]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/xfs/xfs_iget.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-kernels.git] / fs / xfs / xfs_iget.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_utils.h"
41
42 /*
43 * Look up an inode by number in the given file system.
44 * The inode is looked up in the cache held in each AG.
45 * If the inode is found in the cache, attach it to the provided
46 * vnode.
47 *
48 * If it is not in core, read it in from the file system's device,
49 * add it to the cache and attach the provided vnode.
50 *
51 * The inode is locked according to the value of the lock_flags parameter.
52 * This flag parameter indicates how and if the inode's IO lock and inode lock
53 * should be taken.
54 *
55 * mp -- the mount point structure for the current file system. It points
56 * to the inode hash table.
57 * tp -- a pointer to the current transaction if there is one. This is
58 * simply passed through to the xfs_iread() call.
59 * ino -- the number of the inode desired. This is the unique identifier
60 * within the file system for the inode being requested.
61 * lock_flags -- flags indicating how to lock the inode. See the comment
62 * for xfs_ilock() for a list of valid values.
63 * bno -- the block number starting the buffer containing the inode,
64 * if known (as by bulkstat), else 0.
65 */
66 STATIC int
67 xfs_iget_core(
68 struct inode *inode,
69 xfs_mount_t *mp,
70 xfs_trans_t *tp,
71 xfs_ino_t ino,
72 uint flags,
73 uint lock_flags,
74 xfs_inode_t **ipp,
75 xfs_daddr_t bno)
76 {
77 struct inode *old_inode;
78 xfs_inode_t *ip;
79 xfs_inode_t *iq;
80 int error;
81 xfs_icluster_t *icl, *new_icl = NULL;
82 unsigned long first_index, mask;
83 xfs_perag_t *pag;
84 xfs_agino_t agino;
85
86 /* the radix tree exists only in inode capable AGs */
87 if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
88 return EINVAL;
89
90 /* get the perag structure and ensure that it's inode capable */
91 pag = xfs_get_perag(mp, ino);
92 if (!pag->pagi_inodeok)
93 return EINVAL;
94 ASSERT(pag->pag_ici_init);
95 agino = XFS_INO_TO_AGINO(mp, ino);
96
97 again:
98 read_lock(&pag->pag_ici_lock);
99 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
100
101 if (ip != NULL) {
102 /*
103 * If INEW is set this inode is being set up
104 * we need to pause and try again.
105 */
106 if (xfs_iflags_test(ip, XFS_INEW)) {
107 read_unlock(&pag->pag_ici_lock);
108 delay(1);
109 XFS_STATS_INC(xs_ig_frecycle);
110
111 goto again;
112 }
113
114 old_inode = ip->i_vnode;
115 if (old_inode == NULL) {
116 /*
117 * If IRECLAIM is set this inode is
118 * on its way out of the system,
119 * we need to pause and try again.
120 */
121 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
122 read_unlock(&pag->pag_ici_lock);
123 delay(1);
124 XFS_STATS_INC(xs_ig_frecycle);
125
126 goto again;
127 }
128 ASSERT(xfs_iflags_test(ip, XFS_IRECLAIMABLE));
129
130 /*
131 * If lookup is racing with unlink, then we
132 * should return an error immediately so we
133 * don't remove it from the reclaim list and
134 * potentially leak the inode.
135 */
136 if ((ip->i_d.di_mode == 0) &&
137 !(flags & XFS_IGET_CREATE)) {
138 read_unlock(&pag->pag_ici_lock);
139 xfs_put_perag(mp, pag);
140 return ENOENT;
141 }
142
143 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
144
145 XFS_STATS_INC(xs_ig_found);
146 xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
147 read_unlock(&pag->pag_ici_lock);
148
149 XFS_MOUNT_ILOCK(mp);
150 list_del_init(&ip->i_reclaim);
151 XFS_MOUNT_IUNLOCK(mp);
152
153 goto finish_inode;
154
155 } else if (inode != old_inode) {
156 /* The inode is being torn down, pause and
157 * try again.
