flags = KM_SLEEP;
70 }
71 for (i = 0; i < mp->m_ihsize; i++) {
72 rwlock_init(&(mp->m_ihash[i].ih_lock));
73 }
74 }
75
76 /*
77 * Free up structures allocated by xfs_ihash_init, at unmount time.
78 */
79 void
80 xfs_ihash_free(xfs_mount_t *mp)
81 {
82 kmem_free(mp->m_ihash, mp->m_ihsize*sizeof(xfs_ihash_t));
83 mp->m_ihash = NULL;
84 }
85
86 /*
87 * Initialize the inode cluster hash table for the newly mounted file system.
88 * Its size is derived from the ihash table size.
89 */
90 void
91 xfs_chash_init(xfs_mount_t *mp)
92 {
93 uint i;
94
95 mp->m_chsize = max_t(uint, 1, mp->m_ihsize /
96 (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog));
97 mp->m_chsize = min_t(uint, mp->m_chsize, mp->m_ihsize);
98 mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize
99 * sizeof(xfs_chash_t),
100 KM_SLEEP);
101 for (i = 0; i < mp->m_chsize; i++) {
102 spinlock_init(&mp->m_chash[i].ch_lock,"xfshash");
103 }
104 }
105
106 /*
107 * Free up structures allocated by xfs_chash_init, at unmount time.
108 */
109 void
110 xfs_chash_free(xfs_mount_t *mp)
111 {
112 int i;
113
114 for (i = 0; i < mp->m_chsize; i++) {
115 spinlock_destroy(&mp->m_chash[i].ch_lock);
116 }
117
118 kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t));
119 mp->m_chash = NULL;
120 }
121
122 /*
123 * Try to move an inode to the front of its hash list if possible
124 * (and if its not there already). Called right after obtaining
125 * the list version number and then dropping the read_lock on the
126 * hash list in question (which is done right after looking up the
127 * inode in question...).
128 */
129 STATIC void
130 xfs_ihash_promote(
131 xfs_ihash_t *ih,
132 xfs_inode_t *ip,
133 ulong version)
134 {
135 xfs_inode_t *iq;
136
137 if ((ip->i_prevp != &ih->ih_next) && write_trylock(&ih->ih_lock)) {
138 if (likely(version == ih->ih_version)) {
139 /* remove from list */
140 if ((iq = ip->i_next)) {
141 iq->i_prevp = ip->i_prevp;
142 }
143 *ip->i_prevp = iq;
144
145 /* insert at list head */
146 iq = ih->ih_next;
147 iq->i_prevp = &ip->i_next;
148 ip->i_next = iq;
149 ip->i_prevp = &ih->ih_next;
150 ih->ih_next = ip;
151 }
152 write_unlock(&ih->ih_lock);
153 }
154 }
155
156 /*
157 * Look up an inode by number in the given file system.
158 * The inode is looked up in the hash table for the file system
159 * represented by the mount point parameter mp. Each bucket of
160 * the hash table is guarded by an individual semaphore.
161 *
162 * If the inode is found in the hash table, its corresponding vnode
163 * is obtained with a call to vn_get(). This call takes care of
164 * coordination with the reclamation of the inode and vnode. Note
165 * that the vmap structure is filled in while holding the hash lock.
166 * This gives us the state of the inode/vnode when we found it and
167 * is used for coordination in vn_get().
168 *
169 * If it is not in core, read it in from the file system's device and
170 * add the inode into the hash table.
171 *
172 * The inode is locked according to the value of the lock_flags parameter.
173 * This flag parameter indicates how and if the inode's IO lock and inode lock
174 * should be taken.
175 *
176 * mp -- the mount point structure for the current file system. It points
177 * to the inode hash table.
178 * tp -- a pointer to the current transaction if there is one. This is
179 * simply passed through to the xfs_iread() call.
180 * ino -- the number of the inode desired. This is the unique identifier
181 * within the file system for the inode being requested.
182 * lock_flags -- flags indicating how to lock the inode. See the comment
183 * for xfs_ilock() for a list of valid values.
184 * bno -- the block number starting the buffer containing the inode,
185 * if known (as by bulkstat), else 0.
