]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_inode.c
ipc,shm: correct error return value in shmctl (SHM_UNLOCK)
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_inum.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_dir2.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_attr.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_dinode.h"
46 #include "xfs_filestream.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 #include "xfs_symlink.h"
51 #include "xfs_trans_priv.h"
52 #include "xfs_log.h"
53 #include "xfs_bmap_btree.h"
54
55 kmem_zone_t *xfs_inode_zone;
56
57 /*
58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
59 * freed from a file in a single transaction.
60 */
61 #define XFS_ITRUNC_MAX_EXTENTS 2
62
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64
65 /*
66 * helper function to extract extent size hint from inode
67 */
68 xfs_extlen_t
69 xfs_get_extsz_hint(
70 struct xfs_inode *ip)
71 {
72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 return ip->i_d.di_extsize;
74 if (XFS_IS_REALTIME_INODE(ip))
75 return ip->i_mount->m_sb.sb_rextsize;
76 return 0;
77 }
78
79 /*
80 * This is a wrapper routine around the xfs_ilock() routine used to centralize
81 * some grungy code. It is used in places that wish to lock the inode solely
82 * for reading the extents. The reason these places can't just call
83 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
84 * extents from disk for a file in b-tree format. If the inode is in b-tree
85 * format, then we need to lock the inode exclusively until the extents are read
86 * in. Locking it exclusively all the time would limit our parallelism
87 * unnecessarily, though. What we do instead is check to see if the extents
88 * have been read in yet, and only lock the inode exclusively if they have not.
89 *
90 * The function returns a value which should be given to the corresponding
91 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
92 * actually taken.
93 */
94 uint
95 xfs_ilock_map_shared(
96 xfs_inode_t *ip)
97 {
98 uint lock_mode;
99
100 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
101 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
102 lock_mode = XFS_ILOCK_EXCL;
103 } else {
104 lock_mode = XFS_ILOCK_SHARED;
105 }
106
107 xfs_ilock(ip, lock_mode);
108
109 return lock_mode;
110 }
111
112 /*
113 * This is simply the unlock routine to go with xfs_ilock_map_shared().
114 * All it does is call xfs_iunlock() with the given lock_mode.
115 */
116 void
117 xfs_iunlock_map_shared(
118 xfs_inode_t *ip,
119 unsigned int lock_mode)
120 {
121 xfs_iunlock(ip, lock_mode);
122 }
123
124 /*
125 * The xfs inode contains 2 locks: a multi-reader lock called the
126 * i_iolock and a multi-reader lock called the i_lock. This routine
127 * allows either or both of the locks to be obtained.
128 *
129 * The 2 locks should always be ordered so that the IO lock is
130 * obtained first in order to prevent deadlock.
131 *
132 * ip -- the inode being locked
133 * lock_flags -- this parameter indicates the inode's locks
134 * to be locked. It can be:
135 * XFS_IOLOCK_SHARED,
136 * XFS_IOLOCK_EXCL,
137 * XFS_ILOCK_SHARED,
138 * XFS_ILOCK_EXCL,
139 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
140 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
141 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
142 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
143 */
144 void
145 xfs_ilock(
146 xfs_inode_t *ip,
147 uint lock_flags)
148 {
149 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
150
151 /*
152 * You can't set both SHARED and EXCL for the same lock,
153 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
154 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
155 */
156 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
157 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
158 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
159 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
160 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
161
162 if (lock_flags & XFS_IOLOCK_EXCL)
163 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
164 else if (lock_flags & XFS_IOLOCK_SHARED)
165 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
166
167 if (lock_flags & XFS_ILOCK_EXCL)
168 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
169 else if (lock_flags & XFS_ILOCK_SHARED)
170 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 }
172
173 /*
174 * This is just like xfs_ilock(), except that the caller
175 * is guaranteed not to sleep. It returns 1 if it gets
176 * the requested locks and 0 otherwise. If the IO lock is
177 * obtained but the inode lock cannot be, then the IO lock
178 * is dropped before returning.
179 *
180 * ip -- the inode being locked
181 * lock_flags -- this parameter indicates the inode's locks to be
182 * to be locked. See the comment for xfs_ilock() for a list
183 * of valid values.
184 */
185 int
186 xfs_ilock_nowait(
187 xfs_inode_t *ip,
188 uint lock_flags)
189 {
190 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
191
192 /*
193 * You can't set both SHARED and EXCL for the same lock,
194 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
195 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
196 */
197 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
198 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
199 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
200 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
201 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
202
203 if (lock_flags & XFS_IOLOCK_EXCL) {
204 if (!mrtryupdate(&ip->i_iolock))
205 goto out;
206 } else if (lock_flags & XFS_IOLOCK_SHARED) {
207 if (!mrtryaccess(&ip->i_iolock))
208 goto out;
209 }
210 if (lock_flags & XFS_ILOCK_EXCL) {
211 if (!mrtryupdate(&ip->i_lock))
212 goto out_undo_iolock;
213 } else if (lock_flags & XFS_ILOCK_SHARED) {
214 if (!mrtryaccess(&ip->i_lock))
215 goto out_undo_iolock;
216 }
217 return 1;
218
219 out_undo_iolock:
220 if (lock_flags & XFS_IOLOCK_EXCL)
221 mrunlock_excl(&ip->i_iolock);
222 else if (lock_flags & XFS_IOLOCK_SHARED)
223 mrunlock_shared(&ip->i_iolock);
224 out:
225 return 0;
226 }
227
228 /*
229 * xfs_iunlock() is used to drop the inode locks acquired with
230 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
231 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
232 * that we know which locks to drop.
233 *
234 * ip -- the inode being unlocked
235 * lock_flags -- this parameter indicates the inode's locks to be
236 * to be unlocked. See the comment for xfs_ilock() for a list
237 * of valid values for this parameter.
238 *
239 */
240 void
241 xfs_iunlock(
242 xfs_inode_t *ip,
243 uint lock_flags)
244 {
245 /*
246 * You can't set both SHARED and EXCL for the same lock,
247 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
248 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
249 */
250 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
251 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
252 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
253 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
254 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
255 ASSERT(lock_flags != 0);
256
257 if (lock_flags & XFS_IOLOCK_EXCL)
258 mrunlock_excl(&ip->i_iolock);
259 else if (lock_flags & XFS_IOLOCK_SHARED)
260 mrunlock_shared(&ip->i_iolock);
261
262 if (lock_flags & XFS_ILOCK_EXCL)
263 mrunlock_excl(&ip->i_lock);
264 else if (lock_flags & XFS_ILOCK_SHARED)
265 mrunlock_shared(&ip->i_lock);
266
267 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
268 }
269
270 /*
271 * give up write locks. the i/o lock cannot be held nested
272 * if it is being demoted.
273 */
274 void
275 xfs_ilock_demote(
276 xfs_inode_t *ip,
277 uint lock_flags)
278 {
279 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
280 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
281
282 if (lock_flags & XFS_ILOCK_EXCL)
283 mrdemote(&ip->i_lock);
284 if (lock_flags & XFS_IOLOCK_EXCL)
285 mrdemote(&ip->i_iolock);
286
287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289
290 #if defined(DEBUG) || defined(XFS_WARN)
291 int
292 xfs_isilocked(
293 xfs_inode_t *ip,
294 uint lock_flags)
295 {
296 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
297 if (!(lock_flags & XFS_ILOCK_SHARED))
298 return !!ip->i_lock.mr_writer;
299 return rwsem_is_locked(&ip->i_lock.mr_lock);
300 }
301
302 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
303 if (!(lock_flags & XFS_IOLOCK_SHARED))
304 return !!ip->i_iolock.mr_writer;
305 return rwsem_is_locked(&ip->i_iolock.mr_lock);
306 }
307
308 ASSERT(0);
309 return 0;
310 }
311 #endif
312
313 #ifdef DEBUG
314 int xfs_locked_n;
315 int xfs_small_retries;
316 int xfs_middle_retries;
317 int xfs_lots_retries;
318 int xfs_lock_delays;
319 #endif
320
321 /*
322 * Bump the subclass so xfs_lock_inodes() acquires each lock with
323 * a different value
324 */
325 static inline int
326 xfs_lock_inumorder(int lock_mode, int subclass)
327 {
328 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
329 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
330 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
331 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
332
333 return lock_mode;
334 }
335
336 /*
337 * The following routine will lock n inodes in exclusive mode.
