]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/xfs/xfs_iget.c
[XFS] call common xfs vnode-level helpers directly and remove vnode operations
[mirror_ubuntu-kernels.git] / fs / xfs / xfs_iget.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_utils.h"
41
42 /*
43 * Look up an inode by number in the given file system.
44 * The inode is looked up in the cache held in each AG.
45 * If the inode is found in the cache, attach it to the provided
46 * vnode.
47 *
48 * If it is not in core, read it in from the file system's device,
49 * add it to the cache and attach the provided vnode.
50 *
51 * The inode is locked according to the value of the lock_flags parameter.
52 * This flag parameter indicates how and if the inode's IO lock and inode lock
53 * should be taken.
54 *
55 * mp -- the mount point structure for the current file system. It points
56 * to the inode hash table.
57 * tp -- a pointer to the current transaction if there is one. This is
58 * simply passed through to the xfs_iread() call.
59 * ino -- the number of the inode desired. This is the unique identifier
60 * within the file system for the inode being requested.
61 * lock_flags -- flags indicating how to lock the inode. See the comment
62 * for xfs_ilock() for a list of valid values.
63 * bno -- the block number starting the buffer containing the inode,
64 * if known (as by bulkstat), else 0.
65 */
66 STATIC int
67 xfs_iget_core(
68 bhv_vnode_t *vp,
69 xfs_mount_t *mp,
70 xfs_trans_t *tp,
71 xfs_ino_t ino,
72 uint flags,
73 uint lock_flags,
74 xfs_inode_t **ipp,
75 xfs_daddr_t bno)
76 {
77 xfs_inode_t *ip;
78 xfs_inode_t *iq;
79 bhv_vnode_t *inode_vp;
80 int error;
81 xfs_icluster_t *icl, *new_icl = NULL;
82 unsigned long first_index, mask;
83 xfs_perag_t *pag;
84 xfs_agino_t agino;
85
86 /* the radix tree exists only in inode capable AGs */
87 if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
88 return EINVAL;
89
90 /* get the perag structure and ensure that it's inode capable */
91 pag = xfs_get_perag(mp, ino);
92 if (!pag->pagi_inodeok)
93 return EINVAL;
94 ASSERT(pag->pag_ici_init);
95 agino = XFS_INO_TO_AGINO(mp, ino);
96
97 again:
98 read_lock(&pag->pag_ici_lock);
99 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
100
101 if (ip != NULL) {
102 /*
103 * If INEW is set this inode is being set up
104 * we need to pause and try again.
105 */
106 if (xfs_iflags_test(ip, XFS_INEW)) {
107 read_unlock(&pag->pag_ici_lock);
108 delay(1);
109 XFS_STATS_INC(xs_ig_frecycle);
110
111 goto again;
112 }
113
114 inode_vp = XFS_ITOV_NULL(ip);
115 if (inode_vp == NULL) {
116 /*
117 * If IRECLAIM is set this inode is
118 * on its way out of the system,
119 * we need to pause and try again.
120 */
121 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
122 read_unlock(&pag->pag_ici_lock);
123 delay(1);
124 XFS_STATS_INC(xs_ig_frecycle);
125
126 goto again;
127 }
128 ASSERT(xfs_iflags_test(ip, XFS_IRECLAIMABLE));
129
130 /*
131 * If lookup is racing with unlink, then we
132 * should return an error immediately so we
133 * don't remove it from the reclaim list and
134 * potentially leak the inode.
135 */
136 if ((ip->i_d.di_mode == 0) &&
137 !(flags & XFS_IGET_CREATE)) {
138 read_unlock(&pag->pag_ici_lock);
139 xfs_put_perag(mp, pag);
140 return ENOENT;
141 }
142
143 /*
144 * There may be transactions sitting in the
145 * incore log buffers or being flushed to disk
146 * at this time. We can't clear the
147 * XFS_IRECLAIMABLE flag until these
148 * transactions have hit the disk, otherwise we
149 * will void the guarantee the flag provides
150 * xfs_iunpin()
151 */
152 if (xfs_ipincount(ip)) {
153 read_unlock(&pag->pag_ici_lock);
154 xfs_log_force(mp, 0,
155 XFS_LOG_FORCE|XFS_LOG_SYNC);
156 XFS_STATS_INC(xs_ig_frecycle);
157 goto again;
158 }
159
160 vn_trace_exit(vp, "xfs_iget.alloc",
161 (inst_t *)__return_address);
162
163 XFS_STATS_INC(xs_ig_found);
164
165 xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
166 read_unlock(&pag->pag_ici_lock);
167
168 XFS_MOUNT_ILOCK(mp);
169 list_del_init(&ip->i_reclaim);
170 XFS_MOUNT_IUNLOCK(mp);
171
172 goto finish_inode;
173
174 } else if (vp != inode_vp) {
175 struct inode *inode = vn_to_inode(inode_vp);
176
177 /* The inode is being torn down, pause and
178 * try again.