158 */
159 if (old_inode->i_state & (I_FREEING | I_CLEAR)) {
160 read_unlock(&pag->pag_ici_lock);
161 delay(1);
162 XFS_STATS_INC(xs_ig_frecycle);
163
164 goto again;
165 }
166 /* Chances are the other vnode (the one in the inode) is being torn
167 * down right now, and we landed on top of it. Question is, what do
168 * we do? Unhook the old inode and hook up the new one?
169 */
170 cmn_err(CE_PANIC,
171 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
172 old_inode, inode);
173 }
174
175 /*
176 * Inode cache hit
177 */
178 read_unlock(&pag->pag_ici_lock);
179 XFS_STATS_INC(xs_ig_found);
180
181 finish_inode:
182 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
183 xfs_put_perag(mp, pag);
184 return ENOENT;
185 }
186
187 if (lock_flags != 0)
188 xfs_ilock(ip, lock_flags);
189
190 xfs_iflags_clear(ip, XFS_ISTALE);
191 xfs_itrace_exit_tag(ip, "xfs_iget.found");
192 goto return_ip;
193 }
194
195 /*
196 * Inode cache miss
197 */
198 read_unlock(&pag->pag_ici_lock);
199 XFS_STATS_INC(xs_ig_missed);
200
201 /*
202 * Read the disk inode attributes into a new inode structure and get
203 * a new vnode for it. This should also initialize i_ino and i_mount.
204 */
205 error = xfs_iread(mp, tp, ino, &ip, bno,
206 (flags & XFS_IGET_BULKSTAT) ? XFS_IMAP_BULKSTAT : 0);
207 if (error) {
208 xfs_put_perag(mp, pag);
209 return error;
210 }
211
212 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
213
214
215 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
216 "xfsino", ip->i_ino);
217 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
218 init_waitqueue_head(&ip->i_ipin_wait);
219 atomic_set(&ip->i_pincount, 0);
220 initnsema(&ip->i_flock, 1, "xfsfino");
221
222 if (lock_flags)
223 xfs_ilock(ip, lock_flags);
224
225 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
226 xfs_idestroy(ip);
227 xfs_put_perag(mp, pag);
228 return ENOENT;
229 }
230
231 /*
232 * This is a bit messy - we preallocate everything we _might_
233 * need before we pick up the ici lock. That way we don't have to
234 * juggle locks and go all the way back to the start.
235 */
236 new_icl = kmem_zone_alloc(xfs_icluster_zone, KM_SLEEP);
237 if (radix_tree_preload(GFP_KERNEL)) {
238 xfs_idestroy(ip);
239 delay(1);
240 goto again;
241 }
242 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
243 first_index = agino & mask;
244 write_lock(&pag->pag_ici_lock);
245
246 /*
247 * Find the cluster if it exists
248 */
249 icl = NULL;
250 if (radix_tree_gang_lookup(&pag->pag_ici_root, (void**)&iq,
251 first_index, 1)) {
252 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) == first_index)
253 icl = iq->i_cluster;
254 }
255
256 /*
257 * insert the new inode
258 */
259 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
260 if (unlikely(error)) {
261 BUG_ON(error != -EEXIST);
262 write_unlock(&pag->pag_ici_lock);
263 radix_tree_preload_end();
264 xfs_idestroy(ip);
265 XFS_STATS_INC(xs_ig_dup);
266 goto again;
267 }
268
269 /*
270 * These values _must_ be set before releasing ihlock!
271 */
272 ip->i_udquot = ip->i_gdquot = NULL;
273 xfs_iflags_set(ip, XFS_INEW);
274
275 ASSERT(ip->i_cluster == NULL);
276
277 if (!icl) {
278 spin_lock_init(&new_icl->icl_lock);
279 INIT_HLIST_HEAD(&new_icl->icl_inodes);
280 icl = new_icl;
281 new_icl = NULL;
282 } else {
283 ASSERT(!hlist_empty(&icl->icl_inodes));
284 }
285 spin_lock(&icl->icl_lock);
286 hlist_add_head(&ip->i_cnode, &icl->icl_inodes);
287 ip->i_cluster = icl;
288 spin_unlock(&icl->icl_lock);
289
290 write_unlock(&pag->pag_ici_lock);
291 radix_tree_preload_end();
292 if (new_icl)
293 kmem_zone_free(xfs_icluster_zone, new_icl);
294
295 /*
296 * Link ip to its mount and thread it on the mount's inode list.