186 */
187 STATIC int
188 xfs_iget_core(
189 bhv_vnode_t *vp,
190 xfs_mount_t *mp,
191 xfs_trans_t *tp,
192 xfs_ino_t ino,
193 uint flags,
194 uint lock_flags,
195 xfs_inode_t **ipp,
196 xfs_daddr_t bno)
197 {
198 xfs_ihash_t *ih;
199 xfs_inode_t *ip;
200 xfs_inode_t *iq;
201 bhv_vnode_t *inode_vp;
202 ulong version;
203 int error;
204 /* REFERENCED */
205 xfs_chash_t *ch;
206 xfs_chashlist_t *chl, *chlnew;
207 SPLDECL(s);
208
209
210 ih = XFS_IHASH(mp, ino);
211
212 again:
213 read_lock(&ih->ih_lock);
214
215 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
216 if (ip->i_ino == ino) {
217 /*
218 * If INEW is set this inode is being set up
219 * we need to pause and try again.
220 */
221 if (ip->i_flags & XFS_INEW) {
222 read_unlock(&ih->ih_lock);
223 delay(1);
224 XFS_STATS_INC(xs_ig_frecycle);
225
226 goto again;
227 }
228
229 inode_vp = XFS_ITOV_NULL(ip);
230 if (inode_vp == NULL) {
231 /*
232 * If IRECLAIM is set this inode is
233 * on its way out of the system,
234 * we need to pause and try again.
235 */
236 if (ip->i_flags & XFS_IRECLAIM) {
237 read_unlock(&ih->ih_lock);
238 delay(1);
239 XFS_STATS_INC(xs_ig_frecycle);
240
241 goto again;
242 }
243
244 vn_trace_exit(vp, "xfs_iget.alloc",
245 (inst_t *)__return_address);
246
247 XFS_STATS_INC(xs_ig_found);
248
249 ip->i_flags &= ~XFS_IRECLAIMABLE;
250 version = ih->ih_version;
251 read_unlock(&ih->ih_lock);
252 xfs_ihash_promote(ih, ip, version);
253
254 XFS_MOUNT_ILOCK(mp);
255 list_del_init(&ip->i_reclaim);
256 XFS_MOUNT_IUNLOCK(mp);
257
258 goto finish_inode;
259
260 } else if (vp != inode_vp) {
261 struct inode *inode = vn_to_inode(inode_vp);
262
263 /* The inode is being torn down, pause and
264 * try again.
265 */
266 if (inode->i_state & (I_FREEING | I_CLEAR)) {
267 read_unlock(&ih->ih_lock);
268 delay(1);
269 XFS_STATS_INC(xs_ig_frecycle);
270
271 goto again;
272 }
273 /* Chances are the other vnode (the one in the inode) is being torn
274 * down right now, and we landed on top of it. Question is, what do
275 * we do? Unhook the old inode and hook up the new one?
276 */
277 cmn_err(CE_PANIC,
278 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
279 inode_vp, vp);
280 }
281
282 /*
283 * Inode cache hit: if ip is not at the front of
284 * its hash chain, move it there now.
285 * Do this with the lock held for update, but
286 * do statistics after releasing the lock.
287 */
288 version = ih->ih_version;
289 read_unlock(&ih->ih_lock);
290 xfs_ihash_promote(ih, ip, version);
291 XFS_STATS_INC(xs_ig_found);
292
293 finish_inode:
294 if (ip->i_d.di_mode == 0) {
295 if (!(flags & IGET_CREATE))
296 return ENOENT;
297 xfs_iocore_inode_reinit(ip);
298 }
299
300 if (lock_flags != 0)
301 xfs_ilock(ip, lock_flags);
302
303 ip->i_flags &= ~XFS_ISTALE;
304
305 vn_trace_exit(vp, "xfs_iget.found",
306 (inst_t *)__return_address);
307 goto return_ip;
308 }
309 }
310
311 /*
312 * Inode cache miss: save the hash chain version stamp and unlock
313 * the chain, so we don't deadlock in vn_alloc.
314 */
315 XFS_STATS_INC(xs_ig_missed);
316
317 version = ih->ih_version;
318
319 read_unlock(&ih->ih_lock);
320
321 /*
322 * Read the disk inode attributes into a new inode structure and get
323 * a new vnode for it. This should also initialize i_ino and i_mount.