338 * We assume the caller calls us with the inodes in i_ino order.
339 *
340 * We need to detect deadlock where an inode that we lock
341 * is in the AIL and we start waiting for another inode that is locked
342 * by a thread in a long running transaction (such as truncate). This can
343 * result in deadlock since the long running trans might need to wait
344 * for the inode we just locked in order to push the tail and free space
345 * in the log.
346 */
347 void
348 xfs_lock_inodes(
349 xfs_inode_t **ips,
350 int inodes,
351 uint lock_mode)
352 {
353 int attempts = 0, i, j, try_lock;
354 xfs_log_item_t *lp;
355
356 ASSERT(ips && (inodes >= 2)); /* we need at least two */
357
358 try_lock = 0;
359 i = 0;
360
361 again:
362 for (; i < inodes; i++) {
363 ASSERT(ips[i]);
364
365 if (i && (ips[i] == ips[i-1])) /* Already locked */
366 continue;
367
368 /*
369 * If try_lock is not set yet, make sure all locked inodes
370 * are not in the AIL.
371 * If any are, set try_lock to be used later.
372 */
373
374 if (!try_lock) {
375 for (j = (i - 1); j >= 0 && !try_lock; j--) {
376 lp = (xfs_log_item_t *)ips[j]->i_itemp;
377 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
378 try_lock++;
379 }
380 }
381 }
382
383 /*
384 * If any of the previous locks we have locked is in the AIL,
385 * we must TRY to get the second and subsequent locks. If
386 * we can't get any, we must release all we have
387 * and try again.
388 */
389
390 if (try_lock) {
391 /* try_lock must be 0 if i is 0. */
392 /*
393 * try_lock means we have an inode locked
394 * that is in the AIL.
395 */
396 ASSERT(i != 0);
397 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
398 attempts++;
399
400 /*
401 * Unlock all previous guys and try again.
402 * xfs_iunlock will try to push the tail
403 * if the inode is in the AIL.
404 */
405
406 for(j = i - 1; j >= 0; j--) {
407
408 /*
409 * Check to see if we've already
410 * unlocked this one.
411 * Not the first one going back,
412 * and the inode ptr is the same.
413 */
414 if ((j != (i - 1)) && ips[j] ==
415 ips[j+1])
416 continue;
417
418 xfs_iunlock(ips[j], lock_mode);
419 }
420
421 if ((attempts % 5) == 0) {
422 delay(1); /* Don't just spin the CPU */
423 #ifdef DEBUG
424 xfs_lock_delays++;
425 #endif
426 }
427 i = 0;
428 try_lock = 0;
429 goto again;
430 }
431 } else {
432 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
433 }
434 }
435
436 #ifdef DEBUG
437 if (attempts) {
438 if (attempts < 5) xfs_small_retries++;
439 else if (attempts < 100) xfs_middle_retries++;
440 else xfs_lots_retries++;
441 } else {
442 xfs_locked_n++;
443 }
444 #endif
445 }
446
447 /*
448 * xfs_lock_two_inodes() can only be used to lock one type of lock
449 * at a time - the iolock or the ilock, but not both at once. If
450 * we lock both at once, lockdep will report false positives saying
451 * we have violated locking orders.
452 */
453 void
454 xfs_lock_two_inodes(
455 xfs_inode_t *ip0,
456 xfs_inode_t *ip1,
457 uint lock_mode)
458 {
459 xfs_inode_t *temp;
460 int attempts = 0;
461 xfs_log_item_t *lp;
462
463 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
464 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
465 ASSERT(ip0->i_ino != ip1->i_ino);
466
467 if (ip0->i_ino > ip1->i_ino) {
468 temp = ip0;
469 ip0 = ip1;
470 ip1 = temp;
471 }
472
473 again:
474 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
475
476 /*
477 * If the first lock we have locked is in the AIL, we must TRY to get
478 * the second lock. If we can't get it, we must release the first one
479 * and try again.
480 */
481 lp = (xfs_log_item_t *)ip0->i_itemp;
482 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
483 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
484 xfs_iunlock(ip0, lock_mode);
485 if ((++attempts % 5) == 0)
486 delay(1); /* Don't just spin the CPU */
487 goto again;
488 }
489 } else {
490 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
491 }
492 }
493
494
495 void
496 __xfs_iflock(
497 struct xfs_inode *ip)
498 {
499 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
500 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
501
502 do {
503 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
504 if (xfs_isiflocked(ip))
505 io_schedule();
506 } while (!xfs_iflock_nowait(ip));
507
508 finish_wait(wq, &wait.wait);
509 }
510
511 STATIC uint
512 _xfs_dic2xflags(
513 __uint16_t di_flags)
514 {
515 uint flags = 0;
516
517 if (di_flags & XFS_DIFLAG_ANY) {
518 if (di_flags & XFS_DIFLAG_REALTIME)
519 flags |= XFS_XFLAG_REALTIME;
520 if (di_flags & XFS_DIFLAG_PREALLOC)
521 flags |= XFS_XFLAG_PREALLOC;
522 if (di_flags & XFS_DIFLAG_IMMUTABLE)
523 flags |= XFS_XFLAG_IMMUTABLE;
524 if (di_flags & XFS_DIFLAG_APPEND)
525 flags |= XFS_XFLAG_APPEND;
526 if (di_flags & XFS_DIFLAG_SYNC)
527 flags |= XFS_XFLAG_SYNC;
528 if (di_flags & XFS_DIFLAG_NOATIME)
529 flags |= XFS_XFLAG_NOATIME;
530 if (di_flags & XFS_DIFLAG_NODUMP)
531 flags |= XFS_XFLAG_NODUMP;
532 if (di_flags & XFS_DIFLAG_RTINHERIT)
533 flags |= XFS_XFLAG_RTINHERIT;
534 if (di_flags & XFS_DIFLAG_PROJINHERIT)
535 flags |= XFS_XFLAG_PROJINHERIT;
536 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
537 flags |= XFS_XFLAG_NOSYMLINKS;
538 if (di_flags & XFS_DIFLAG_EXTSIZE)
539 flags |= XFS_XFLAG_EXTSIZE;
540 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
541 flags |= XFS_XFLAG_EXTSZINHERIT;
542 if (di_flags & XFS_DIFLAG_NODEFRAG)
543 flags |= XFS_XFLAG_NODEFRAG;
544 if (di_flags & XFS_DIFLAG_FILESTREAM)
545 flags |= XFS_XFLAG_FILESTREAM;
546 }
547
548 return flags;
549 }
550
551 uint
552 xfs_ip2xflags(
553 xfs_inode_t *ip)
554 {
555 xfs_icdinode_t *dic = &ip->i_d;
556
557 return _xfs_dic2xflags(dic->di_flags) |
558 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
559 }
560
561 uint
562 xfs_dic2xflags(
563 xfs_dinode_t *dip)
564 {
565 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
566 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
567 }
568
569 /*
570 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
571 * is allowed, otherwise it has to be an exact match. If a CI match is found,
572 * ci_name->name will point to a the actual name (caller must free) or
573 * will be set to NULL if an exact match is found.