297 */
298 XFS_MOUNT_ILOCK(mp);
299 if ((iq = mp->m_inodes)) {
300 ASSERT(iq->i_mprev->i_mnext == iq);
301 ip->i_mprev = iq->i_mprev;
302 iq->i_mprev->i_mnext = ip;
303 iq->i_mprev = ip;
304 ip->i_mnext = iq;
305 } else {
306 ip->i_mnext = ip;
307 ip->i_mprev = ip;
308 }
309 mp->m_inodes = ip;
310
311 XFS_MOUNT_IUNLOCK(mp);
312 xfs_put_perag(mp, pag);
313
314 return_ip:
315 ASSERT(ip->i_df.if_ext_max ==
316 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
317
318 xfs_iflags_set(ip, XFS_IMODIFIED);
319 *ipp = ip;
320
321 /*
322 * If we have a real type for an on-disk inode, we can set ops(&unlock)
323 * now. If it's a new inode being created, xfs_ialloc will handle it.
324 */
325 xfs_initialize_vnode(mp, inode, ip);
326 return 0;
327 }
328
329
330 /*
331 * The 'normal' internal xfs_iget, if needed it will
332 * 'allocate', or 'get', the vnode.
333 */
334 int
335 xfs_iget(
336 xfs_mount_t *mp,
337 xfs_trans_t *tp,
338 xfs_ino_t ino,
339 uint flags,
340 uint lock_flags,
341 xfs_inode_t **ipp,
342 xfs_daddr_t bno)
343 {
344 struct inode *inode;
345 xfs_inode_t *ip;
346 int error;
347
348 XFS_STATS_INC(xs_ig_attempts);
349
350 retry:
351 inode = iget_locked(mp->m_super, ino);
352 if (!inode)
353 /* If we got no inode we are out of memory */
354 return ENOMEM;
355
356 if (inode->i_state & I_NEW) {
357 XFS_STATS_INC(vn_active);
358 XFS_STATS_INC(vn_alloc);
359
360 error = xfs_iget_core(inode, mp, tp, ino, flags,
361 lock_flags, ipp, bno);
362 if (error) {
363 make_bad_inode(inode);
364 if (inode->i_state & I_NEW)
365 unlock_new_inode(inode);
366 iput(inode);
367 }
368 return error;
369 }
370
371 /*
372 * If the inode is not fully constructed due to
373 * filehandle mismatches wait for the inode to go
374 * away and try again.
375 *
376 * iget_locked will call __wait_on_freeing_inode
377 * to wait for the inode to go away.
378 */
379 if (is_bad_inode(inode)) {
380 iput(inode);
381 delay(1);
382 goto retry;
383 }
384
385 ip = XFS_I(inode);
386 if (!ip) {
387 iput(inode);
388 delay(1);
389 goto retry;
390 }
391
392 if (lock_flags != 0)
393 xfs_ilock(ip, lock_flags);
394 XFS_STATS_INC(xs_ig_found);
395 *ipp = ip;
396 return 0;
397 }
398
399 /*
400 * Look for the inode corresponding to the given ino in the hash table.
401 * If it is there and its i_transp pointer matches tp, return it.
402 * Otherwise, return NULL.
403 */
404 xfs_inode_t *
405 xfs_inode_incore(xfs_mount_t *mp,
406 xfs_ino_t ino,
407 xfs_trans_t *tp)
408 {
409 xfs_inode_t *ip;
410 xfs_perag_t *pag;
411
412 pag = xfs_get_perag(mp, ino);
413 read_lock(&pag->pag_ici_lock);
414 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
415 read_unlock(&pag->pag_ici_lock);
416 xfs_put_perag(mp, pag);
417
418 /* the returned inode must match the transaction */
419 if (ip && (ip->i_transp != tp))
420 return NULL;
421 return ip;
422 }
423
424 /*
425 * Decrement reference count of an inode structure and unlock it.