179 */
180 if (inode->i_state & (I_FREEING | I_CLEAR)) {
181 read_unlock(&pag->pag_ici_lock);
182 delay(1);
183 XFS_STATS_INC(xs_ig_frecycle);
184
185 goto again;
186 }
187 /* Chances are the other vnode (the one in the inode) is being torn
188 * down right now, and we landed on top of it. Question is, what do
189 * we do? Unhook the old inode and hook up the new one?
190 */
191 cmn_err(CE_PANIC,
192 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
193 inode_vp, vp);
194 }
195
196 /*
197 * Inode cache hit
198 */
199 read_unlock(&pag->pag_ici_lock);
200 XFS_STATS_INC(xs_ig_found);
201
202 finish_inode:
203 if (ip->i_d.di_mode == 0) {
204 if (!(flags & XFS_IGET_CREATE)) {
205 xfs_put_perag(mp, pag);
206 return ENOENT;
207 }
208 xfs_iocore_inode_reinit(ip);
209 }
210
211 if (lock_flags != 0)
212 xfs_ilock(ip, lock_flags);
213
214 xfs_iflags_clear(ip, XFS_ISTALE);
215 vn_trace_exit(vp, "xfs_iget.found",
216 (inst_t *)__return_address);
217 goto return_ip;
218 }
219
220 /*
221 * Inode cache miss
222 */
223 read_unlock(&pag->pag_ici_lock);
224 XFS_STATS_INC(xs_ig_missed);
225
226 /*
227 * Read the disk inode attributes into a new inode structure and get
228 * a new vnode for it. This should also initialize i_ino and i_mount.
229 */
230 error = xfs_iread(mp, tp, ino, &ip, bno,
231 (flags & XFS_IGET_BULKSTAT) ? XFS_IMAP_BULKSTAT : 0);
232 if (error) {
233 xfs_put_perag(mp, pag);
234 return error;
235 }
236
237 vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
238
239 xfs_inode_lock_init(ip, vp);
240 xfs_iocore_inode_init(ip);
241 if (lock_flags)
242 xfs_ilock(ip, lock_flags);
243
244 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
245 xfs_idestroy(ip);
246 xfs_put_perag(mp, pag);
247 return ENOENT;
248 }
249
250 /*
251 * This is a bit messy - we preallocate everything we _might_
252 * need before we pick up the ici lock. That way we don't have to
253 * juggle locks and go all the way back to the start.
254 */
255 new_icl = kmem_zone_alloc(xfs_icluster_zone, KM_SLEEP);
256 if (radix_tree_preload(GFP_KERNEL)) {
257 delay(1);
258 goto again;
259 }
260 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
261 first_index = agino & mask;
262 write_lock(&pag->pag_ici_lock);
263
264 /*
265 * Find the cluster if it exists
266 */
267 icl = NULL;
268 if (radix_tree_gang_lookup(&pag->pag_ici_root, (void**)&iq,
269 first_index, 1)) {
270 if ((iq->i_ino & mask) == first_index)
271 icl = iq->i_cluster;
272 }
273
274 /*
275 * insert the new inode
276 */
277 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
278 if (unlikely(error)) {
279 BUG_ON(error != -EEXIST);
280 write_unlock(&pag->pag_ici_lock);
281 radix_tree_preload_end();
282 xfs_idestroy(ip);
283 XFS_STATS_INC(xs_ig_dup);
284 goto again;
285 }
286
287 /*
288 * These values _must_ be set before releasing ihlock!