574 */
575 int
576 xfs_lookup(
577 xfs_inode_t *dp,
578 struct xfs_name *name,
579 xfs_inode_t **ipp,
580 struct xfs_name *ci_name)
581 {
582 xfs_ino_t inum;
583 int error;
584 uint lock_mode;
585
586 trace_xfs_lookup(dp, name);
587
588 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
589 return XFS_ERROR(EIO);
590
591 lock_mode = xfs_ilock_map_shared(dp);
592 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
593 xfs_iunlock_map_shared(dp, lock_mode);
594
595 if (error)
596 goto out;
597
598 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
599 if (error)
600 goto out_free_name;
601
602 return 0;
603
604 out_free_name:
605 if (ci_name)
606 kmem_free(ci_name->name);
607 out:
608 *ipp = NULL;
609 return error;
610 }
611
612 /*
613 * Allocate an inode on disk and return a copy of its in-core version.
614 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
615 * appropriately within the inode. The uid and gid for the inode are
616 * set according to the contents of the given cred structure.
617 *
618 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
619 * has a free inode available, call xfs_iget() to obtain the in-core
620 * version of the allocated inode. Finally, fill in the inode and
621 * log its initial contents. In this case, ialloc_context would be
622 * set to NULL.
623 *
624 * If xfs_dialloc() does not have an available inode, it will replenish
625 * its supply by doing an allocation. Since we can only do one
626 * allocation within a transaction without deadlocks, we must commit
627 * the current transaction before returning the inode itself.
628 * In this case, therefore, we will set ialloc_context and return.
629 * The caller should then commit the current transaction, start a new
630 * transaction, and call xfs_ialloc() again to actually get the inode.
631 *
632 * To ensure that some other process does not grab the inode that
633 * was allocated during the first call to xfs_ialloc(), this routine
634 * also returns the [locked] bp pointing to the head of the freelist
635 * as ialloc_context. The caller should hold this buffer across
636 * the commit and pass it back into this routine on the second call.
637 *
638 * If we are allocating quota inodes, we do not have a parent inode
639 * to attach to or associate with (i.e. pip == NULL) because they
640 * are not linked into the directory structure - they are attached
641 * directly to the superblock - and so have no parent.
642 */
643 int
644 xfs_ialloc(
645 xfs_trans_t *tp,
646 xfs_inode_t *pip,
647 umode_t mode,
648 xfs_nlink_t nlink,
649 xfs_dev_t rdev,
650 prid_t prid,
651 int okalloc,
652 xfs_buf_t **ialloc_context,
653 xfs_inode_t **ipp)
654 {
655 struct xfs_mount *mp = tp->t_mountp;
656 xfs_ino_t ino;
657 xfs_inode_t *ip;
658 uint flags;
659 int error;
660 timespec_t tv;
661 int filestreams = 0;
662
663 /*
664 * Call the space management code to pick
665 * the on-disk inode to be allocated.
666 */
667 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
668 ialloc_context, &ino);
669 if (error)
670 return error;
671 if (*ialloc_context || ino == NULLFSINO) {
672 *ipp = NULL;
673 return 0;
674 }
675 ASSERT(*ialloc_context == NULL);
676
677 /*
678 * Get the in-core inode with the lock held exclusively.
679 * This is because we're setting fields here we need
680 * to prevent others from looking at until we're done.
681 */
682 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
683 XFS_ILOCK_EXCL, &ip);
684 if (error)
685 return error;
686 ASSERT(ip != NULL);
687
688 ip->i_d.di_mode = mode;
689 ip->i_d.di_onlink = 0;
690 ip->i_d.di_nlink = nlink;
691 ASSERT(ip->i_d.di_nlink == nlink);
692 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
693 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
694 xfs_set_projid(ip, prid);
695 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
696
697 /*
698 * If the superblock version is up to where we support new format
699 * inodes and this is currently an old format inode, then change
700 * the inode version number now. This way we only do the conversion
701 * here rather than here and in the flush/logging code.
702 */
703 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
704 ip->i_d.di_version == 1) {
705 ip->i_d.di_version = 2;
706 /*
707 * We've already zeroed the old link count, the projid field,
708 * and the pad field.
709 */
710 }
711
712 /*
713 * Project ids won't be stored on disk if we are using a version 1 inode.
714 */
715 if ((prid != 0) && (ip->i_d.di_version == 1))
716 xfs_bump_ino_vers2(tp, ip);
717
718 if (pip && XFS_INHERIT_GID(pip)) {
719 ip->i_d.di_gid = pip->i_d.di_gid;
720 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
721 ip->i_d.di_mode |= S_ISGID;
722 }
723 }
724
725 /*
726 * If the group ID of the new file does not match the effective group
727 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
728 * (and only if the irix_sgid_inherit compatibility variable is set).
729 */
730 if ((irix_sgid_inherit) &&
731 (ip->i_d.di_mode & S_ISGID) &&
732 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
733 ip->i_d.di_mode &= ~S_ISGID;
734 }
735
736 ip->i_d.di_size = 0;
737 ip->i_d.di_nextents = 0;
738 ASSERT(ip->i_d.di_nblocks == 0);
739
740 nanotime(&tv);
741 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
742 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
743 ip->i_d.di_atime = ip->i_d.di_mtime;
744 ip->i_d.di_ctime = ip->i_d.di_mtime;
745
746 /*
747 * di_gen will have been taken care of in xfs_iread.
748 */
749 ip->i_d.di_extsize = 0;
750 ip->i_d.di_dmevmask = 0;
751 ip->i_d.di_dmstate = 0;
752 ip->i_d.di_flags = 0;
753
754 if (ip->i_d.di_version == 3) {
755 ASSERT(ip->i_d.di_ino == ino);
756 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
757 ip->i_d.di_crc = 0;
758 ip->i_d.di_changecount = 1;
759 ip->i_d.di_lsn = 0;
760 ip->i_d.di_flags2 = 0;
761 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
762 ip->i_d.di_crtime = ip->i_d.di_mtime;
763 }
764
765
766 flags = XFS_ILOG_CORE;
767 switch (mode & S_IFMT) {
768 case S_IFIFO:
769 case S_IFCHR:
770 case S_IFBLK:
771 case S_IFSOCK:
772 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
773 ip->i_df.if_u2.if_rdev = rdev;
774 ip->i_df.if_flags = 0;
775 flags |= XFS_ILOG_DEV;
776 break;
777 case S_IFREG:
778 /*
779 * we can't set up filestreams until after the VFS inode
780 * is set up properly.
781 */
782 if (pip && xfs_inode_is_filestream(pip))
783 filestreams = 1;
784 /* fall through */
785 case S_IFDIR:
786 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
787 uint di_flags = 0;
788
789 if (S_ISDIR(mode)) {
790 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
791 di_flags |= XFS_DIFLAG_RTINHERIT;
792 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
793 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
794 ip->i_d.di_extsize = pip->i_d.di_extsize;
795 }
796 } else if (S_ISREG(mode)) {
797 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
798 di_flags |= XFS_DIFLAG_REALTIME;
799 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
800 di_flags |= XFS_DIFLAG_EXTSIZE;
801 ip->i_d.di_extsize = pip->i_d.di_extsize;
802 }
803 }
804 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
805 xfs_inherit_noatime)
806 di_flags |= XFS_DIFLAG_NOATIME;
807 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
808 xfs_inherit_nodump)
809 di_flags |= XFS_DIFLAG_NODUMP;
810 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
811 xfs_inherit_sync)
812 di_flags |= XFS_DIFLAG_SYNC;
813 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
814 xfs_inherit_nosymlinks)
815 di_flags |= XFS_DIFLAG_NOSYMLINKS;
816 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
817 di_flags |= XFS_DIFLAG_PROJINHERIT;
818 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
819 xfs_inherit_nodefrag)
820 di_flags |= XFS_DIFLAG_NODEFRAG;
821 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
822 di_flags |= XFS_DIFLAG_FILESTREAM;
823 ip->i_d.di_flags |= di_flags;
824 }
825 /* FALLTHROUGH */
826 case S_IFLNK:
827 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
828 ip->i_df.if_flags = XFS_IFEXTENTS;
829 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
830 ip->i_df.if_u1.if_extents = NULL;
831 break;
832 default:
833 ASSERT(0);
834 }
835 /*
836 * Attribute fork settings for new inode.
