]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_iget.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_iget.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_acl.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_utils.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_bmap.h"
45 #include "xfs_btree_trace.h"
46 #include "xfs_dir2_trace.h"
47
48
49 /*
50 * Allocate and initialise an xfs_inode.
51 */
52 STATIC struct xfs_inode *
53 xfs_inode_alloc(
54 struct xfs_mount *mp,
55 xfs_ino_t ino)
56 {
57 struct xfs_inode *ip;
58
59 /*
60 * if this didn't occur in transactions, we could use
61 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
62 * code up to do this anyway.
63 */
64 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
65 if (!ip)
66 return NULL;
67 if (inode_init_always(mp->m_super, VFS_I(ip))) {
68 kmem_zone_free(xfs_inode_zone, ip);
69 return NULL;
70 }
71
72 ASSERT(atomic_read(&ip->i_iocount) == 0);
73 ASSERT(atomic_read(&ip->i_pincount) == 0);
74 ASSERT(!spin_is_locked(&ip->i_flags_lock));
75 ASSERT(completion_done(&ip->i_flush));
76
77 /* initialise the xfs inode */
78 ip->i_ino = ino;
79 ip->i_mount = mp;
80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
81 ip->i_afp = NULL;
82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
83 ip->i_flags = 0;
84 ip->i_update_core = 0;
85 ip->i_update_size = 0;
86 ip->i_delayed_blks = 0;
87 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
88 ip->i_size = 0;
89 ip->i_new_size = 0;
90
91 /*
92 * Initialize inode's trace buffers.
93 */
94 #ifdef XFS_INODE_TRACE
95 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
96 #endif
97 #ifdef XFS_BMAP_TRACE
98 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
99 #endif
100 #ifdef XFS_BTREE_TRACE
101 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
102 #endif
103 #ifdef XFS_RW_TRACE
104 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
105 #endif
106 #ifdef XFS_ILOCK_TRACE
107 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
108 #endif
109 #ifdef XFS_DIR2_TRACE
110 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
111 #endif
112
113 /* prevent anyone from using this yet */
114 VFS_I(ip)->i_state = I_NEW|I_LOCK;
115
116 return ip;
117 }
118
119 STATIC void
120 xfs_inode_free(
121 struct xfs_inode *ip)
122 {
123 switch (ip->i_d.di_mode & S_IFMT) {
124 case S_IFREG:
125 case S_IFDIR:
126 case S_IFLNK:
127 xfs_idestroy_fork(ip, XFS_DATA_FORK);
128 break;
129 }
130
131 if (ip->i_afp)
132 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
133
134 #ifdef XFS_INODE_TRACE
135 ktrace_free(ip->i_trace);
136 #endif
137 #ifdef XFS_BMAP_TRACE
138 ktrace_free(ip->i_xtrace);
139 #endif
140 #ifdef XFS_BTREE_TRACE
141 ktrace_free(ip->i_btrace);
142 #endif
143 #ifdef XFS_RW_TRACE
144 ktrace_free(ip->i_rwtrace);
145 #endif
146 #ifdef XFS_ILOCK_TRACE
147 ktrace_free(ip->i_lock_trace);
148 #endif
149 #ifdef XFS_DIR2_TRACE
150 ktrace_free(ip->i_dir_trace);
151 #endif
152
153 if (ip->i_itemp) {
154 /*
155 * Only if we are shutting down the fs will we see an
156 * inode still in the AIL. If it is there, we should remove
157 * it to prevent a use-after-free from occurring.
158 */
159 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
160 struct xfs_ail *ailp = lip->li_ailp;
161
162 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
163 XFS_FORCED_SHUTDOWN(ip->i_mount));
164 if (lip->li_flags & XFS_LI_IN_AIL) {
165 spin_lock(&ailp->xa_lock);
166 if (lip->li_flags & XFS_LI_IN_AIL)
167 xfs_trans_ail_delete(ailp, lip);
168 else
169 spin_unlock(&ailp->xa_lock);
170 }
171 xfs_inode_item_destroy(ip);
172 ip->i_itemp = NULL;
173 }
174
175 /* asserts to verify all state is correct here */
176 ASSERT(atomic_read(&ip->i_iocount) == 0);
177 ASSERT(atomic_read(&ip->i_pincount) == 0);
178 ASSERT(!spin_is_locked(&ip->i_flags_lock));
179 ASSERT(completion_done(&ip->i_flush));
180
181 kmem_zone_free(xfs_inode_zone, ip);
182 }
183
184 /*
185 * Check the validity of the inode we just found it the cache
186 */
187 static int
188 xfs_iget_cache_hit(
189 struct xfs_perag *pag,
190 struct xfs_inode *ip,
191 int flags,
192 int lock_flags) __releases(pag->pag_ici_lock)
193 {
194 struct xfs_mount *mp = ip->i_mount;
195 int error = EAGAIN;
196
197 /*
198 * If INEW is set this inode is being set up
199 * If IRECLAIM is set this inode is being torn down
200 * Pause and try again.