324 */
325 error = xfs_iread(mp, tp, ino, &ip, bno);
326 if (error) {
327 return error;
328 }
329
330 vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
331
332 xfs_inode_lock_init(ip, vp);
333 xfs_iocore_inode_init(ip);
334
335 if (lock_flags != 0) {
336 xfs_ilock(ip, lock_flags);
337 }
338
339 if ((ip->i_d.di_mode == 0) && !(flags & IGET_CREATE)) {
340 xfs_idestroy(ip);
341 return ENOENT;
342 }
343
344 /*
345 * Put ip on its hash chain, unless someone else hashed a duplicate
346 * after we released the hash lock.
347 */
348 write_lock(&ih->ih_lock);
349
350 if (ih->ih_version != version) {
351 for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) {
352 if (iq->i_ino == ino) {
353 write_unlock(&ih->ih_lock);
354 xfs_idestroy(ip);
355
356 XFS_STATS_INC(xs_ig_dup);
357 goto again;
358 }
359 }
360 }
361
362 /*
363 * These values _must_ be set before releasing ihlock!
364 */
365 ip->i_hash = ih;
366 if ((iq = ih->ih_next)) {
367 iq->i_prevp = &ip->i_next;
368 }
369 ip->i_next = iq;
370 ip->i_prevp = &ih->ih_next;
371 ih->ih_next = ip;
372 ip->i_udquot = ip->i_gdquot = NULL;
373 ih->ih_version++;
374 ip->i_flags |= XFS_INEW;
375
376 write_unlock(&ih->ih_lock);
377
378 /*
379 * put ip on its cluster's hash chain
380 */
381 ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL &&
382 ip->i_cnext == NULL);
383
384 chlnew = NULL;
385 ch = XFS_CHASH(mp, ip->i_blkno);
386 chlredo:
387 s = mutex_spinlock(&ch->ch_lock);
388 for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
389 if (chl->chl_blkno == ip->i_blkno) {
390
391 /* insert this inode into the doubly-linked list
392 * where chl points */
393 if ((iq = chl->chl_ip)) {
394 ip->i_cprev = iq->i_cprev;
395 iq->i_cprev->i_cnext = ip;
396 iq->i_cprev = ip;
397 ip->i_cnext = iq;
398 } else {
399 ip->i_cnext = ip;
400 ip->i_cprev = ip;
401 }
402 chl->chl_ip = ip;
403 ip->i_chash = chl;
404 break;
405 }
406 }
407
408 /* no hash list found for this block; add a new hash list */
409 if (chl == NULL) {
410 if (chlnew == NULL) {
411 mutex_spinunlock(&ch->ch_lock, s);
412 ASSERT(xfs_chashlist_zone != NULL);
413 chlnew = (xfs_chashlist_t *)
414 kmem_zone_alloc(xfs_chashlist_zone,
415 KM_SLEEP);
416 ASSERT(chlnew != NULL);
417 goto chlredo;
418 } else {
419 ip->i_cnext = ip;
420 ip->i_cprev = ip;
421 ip->i_chash = chlnew;
422 chlnew->chl_ip = ip;
423 chlnew->chl_blkno = ip->i_blkno;
424 if (ch->ch_list)
425 ch->ch_list->chl_prev = chlnew;
426 chlnew->chl_next = ch->ch_list;
427 chlnew->chl_prev = NULL;
428 ch->ch_list = chlnew;
429 chlnew = NULL;
430 }
431 } else {
432 if (chlnew != NULL) {
433 kmem_zone_free(xfs_chashlist_zone, chlnew);
434 }
435 }
436
437 mutex_spinunlock(&ch->ch_lock, s);
438
439
440 /*
441 * Link ip to its mount and thread it on the mount's inode list.
442 */
443 XFS_MOUNT_ILOCK(mp);
444 if ((iq = mp->m_inodes)) {
445 ASSERT(iq->i_mprev->i_mnext == iq);
446 ip->i_mprev = iq->i_mprev;
447 iq->i_mprev->i_mnext = ip;
448 iq->i_mprev = ip;
449 ip->i_mnext = iq;
450 } else {
451 ip->i_mnext = ip;
452 ip->i_mprev = ip;
453 }
454 mp->m_inodes = ip;
455
456 XFS_MOUNT_IUNLOCK(mp);
457
458 return_ip:
459 ASSERT(ip->i_df.if_ext_max ==
460 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
461
462 ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
463 ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
464
465 *ipp = ip;
466
467 /*
468 * If we have a real type for an on-disk inode, we can set ops(&unlock)
469 * now. If it's a new inode being created, xfs_ialloc will handle it.
