]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_iget.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_iget.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_acl.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_utils.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_bmap.h"
45 #include "xfs_btree_trace.h"
46 #include "xfs_dir2_trace.h"
47
48
49 /*
50 * Allocate and initialise an xfs_inode.
51 */
52 STATIC struct xfs_inode *
53 xfs_inode_alloc(
54 struct xfs_mount *mp,
55 xfs_ino_t ino)
56 {
57 struct xfs_inode *ip;
58
59 /*
60 * if this didn't occur in transactions, we could use
61 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
62 * code up to do this anyway.
63 */
64 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
65 if (!ip)
66 return NULL;
67
68 ASSERT(atomic_read(&ip->i_iocount) == 0);
69 ASSERT(atomic_read(&ip->i_pincount) == 0);
70 ASSERT(!spin_is_locked(&ip->i_flags_lock));
71 ASSERT(completion_done(&ip->i_flush));
72
73 /* initialise the xfs inode */
74 ip->i_ino = ino;
75 ip->i_mount = mp;
76 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 ip->i_afp = NULL;
78 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
79 ip->i_flags = 0;
80 ip->i_update_core = 0;
81 ip->i_update_size = 0;
82 ip->i_delayed_blks = 0;
83 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
84 ip->i_size = 0;
85 ip->i_new_size = 0;
86
87 /*
88 * Initialize inode's trace buffers.
89 */
90 #ifdef XFS_INODE_TRACE
91 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
92 #endif
93 #ifdef XFS_BMAP_TRACE
94 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
95 #endif
96 #ifdef XFS_BTREE_TRACE
97 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
98 #endif
99 #ifdef XFS_RW_TRACE
100 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
101 #endif
102 #ifdef XFS_ILOCK_TRACE
103 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
104 #endif
105 #ifdef XFS_DIR2_TRACE
106 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
107 #endif
108 /*
109 * Now initialise the VFS inode. We do this after the xfs_inode
110 * initialisation as internal failures will result in ->destroy_inode
111 * being called and that will pass down through the reclaim path and
112 * free the XFS inode. This path requires the XFS inode to already be
113 * initialised. Hence if this call fails, the xfs_inode has already
114 * been freed and we should not reference it at all in the error
115 * handling.
116 */
117 if (!inode_init_always(mp->m_super, VFS_I(ip)))
118 return NULL;
119
120 /* prevent anyone from using this yet */
121 VFS_I(ip)->i_state = I_NEW|I_LOCK;
122
123 return ip;
124 }
125
126 /*
127 * Check the validity of the inode we just found it the cache
128 */
129 static int
130 xfs_iget_cache_hit(
131 struct xfs_perag *pag,
132 struct xfs_inode *ip,
133 int flags,
134 int lock_flags) __releases(pag->pag_ici_lock)
135 {
136 struct xfs_mount *mp = ip->i_mount;
137 int error = EAGAIN;
138
139 /*
140 * If INEW is set this inode is being set up
141 * If IRECLAIM is set this inode is being torn down
142 * Pause and try again.
143 */
144 if (xfs_iflags_test(ip, (XFS_INEW|XFS_IRECLAIM))) {
145 XFS_STATS_INC(xs_ig_frecycle);
146 goto out_error;
147 }
148
149 /* If IRECLAIMABLE is set, we've torn down the vfs inode part */
150 if (xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
151
152 /*
153 * If lookup is racing with unlink, then we should return an
154 * error immediately so we don't remove it from the reclaim
155 * list and potentially leak the inode.
156 */
157 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
158 error = ENOENT;
159 goto out_error;
160 }
161
162 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
163
164 /*
165 * We need to re-initialise the VFS inode as it has been
166 * 'freed' by the VFS. Do this here so we can deal with
167 * errors cleanly, then tag it so it can be set up correctly
168 * later.
169 */
170 if (!inode_init_always(mp->m_super, VFS_I(ip))) {
171 error = ENOMEM;
172 goto out_error;
173 }
174
175 /*
176 * We must set the XFS_INEW flag before clearing the
177 * XFS_IRECLAIMABLE flag so that if a racing lookup does
178 * not find the XFS_IRECLAIMABLE above but has the igrab()
179 * below succeed we can safely check XFS_INEW to detect
180 * that this inode is still being initialised.