201 */
202 if (xfs_iflags_test(ip, (XFS_INEW|XFS_IRECLAIM))) {
203 XFS_STATS_INC(xs_ig_frecycle);
204 goto out_error;
205 }
206
207 /* If IRECLAIMABLE is set, we've torn down the vfs inode part */
208 if (xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
209
210 /*
211 * If lookup is racing with unlink, then we should return an
212 * error immediately so we don't remove it from the reclaim
213 * list and potentially leak the inode.
214 */
215 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
216 error = ENOENT;
217 goto out_error;
218 }
219
220 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
221
222 /*
223 * We need to re-initialise the VFS inode as it has been
224 * 'freed' by the VFS. Do this here so we can deal with
225 * errors cleanly, then tag it so it can be set up correctly
226 * later.
227 */
228 if (inode_init_always(mp->m_super, VFS_I(ip))) {
229 error = ENOMEM;
230 goto out_error;
231 }
232
233 /*
234 * We must set the XFS_INEW flag before clearing the
235 * XFS_IRECLAIMABLE flag so that if a racing lookup does
236 * not find the XFS_IRECLAIMABLE above but has the igrab()
237 * below succeed we can safely check XFS_INEW to detect
238 * that this inode is still being initialised.
239 */
240 xfs_iflags_set(ip, XFS_INEW);
241 xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
242
243 /* clear the radix tree reclaim flag as well. */
244 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
245 } else if (!igrab(VFS_I(ip))) {
246 /* If the VFS inode is being torn down, pause and try again. */
247 XFS_STATS_INC(xs_ig_frecycle);
248 goto out_error;
249 } else if (xfs_iflags_test(ip, XFS_INEW)) {
250 /*
251 * We are racing with another cache hit that is
252 * currently recycling this inode out of the XFS_IRECLAIMABLE
253 * state. Wait for the initialisation to complete before
254 * continuing.
255 */
256 wait_on_inode(VFS_I(ip));
257 }
258
259 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
260 error = ENOENT;
261 iput(VFS_I(ip));
262 goto out_error;
263 }
264
265 /* We've got a live one. */
266 read_unlock(&pag->pag_ici_lock);
267
268 if (lock_flags != 0)
269 xfs_ilock(ip, lock_flags);
270
271 xfs_iflags_clear(ip, XFS_ISTALE);
272 xfs_itrace_exit_tag(ip, "xfs_iget.found");
273 XFS_STATS_INC(xs_ig_found);
274 return 0;
275
276 out_error:
277 read_unlock(&pag->pag_ici_lock);
278 return error;
279 }
280
281
282 static int
283 xfs_iget_cache_miss(
284 struct xfs_mount *mp,
285 struct xfs_perag *pag,
286 xfs_trans_t *tp,
287 xfs_ino_t ino,
288 struct xfs_inode **ipp,
289 xfs_daddr_t bno,
290 int flags,
291 int lock_flags) __releases(pag->pag_ici_lock)
292 {
293 struct xfs_inode *ip;
294 int error;
295 unsigned long first_index, mask;
296 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
297
298 ip = xfs_inode_alloc(mp, ino);
299 if (!ip)
300 return ENOMEM;
301
302 error = xfs_iread(mp, tp, ip, bno, flags);
303 if (error)
304 goto out_destroy;
305
306 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
307
308 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
309 error = ENOENT;
310 goto out_destroy;
311 }
312
313 /*
314 * Preload the radix tree so we can insert safely under the
315 * write spinlock. Note that we cannot sleep inside the preload
316 * region.
317 */
318 if (radix_tree_preload(GFP_KERNEL)) {
319 error = EAGAIN;
320 goto out_destroy;
321 }
322
323 /*
324 * Because the inode hasn't been added to the radix-tree yet it can't
325 * be found by another thread, so we can do the non-sleeping lock here.