470 */
471 bhv_vfs_init_vnode(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1);
472
473 return 0;
474 }
475
476
477 /*
478 * The 'normal' internal xfs_iget, if needed it will
479 * 'allocate', or 'get', the vnode.
480 */
481 int
482 xfs_iget(
483 xfs_mount_t *mp,
484 xfs_trans_t *tp,
485 xfs_ino_t ino,
486 uint flags,
487 uint lock_flags,
488 xfs_inode_t **ipp,
489 xfs_daddr_t bno)
490 {
491 struct inode *inode;
492 bhv_vnode_t *vp = NULL;
493 int error;
494
495 XFS_STATS_INC(xs_ig_attempts);
496
497 retry:
498 if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) {
499 xfs_inode_t *ip;
500
501 vp = vn_from_inode(inode);
502 if (inode->i_state & I_NEW) {
503 vn_initialize(inode);
504 error = xfs_iget_core(vp, mp, tp, ino, flags,
505 lock_flags, ipp, bno);
506 if (error) {
507 vn_mark_bad(vp);
508 if (inode->i_state & I_NEW)
509 unlock_new_inode(inode);
510 iput(inode);
511 }
512 } else {
513 /*
514 * If the inode is not fully constructed due to
515 * filehandle mismatches wait for the inode to go
516 * away and try again.
517 *
518 * iget_locked will call __wait_on_freeing_inode
519 * to wait for the inode to go away.
520 */
521 if (is_bad_inode(inode) ||
522 ((ip = xfs_vtoi(vp)) == NULL)) {
523 iput(inode);
524 delay(1);
525 goto retry;
526 }
527
528 if (lock_flags != 0)
529 xfs_ilock(ip, lock_flags);
530 XFS_STATS_INC(xs_ig_found);
531 *ipp = ip;
532 error = 0;
533 }
534 } else
535 error = ENOMEM; /* If we got no inode we are out of memory */
536
537 return error;
538 }
539
540 /*
541 * Do the setup for the various locks within the incore inode.
542 */
543 void
544 xfs_inode_lock_init(
545 xfs_inode_t *ip,
546 bhv_vnode_t *vp)
547 {
548 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
549 "xfsino", (long)vp->v_number);
550 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number);
551 init_waitqueue_head(&ip->i_ipin_wait);
552 atomic_set(&ip->i_pincount, 0);
553 init_sema(&ip->i_flock, 1, "xfsfino", vp->v_number);
554 }
555
556 /*
557 * Look for the inode corresponding to the given ino in the hash table.
558 * If it is there and its i_transp pointer matches tp, return it.
559 * Otherwise, return NULL.
560 */
561 xfs_inode_t *
562 xfs_inode_incore(xfs_mount_t *mp,
563 xfs_ino_t ino,
564 xfs_trans_t *tp)
565 {
566 xfs_ihash_t *ih;
567 xfs_inode_t *ip;
568 ulong version;
569
570 ih = XFS_IHASH(mp, ino);
571 read_lock(&ih->ih_lock);
572 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
573 if (ip->i_ino == ino) {
574 /*
575 * If we find it and tp matches, return it.
576 * Also move it to the front of the hash list
577 * if we find it and it is not already there.
578 * Otherwise break from the loop and return
579 * NULL.
580 */
581 if (ip->i_transp == tp) {
582 version = ih->ih_version;
583 read_unlock(&ih->ih_lock);
584 xfs_ihash_promote(ih, ip, version);
585 return (ip);
586 }
587 break;
588 }
589 }
590 read_unlock(&ih->ih_lock);
591 return (NULL);
592 }
593
594 /*
595 * Decrement reference count of an inode structure and unlock it.
596 *
597 * ip -- the inode being released
598 * lock_flags -- this parameter indicates the inode's locks to be
599 * to be released. See the comment on xfs_iunlock() for a list
600 * of valid values.