181 */
182 xfs_iflags_set(ip, XFS_INEW);
183 xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
184
185 /* clear the radix tree reclaim flag as well. */
186 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
187 } else if (!igrab(VFS_I(ip))) {
188 /* If the VFS inode is being torn down, pause and try again. */
189 XFS_STATS_INC(xs_ig_frecycle);
190 goto out_error;
191 } else if (xfs_iflags_test(ip, XFS_INEW)) {
192 /*
193 * We are racing with another cache hit that is
194 * currently recycling this inode out of the XFS_IRECLAIMABLE
195 * state. Wait for the initialisation to complete before
196 * continuing.
197 */
198 wait_on_inode(VFS_I(ip));
199 }
200
201 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
202 error = ENOENT;
203 iput(VFS_I(ip));
204 goto out_error;
205 }
206
207 /* We've got a live one. */
208 read_unlock(&pag->pag_ici_lock);
209
210 if (lock_flags != 0)
211 xfs_ilock(ip, lock_flags);
212
213 xfs_iflags_clear(ip, XFS_ISTALE);
214 xfs_itrace_exit_tag(ip, "xfs_iget.found");
215 XFS_STATS_INC(xs_ig_found);
216 return 0;
217
218 out_error:
219 read_unlock(&pag->pag_ici_lock);
220 return error;
221 }
222
223
224 static int
225 xfs_iget_cache_miss(
226 struct xfs_mount *mp,
227 struct xfs_perag *pag,
228 xfs_trans_t *tp,
229 xfs_ino_t ino,
230 struct xfs_inode **ipp,
231 xfs_daddr_t bno,
232 int flags,
233 int lock_flags) __releases(pag->pag_ici_lock)
234 {
235 struct xfs_inode *ip;
236 int error;
237 unsigned long first_index, mask;
238 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
239
240 ip = xfs_inode_alloc(mp, ino);
241 if (!ip)
242 return ENOMEM;
243
244 error = xfs_iread(mp, tp, ip, bno, flags);
245 if (error)
246 goto out_destroy;
247
248 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
249
250 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
251 error = ENOENT;
252 goto out_destroy;
253 }
254
255 /*
256 * Preload the radix tree so we can insert safely under the
257 * write spinlock. Note that we cannot sleep inside the preload
258 * region.
259 */
260 if (radix_tree_preload(GFP_KERNEL)) {
261 error = EAGAIN;
262 goto out_destroy;
263 }
264
265 /*
266 * Because the inode hasn't been added to the radix-tree yet it can't
267 * be found by another thread, so we can do the non-sleeping lock here.
268 */
269 if (lock_flags) {
270 if (!xfs_ilock_nowait(ip, lock_flags))
271 BUG();
272 }
273
274 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
275 first_index = agino & mask;
276 write_lock(&pag->pag_ici_lock);
277
278 /* insert the new inode */
279 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
280 if (unlikely(error)) {
281 WARN_ON(error != -EEXIST);
282 XFS_STATS_INC(xs_ig_dup);
283 error = EAGAIN;
284 goto out_preload_end;
285 }
286
287 /* These values _must_ be set before releasing the radix tree lock! */
288 ip->i_udquot = ip->i_gdquot = NULL;
289 xfs_iflags_set(ip, XFS_INEW);
290
291 write_unlock(&pag->pag_ici_lock);
292 radix_tree_preload_end();
293 *ipp = ip;
294 return 0;
295
296 out_preload_end:
297 write_unlock(&pag->pag_ici_lock);
298 radix_tree_preload_end();
299 if (lock_flags)
300 xfs_iunlock(ip, lock_flags);
301 out_destroy:
302 xfs_destroy_inode(ip);
303 return error;
304 }
305
306 /*
307 * Look up an inode by number in the given file system.
308 * The inode is looked up in the cache held in each AG.
309 * If the inode is found in the cache, initialise the vfs inode
310 * if necessary.
311 *
312 * If it is not in core, read it in from the file system's device,
313 * add it to the cache and initialise the vfs inode.
314 *
315 * The inode is locked according to the value of the lock_flags parameter.
316 * This flag parameter indicates how and if the inode's IO lock and inode lock
317 * should be taken.
318 *
319 * mp -- the mount point structure for the current file system. It points
320 * to the inode hash table.
321 * tp -- a pointer to the current transaction if there is one. This is
322 * simply passed through to the xfs_iread() call.
323 * ino -- the number of the inode desired. This is the unique identifier
324 * within the file system for the inode being requested.