837 */
838 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
839 ip->i_d.di_anextents = 0;
840
841 /*
842 * Log the new values stuffed into the inode.
843 */
844 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
845 xfs_trans_log_inode(tp, ip, flags);
846
847 /* now that we have an i_mode we can setup inode ops and unlock */
848 xfs_setup_inode(ip);
849
850 /* now we have set up the vfs inode we can associate the filestream */
851 if (filestreams) {
852 error = xfs_filestream_associate(pip, ip);
853 if (error < 0)
854 return -error;
855 if (!error)
856 xfs_iflags_set(ip, XFS_IFILESTREAM);
857 }
858
859 *ipp = ip;
860 return 0;
861 }
862
863 /*
864 * Allocates a new inode from disk and return a pointer to the
865 * incore copy. This routine will internally commit the current
866 * transaction and allocate a new one if the Space Manager needed
867 * to do an allocation to replenish the inode free-list.
868 *
869 * This routine is designed to be called from xfs_create and
870 * xfs_create_dir.
871 *
872 */
873 int
874 xfs_dir_ialloc(
875 xfs_trans_t **tpp, /* input: current transaction;
876 output: may be a new transaction. */
877 xfs_inode_t *dp, /* directory within whose allocate
878 the inode. */
879 umode_t mode,
880 xfs_nlink_t nlink,
881 xfs_dev_t rdev,
882 prid_t prid, /* project id */
883 int okalloc, /* ok to allocate new space */
884 xfs_inode_t **ipp, /* pointer to inode; it will be
885 locked. */
886 int *committed)
887
888 {
889 xfs_trans_t *tp;
890 xfs_trans_t *ntp;
891 xfs_inode_t *ip;
892 xfs_buf_t *ialloc_context = NULL;
893 int code;
894 void *dqinfo;
895 uint tflags;
896
897 tp = *tpp;
898 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
899
900 /*
901 * xfs_ialloc will return a pointer to an incore inode if
902 * the Space Manager has an available inode on the free
903 * list. Otherwise, it will do an allocation and replenish
904 * the freelist. Since we can only do one allocation per
905 * transaction without deadlocks, we will need to commit the
906 * current transaction and start a new one. We will then
907 * need to call xfs_ialloc again to get the inode.
908 *
909 * If xfs_ialloc did an allocation to replenish the freelist,
910 * it returns the bp containing the head of the freelist as
911 * ialloc_context. We will hold a lock on it across the
912 * transaction commit so that no other process can steal
913 * the inode(s) that we've just allocated.
914 */
915 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
916 &ialloc_context, &ip);
917
918 /*
919 * Return an error if we were unable to allocate a new inode.
920 * This should only happen if we run out of space on disk or
921 * encounter a disk error.
922 */
923 if (code) {
924 *ipp = NULL;
925 return code;
926 }
927 if (!ialloc_context && !ip) {
928 *ipp = NULL;
929 return XFS_ERROR(ENOSPC);
930 }
931
932 /*
933 * If the AGI buffer is non-NULL, then we were unable to get an
934 * inode in one operation. We need to commit the current
935 * transaction and call xfs_ialloc() again. It is guaranteed
936 * to succeed the second time.
937 */
938 if (ialloc_context) {
939 struct xfs_trans_res tres;
940
941 /*
942 * Normally, xfs_trans_commit releases all the locks.
943 * We call bhold to hang on to the ialloc_context across
944 * the commit. Holding this buffer prevents any other
945 * processes from doing any allocations in this
946 * allocation group.
947 */
948 xfs_trans_bhold(tp, ialloc_context);
949 /*
950 * Save the log reservation so we can use
951 * them in the next transaction.
952 */
953 tres.tr_logres = xfs_trans_get_log_res(tp);
954 tres.tr_logcount = xfs_trans_get_log_count(tp);
955
956 /*
957 * We want the quota changes to be associated with the next
958 * transaction, NOT this one. So, detach the dqinfo from this
959 * and attach it to the next transaction.
960 */
961 dqinfo = NULL;
962 tflags = 0;
963 if (tp->t_dqinfo) {
964 dqinfo = (void *)tp->t_dqinfo;
965 tp->t_dqinfo = NULL;
966 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
967 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
968 }
969
970 ntp = xfs_trans_dup(tp);
971 code = xfs_trans_commit(tp, 0);
972 tp = ntp;
973 if (committed != NULL) {
974 *committed = 1;
975 }
976 /*
977 * If we get an error during the commit processing,
978 * release the buffer that is still held and return
979 * to the caller.
980 */
981 if (code) {
982 xfs_buf_relse(ialloc_context);
983 if (dqinfo) {
984 tp->t_dqinfo = dqinfo;
985 xfs_trans_free_dqinfo(tp);
986 }
987 *tpp = ntp;
988 *ipp = NULL;
989 return code;
990 }
991
992 /*
993 * transaction commit worked ok so we can drop the extra ticket
994 * reference that we gained in xfs_trans_dup()
995 */
996 xfs_log_ticket_put(tp->t_ticket);
997 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
998 code = xfs_trans_reserve(tp, &tres, 0, 0);
999
1000 /*
1001 * Re-attach the quota info that we detached from prev trx.
1002 */
1003 if (dqinfo) {
1004 tp->t_dqinfo = dqinfo;
1005 tp->t_flags |= tflags;
1006 }
1007
1008 if (code) {
1009 xfs_buf_relse(ialloc_context);
1010 *tpp = ntp;
1011 *ipp = NULL;
1012 return code;
1013 }
1014 xfs_trans_bjoin(tp, ialloc_context);
1015
1016 /*
1017 * Call ialloc again. Since we've locked out all
1018 * other allocations in this allocation group,
1019 * this call should always succeed.
1020 */
1021 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1022 okalloc, &ialloc_context, &ip);
1023
1024 /*
1025 * If we get an error at this point, return to the caller
1026 * so that the current transaction can be aborted.
1027 */
1028 if (code) {
1029 *tpp = tp;
1030 *ipp = NULL;
1031 return code;
1032 }
1033 ASSERT(!ialloc_context && ip);
1034
1035 } else {
1036 if (committed != NULL)
1037 *committed = 0;
1038 }
1039
1040 *ipp = ip;
1041 *tpp = tp;
1042
1043 return 0;
1044 }
1045
1046 /*
1047 * Decrement the link count on an inode & log the change.
1048 * If this causes the link count to go to zero, initiate the
1049 * logging activity required to truncate a file.
1050 */
1051 int /* error */
1052 xfs_droplink(
1053 xfs_trans_t *tp,
1054 xfs_inode_t *ip)
1055 {
1056 int error;
1057
1058 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1059
1060 ASSERT (ip->i_d.di_nlink > 0);
1061 ip->i_d.di_nlink--;
1062 drop_nlink(VFS_I(ip));
1063 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1064
1065 error = 0;
1066 if (ip->i_d.di_nlink == 0) {
1067 /*
1068 * We're dropping the last link to this file.