326 */
327 if (lock_flags) {
328 if (!xfs_ilock_nowait(ip, lock_flags))
329 BUG();
330 }
331
332 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
333 first_index = agino & mask;
334 write_lock(&pag->pag_ici_lock);
335
336 /* insert the new inode */
337 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
338 if (unlikely(error)) {
339 WARN_ON(error != -EEXIST);
340 XFS_STATS_INC(xs_ig_dup);
341 error = EAGAIN;
342 goto out_preload_end;
343 }
344
345 /* These values _must_ be set before releasing the radix tree lock! */
346 ip->i_udquot = ip->i_gdquot = NULL;
347 xfs_iflags_set(ip, XFS_INEW);
348
349 write_unlock(&pag->pag_ici_lock);
350 radix_tree_preload_end();
351 *ipp = ip;
352 return 0;
353
354 out_preload_end:
355 write_unlock(&pag->pag_ici_lock);
356 radix_tree_preload_end();
357 if (lock_flags)
358 xfs_iunlock(ip, lock_flags);
359 out_destroy:
360 __destroy_inode(VFS_I(ip));
361 xfs_inode_free(ip);
362 return error;
363 }
364
365 /*
366 * Look up an inode by number in the given file system.
367 * The inode is looked up in the cache held in each AG.
368 * If the inode is found in the cache, initialise the vfs inode
369 * if necessary.
370 *
371 * If it is not in core, read it in from the file system's device,
372 * add it to the cache and initialise the vfs inode.
373 *
374 * The inode is locked according to the value of the lock_flags parameter.
375 * This flag parameter indicates how and if the inode's IO lock and inode lock
376 * should be taken.
377 *
378 * mp -- the mount point structure for the current file system. It points
379 * to the inode hash table.
380 * tp -- a pointer to the current transaction if there is one. This is
381 * simply passed through to the xfs_iread() call.
382 * ino -- the number of the inode desired. This is the unique identifier
383 * within the file system for the inode being requested.
384 * lock_flags -- flags indicating how to lock the inode. See the comment
385 * for xfs_ilock() for a list of valid values.
386 * bno -- the block number starting the buffer containing the inode,
387 * if known (as by bulkstat), else 0.
388 */
389 int
390 xfs_iget(
391 xfs_mount_t *mp,
392 xfs_trans_t *tp,
393 xfs_ino_t ino,
394 uint flags,
395 uint lock_flags,
396 xfs_inode_t **ipp,
397 xfs_daddr_t bno)
398 {
399 xfs_inode_t *ip;
400 int error;
401 xfs_perag_t *pag;
402 xfs_agino_t agino;
403
404 /* the radix tree exists only in inode capable AGs */
405 if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
406 return EINVAL;
407
408 /* get the perag structure and ensure that it's inode capable */
409 pag = xfs_get_perag(mp, ino);
410 if (!pag->pagi_inodeok)
411 return EINVAL;
412 ASSERT(pag->pag_ici_init);
413 agino = XFS_INO_TO_AGINO(mp, ino);
414
415 again:
416 error = 0;
417 read_lock(&pag->pag_ici_lock);
418 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
419
420 if (ip) {
421 error = xfs_iget_cache_hit(pag, ip, flags, lock_flags);
422 if (error)
423 goto out_error_or_again;
424 } else {
425 read_unlock(&pag->pag_ici_lock);
426 XFS_STATS_INC(xs_ig_missed);
427
428 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno,
429 flags, lock_flags);
430 if (error)
431 goto out_error_or_again;
432 }
433 xfs_put_perag(mp, pag);
434
435 *ipp = ip;
436
437 ASSERT(ip->i_df.if_ext_max ==
438 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
439 /*
440 * If we have a real type for an on-disk inode, we can set ops(&unlock)
441 * now. If it's a new inode being created, xfs_ialloc will handle it.
442 */
443 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
444 xfs_setup_inode(ip);
445 return 0;
446
447 out_error_or_again:
448 if (error == EAGAIN) {
449 delay(1);
450 goto again;
451 }
452 xfs_put_perag(mp, pag);
453 return error;
454 }
455
456
457 /*
458 * Look for the inode corresponding to the given ino in the hash table.
459 * If it is there and its i_transp pointer matches tp, return it.