426 *
427 * ip -- the inode being released
428 * lock_flags -- this parameter indicates the inode's locks to be
429 * to be released. See the comment on xfs_iunlock() for a list
430 * of valid values.
431 */
432 void
433 xfs_iput(xfs_inode_t *ip,
434 uint lock_flags)
435 {
436 xfs_itrace_entry(ip);
437 xfs_iunlock(ip, lock_flags);
438 IRELE(ip);
439 }
440
441 /*
442 * Special iput for brand-new inodes that are still locked
443 */
444 void
445 xfs_iput_new(xfs_inode_t *ip,
446 uint lock_flags)
447 {
448 struct inode *inode = ip->i_vnode;
449
450 xfs_itrace_entry(ip);
451
452 if ((ip->i_d.di_mode == 0)) {
453 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
454 make_bad_inode(inode);
455 }
456 if (inode->i_state & I_NEW)
457 unlock_new_inode(inode);
458 if (lock_flags)
459 xfs_iunlock(ip, lock_flags);
460 IRELE(ip);
461 }
462
463
464 /*
465 * This routine embodies the part of the reclaim code that pulls
466 * the inode from the inode hash table and the mount structure's
467 * inode list.
468 * This should only be called from xfs_reclaim().
469 */
470 void
471 xfs_ireclaim(xfs_inode_t *ip)
472 {
473 /*
474 * Remove from old hash list and mount list.
475 */
476 XFS_STATS_INC(xs_ig_reclaims);
477
478 xfs_iextract(ip);
479
480 /*
481 * Here we do a spurious inode lock in order to coordinate with
482 * xfs_sync(). This is because xfs_sync() references the inodes
483 * in the mount list without taking references on the corresponding
484 * vnodes. We make that OK here by ensuring that we wait until
485 * the inode is unlocked in xfs_sync() before we go ahead and
486 * free it. We get both the regular lock and the io lock because
487 * the xfs_sync() code may need to drop the regular one but will
488 * still hold the io lock.
489 */
490 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
491
492 /*
493 * Release dquots (and their references) if any. An inode may escape
494 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
495 */
496 XFS_QM_DQDETACH(ip->i_mount, ip);
497
498 /*
499 * Pull our behavior descriptor from the vnode chain.
500 */
501 if (ip->i_vnode) {
502 ip->i_vnode->i_private = NULL;
503 ip->i_vnode = NULL;
504 }
505
506 /*
507 * Free all memory associated with the inode.
508 */
509 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
510 xfs_idestroy(ip);
511 }
512
513 /*
514 * This routine removes an about-to-be-destroyed inode from
515 * all of the lists in which it is located with the exception
516 * of the behavior chain.
517 */
518 void
519 xfs_iextract(
520 xfs_inode_t *ip)
521 {
522 xfs_mount_t *mp = ip->i_mount;
523 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
524 xfs_inode_t *iq;
525
526 write_lock(&pag->pag_ici_lock);
527 radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
528 write_unlock(&pag->pag_ici_lock);
529 xfs_put_perag(mp, pag);
530
531 /*
532 * Remove from cluster list
533 */
534 mp = ip->i_mount;
535 spin_lock(&ip->i_cluster->icl_lock);
536 hlist_del(&ip->i_cnode);
537 spin_unlock(&ip->i_cluster->icl_lock);
538
539 /* was last inode in cluster? */
540 if (hlist_empty(&ip->i_cluster->icl_inodes))
541 kmem_zone_free(xfs_icluster_zone, ip->i_cluster);
542
543 /*
544 * Remove from mount's inode list.
545 */
546 XFS_MOUNT_ILOCK(mp);
547 ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
548 iq = ip->i_mnext;
549 iq->i_mprev = ip->i_mprev;
550 ip->i_mprev->i_mnext = iq;
551
552 /*
553 * Fix up the head pointer if it points to the inode being deleted.