289 */
290 ip->i_udquot = ip->i_gdquot = NULL;
291 xfs_iflags_set(ip, XFS_INEW);
292
293 ASSERT(ip->i_cluster == NULL);
294
295 if (!icl) {
296 spin_lock_init(&new_icl->icl_lock);
297 INIT_HLIST_HEAD(&new_icl->icl_inodes);
298 icl = new_icl;
299 new_icl = NULL;
300 } else {
301 ASSERT(!hlist_empty(&icl->icl_inodes));
302 }
303 spin_lock(&icl->icl_lock);
304 hlist_add_head(&ip->i_cnode, &icl->icl_inodes);
305 ip->i_cluster = icl;
306 spin_unlock(&icl->icl_lock);
307
308 write_unlock(&pag->pag_ici_lock);
309 radix_tree_preload_end();
310 if (new_icl)
311 kmem_zone_free(xfs_icluster_zone, new_icl);
312
313 /*
314 * Link ip to its mount and thread it on the mount's inode list.
315 */
316 XFS_MOUNT_ILOCK(mp);
317 if ((iq = mp->m_inodes)) {
318 ASSERT(iq->i_mprev->i_mnext == iq);
319 ip->i_mprev = iq->i_mprev;
320 iq->i_mprev->i_mnext = ip;
321 iq->i_mprev = ip;
322 ip->i_mnext = iq;
323 } else {
324 ip->i_mnext = ip;
325 ip->i_mprev = ip;
326 }
327 mp->m_inodes = ip;
328
329 XFS_MOUNT_IUNLOCK(mp);
330 xfs_put_perag(mp, pag);
331
332 return_ip:
333 ASSERT(ip->i_df.if_ext_max ==
334 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
335
336 ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
337 ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
338
339 *ipp = ip;
340
341 /*
342 * If we have a real type for an on-disk inode, we can set ops(&unlock)
343 * now. If it's a new inode being created, xfs_ialloc will handle it.
344 */
345 bhv_vfs_init_vnode(XFS_MTOVFS(mp), vp, ip, 1);
346
347 return 0;
348 }
349
350
351 /*
352 * The 'normal' internal xfs_iget, if needed it will
353 * 'allocate', or 'get', the vnode.
354 */
355 int
356 xfs_iget(
357 xfs_mount_t *mp,
358 xfs_trans_t *tp,
359 xfs_ino_t ino,
360 uint flags,
361 uint lock_flags,
362 xfs_inode_t **ipp,
363 xfs_daddr_t bno)
364 {
365 struct inode *inode;
366 bhv_vnode_t *vp = NULL;
367 int error;
368
369 XFS_STATS_INC(xs_ig_attempts);
370
371 retry:
372 if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) {
373 xfs_inode_t *ip;
374
375 vp = vn_from_inode(inode);
376 if (inode->i_state & I_NEW) {
377 vn_initialize(inode);
378 error = xfs_iget_core(vp, mp, tp, ino, flags,
379 lock_flags, ipp, bno);
380 if (error) {
381 vn_mark_bad(vp);
382 if (inode->i_state & I_NEW)
383 unlock_new_inode(inode);
384 iput(inode);
385 }
386 } else {
387 /*
388 * If the inode is not fully constructed due to
389 * filehandle mismatches wait for the inode to go
390 * away and try again.
391 *
392 * iget_locked will call __wait_on_freeing_inode
393 * to wait for the inode to go away.
394 */
395 if (is_bad_inode(inode) ||
396 ((ip = xfs_vtoi(vp)) == NULL)) {
397 iput(inode);
398 delay(1);
399 goto retry;
400 }
401
402 if (lock_flags != 0)
403 xfs_ilock(ip, lock_flags);
404 XFS_STATS_INC(xs_ig_found);
405 *ipp = ip;
406 error = 0;
407 }
408 } else
409 error = ENOMEM; /* If we got no inode we are out of memory */
410
411 return error;
412 }
413
414 /*
415 * Do the setup for the various locks within the incore inode.
416 */
417 void
418 xfs_inode_lock_init(
419 xfs_inode_t *ip,
420 bhv_vnode_t *vp)
421 {
422 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
423 "xfsino", (long)vp->v_number);
424 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number);
425 init_waitqueue_head(&ip->i_ipin_wait);
426 atomic_set(&ip->i_pincount, 0);
427 initnsema(&ip->i_flock, 1, "xfsfino");
428 }
429
430 /*
431 * Look for the inode corresponding to the given ino in the hash table.
432 * If it is there and its i_transp pointer matches tp, return it.