325 * lock_flags -- flags indicating how to lock the inode. See the comment
326 * for xfs_ilock() for a list of valid values.
327 * bno -- the block number starting the buffer containing the inode,
328 * if known (as by bulkstat), else 0.
329 */
330 int
331 xfs_iget(
332 xfs_mount_t *mp,
333 xfs_trans_t *tp,
334 xfs_ino_t ino,
335 uint flags,
336 uint lock_flags,
337 xfs_inode_t **ipp,
338 xfs_daddr_t bno)
339 {
340 xfs_inode_t *ip;
341 int error;
342 xfs_perag_t *pag;
343 xfs_agino_t agino;
344
345 /* the radix tree exists only in inode capable AGs */
346 if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
347 return EINVAL;
348
349 /* get the perag structure and ensure that it's inode capable */
350 pag = xfs_get_perag(mp, ino);
351 if (!pag->pagi_inodeok)
352 return EINVAL;
353 ASSERT(pag->pag_ici_init);
354 agino = XFS_INO_TO_AGINO(mp, ino);
355
356 again:
357 error = 0;
358 read_lock(&pag->pag_ici_lock);
359 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
360
361 if (ip) {
362 error = xfs_iget_cache_hit(pag, ip, flags, lock_flags);
363 if (error)
364 goto out_error_or_again;
365 } else {
366 read_unlock(&pag->pag_ici_lock);
367 XFS_STATS_INC(xs_ig_missed);
368
369 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno,
370 flags, lock_flags);
371 if (error)
372 goto out_error_or_again;
373 }
374 xfs_put_perag(mp, pag);
375
376 *ipp = ip;
377
378 ASSERT(ip->i_df.if_ext_max ==
379 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
380 /*
381 * If we have a real type for an on-disk inode, we can set ops(&unlock)
382 * now. If it's a new inode being created, xfs_ialloc will handle it.
383 */
384 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
385 xfs_setup_inode(ip);
386 return 0;
387
388 out_error_or_again:
389 if (error == EAGAIN) {
390 delay(1);
391 goto again;
392 }
393 xfs_put_perag(mp, pag);
394 return error;
395 }
396
397
398 /*
399 * Look for the inode corresponding to the given ino in the hash table.
400 * If it is there and its i_transp pointer matches tp, return it.
401 * Otherwise, return NULL.
402 */
403 xfs_inode_t *
404 xfs_inode_incore(xfs_mount_t *mp,
405 xfs_ino_t ino,
406 xfs_trans_t *tp)
407 {
408 xfs_inode_t *ip;
409 xfs_perag_t *pag;
410
411 pag = xfs_get_perag(mp, ino);
412 read_lock(&pag->pag_ici_lock);
413 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
414 read_unlock(&pag->pag_ici_lock);
415 xfs_put_perag(mp, pag);
416
417 /* the returned inode must match the transaction */
418 if (ip && (ip->i_transp != tp))
419 return NULL;
420 return ip;
421 }
422
423 /*
424 * Decrement reference count of an inode structure and unlock it.
425 *
426 * ip -- the inode being released
427 * lock_flags -- this parameter indicates the inode's locks to be
428 * to be released. See the comment on xfs_iunlock() for a list
429 * of valid values.
430 */
431 void
432 xfs_iput(xfs_inode_t *ip,
433 uint lock_flags)
434 {
435 xfs_itrace_entry(ip);
436 xfs_iunlock(ip, lock_flags);
437 IRELE(ip);
438 }
439
440 /*
441 * Special iput for brand-new inodes that are still locked
442 */
443 void
444 xfs_iput_new(
445 xfs_inode_t *ip,
446 uint lock_flags)
447 {
448 struct inode *inode = VFS_I(ip);
449
450 xfs_itrace_entry(ip);
451
452 if ((ip->i_d.di_mode == 0)) {
453 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
454 make_bad_inode(inode);
455 }
456 if (inode->i_state & I_NEW)
457 unlock_new_inode(inode);
458 if (lock_flags)
459 xfs_iunlock(ip, lock_flags);
460 IRELE(ip);
461 }
462
463 /*
464 * This is called free all the memory associated with an inode.
465 * It must free the inode itself and any buffers allocated for
466 * if_extents/if_data and if_broot. It must also free the lock
467 * associated with the inode.
468 *
469 * Note: because we don't initialise everything on reallocation out
470 * of the zone, we must ensure we nullify everything correctly before
471 * freeing the structure.