554 */
555 if (mp->m_inodes == ip) {
556 if (ip == iq) {
557 mp->m_inodes = NULL;
558 } else {
559 mp->m_inodes = iq;
560 }
561 }
562
563 /* Deal with the deleted inodes list */
564 list_del_init(&ip->i_reclaim);
565
566 mp->m_ireclaims++;
567 XFS_MOUNT_IUNLOCK(mp);
568 }
569
570 /*
571 * This is a wrapper routine around the xfs_ilock() routine
572 * used to centralize some grungy code. It is used in places
573 * that wish to lock the inode solely for reading the extents.
574 * The reason these places can't just call xfs_ilock(SHARED)
575 * is that the inode lock also guards to bringing in of the
576 * extents from disk for a file in b-tree format. If the inode
577 * is in b-tree format, then we need to lock the inode exclusively
578 * until the extents are read in. Locking it exclusively all
579 * the time would limit our parallelism unnecessarily, though.
580 * What we do instead is check to see if the extents have been
581 * read in yet, and only lock the inode exclusively if they
582 * have not.
583 *
584 * The function returns a value which should be given to the
585 * corresponding xfs_iunlock_map_shared(). This value is
586 * the mode in which the lock was actually taken.
587 */
588 uint
589 xfs_ilock_map_shared(
590 xfs_inode_t *ip)
591 {
592 uint lock_mode;
593
594 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
595 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
596 lock_mode = XFS_ILOCK_EXCL;
597 } else {
598 lock_mode = XFS_ILOCK_SHARED;
599 }
600
601 xfs_ilock(ip, lock_mode);
602
603 return lock_mode;
604 }
605
606 /*
607 * This is simply the unlock routine to go with xfs_ilock_map_shared().
608 * All it does is call xfs_iunlock() with the given lock_mode.
609 */
610 void
611 xfs_iunlock_map_shared(
612 xfs_inode_t *ip,
613 unsigned int lock_mode)
614 {
615 xfs_iunlock(ip, lock_mode);
616 }
617
618 /*
619 * The xfs inode contains 2 locks: a multi-reader lock called the
620 * i_iolock and a multi-reader lock called the i_lock. This routine
621 * allows either or both of the locks to be obtained.
622 *
623 * The 2 locks should always be ordered so that the IO lock is
624 * obtained first in order to prevent deadlock.
625 *
626 * ip -- the inode being locked
627 * lock_flags -- this parameter indicates the inode's locks
628 * to be locked. It can be:
629 * XFS_IOLOCK_SHARED,
630 * XFS_IOLOCK_EXCL,
631 * XFS_ILOCK_SHARED,
632 * XFS_ILOCK_EXCL,
633 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
634 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
635 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
636 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
637 */
638 void
639 xfs_ilock(xfs_inode_t *ip,
640 uint lock_flags)
641 {
642 /*
643 * You can't set both SHARED and EXCL for the same lock,
644 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
645 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
646 */
647 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
648 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
649 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
650 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
651 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
652
653 if (lock_flags & XFS_IOLOCK_EXCL) {
654 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
655 } else if (lock_flags & XFS_IOLOCK_SHARED) {
656 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
657 }
658 if (lock_flags & XFS_ILOCK_EXCL) {
659 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
660 } else if (lock_flags & XFS_ILOCK_SHARED) {
661 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
662 }
663 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
664 }
665
666 /*
667 * This is just like xfs_ilock(), except that the caller
668 * is guaranteed not to sleep. It returns 1 if it gets
669 * the requested locks and 0 otherwise. If the IO lock is
670 * obtained but the inode lock cannot be, then the IO lock
671 * is dropped before returning.
672 *
673 * ip -- the inode being locked
674 * lock_flags -- this parameter indicates the inode's locks to be
675 * to be locked. See the comment for xfs_ilock() for a list
676 * of valid values.