460 * Otherwise, return NULL.
461 */
462 xfs_inode_t *
463 xfs_inode_incore(xfs_mount_t *mp,
464 xfs_ino_t ino,
465 xfs_trans_t *tp)
466 {
467 xfs_inode_t *ip;
468 xfs_perag_t *pag;
469
470 pag = xfs_get_perag(mp, ino);
471 read_lock(&pag->pag_ici_lock);
472 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
473 read_unlock(&pag->pag_ici_lock);
474 xfs_put_perag(mp, pag);
475
476 /* the returned inode must match the transaction */
477 if (ip && (ip->i_transp != tp))
478 return NULL;
479 return ip;
480 }
481
482 /*
483 * Decrement reference count of an inode structure and unlock it.
484 *
485 * ip -- the inode being released
486 * lock_flags -- this parameter indicates the inode's locks to be
487 * to be released. See the comment on xfs_iunlock() for a list
488 * of valid values.
489 */
490 void
491 xfs_iput(xfs_inode_t *ip,
492 uint lock_flags)
493 {
494 xfs_itrace_entry(ip);
495 xfs_iunlock(ip, lock_flags);
496 IRELE(ip);
497 }
498
499 /*
500 * Special iput for brand-new inodes that are still locked
501 */
502 void
503 xfs_iput_new(
504 xfs_inode_t *ip,
505 uint lock_flags)
506 {
507 struct inode *inode = VFS_I(ip);
508
509 xfs_itrace_entry(ip);
510
511 if ((ip->i_d.di_mode == 0)) {
512 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
513 make_bad_inode(inode);
514 }
515 if (inode->i_state & I_NEW)
516 unlock_new_inode(inode);
517 if (lock_flags)
518 xfs_iunlock(ip, lock_flags);
519 IRELE(ip);
520 }
521
522 /*
523 * This is called free all the memory associated with an inode.
524 * It must free the inode itself and any buffers allocated for
525 * if_extents/if_data and if_broot. It must also free the lock
526 * associated with the inode.
527 *
528 * Note: because we don't initialise everything on reallocation out
529 * of the zone, we must ensure we nullify everything correctly before
530 * freeing the structure.
531 */
532 void
533 xfs_ireclaim(
534 struct xfs_inode *ip)
535 {
536 struct xfs_mount *mp = ip->i_mount;
537 struct xfs_perag *pag;
538
539 XFS_STATS_INC(xs_ig_reclaims);
540
541 /*
542 * Remove the inode from the per-AG radix tree. It doesn't matter
543 * if it was never added to it because radix_tree_delete can deal
544 * with that case just fine.
545 */
546 pag = xfs_get_perag(mp, ip->i_ino);
547 write_lock(&pag->pag_ici_lock);
548 radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
549 write_unlock(&pag->pag_ici_lock);
550 xfs_put_perag(mp, pag);
551
552 /*
553 * Here we do an (almost) spurious inode lock in order to coordinate
554 * with inode cache radix tree lookups. This is because the lookup
555 * can reference the inodes in the cache without taking references.
556 *
557 * We make that OK here by ensuring that we wait until the inode is
558 * unlocked after the lookup before we go ahead and free it. We get
559 * both the ilock and the iolock because the code may need to drop the
560 * ilock one but will still hold the iolock.
561 */
562 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
563 xfs_qm_dqdetach(ip);
564 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
565
566 xfs_inode_free(ip);
567 }
568
569 /*
570 * This is a wrapper routine around the xfs_ilock() routine
571 * used to centralize some grungy code. It is used in places
572 * that wish to lock the inode solely for reading the extents.
573 * The reason these places can't just call xfs_ilock(SHARED)
574 * is that the inode lock also guards to bringing in of the
575 * extents from disk for a file in b-tree format. If the inode
576 * is in b-tree format, then we need to lock the inode exclusively
577 * until the extents are read in. Locking it exclusively all
578 * the time would limit our parallelism unnecessarily, though.
579 * What we do instead is check to see if the extents have been
580 * read in yet, and only lock the inode exclusively if they
581 * have not.
582 *
583 * The function returns a value which should be given to the
584 * corresponding xfs_iunlock_map_shared(). This value is
585 * the mode in which the lock was actually taken.