1069 * Move the on-disk inode to the AGI unlinked list.
1070 * From xfs_inactive() we will pull the inode from
1071 * the list and free it.
1072 */
1073 error = xfs_iunlink(tp, ip);
1074 }
1075 return error;
1076 }
1077
1078 /*
1079 * This gets called when the inode's version needs to be changed from 1 to 2.
1080 * Currently this happens when the nlink field overflows the old 16-bit value
1081 * or when chproj is called to change the project for the first time.
1082 * As a side effect the superblock version will also get rev'd
1083 * to contain the NLINK bit.
1084 */
1085 void
1086 xfs_bump_ino_vers2(
1087 xfs_trans_t *tp,
1088 xfs_inode_t *ip)
1089 {
1090 xfs_mount_t *mp;
1091
1092 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1093 ASSERT(ip->i_d.di_version == 1);
1094
1095 ip->i_d.di_version = 2;
1096 ip->i_d.di_onlink = 0;
1097 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1098 mp = tp->t_mountp;
1099 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1100 spin_lock(&mp->m_sb_lock);
1101 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1102 xfs_sb_version_addnlink(&mp->m_sb);
1103 spin_unlock(&mp->m_sb_lock);
1104 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1105 } else {
1106 spin_unlock(&mp->m_sb_lock);
1107 }
1108 }
1109 /* Caller must log the inode */
1110 }
1111
1112 /*
1113 * Increment the link count on an inode & log the change.
1114 */
1115 int
1116 xfs_bumplink(
1117 xfs_trans_t *tp,
1118 xfs_inode_t *ip)
1119 {
1120 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1121
1122 ASSERT(ip->i_d.di_nlink > 0);
1123 ip->i_d.di_nlink++;
1124 inc_nlink(VFS_I(ip));
1125 if ((ip->i_d.di_version == 1) &&
1126 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1127 /*
1128 * The inode has increased its number of links beyond
1129 * what can fit in an old format inode. It now needs
1130 * to be converted to a version 2 inode with a 32 bit
1131 * link count. If this is the first inode in the file
1132 * system to do this, then we need to bump the superblock
1133 * version number as well.
1134 */
1135 xfs_bump_ino_vers2(tp, ip);
1136 }
1137
1138 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1139 return 0;
1140 }
1141
1142 int
1143 xfs_create(
1144 xfs_inode_t *dp,
1145 struct xfs_name *name,
1146 umode_t mode,
1147 xfs_dev_t rdev,
1148 xfs_inode_t **ipp)
1149 {
1150 int is_dir = S_ISDIR(mode);
1151 struct xfs_mount *mp = dp->i_mount;
1152 struct xfs_inode *ip = NULL;
1153 struct xfs_trans *tp = NULL;
1154 int error;
1155 xfs_bmap_free_t free_list;
1156 xfs_fsblock_t first_block;
1157 bool unlock_dp_on_error = false;
1158 uint cancel_flags;
1159 int committed;
1160 prid_t prid;
1161 struct xfs_dquot *udqp = NULL;
1162 struct xfs_dquot *gdqp = NULL;
1163 struct xfs_dquot *pdqp = NULL;
1164 struct xfs_trans_res tres;
1165 uint resblks;
1166
1167 trace_xfs_create(dp, name);
1168
1169 if (XFS_FORCED_SHUTDOWN(mp))
1170 return XFS_ERROR(EIO);
1171
1172 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1173 prid = xfs_get_projid(dp);
1174 else
1175 prid = XFS_PROJID_DEFAULT;
1176
1177 /*
1178 * Make sure that we have allocated dquot(s) on disk.
1179 */
1180 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1181 xfs_kgid_to_gid(current_fsgid()), prid,
1182 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1183 &udqp, &gdqp, &pdqp);
1184 if (error)
1185 return error;
1186
1187 if (is_dir) {
1188 rdev = 0;
1189 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1190 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1191 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1192 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1193 } else {
1194 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1195 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1196 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1197 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1198 }
1199
1200 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1201
1202 /*
1203 * Initially assume that the file does not exist and
1204 * reserve the resources for that case. If that is not
1205 * the case we'll drop the one we have and get a more
1206 * appropriate transaction later.
1207 */
1208 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1209 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1210 if (error == ENOSPC) {
1211 /* flush outstanding delalloc blocks and retry */
1212 xfs_flush_inodes(mp);
1213 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1214 }
1215 if (error == ENOSPC) {
1216 /* No space at all so try a "no-allocation" reservation */
1217 resblks = 0;
1218 error = xfs_trans_reserve(tp, &tres, 0, 0);
1219 }
1220 if (error) {
1221 cancel_flags = 0;
1222 goto out_trans_cancel;
1223 }
1224
1225 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1226 unlock_dp_on_error = true;
1227
1228 xfs_bmap_init(&free_list, &first_block);
1229
1230 /*
1231 * Reserve disk quota and the inode.
1232 */
1233 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1234 pdqp, resblks, 1, 0);
1235 if (error)
1236 goto out_trans_cancel;
1237
1238 error = xfs_dir_canenter(tp, dp, name, resblks);
1239 if (error)
1240 goto out_trans_cancel;
1241
1242 /*
1243 * A newly created regular or special file just has one directory
1244 * entry pointing to them, but a directory also the "." entry
1245 * pointing to itself.
1246 */
1247 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1248 prid, resblks > 0, &ip, &committed);
1249 if (error) {
1250 if (error == ENOSPC)
1251 goto out_trans_cancel;
1252 goto out_trans_abort;
1253 }
1254
1255 /*
1256 * Now we join the directory inode to the transaction. We do not do it
1257 * earlier because xfs_dir_ialloc might commit the previous transaction
1258 * (and release all the locks). An error from here on will result in
1259 * the transaction cancel unlocking dp so don't do it explicitly in the
1260 * error path.
1261 */
1262 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1263 unlock_dp_on_error = false;
1264
1265 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1266 &first_block, &free_list, resblks ?
1267 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1268 if (error) {
1269 ASSERT(error != ENOSPC);
1270 goto out_trans_abort;
1271 }
1272 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1273 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1274
1275 if (is_dir) {
1276 error = xfs_dir_init(tp, ip, dp);
1277 if (error)
1278 goto out_bmap_cancel;
1279
1280 error = xfs_bumplink(tp, dp);
1281 if (error)
1282 goto out_bmap_cancel;
1283 }
1284
1285 /*
1286 * If this is a synchronous mount, make sure that the
1287 * create transaction goes to disk before returning to
1288 * the user.
1289 */
1290 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1291 xfs_trans_set_sync(tp);
1292
1293 /*
1294 * Attach the dquot(s) to the inodes and modify them incore.
1295 * These ids of the inode couldn't have changed since the new
1296 * inode has been locked ever since it was created.
1297 */
1298 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1299
1300 error = xfs_bmap_finish(&tp, &free_list, &committed);
1301 if (error)
1302 goto out_bmap_cancel;
1303
1304 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1305 if (error)
1306 goto out_release_inode;
1307
1308 xfs_qm_dqrele(udqp);
1309 xfs_qm_dqrele(gdqp);
1310 xfs_qm_dqrele(pdqp);
1311
1312 *ipp = ip;
1313 return 0;
1314
1315 out_bmap_cancel:
1316 xfs_bmap_cancel(&free_list);
1317 out_trans_abort:
1318 cancel_flags |= XFS_TRANS_ABORT;
1319 out_trans_cancel:
1320 xfs_trans_cancel(tp, cancel_flags);
1321 out_release_inode:
1322 /*
1323 * Wait until after the current transaction is aborted to
1324 * release the inode. This prevents recursive transactions
1325 * and deadlocks from xfs_inactive.