472 */
473 void
474 xfs_ireclaim(
475 struct xfs_inode *ip)
476 {
477 struct xfs_mount *mp = ip->i_mount;
478 struct xfs_perag *pag;
479
480 XFS_STATS_INC(xs_ig_reclaims);
481
482 /*
483 * Remove the inode from the per-AG radix tree. It doesn't matter
484 * if it was never added to it because radix_tree_delete can deal
485 * with that case just fine.
486 */
487 pag = xfs_get_perag(mp, ip->i_ino);
488 write_lock(&pag->pag_ici_lock);
489 radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
490 write_unlock(&pag->pag_ici_lock);
491 xfs_put_perag(mp, pag);
492
493 /*
494 * Here we do an (almost) spurious inode lock in order to coordinate
495 * with inode cache radix tree lookups. This is because the lookup
496 * can reference the inodes in the cache without taking references.
497 *
498 * We make that OK here by ensuring that we wait until the inode is
499 * unlocked after the lookup before we go ahead and free it. We get
500 * both the ilock and the iolock because the code may need to drop the
501 * ilock one but will still hold the iolock.
502 */
503 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
504 xfs_qm_dqdetach(ip);
505 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
506
507 switch (ip->i_d.di_mode & S_IFMT) {
508 case S_IFREG:
509 case S_IFDIR:
510 case S_IFLNK:
511 xfs_idestroy_fork(ip, XFS_DATA_FORK);
512 break;
513 }
514
515 if (ip->i_afp)
516 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
517
518 #ifdef XFS_INODE_TRACE
519 ktrace_free(ip->i_trace);
520 #endif
521 #ifdef XFS_BMAP_TRACE
522 ktrace_free(ip->i_xtrace);
523 #endif
524 #ifdef XFS_BTREE_TRACE
525 ktrace_free(ip->i_btrace);
526 #endif
527 #ifdef XFS_RW_TRACE
528 ktrace_free(ip->i_rwtrace);
529 #endif
530 #ifdef XFS_ILOCK_TRACE
531 ktrace_free(ip->i_lock_trace);
532 #endif
533 #ifdef XFS_DIR2_TRACE
534 ktrace_free(ip->i_dir_trace);
535 #endif
536 if (ip->i_itemp) {
537 /*
538 * Only if we are shutting down the fs will we see an
539 * inode still in the AIL. If it is there, we should remove
540 * it to prevent a use-after-free from occurring.
541 */
542 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
543 struct xfs_ail *ailp = lip->li_ailp;
544
545 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
546 XFS_FORCED_SHUTDOWN(ip->i_mount));
547 if (lip->li_flags & XFS_LI_IN_AIL) {
548 spin_lock(&ailp->xa_lock);
549 if (lip->li_flags & XFS_LI_IN_AIL)
550 xfs_trans_ail_delete(ailp, lip);
551 else
552 spin_unlock(&ailp->xa_lock);
553 }
554 xfs_inode_item_destroy(ip);
555 ip->i_itemp = NULL;
556 }
557 /* asserts to verify all state is correct here */
558 ASSERT(atomic_read(&ip->i_iocount) == 0);
559 ASSERT(atomic_read(&ip->i_pincount) == 0);
560 ASSERT(!spin_is_locked(&ip->i_flags_lock));
561 ASSERT(completion_done(&ip->i_flush));
562 kmem_zone_free(xfs_inode_zone, ip);
563 }
564
565 /*
566 * This is a wrapper routine around the xfs_ilock() routine
567 * used to centralize some grungy code. It is used in places
568 * that wish to lock the inode solely for reading the extents.
569 * The reason these places can't just call xfs_ilock(SHARED)
570 * is that the inode lock also guards to bringing in of the
571 * extents from disk for a file in b-tree format. If the inode
572 * is in b-tree format, then we need to lock the inode exclusively
573 * until the extents are read in. Locking it exclusively all
574 * the time would limit our parallelism unnecessarily, though.
575 * What we do instead is check to see if the extents have been
576 * read in yet, and only lock the inode exclusively if they
577 * have not.
578 *
579 * The function returns a value which should be given to the
580 * corresponding xfs_iunlock_map_shared(). This value is
581 * the mode in which the lock was actually taken.