586 */
587 uint
588 xfs_ilock_map_shared(
589 xfs_inode_t *ip)
590 {
591 uint lock_mode;
592
593 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
594 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
595 lock_mode = XFS_ILOCK_EXCL;
596 } else {
597 lock_mode = XFS_ILOCK_SHARED;
598 }
599
600 xfs_ilock(ip, lock_mode);
601
602 return lock_mode;
603 }
604
605 /*
606 * This is simply the unlock routine to go with xfs_ilock_map_shared().
607 * All it does is call xfs_iunlock() with the given lock_mode.
608 */
609 void
610 xfs_iunlock_map_shared(
611 xfs_inode_t *ip,
612 unsigned int lock_mode)
613 {
614 xfs_iunlock(ip, lock_mode);
615 }
616
617 /*
618 * The xfs inode contains 2 locks: a multi-reader lock called the
619 * i_iolock and a multi-reader lock called the i_lock. This routine
620 * allows either or both of the locks to be obtained.
621 *
622 * The 2 locks should always be ordered so that the IO lock is
623 * obtained first in order to prevent deadlock.
624 *
625 * ip -- the inode being locked
626 * lock_flags -- this parameter indicates the inode's locks
627 * to be locked. It can be:
628 * XFS_IOLOCK_SHARED,
629 * XFS_IOLOCK_EXCL,
630 * XFS_ILOCK_SHARED,
631 * XFS_ILOCK_EXCL,
632 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
633 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
634 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
635 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
636 */
637 void
638 xfs_ilock(
639 xfs_inode_t *ip,
640 uint lock_flags)
641 {
642 /*
643 * You can't set both SHARED and EXCL for the same lock,
644 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
645 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
646 */
647 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
648 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
649 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
650 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
651 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
652
653 if (lock_flags & XFS_IOLOCK_EXCL)
654 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
655 else if (lock_flags & XFS_IOLOCK_SHARED)
656 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
657
658 if (lock_flags & XFS_ILOCK_EXCL)
659 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
660 else if (lock_flags & XFS_ILOCK_SHARED)
661 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
662
663 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
664 }
665
666 /*
667 * This is just like xfs_ilock(), except that the caller
668 * is guaranteed not to sleep. It returns 1 if it gets
669 * the requested locks and 0 otherwise. If the IO lock is
670 * obtained but the inode lock cannot be, then the IO lock
671 * is dropped before returning.
672 *
673 * ip -- the inode being locked
674 * lock_flags -- this parameter indicates the inode's locks to be
675 * to be locked. See the comment for xfs_ilock() for a list
676 * of valid values.
677 */
678 int
679 xfs_ilock_nowait(
680 xfs_inode_t *ip,
681 uint lock_flags)
682 {
683 /*
684 * You can't set both SHARED and EXCL for the same lock,
685 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
686 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
687 */
688 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
689 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
690 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
691 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
692 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
693
694 if (lock_flags & XFS_IOLOCK_EXCL) {
695 if (!mrtryupdate(&ip->i_iolock))
696 goto out;
697 } else if (lock_flags & XFS_IOLOCK_SHARED) {
698 if (!mrtryaccess(&ip->i_iolock))
699 goto out;
700 }
701 if (lock_flags & XFS_ILOCK_EXCL) {
702 if (!mrtryupdate(&ip->i_lock))
703 goto out_undo_iolock;
704 } else if (lock_flags & XFS_ILOCK_SHARED) {
705 if (!mrtryaccess(&ip->i_lock))
706 goto out_undo_iolock;
707 }
708 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
709 return 1;
710
711 out_undo_iolock:
712 if (lock_flags & XFS_IOLOCK_EXCL)
713 mrunlock_excl(&ip->i_iolock);
714 else if (lock_flags & XFS_IOLOCK_SHARED)
715 mrunlock_shared(&ip->i_iolock);
716 out:
717 return 0;
718 }
719
720 /*
721 * xfs_iunlock() is used to drop the inode locks acquired with
722 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
723 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
724 * that we know which locks to drop.
725 *
726 * ip -- the inode being unlocked
727 * lock_flags -- this parameter indicates the inode's locks to be
728 * to be unlocked. See the comment for xfs_ilock() for a list
729 * of valid values for this parameter.