601 */
602 void
603 xfs_iput(xfs_inode_t *ip,
604 uint lock_flags)
605 {
606 bhv_vnode_t *vp = XFS_ITOV(ip);
607
608 vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address);
609 xfs_iunlock(ip, lock_flags);
610 VN_RELE(vp);
611 }
612
613 /*
614 * Special iput for brand-new inodes that are still locked
615 */
616 void
617 xfs_iput_new(xfs_inode_t *ip,
618 uint lock_flags)
619 {
620 bhv_vnode_t *vp = XFS_ITOV(ip);
621 struct inode *inode = vn_to_inode(vp);
622
623 vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address);
624
625 if ((ip->i_d.di_mode == 0)) {
626 ASSERT(!(ip->i_flags & XFS_IRECLAIMABLE));
627 vn_mark_bad(vp);
628 }
629 if (inode->i_state & I_NEW)
630 unlock_new_inode(inode);
631 if (lock_flags)
632 xfs_iunlock(ip, lock_flags);
633 VN_RELE(vp);
634 }
635
636
637 /*
638 * This routine embodies the part of the reclaim code that pulls
639 * the inode from the inode hash table and the mount structure's
640 * inode list.
641 * This should only be called from xfs_reclaim().
642 */
643 void
644 xfs_ireclaim(xfs_inode_t *ip)
645 {
646 bhv_vnode_t *vp;
647
648 /*
649 * Remove from old hash list and mount list.
650 */
651 XFS_STATS_INC(xs_ig_reclaims);
652
653 xfs_iextract(ip);
654
655 /*
656 * Here we do a spurious inode lock in order to coordinate with
657 * xfs_sync(). This is because xfs_sync() references the inodes
658 * in the mount list without taking references on the corresponding
659 * vnodes. We make that OK here by ensuring that we wait until
660 * the inode is unlocked in xfs_sync() before we go ahead and
661 * free it. We get both the regular lock and the io lock because
662 * the xfs_sync() code may need to drop the regular one but will
663 * still hold the io lock.
664 */
665 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
666
667 /*
668 * Release dquots (and their references) if any. An inode may escape
669 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
670 */
671 XFS_QM_DQDETACH(ip->i_mount, ip);
672
673 /*
674 * Pull our behavior descriptor from the vnode chain.
675 */
676 vp = XFS_ITOV_NULL(ip);
677 if (vp) {
678 vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip));
679 }
680
681 /*
682 * Free all memory associated with the inode.
683 */
684 xfs_idestroy(ip);
685 }
686
687 /*
688 * This routine removes an about-to-be-destroyed inode from
689 * all of the lists in which it is located with the exception
690 * of the behavior chain.
691 */
692 void
693 xfs_iextract(
694 xfs_inode_t *ip)
695 {
696 xfs_ihash_t *ih;
697 xfs_inode_t *iq;
698 xfs_mount_t *mp;
699 xfs_chash_t *ch;
700 xfs_chashlist_t *chl, *chm;
701 SPLDECL(s);
702
703 ih = ip->i_hash;
704 write_lock(&ih->ih_lock);
705 if ((iq = ip->i_next)) {
706 iq->i_prevp = ip->i_prevp;
707 }
708 *ip->i_prevp = iq;
709 ih->ih_version++;
710 write_unlock(&ih->ih_lock);
711
712 /*
713 * Remove from cluster hash list
714 * 1) delete the chashlist if this is the last inode on the chashlist
715 * 2) unchain from list of inodes
716 * 3) point chashlist->chl_ip to 'chl_next' if to this inode.
717 */
718 mp = ip->i_mount;
719 ch = XFS_CHASH(mp, ip->i_blkno);
720 s = mutex_spinlock(&ch->ch_lock);
721
722 if (ip->i_cnext == ip) {
723 /* Last inode on chashlist */
724 ASSERT(ip->i_cnext == ip && ip->i_cprev == ip);
725 ASSERT(ip->i_chash != NULL);
726 chm=NULL;
727 chl = ip->i_chash;
728 if (chl->chl_prev)
729 chl->chl_prev->chl_next = chl->chl_next;
730 else
731 ch->ch_list = chl->chl_next;
732 if (chl->chl_next)
733 chl->chl_next->chl_prev = chl->chl_prev;
734 kmem_zone_free(xfs_chashlist_zone, chl);
735 } else {
736 /* delete one inode from a non-empty list */
737 iq = ip->i_cnext;
738 iq->i_cprev = ip->i_cprev;
739 ip->i_cprev->i_cnext = iq;
740 if (ip->i_chash->chl_ip == ip) {
741 ip->i_chash->chl_ip = iq;
742 }
743 ip->i_chash = __return_address;
744 ip->i_cprev = __return_address;
745 ip->i_cnext = __return_address;
746 }
747 mutex_spinunlock(&ch->ch_lock, s);
748
749 /*
750 * Remove from mount's inode list.