582 */
583 uint
584 xfs_ilock_map_shared(
585 xfs_inode_t *ip)
586 {
587 uint lock_mode;
588
589 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
590 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
591 lock_mode = XFS_ILOCK_EXCL;
592 } else {
593 lock_mode = XFS_ILOCK_SHARED;
594 }
595
596 xfs_ilock(ip, lock_mode);
597
598 return lock_mode;
599 }
600
601 /*
602 * This is simply the unlock routine to go with xfs_ilock_map_shared().
603 * All it does is call xfs_iunlock() with the given lock_mode.
604 */
605 void
606 xfs_iunlock_map_shared(
607 xfs_inode_t *ip,
608 unsigned int lock_mode)
609 {
610 xfs_iunlock(ip, lock_mode);
611 }
612
613 /*
614 * The xfs inode contains 2 locks: a multi-reader lock called the
615 * i_iolock and a multi-reader lock called the i_lock. This routine
616 * allows either or both of the locks to be obtained.
617 *
618 * The 2 locks should always be ordered so that the IO lock is
619 * obtained first in order to prevent deadlock.
620 *
621 * ip -- the inode being locked
622 * lock_flags -- this parameter indicates the inode's locks
623 * to be locked. It can be:
624 * XFS_IOLOCK_SHARED,
625 * XFS_IOLOCK_EXCL,
626 * XFS_ILOCK_SHARED,
627 * XFS_ILOCK_EXCL,
628 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
629 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
630 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
631 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
632 */
633 void
634 xfs_ilock(
635 xfs_inode_t *ip,
636 uint lock_flags)
637 {
638 /*
639 * You can't set both SHARED and EXCL for the same lock,
640 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
641 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
642 */
643 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
644 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
645 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
646 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
647 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
648
649 if (lock_flags & XFS_IOLOCK_EXCL)
650 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
651 else if (lock_flags & XFS_IOLOCK_SHARED)
652 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
653
654 if (lock_flags & XFS_ILOCK_EXCL)
655 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
656 else if (lock_flags & XFS_ILOCK_SHARED)
657 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
658
659 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
660 }
661
662 /*
663 * This is just like xfs_ilock(), except that the caller
664 * is guaranteed not to sleep. It returns 1 if it gets
665 * the requested locks and 0 otherwise. If the IO lock is
666 * obtained but the inode lock cannot be, then the IO lock
667 * is dropped before returning.
668 *
669 * ip -- the inode being locked
670 * lock_flags -- this parameter indicates the inode's locks to be
671 * to be locked. See the comment for xfs_ilock() for a list
672 * of valid values.
673 */
674 int
675 xfs_ilock_nowait(
676 xfs_inode_t *ip,
677 uint lock_flags)
678 {
679 /*
680 * You can't set both SHARED and EXCL for the same lock,
681 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
682 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
683 */
684 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
685 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
686 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
687 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
688 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
689
690 if (lock_flags & XFS_IOLOCK_EXCL) {
691 if (!mrtryupdate(&ip->i_iolock))
692 goto out;
693 } else if (lock_flags & XFS_IOLOCK_SHARED) {
694 if (!mrtryaccess(&ip->i_iolock))
695 goto out;
696 }
697 if (lock_flags & XFS_ILOCK_EXCL) {
698 if (!mrtryupdate(&ip->i_lock))
699 goto out_undo_iolock;
700 } else if (lock_flags & XFS_ILOCK_SHARED) {
701 if (!mrtryaccess(&ip->i_lock))
702 goto out_undo_iolock;
703 }
704 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
705 return 1;
706
707 out_undo_iolock:
708 if (lock_flags & XFS_IOLOCK_EXCL)
709 mrunlock_excl(&ip->i_iolock);
710 else if (lock_flags & XFS_IOLOCK_SHARED)
711 mrunlock_shared(&ip->i_iolock);
712 out:
713 return 0;
714 }
715
716 /*
717 * xfs_iunlock() is used to drop the inode locks acquired with
718 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
719 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
720 * that we know which locks to drop.
721 *
722 * ip -- the inode being unlocked
723 * lock_flags -- this parameter indicates the inode's locks to be
724 * to be unlocked. See the comment for xfs_ilock() for a list
725 * of valid values for this parameter.