1326 */
1327 if (ip)
1328 IRELE(ip);
1329
1330 xfs_qm_dqrele(udqp);
1331 xfs_qm_dqrele(gdqp);
1332 xfs_qm_dqrele(pdqp);
1333
1334 if (unlock_dp_on_error)
1335 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1336 return error;
1337 }
1338
1339 int
1340 xfs_link(
1341 xfs_inode_t *tdp,
1342 xfs_inode_t *sip,
1343 struct xfs_name *target_name)
1344 {
1345 xfs_mount_t *mp = tdp->i_mount;
1346 xfs_trans_t *tp;
1347 int error;
1348 xfs_bmap_free_t free_list;
1349 xfs_fsblock_t first_block;
1350 int cancel_flags;
1351 int committed;
1352 int resblks;
1353
1354 trace_xfs_link(tdp, target_name);
1355
1356 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1357
1358 if (XFS_FORCED_SHUTDOWN(mp))
1359 return XFS_ERROR(EIO);
1360
1361 error = xfs_qm_dqattach(sip, 0);
1362 if (error)
1363 goto std_return;
1364
1365 error = xfs_qm_dqattach(tdp, 0);
1366 if (error)
1367 goto std_return;
1368
1369 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1370 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1371 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1372 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1373 if (error == ENOSPC) {
1374 resblks = 0;
1375 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1376 }
1377 if (error) {
1378 cancel_flags = 0;
1379 goto error_return;
1380 }
1381
1382 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1383
1384 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1385 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1386
1387 /*
1388 * If we are using project inheritance, we only allow hard link
1389 * creation in our tree when the project IDs are the same; else
1390 * the tree quota mechanism could be circumvented.
1391 */
1392 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1393 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1394 error = XFS_ERROR(EXDEV);
1395 goto error_return;
1396 }
1397
1398 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1399 if (error)
1400 goto error_return;
1401
1402 xfs_bmap_init(&free_list, &first_block);
1403
1404 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1405 &first_block, &free_list, resblks);
1406 if (error)
1407 goto abort_return;
1408 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1409 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1410
1411 error = xfs_bumplink(tp, sip);
1412 if (error)
1413 goto abort_return;
1414
1415 /*
1416 * If this is a synchronous mount, make sure that the
1417 * link transaction goes to disk before returning to
1418 * the user.
1419 */
1420 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1421 xfs_trans_set_sync(tp);
1422 }
1423
1424 error = xfs_bmap_finish (&tp, &free_list, &committed);
1425 if (error) {
1426 xfs_bmap_cancel(&free_list);
1427 goto abort_return;
1428 }
1429
1430 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1431
1432 abort_return:
1433 cancel_flags |= XFS_TRANS_ABORT;
1434 error_return:
1435 xfs_trans_cancel(tp, cancel_flags);
1436 std_return:
1437 return error;
1438 }
1439
1440 /*
1441 * Free up the underlying blocks past new_size. The new size must be smaller
1442 * than the current size. This routine can be used both for the attribute and
1443 * data fork, and does not modify the inode size, which is left to the caller.
1444 *
1445 * The transaction passed to this routine must have made a permanent log
1446 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1447 * given transaction and start new ones, so make sure everything involved in
1448 * the transaction is tidy before calling here. Some transaction will be
1449 * returned to the caller to be committed. The incoming transaction must
1450 * already include the inode, and both inode locks must be held exclusively.
1451 * The inode must also be "held" within the transaction. On return the inode
1452 * will be "held" within the returned transaction. This routine does NOT
1453 * require any disk space to be reserved for it within the transaction.
1454 *
1455 * If we get an error, we must return with the inode locked and linked into the
1456 * current transaction. This keeps things simple for the higher level code,
1457 * because it always knows that the inode is locked and held in the transaction
1458 * that returns to it whether errors occur or not. We don't mark the inode
1459 * dirty on error so that transactions can be easily aborted if possible.
1460 */
1461 int
1462 xfs_itruncate_extents(
1463 struct xfs_trans **tpp,
1464 struct xfs_inode *ip,
1465 int whichfork,
1466 xfs_fsize_t new_size)
1467 {
1468 struct xfs_mount *mp = ip->i_mount;
1469 struct xfs_trans *tp = *tpp;
1470 struct xfs_trans *ntp;
1471 xfs_bmap_free_t free_list;
1472 xfs_fsblock_t first_block;
1473 xfs_fileoff_t first_unmap_block;
1474 xfs_fileoff_t last_block;
1475 xfs_filblks_t unmap_len;
1476 int committed;
1477 int error = 0;
1478 int done = 0;
1479
1480 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1481 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1482 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1483 ASSERT(new_size <= XFS_ISIZE(ip));
1484 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1485 ASSERT(ip->i_itemp != NULL);
1486 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1487 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1488
1489 trace_xfs_itruncate_extents_start(ip, new_size);
1490
1491 /*
1492 * Since it is possible for space to become allocated beyond
1493 * the end of the file (in a crash where the space is allocated
1494 * but the inode size is not yet updated), simply remove any
1495 * blocks which show up between the new EOF and the maximum
1496 * possible file size. If the first block to be removed is
1497 * beyond the maximum file size (ie it is the same as last_block),
1498 * then there is nothing to do.
1499 */
1500 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1501 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1502 if (first_unmap_block == last_block)
1503 return 0;
1504
1505 ASSERT(first_unmap_block < last_block);
1506 unmap_len = last_block - first_unmap_block + 1;
1507 while (!done) {
1508 xfs_bmap_init(&free_list, &first_block);
1509 error = xfs_bunmapi(tp, ip,
1510 first_unmap_block, unmap_len,
1511 xfs_bmapi_aflag(whichfork),
1512 XFS_ITRUNC_MAX_EXTENTS,
1513 &first_block, &free_list,
1514 &done);
1515 if (error)
1516 goto out_bmap_cancel;
1517
1518 /*
1519 * Duplicate the transaction that has the permanent
1520 * reservation and commit the old transaction.
1521 */
1522 error = xfs_bmap_finish(&tp, &free_list, &committed);
1523 if (committed)
1524 xfs_trans_ijoin(tp, ip, 0);
1525 if (error)
1526 goto out_bmap_cancel;
1527
1528 if (committed) {
1529 /*
1530 * Mark the inode dirty so it will be logged and
1531 * moved forward in the log as part of every commit.
1532 */
1533 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1534 }
1535
1536 ntp = xfs_trans_dup(tp);
1537 error = xfs_trans_commit(tp, 0);
1538 tp = ntp;
1539
1540 xfs_trans_ijoin(tp, ip, 0);
1541
1542 if (error)
1543 goto out;
1544
1545 /*
1546 * Transaction commit worked ok so we can drop the extra ticket
1547 * reference that we gained in xfs_trans_dup()
1548 */
1549 xfs_log_ticket_put(tp->t_ticket);
1550 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1551 if (error)
1552 goto out;
1553 }
1554
1555 /*
1556 * Always re-log the inode so that our permanent transaction can keep
1557 * on rolling it forward in the log.
1558 */
1559 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1560
1561 trace_xfs_itruncate_extents_end(ip, new_size);
1562
1563 out:
1564 *tpp = tp;
1565 return error;
1566 out_bmap_cancel:
1567 /*
1568 * If the bunmapi call encounters an error, return to the caller where
1569 * the transaction can be properly aborted. We just need to make sure
1570 * we're not holding any resources that we were not when we came in.