677 *
678 */
679 int
680 xfs_ilock_nowait(xfs_inode_t *ip,
681 uint lock_flags)
682 {
683 int iolocked;
684 int ilocked;
685
686 /*
687 * You can't set both SHARED and EXCL for the same lock,
688 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
689 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
690 */
691 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
692 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
693 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
694 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
695 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
696
697 iolocked = 0;
698 if (lock_flags & XFS_IOLOCK_EXCL) {
699 iolocked = mrtryupdate(&ip->i_iolock);
700 if (!iolocked) {
701 return 0;
702 }
703 } else if (lock_flags & XFS_IOLOCK_SHARED) {
704 iolocked = mrtryaccess(&ip->i_iolock);
705 if (!iolocked) {
706 return 0;
707 }
708 }
709 if (lock_flags & XFS_ILOCK_EXCL) {
710 ilocked = mrtryupdate(&ip->i_lock);
711 if (!ilocked) {
712 if (iolocked) {
713 mrunlock(&ip->i_iolock);
714 }
715 return 0;
716 }
717 } else if (lock_flags & XFS_ILOCK_SHARED) {
718 ilocked = mrtryaccess(&ip->i_lock);
719 if (!ilocked) {
720 if (iolocked) {
721 mrunlock(&ip->i_iolock);
722 }
723 return 0;
724 }
725 }
726 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
727 return 1;
728 }
729
730 /*
731 * xfs_iunlock() is used to drop the inode locks acquired with
732 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
733 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
734 * that we know which locks to drop.
735 *
736 * ip -- the inode being unlocked
737 * lock_flags -- this parameter indicates the inode's locks to be
738 * to be unlocked. See the comment for xfs_ilock() for a list
739 * of valid values for this parameter.
740 *
741 */
742 void
743 xfs_iunlock(xfs_inode_t *ip,
744 uint lock_flags)
745 {
746 /*
747 * You can't set both SHARED and EXCL for the same lock,
748 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
749 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
750 */
751 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
752 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
753 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
754 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
755 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
756 XFS_LOCK_DEP_MASK)) == 0);
757 ASSERT(lock_flags != 0);
758
759 if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
760 ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
761 (ismrlocked(&ip->i_iolock, MR_ACCESS)));
762 ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
763 (ismrlocked(&ip->i_iolock, MR_UPDATE)));
764 mrunlock(&ip->i_iolock);
765 }
766
767 if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
768 ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
769 (ismrlocked(&ip->i_lock, MR_ACCESS)));
770 ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
771 (ismrlocked(&ip->i_lock, MR_UPDATE)));
772 mrunlock(&ip->i_lock);
773
774 /*
775 * Let the AIL know that this item has been unlocked in case
776 * it is in the AIL and anyone is waiting on it. Don't do
777 * this if the caller has asked us not to.
778 */
779 if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
780 ip->i_itemp != NULL) {
781 xfs_trans_unlocked_item(ip->i_mount,
782 (xfs_log_item_t*)(ip->i_itemp));
783 }
784 }
785 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
786 }
787
788 /*
789 * give up write locks. the i/o lock cannot be held nested
790 * if it is being demoted.
791 */
792 void
793 xfs_ilock_demote(xfs_inode_t *ip,
794 uint lock_flags)
795 {
796 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
797 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
798
799 if (lock_flags & XFS_ILOCK_EXCL) {
800 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
801 mrdemote(&ip->i_lock);
802 }
803 if (lock_flags & XFS_IOLOCK_EXCL) {
804 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
805 mrdemote(&ip->i_iolock);
806 }
807 }
808
809 /*
810 * The following three routines simply manage the i_flock
811 * semaphore embedded in the inode. This semaphore synchronizes
812 * processes attempting to flush the in-core inode back to disk.
813 */
814 void
815 xfs_iflock(xfs_inode_t *ip)
816 {
817 psema(&(ip->i_flock), PINOD|PLTWAIT);
818 }
819
820 int
821 xfs_iflock_nowait(xfs_inode_t *ip)
822 {
823 return (cpsema(&(ip->i_flock)));
824 }
825
826 void
827 xfs_ifunlock(xfs_inode_t *ip)
828 {
829 ASSERT(issemalocked(&(ip->i_flock)));
830 vsema(&(ip->i_flock));
831 }