433 * Otherwise, return NULL.
434 */
435 xfs_inode_t *
436 xfs_inode_incore(xfs_mount_t *mp,
437 xfs_ino_t ino,
438 xfs_trans_t *tp)
439 {
440 xfs_inode_t *ip;
441 xfs_perag_t *pag;
442
443 pag = xfs_get_perag(mp, ino);
444 read_lock(&pag->pag_ici_lock);
445 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
446 read_unlock(&pag->pag_ici_lock);
447 xfs_put_perag(mp, pag);
448
449 /* the returned inode must match the transaction */
450 if (ip && (ip->i_transp != tp))
451 return NULL;
452 return ip;
453 }
454
455 /*
456 * Decrement reference count of an inode structure and unlock it.
457 *
458 * ip -- the inode being released
459 * lock_flags -- this parameter indicates the inode's locks to be
460 * to be released. See the comment on xfs_iunlock() for a list
461 * of valid values.
462 */
463 void
464 xfs_iput(xfs_inode_t *ip,
465 uint lock_flags)
466 {
467 bhv_vnode_t *vp = XFS_ITOV(ip);
468
469 vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address);
470 xfs_iunlock(ip, lock_flags);
471 VN_RELE(vp);
472 }
473
474 /*
475 * Special iput for brand-new inodes that are still locked
476 */
477 void
478 xfs_iput_new(xfs_inode_t *ip,
479 uint lock_flags)
480 {
481 bhv_vnode_t *vp = XFS_ITOV(ip);
482 struct inode *inode = vn_to_inode(vp);
483
484 vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address);
485
486 if ((ip->i_d.di_mode == 0)) {
487 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
488 vn_mark_bad(vp);
489 }
490 if (inode->i_state & I_NEW)
491 unlock_new_inode(inode);
492 if (lock_flags)
493 xfs_iunlock(ip, lock_flags);
494 VN_RELE(vp);
495 }
496
497
498 /*
499 * This routine embodies the part of the reclaim code that pulls
500 * the inode from the inode hash table and the mount structure's
501 * inode list.
502 * This should only be called from xfs_reclaim().
503 */
504 void
505 xfs_ireclaim(xfs_inode_t *ip)
506 {
507 bhv_vnode_t *vp;
508
509 /*
510 * Remove from old hash list and mount list.
511 */
512 XFS_STATS_INC(xs_ig_reclaims);
513
514 xfs_iextract(ip);
515
516 /*
517 * Here we do a spurious inode lock in order to coordinate with
518 * xfs_sync(). This is because xfs_sync() references the inodes
519 * in the mount list without taking references on the corresponding
520 * vnodes. We make that OK here by ensuring that we wait until
521 * the inode is unlocked in xfs_sync() before we go ahead and
522 * free it. We get both the regular lock and the io lock because
523 * the xfs_sync() code may need to drop the regular one but will
524 * still hold the io lock.
525 */
526 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
527
528 /*
529 * Release dquots (and their references) if any. An inode may escape
530 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
531 */
532 XFS_QM_DQDETACH(ip->i_mount, ip);
533
534 /*
535 * Pull our behavior descriptor from the vnode chain.
536 */
537 vp = XFS_ITOV_NULL(ip);
538 if (vp) {
539 vn_to_inode(vp)->i_private = NULL;
540 ip->i_vnode = NULL;
541 }
542
543 /*
544 * Free all memory associated with the inode.
545 */
546 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
547 xfs_idestroy(ip);
548 }
549
550 /*
551 * This routine removes an about-to-be-destroyed inode from
552 * all of the lists in which it is located with the exception
553 * of the behavior chain.
554 */
555 void
556 xfs_iextract(
557 xfs_inode_t *ip)
558 {
559 xfs_mount_t *mp = ip->i_mount;
560 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
561 xfs_inode_t *iq;
562
563 write_lock(&pag->pag_ici_lock);
564 radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
565 write_unlock(&pag->pag_ici_lock);
566 xfs_put_perag(mp, pag);
567
568 /*
569 * Remove from cluster list
570 */
571 mp = ip->i_mount;
572 spin_lock(&ip->i_cluster->icl_lock);
573 hlist_del(&ip->i_cnode);
574 spin_unlock(&ip->i_cluster->icl_lock);
575
576 /* was last inode in cluster? */
577 if (hlist_empty(&ip->i_cluster->icl_inodes))
578 kmem_zone_free(xfs_icluster_zone, ip->i_cluster);
579
580 /*
581 * Remove from mount's inode list.