1571 */
1572 xfs_bmap_cancel(&free_list);
1573 goto out;
1574 }
1575
1576 int
1577 xfs_release(
1578 xfs_inode_t *ip)
1579 {
1580 xfs_mount_t *mp = ip->i_mount;
1581 int error;
1582
1583 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1584 return 0;
1585
1586 /* If this is a read-only mount, don't do this (would generate I/O) */
1587 if (mp->m_flags & XFS_MOUNT_RDONLY)
1588 return 0;
1589
1590 if (!XFS_FORCED_SHUTDOWN(mp)) {
1591 int truncated;
1592
1593 /*
1594 * If we are using filestreams, and we have an unlinked
1595 * file that we are processing the last close on, then nothing
1596 * will be able to reopen and write to this file. Purge this
1597 * inode from the filestreams cache so that it doesn't delay
1598 * teardown of the inode.
1599 */
1600 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1601 xfs_filestream_deassociate(ip);
1602
1603 /*
1604 * If we previously truncated this file and removed old data
1605 * in the process, we want to initiate "early" writeout on
1606 * the last close. This is an attempt to combat the notorious
1607 * NULL files problem which is particularly noticeable from a
1608 * truncate down, buffered (re-)write (delalloc), followed by
1609 * a crash. What we are effectively doing here is
1610 * significantly reducing the time window where we'd otherwise
1611 * be exposed to that problem.
1612 */
1613 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1614 if (truncated) {
1615 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1616 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1617 error = -filemap_flush(VFS_I(ip)->i_mapping);
1618 if (error)
1619 return error;
1620 }
1621 }
1622 }
1623
1624 if (ip->i_d.di_nlink == 0)
1625 return 0;
1626
1627 if (xfs_can_free_eofblocks(ip, false)) {
1628
1629 /*
1630 * If we can't get the iolock just skip truncating the blocks
1631 * past EOF because we could deadlock with the mmap_sem
1632 * otherwise. We'll get another chance to drop them once the
1633 * last reference to the inode is dropped, so we'll never leak
1634 * blocks permanently.
1635 *
1636 * Further, check if the inode is being opened, written and
1637 * closed frequently and we have delayed allocation blocks
1638 * outstanding (e.g. streaming writes from the NFS server),
1639 * truncating the blocks past EOF will cause fragmentation to
1640 * occur.
1641 *
1642 * In this case don't do the truncation, either, but we have to
1643 * be careful how we detect this case. Blocks beyond EOF show
1644 * up as i_delayed_blks even when the inode is clean, so we
1645 * need to truncate them away first before checking for a dirty
1646 * release. Hence on the first dirty close we will still remove
1647 * the speculative allocation, but after that we will leave it
1648 * in place.
1649 */
1650 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651 return 0;
1652
1653 error = xfs_free_eofblocks(mp, ip, true);
1654 if (error && error != EAGAIN)
1655 return error;
1656
1657 /* delalloc blocks after truncation means it really is dirty */
1658 if (ip->i_delayed_blks)
1659 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1660 }
1661 return 0;
1662 }
1663
1664 /*
1665 * xfs_inactive_truncate
1666 *
1667 * Called to perform a truncate when an inode becomes unlinked.
1668 */
1669 STATIC int
1670 xfs_inactive_truncate(
1671 struct xfs_inode *ip)
1672 {
1673 struct xfs_mount *mp = ip->i_mount;
1674 struct xfs_trans *tp;
1675 int error;
1676
1677 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1678 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1679 if (error) {
1680 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1681 xfs_trans_cancel(tp, 0);
1682 return error;
1683 }
1684
1685 xfs_ilock(ip, XFS_ILOCK_EXCL);
1686 xfs_trans_ijoin(tp, ip, 0);
1687
1688 /*
1689 * Log the inode size first to prevent stale data exposure in the event
1690 * of a system crash before the truncate completes. See the related
1691 * comment in xfs_setattr_size() for details.
1692 */
1693 ip->i_d.di_size = 0;
1694 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1695
1696 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1697 if (error)
1698 goto error_trans_cancel;
1699
1700 ASSERT(ip->i_d.di_nextents == 0);
1701
1702 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1703 if (error)
1704 goto error_unlock;
1705
1706 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1707 return 0;
1708
1709 error_trans_cancel:
1710 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1711 error_unlock:
1712 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713 return error;
1714 }
1715
1716 /*
1717 * xfs_inactive_ifree()
1718 *
1719 * Perform the inode free when an inode is unlinked.
1720 */
1721 STATIC int
1722 xfs_inactive_ifree(
1723 struct xfs_inode *ip)
1724 {
1725 xfs_bmap_free_t free_list;
1726 xfs_fsblock_t first_block;
1727 int committed;
1728 struct xfs_mount *mp = ip->i_mount;
1729 struct xfs_trans *tp;
1730 int error;
1731
1732 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1733 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1734 if (error) {
1735 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1736 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1737 return error;
1738 }
1739
1740 xfs_ilock(ip, XFS_ILOCK_EXCL);
1741 xfs_trans_ijoin(tp, ip, 0);
1742
1743 xfs_bmap_init(&free_list, &first_block);
1744 error = xfs_ifree(tp, ip, &free_list);
1745 if (error) {
1746 /*
1747 * If we fail to free the inode, shut down. The cancel
1748 * might do that, we need to make sure. Otherwise the
1749 * inode might be lost for a long time or forever.
1750 */
1751 if (!XFS_FORCED_SHUTDOWN(mp)) {
1752 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1753 __func__, error);
1754 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1755 }
1756 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1757 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1758 return error;
1759 }
1760
1761 /*
1762 * Credit the quota account(s). The inode is gone.
1763 */
1764 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1765
1766 /*
1767 * Just ignore errors at this point. There is nothing we can
1768 * do except to try to keep going. Make sure it's not a silent
1769 * error.
1770 */
1771 error = xfs_bmap_finish(&tp, &free_list, &committed);
1772 if (error)
1773 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1774 __func__, error);
1775 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1776 if (error)
1777 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1778 __func__, error);
1779
1780 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 return 0;
1782 }
1783
1784 /*
1785 * xfs_inactive
1786 *
1787 * This is called when the vnode reference count for the vnode
1788 * goes to zero. If the file has been unlinked, then it must
1789 * now be truncated. Also, we clear all of the read-ahead state
1790 * kept for the inode here since the file is now closed.
1791 */
1792 void
1793 xfs_inactive(
1794 xfs_inode_t *ip)
1795 {
1796 struct xfs_mount *mp;
1797 int error;
1798 int truncate = 0;
1799
1800 /*
1801 * If the inode is already free, then there can be nothing
1802 * to clean up here.
1803 */
1804 if (ip->i_d.di_mode == 0) {
1805 ASSERT(ip->i_df.if_real_bytes == 0);
1806 ASSERT(ip->i_df.if_broot_bytes == 0);
1807 return;
1808 }
1809
1810 mp = ip->i_mount;
1811
1812 /* If this is a read-only mount, don't do this (would generate I/O) */
1813 if (mp->m_flags & XFS_MOUNT_RDONLY)
1814 return;
1815
1816 if (ip->i_d.di_nlink != 0) {
1817 /*
1818 * force is true because we are evicting an inode from the
1819 * cache. Post-eof blocks must be freed, lest we end up with
1820 * broken free space accounting.
1821 */
1822 if (xfs_can_free_eofblocks(ip, true))
1823 xfs_free_eofblocks(mp, ip, false);
1824
1825 return;
1826 }
1827
1828 if (S_ISREG(ip->i_d.di_mode) &&
1829 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1830 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1831 truncate = 1;
1832
1833 error = xfs_qm_dqattach(ip, 0);
1834 if (error)
1835 return;
1836
1837 if (S_ISLNK(ip->i_d.di_mode))
1838 error = xfs_inactive_symlink(ip);
1839 else if (truncate)
1840 error = xfs_inactive_truncate(ip);
1841 if (error)
1842 return;
1843
1844 /*
1845 * If there are attributes associated with the file then blow them away
1846 * now. The code calls a routine that recursively deconstructs the
1847 * attribute fork. We need to just commit the current transaction
1848 * because we can't use it for xfs_attr_inactive().