751 */
752 XFS_MOUNT_ILOCK(mp);
753 ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
754 iq = ip->i_mnext;
755 iq->i_mprev = ip->i_mprev;
756 ip->i_mprev->i_mnext = iq;
757
758 /*
759 * Fix up the head pointer if it points to the inode being deleted.
760 */
761 if (mp->m_inodes == ip) {
762 if (ip == iq) {
763 mp->m_inodes = NULL;
764 } else {
765 mp->m_inodes = iq;
766 }
767 }
768
769 /* Deal with the deleted inodes list */
770 list_del_init(&ip->i_reclaim);
771
772 mp->m_ireclaims++;
773 XFS_MOUNT_IUNLOCK(mp);
774 }
775
776 /*
777 * This is a wrapper routine around the xfs_ilock() routine
778 * used to centralize some grungy code. It is used in places
779 * that wish to lock the inode solely for reading the extents.
780 * The reason these places can't just call xfs_ilock(SHARED)
781 * is that the inode lock also guards to bringing in of the
782 * extents from disk for a file in b-tree format. If the inode
783 * is in b-tree format, then we need to lock the inode exclusively
784 * until the extents are read in. Locking it exclusively all
785 * the time would limit our parallelism unnecessarily, though.
786 * What we do instead is check to see if the extents have been
787 * read in yet, and only lock the inode exclusively if they
788 * have not.
789 *
790 * The function returns a value which should be given to the
791 * corresponding xfs_iunlock_map_shared(). This value is
792 * the mode in which the lock was actually taken.
793 */
794 uint
795 xfs_ilock_map_shared(
796 xfs_inode_t *ip)
797 {
798 uint lock_mode;
799
800 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
801 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
802 lock_mode = XFS_ILOCK_EXCL;
803 } else {
804 lock_mode = XFS_ILOCK_SHARED;
805 }
806
807 xfs_ilock(ip, lock_mode);
808
809 return lock_mode;
810 }
811
812 /*
813 * This is simply the unlock routine to go with xfs_ilock_map_shared().
814 * All it does is call xfs_iunlock() with the given lock_mode.
815 */
816 void
817 xfs_iunlock_map_shared(
818 xfs_inode_t *ip,
819 unsigned int lock_mode)
820 {
821 xfs_iunlock(ip, lock_mode);
822 }
823
824 /*
825 * The xfs inode contains 2 locks: a multi-reader lock called the
826 * i_iolock and a multi-reader lock called the i_lock. This routine
827 * allows either or both of the locks to be obtained.
828 *
829 * The 2 locks should always be ordered so that the IO lock is
830 * obtained first in order to prevent deadlock.
831 *
832 * ip -- the inode being locked
833 * lock_flags -- this parameter indicates the inode's locks
834 * to be locked. It can be:
835 * XFS_IOLOCK_SHARED,
836 * XFS_IOLOCK_EXCL,
837 * XFS_ILOCK_SHARED,
838 * XFS_ILOCK_EXCL,
839 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
840 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
841 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
842 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
843 */
844 void
845 xfs_ilock(xfs_inode_t *ip,
846 uint lock_flags)
847 {
848 /*
849 * You can't set both SHARED and EXCL for the same lock,
850 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
851 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
852 */
853 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
854 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
855 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
856 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
857 ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
858
859 if (lock_flags & XFS_IOLOCK_EXCL) {
860 mrupdate(&ip->i_iolock);
861 } else if (lock_flags & XFS_IOLOCK_SHARED) {
862 mraccess(&ip->i_iolock);
863 }
864 if (lock_flags & XFS_ILOCK_EXCL) {
865 mrupdate(&ip->i_lock);
866 } else if (lock_flags & XFS_ILOCK_SHARED) {
867 mraccess(&ip->i_lock);
868 }
869 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
870 }
871
872 /*
873 * This is just like xfs_ilock(), except that the caller
874 * is guaranteed not to sleep. It returns 1 if it gets
875 * the requested locks and 0 otherwise. If the IO lock is
876 * obtained but the inode lock cannot be, then the IO lock
877 * is dropped before returning.
878 *
879 * ip -- the inode being locked
880 * lock_flags -- this parameter indicates the inode's locks to be
881 * to be locked. See the comment for xfs_ilock() for a list
882 * of valid values.