582 */
583 XFS_MOUNT_ILOCK(mp);
584 ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
585 iq = ip->i_mnext;
586 iq->i_mprev = ip->i_mprev;
587 ip->i_mprev->i_mnext = iq;
588
589 /*
590 * Fix up the head pointer if it points to the inode being deleted.
591 */
592 if (mp->m_inodes == ip) {
593 if (ip == iq) {
594 mp->m_inodes = NULL;
595 } else {
596 mp->m_inodes = iq;
597 }
598 }
599
600 /* Deal with the deleted inodes list */
601 list_del_init(&ip->i_reclaim);
602
603 mp->m_ireclaims++;
604 XFS_MOUNT_IUNLOCK(mp);
605 }
606
607 /*
608 * This is a wrapper routine around the xfs_ilock() routine
609 * used to centralize some grungy code. It is used in places
610 * that wish to lock the inode solely for reading the extents.
611 * The reason these places can't just call xfs_ilock(SHARED)
612 * is that the inode lock also guards to bringing in of the
613 * extents from disk for a file in b-tree format. If the inode
614 * is in b-tree format, then we need to lock the inode exclusively
615 * until the extents are read in. Locking it exclusively all
616 * the time would limit our parallelism unnecessarily, though.
617 * What we do instead is check to see if the extents have been
618 * read in yet, and only lock the inode exclusively if they
619 * have not.
620 *
621 * The function returns a value which should be given to the
622 * corresponding xfs_iunlock_map_shared(). This value is
623 * the mode in which the lock was actually taken.
624 */
625 uint
626 xfs_ilock_map_shared(
627 xfs_inode_t *ip)
628 {
629 uint lock_mode;
630
631 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
632 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
633 lock_mode = XFS_ILOCK_EXCL;
634 } else {
635 lock_mode = XFS_ILOCK_SHARED;
636 }
637
638 xfs_ilock(ip, lock_mode);
639
640 return lock_mode;
641 }
642
643 /*
644 * This is simply the unlock routine to go with xfs_ilock_map_shared().
645 * All it does is call xfs_iunlock() with the given lock_mode.
646 */
647 void
648 xfs_iunlock_map_shared(
649 xfs_inode_t *ip,
650 unsigned int lock_mode)
651 {
652 xfs_iunlock(ip, lock_mode);
653 }
654
655 /*
656 * The xfs inode contains 2 locks: a multi-reader lock called the
657 * i_iolock and a multi-reader lock called the i_lock. This routine
658 * allows either or both of the locks to be obtained.
659 *
660 * The 2 locks should always be ordered so that the IO lock is
661 * obtained first in order to prevent deadlock.
662 *
663 * ip -- the inode being locked
664 * lock_flags -- this parameter indicates the inode's locks
665 * to be locked. It can be:
666 * XFS_IOLOCK_SHARED,
667 * XFS_IOLOCK_EXCL,
668 * XFS_ILOCK_SHARED,
669 * XFS_ILOCK_EXCL,
670 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
671 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
672 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
673 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
674 */
675 void
676 xfs_ilock(xfs_inode_t *ip,
677 uint lock_flags)
678 {
679 /*
680 * You can't set both SHARED and EXCL for the same lock,
681 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
682 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
683 */
684 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
685 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
686 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
687 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
688 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
689
690 if (lock_flags & XFS_IOLOCK_EXCL) {
691 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
692 } else if (lock_flags & XFS_IOLOCK_SHARED) {
693 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
694 }
695 if (lock_flags & XFS_ILOCK_EXCL) {
696 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
697 } else if (lock_flags & XFS_ILOCK_SHARED) {
698 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
699 }
700 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
701 }
702
703 /*
704 * This is just like xfs_ilock(), except that the caller
705 * is guaranteed not to sleep. It returns 1 if it gets
706 * the requested locks and 0 otherwise. If the IO lock is
707 * obtained but the inode lock cannot be, then the IO lock
708 * is dropped before returning.
709 *
710 * ip -- the inode being locked
711 * lock_flags -- this parameter indicates the inode's locks to be
712 * to be locked. See the comment for xfs_ilock() for a list
713 * of valid values.