730 *
731 */
732 void
733 xfs_iunlock(
734 xfs_inode_t *ip,
735 uint lock_flags)
736 {
737 /*
738 * You can't set both SHARED and EXCL for the same lock,
739 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
740 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
741 */
742 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
743 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
744 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
745 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
746 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
747 XFS_LOCK_DEP_MASK)) == 0);
748 ASSERT(lock_flags != 0);
749
750 if (lock_flags & XFS_IOLOCK_EXCL)
751 mrunlock_excl(&ip->i_iolock);
752 else if (lock_flags & XFS_IOLOCK_SHARED)
753 mrunlock_shared(&ip->i_iolock);
754
755 if (lock_flags & XFS_ILOCK_EXCL)
756 mrunlock_excl(&ip->i_lock);
757 else if (lock_flags & XFS_ILOCK_SHARED)
758 mrunlock_shared(&ip->i_lock);
759
760 if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) &&
761 !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) {
762 /*
763 * Let the AIL know that this item has been unlocked in case
764 * it is in the AIL and anyone is waiting on it. Don't do
765 * this if the caller has asked us not to.
766 */
767 xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp,
768 (xfs_log_item_t*)(ip->i_itemp));
769 }
770 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
771 }
772
773 /*
774 * give up write locks. the i/o lock cannot be held nested
775 * if it is being demoted.
776 */
777 void
778 xfs_ilock_demote(
779 xfs_inode_t *ip,
780 uint lock_flags)
781 {
782 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
783 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
784
785 if (lock_flags & XFS_ILOCK_EXCL)
786 mrdemote(&ip->i_lock);
787 if (lock_flags & XFS_IOLOCK_EXCL)
788 mrdemote(&ip->i_iolock);
789 }
790
791 #ifdef DEBUG
792 /*
793 * Debug-only routine, without additional rw_semaphore APIs, we can
794 * now only answer requests regarding whether we hold the lock for write
795 * (reader state is outside our visibility, we only track writer state).
796 *
797 * Note: this means !xfs_isilocked would give false positives, so don't do that.
798 */
799 int
800 xfs_isilocked(
801 xfs_inode_t *ip,
802 uint lock_flags)
803 {
804 if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) ==
805 XFS_ILOCK_EXCL) {
806 if (!ip->i_lock.mr_writer)
807 return 0;
808 }
809
810 if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) ==
811 XFS_IOLOCK_EXCL) {
812 if (!ip->i_iolock.mr_writer)
813 return 0;
814 }
815
816 return 1;
817 }
818 #endif
819
820 #ifdef XFS_INODE_TRACE
821
822 #define KTRACE_ENTER(ip, vk, s, line, ra) \
823 ktrace_enter((ip)->i_trace, \
824 /* 0 */ (void *)(__psint_t)(vk), \
825 /* 1 */ (void *)(s), \
826 /* 2 */ (void *)(__psint_t) line, \
827 /* 3 */ (void *)(__psint_t)atomic_read(&VFS_I(ip)->i_count), \
828 /* 4 */ (void *)(ra), \
829 /* 5 */ NULL, \
830 /* 6 */ (void *)(__psint_t)current_cpu(), \
831 /* 7 */ (void *)(__psint_t)current_pid(), \
832 /* 8 */ (void *)__return_address, \
833 /* 9 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL)
834
835 /*
836 * Vnode tracing code.
837 */
838 void
839 _xfs_itrace_entry(xfs_inode_t *ip, const char *func, inst_t *ra)
840 {
841 KTRACE_ENTER(ip, INODE_KTRACE_ENTRY, func, 0, ra);
842 }
843
844 void
845 _xfs_itrace_exit(xfs_inode_t *ip, const char *func, inst_t *ra)
846 {
847 KTRACE_ENTER(ip, INODE_KTRACE_EXIT, func, 0, ra);
848 }
849
850 void
851 xfs_itrace_hold(xfs_inode_t *ip, char *file, int line, inst_t *ra)
852 {
853 KTRACE_ENTER(ip, INODE_KTRACE_HOLD, file, line, ra);
854 }
855
856 void
857 _xfs_itrace_ref(xfs_inode_t *ip, char *file, int line, inst_t *ra)
858 {
859 KTRACE_ENTER(ip, INODE_KTRACE_REF, file, line, ra);
860 }
861
862 void
863 xfs_itrace_rele(xfs_inode_t *ip, char *file, int line, inst_t *ra)
864 {
865 KTRACE_ENTER(ip, INODE_KTRACE_RELE, file, line, ra);
866 }
867 #endif /* XFS_INODE_TRACE */