883 *
884 */
885 int
886 xfs_ilock_nowait(xfs_inode_t *ip,
887 uint lock_flags)
888 {
889 int iolocked;
890 int ilocked;
891
892 /*
893 * You can't set both SHARED and EXCL for the same lock,
894 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
895 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
896 */
897 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
898 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
899 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
900 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
901 ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
902
903 iolocked = 0;
904 if (lock_flags & XFS_IOLOCK_EXCL) {
905 iolocked = mrtryupdate(&ip->i_iolock);
906 if (!iolocked) {
907 return 0;
908 }
909 } else if (lock_flags & XFS_IOLOCK_SHARED) {
910 iolocked = mrtryaccess(&ip->i_iolock);
911 if (!iolocked) {
912 return 0;
913 }
914 }
915 if (lock_flags & XFS_ILOCK_EXCL) {
916 ilocked = mrtryupdate(&ip->i_lock);
917 if (!ilocked) {
918 if (iolocked) {
919 mrunlock(&ip->i_iolock);
920 }
921 return 0;
922 }
923 } else if (lock_flags & XFS_ILOCK_SHARED) {
924 ilocked = mrtryaccess(&ip->i_lock);
925 if (!ilocked) {
926 if (iolocked) {
927 mrunlock(&ip->i_iolock);
928 }
929 return 0;
930 }
931 }
932 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
933 return 1;
934 }
935
936 /*
937 * xfs_iunlock() is used to drop the inode locks acquired with
938 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
939 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
940 * that we know which locks to drop.
941 *
942 * ip -- the inode being unlocked
943 * lock_flags -- this parameter indicates the inode's locks to be
944 * to be unlocked. See the comment for xfs_ilock() for a list
945 * of valid values for this parameter.
946 *
947 */
948 void
949 xfs_iunlock(xfs_inode_t *ip,
950 uint lock_flags)
951 {
952 /*
953 * You can't set both SHARED and EXCL for the same lock,
954 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
955 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
956 */
957 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
958 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
959 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
960 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
961 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0);
962 ASSERT(lock_flags != 0);
963
964 if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
965 ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
966 (ismrlocked(&ip->i_iolock, MR_ACCESS)));
967 ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
968 (ismrlocked(&ip->i_iolock, MR_UPDATE)));
969 mrunlock(&ip->i_iolock);
970 }
971
972 if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
973 ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
974 (ismrlocked(&ip->i_lock, MR_ACCESS)));
975 ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
976 (ismrlocked(&ip->i_lock, MR_UPDATE)));
977 mrunlock(&ip->i_lock);
978
979 /*
980 * Let the AIL know that this item has been unlocked in case
981 * it is in the AIL and anyone is waiting on it. Don't do
982 * this if the caller has asked us not to.
983 */
984 if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
985 ip->i_itemp != NULL) {
986 xfs_trans_unlocked_item(ip->i_mount,
987 (xfs_log_item_t*)(ip->i_itemp));
988 }
989 }
990 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
991 }
992
993 /*
994 * give up write locks. the i/o lock cannot be held nested
995 * if it is being demoted.
996 */
997 void
998 xfs_ilock_demote(xfs_inode_t *ip,
999 uint lock_flags)
1000 {
1001 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
1002 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
1003
1004 if (lock_flags & XFS_ILOCK_EXCL) {
1005 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
1006 mrdemote(&ip->i_lock);
1007 }
1008 if (lock_flags & XFS_IOLOCK_EXCL) {
1009 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
1010 mrdemote(&ip->i_iolock);
1011 }
1012 }
1013
1014 /*
1015 * The following three routines simply manage the i_flock
1016 * semaphore embedded in the inode. This semaphore synchronizes
1017 * processes attempting to flush the in-core inode back to disk.
1018 */
1019 void
1020 xfs_iflock(xfs_inode_t *ip)
1021 {
1022 psema(&(ip->i_flock), PINOD|PLTWAIT);
1023 }
1024
1025 int
1026 xfs_iflock_nowait(xfs_inode_t *ip)
1027 {
1028 return (cpsema(&(ip->i_flock)));
1029 }
1030
1031 void
1032 xfs_ifunlock(xfs_inode_t *ip)
1033 {
1034 ASSERT(valusema(&(ip->i_flock)) <= 0);
1035 vsema(&(ip->i_flock));
1036 }