714 *
715 */
716 int
717 xfs_ilock_nowait(xfs_inode_t *ip,
718 uint lock_flags)
719 {
720 int iolocked;
721 int ilocked;
722
723 /*
724 * You can't set both SHARED and EXCL for the same lock,
725 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
726 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
727 */
728 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
729 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
730 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
731 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
732 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
733
734 iolocked = 0;
735 if (lock_flags & XFS_IOLOCK_EXCL) {
736 iolocked = mrtryupdate(&ip->i_iolock);
737 if (!iolocked) {
738 return 0;
739 }
740 } else if (lock_flags & XFS_IOLOCK_SHARED) {
741 iolocked = mrtryaccess(&ip->i_iolock);
742 if (!iolocked) {
743 return 0;
744 }
745 }
746 if (lock_flags & XFS_ILOCK_EXCL) {
747 ilocked = mrtryupdate(&ip->i_lock);
748 if (!ilocked) {
749 if (iolocked) {
750 mrunlock(&ip->i_iolock);
751 }
752 return 0;
753 }
754 } else if (lock_flags & XFS_ILOCK_SHARED) {
755 ilocked = mrtryaccess(&ip->i_lock);
756 if (!ilocked) {
757 if (iolocked) {
758 mrunlock(&ip->i_iolock);
759 }
760 return 0;
761 }
762 }
763 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
764 return 1;
765 }
766
767 /*
768 * xfs_iunlock() is used to drop the inode locks acquired with
769 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
770 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
771 * that we know which locks to drop.
772 *
773 * ip -- the inode being unlocked
774 * lock_flags -- this parameter indicates the inode's locks to be
775 * to be unlocked. See the comment for xfs_ilock() for a list
776 * of valid values for this parameter.
777 *
778 */
779 void
780 xfs_iunlock(xfs_inode_t *ip,
781 uint lock_flags)
782 {
783 /*
784 * You can't set both SHARED and EXCL for the same lock,
785 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
786 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
787 */
788 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
789 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
790 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
791 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
792 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
793 XFS_LOCK_DEP_MASK)) == 0);
794 ASSERT(lock_flags != 0);
795
796 if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
797 ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
798 (ismrlocked(&ip->i_iolock, MR_ACCESS)));
799 ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
800 (ismrlocked(&ip->i_iolock, MR_UPDATE)));
801 mrunlock(&ip->i_iolock);
802 }
803
804 if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
805 ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
806 (ismrlocked(&ip->i_lock, MR_ACCESS)));
807 ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
808 (ismrlocked(&ip->i_lock, MR_UPDATE)));
809 mrunlock(&ip->i_lock);
810
811 /*
812 * Let the AIL know that this item has been unlocked in case
813 * it is in the AIL and anyone is waiting on it. Don't do
814 * this if the caller has asked us not to.
815 */
816 if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
817 ip->i_itemp != NULL) {
818 xfs_trans_unlocked_item(ip->i_mount,
819 (xfs_log_item_t*)(ip->i_itemp));
820 }
821 }
822 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
823 }
824
825 /*
826 * give up write locks. the i/o lock cannot be held nested
827 * if it is being demoted.
828 */
829 void
830 xfs_ilock_demote(xfs_inode_t *ip,
831 uint lock_flags)
832 {
833 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
834 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
835
836 if (lock_flags & XFS_ILOCK_EXCL) {
837 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
838 mrdemote(&ip->i_lock);
839 }
840 if (lock_flags & XFS_IOLOCK_EXCL) {
841 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
842 mrdemote(&ip->i_iolock);
843 }
844 }
845
846 /*
847 * The following three routines simply manage the i_flock
848 * semaphore embedded in the inode. This semaphore synchronizes
849 * processes attempting to flush the in-core inode back to disk.
850 */
851 void
852 xfs_iflock(xfs_inode_t *ip)
853 {
854 psema(&(ip->i_flock), PINOD|PLTWAIT);
855 }
856
857 int
858 xfs_iflock_nowait(xfs_inode_t *ip)
859 {
860 return (cpsema(&(ip->i_flock)));
861 }
862
863 void
864 xfs_ifunlock(xfs_inode_t *ip)
865 {
866 ASSERT(issemalocked(&(ip->i_flock)));
867 vsema(&(ip->i_flock));
868 }