726 *
727 */
728 void
729 xfs_iunlock(
730 xfs_inode_t *ip,
731 uint lock_flags)
732 {
733 /*
734 * You can't set both SHARED and EXCL for the same lock,
735 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
736 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
737 */
738 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
739 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
740 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
741 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
742 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
743 XFS_LOCK_DEP_MASK)) == 0);
744 ASSERT(lock_flags != 0);
745
746 if (lock_flags & XFS_IOLOCK_EXCL)
747 mrunlock_excl(&ip->i_iolock);
748 else if (lock_flags & XFS_IOLOCK_SHARED)
749 mrunlock_shared(&ip->i_iolock);
750
751 if (lock_flags & XFS_ILOCK_EXCL)
752 mrunlock_excl(&ip->i_lock);
753 else if (lock_flags & XFS_ILOCK_SHARED)
754 mrunlock_shared(&ip->i_lock);
755
756 if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) &&
757 !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) {
758 /*
759 * Let the AIL know that this item has been unlocked in case
760 * it is in the AIL and anyone is waiting on it. Don't do
761 * this if the caller has asked us not to.
762 */
763 xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp,
764 (xfs_log_item_t*)(ip->i_itemp));
765 }
766 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
767 }
768
769 /*
770 * give up write locks. the i/o lock cannot be held nested
771 * if it is being demoted.
772 */
773 void
774 xfs_ilock_demote(
775 xfs_inode_t *ip,
776 uint lock_flags)
777 {
778 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
779 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
780
781 if (lock_flags & XFS_ILOCK_EXCL)
782 mrdemote(&ip->i_lock);
783 if (lock_flags & XFS_IOLOCK_EXCL)
784 mrdemote(&ip->i_iolock);
785 }
786
787 #ifdef DEBUG
788 /*
789 * Debug-only routine, without additional rw_semaphore APIs, we can
790 * now only answer requests regarding whether we hold the lock for write
791 * (reader state is outside our visibility, we only track writer state).
792 *
793 * Note: this means !xfs_isilocked would give false positives, so don't do that.
794 */
795 int
796 xfs_isilocked(
797 xfs_inode_t *ip,
798 uint lock_flags)
799 {
800 if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) ==
801 XFS_ILOCK_EXCL) {
802 if (!ip->i_lock.mr_writer)
803 return 0;
804 }
805
806 if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) ==
807 XFS_IOLOCK_EXCL) {
808 if (!ip->i_iolock.mr_writer)
809 return 0;
810 }
811
812 return 1;
813 }
814 #endif
815
816 #ifdef XFS_INODE_TRACE
817
818 #define KTRACE_ENTER(ip, vk, s, line, ra) \
819 ktrace_enter((ip)->i_trace, \
820 /* 0 */ (void *)(__psint_t)(vk), \
821 /* 1 */ (void *)(s), \
822 /* 2 */ (void *)(__psint_t) line, \
823 /* 3 */ (void *)(__psint_t)atomic_read(&VFS_I(ip)->i_count), \
824 /* 4 */ (void *)(ra), \
825 /* 5 */ NULL, \
826 /* 6 */ (void *)(__psint_t)current_cpu(), \
827 /* 7 */ (void *)(__psint_t)current_pid(), \
828 /* 8 */ (void *)__return_address, \
829 /* 9 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL)
830
831 /*
832 * Vnode tracing code.
833 */
834 void
835 _xfs_itrace_entry(xfs_inode_t *ip, const char *func, inst_t *ra)
836 {
837 KTRACE_ENTER(ip, INODE_KTRACE_ENTRY, func, 0, ra);
838 }
839
840 void
841 _xfs_itrace_exit(xfs_inode_t *ip, const char *func, inst_t *ra)
842 {
843 KTRACE_ENTER(ip, INODE_KTRACE_EXIT, func, 0, ra);
844 }
845
846 void
847 xfs_itrace_hold(xfs_inode_t *ip, char *file, int line, inst_t *ra)
848 {
849 KTRACE_ENTER(ip, INODE_KTRACE_HOLD, file, line, ra);
850 }
851
852 void
853 _xfs_itrace_ref(xfs_inode_t *ip, char *file, int line, inst_t *ra)
854 {
855 KTRACE_ENTER(ip, INODE_KTRACE_REF, file, line, ra);
856 }
857
858 void
859 xfs_itrace_rele(xfs_inode_t *ip, char *file, int line, inst_t *ra)
860 {
861 KTRACE_ENTER(ip, INODE_KTRACE_RELE, file, line, ra);
862 }
863 #endif /* XFS_INODE_TRACE */