1849 */
1850 if (ip->i_d.di_anextents > 0) {
1851 ASSERT(ip->i_d.di_forkoff != 0);
1852
1853 error = xfs_attr_inactive(ip);
1854 if (error)
1855 return;
1856 }
1857
1858 if (ip->i_afp)
1859 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1860
1861 ASSERT(ip->i_d.di_anextents == 0);
1862
1863 /*
1864 * Free the inode.
1865 */
1866 error = xfs_inactive_ifree(ip);
1867 if (error)
1868 return;
1869
1870 /*
1871 * Release the dquots held by inode, if any.
1872 */
1873 xfs_qm_dqdetach(ip);
1874 }
1875
1876 /*
1877 * This is called when the inode's link count goes to 0.
1878 * We place the on-disk inode on a list in the AGI. It
1879 * will be pulled from this list when the inode is freed.
1880 */
1881 int
1882 xfs_iunlink(
1883 xfs_trans_t *tp,
1884 xfs_inode_t *ip)
1885 {
1886 xfs_mount_t *mp;
1887 xfs_agi_t *agi;
1888 xfs_dinode_t *dip;
1889 xfs_buf_t *agibp;
1890 xfs_buf_t *ibp;
1891 xfs_agino_t agino;
1892 short bucket_index;
1893 int offset;
1894 int error;
1895
1896 ASSERT(ip->i_d.di_nlink == 0);
1897 ASSERT(ip->i_d.di_mode != 0);
1898
1899 mp = tp->t_mountp;
1900
1901 /*
1902 * Get the agi buffer first. It ensures lock ordering
1903 * on the list.
1904 */
1905 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1906 if (error)
1907 return error;
1908 agi = XFS_BUF_TO_AGI(agibp);
1909
1910 /*
1911 * Get the index into the agi hash table for the
1912 * list this inode will go on.
1913 */
1914 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1915 ASSERT(agino != 0);
1916 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1917 ASSERT(agi->agi_unlinked[bucket_index]);
1918 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1919
1920 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1921 /*
1922 * There is already another inode in the bucket we need
1923 * to add ourselves to. Add us at the front of the list.
1924 * Here we put the head pointer into our next pointer,
1925 * and then we fall through to point the head at us.
1926 */
1927 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1928 0, 0);
1929 if (error)
1930 return error;
1931
1932 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1933 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1934 offset = ip->i_imap.im_boffset +
1935 offsetof(xfs_dinode_t, di_next_unlinked);
1936
1937 /* need to recalc the inode CRC if appropriate */
1938 xfs_dinode_calc_crc(mp, dip);
1939
1940 xfs_trans_inode_buf(tp, ibp);
1941 xfs_trans_log_buf(tp, ibp, offset,
1942 (offset + sizeof(xfs_agino_t) - 1));
1943 xfs_inobp_check(mp, ibp);
1944 }
1945
1946 /*
1947 * Point the bucket head pointer at the inode being inserted.
1948 */
1949 ASSERT(agino != 0);
1950 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1951 offset = offsetof(xfs_agi_t, agi_unlinked) +
1952 (sizeof(xfs_agino_t) * bucket_index);
1953 xfs_trans_log_buf(tp, agibp, offset,
1954 (offset + sizeof(xfs_agino_t) - 1));
1955 return 0;
1956 }
1957
1958 /*
1959 * Pull the on-disk inode from the AGI unlinked list.
1960 */
1961 STATIC int
1962 xfs_iunlink_remove(
1963 xfs_trans_t *tp,
1964 xfs_inode_t *ip)
1965 {
1966 xfs_ino_t next_ino;
1967 xfs_mount_t *mp;
1968 xfs_agi_t *agi;
1969 xfs_dinode_t *dip;
1970 xfs_buf_t *agibp;
1971 xfs_buf_t *ibp;
1972 xfs_agnumber_t agno;
1973 xfs_agino_t agino;
1974 xfs_agino_t next_agino;
1975 xfs_buf_t *last_ibp;
1976 xfs_dinode_t *last_dip = NULL;
1977 short bucket_index;
1978 int offset, last_offset = 0;
1979 int error;
1980
1981 mp = tp->t_mountp;
1982 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1983
1984 /*
1985 * Get the agi buffer first. It ensures lock ordering
1986 * on the list.
1987 */
1988 error = xfs_read_agi(mp, tp, agno, &agibp);
1989 if (error)
1990 return error;
1991
1992 agi = XFS_BUF_TO_AGI(agibp);
1993
1994 /*
1995 * Get the index into the agi hash table for the
1996 * list this inode will go on.
1997 */
1998 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1999 ASSERT(agino != 0);
2000 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2001 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2002 ASSERT(agi->agi_unlinked[bucket_index]);
2003
2004 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2005 /*
2006 * We're at the head of the list. Get the inode's on-disk
2007 * buffer to see if there is anyone after us on the list.
2008 * Only modify our next pointer if it is not already NULLAGINO.
2009 * This saves us the overhead of dealing with the buffer when
2010 * there is no need to change it.
2011 */
2012 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2013 0, 0);
2014 if (error) {
2015 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2016 __func__, error);
2017 return error;
2018 }
2019 next_agino = be32_to_cpu(dip->di_next_unlinked);
2020 ASSERT(next_agino != 0);
2021 if (next_agino != NULLAGINO) {
2022 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2023 offset = ip->i_imap.im_boffset +
2024 offsetof(xfs_dinode_t, di_next_unlinked);
2025
2026 /* need to recalc the inode CRC if appropriate */
2027 xfs_dinode_calc_crc(mp, dip);
2028
2029 xfs_trans_inode_buf(tp, ibp);
2030 xfs_trans_log_buf(tp, ibp, offset,
2031 (offset + sizeof(xfs_agino_t) - 1));
2032 xfs_inobp_check(mp, ibp);
2033 } else {
2034 xfs_trans_brelse(tp, ibp);
2035 }
2036 /*
2037 * Point the bucket head pointer at the next inode.
2038 */
2039 ASSERT(next_agino != 0);
2040 ASSERT(next_agino != agino);
2041 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2042 offset = offsetof(xfs_agi_t, agi_unlinked) +
2043 (sizeof(xfs_agino_t) * bucket_index);
2044 xfs_trans_log_buf(tp, agibp, offset,
2045 (offset + sizeof(xfs_agino_t) - 1));
2046 } else {
2047 /*
2048 * We need to search the list for the inode being freed.
2049 */
2050 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2051 last_ibp = NULL;
2052 while (next_agino != agino) {
2053 struct xfs_imap imap;
2054
2055 if (last_ibp)
2056 xfs_trans_brelse(tp, last_ibp);
2057
2058 imap.im_blkno = 0;
2059 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2060
2061 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2062 if (error) {
2063 xfs_warn(mp,
2064 "%s: xfs_imap returned error %d.",
2065 __func__, error);
2066 return error;
2067 }
2068
2069 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2070 &last_ibp, 0, 0);
2071 if (error) {
2072 xfs_warn(mp,
2073 "%s: xfs_imap_to_bp returned error %d.",
2074 __func__, error);
2075 return error;
2076 }
2077
2078 last_offset = imap.im_boffset;
2079 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2080 ASSERT(next_agino != NULLAGINO);
2081 ASSERT(next_agino != 0);
2082 }
2083
2084 /*
2085 * Now last_ibp points to the buffer previous to us on the
2086 * unlinked list. Pull us from the list.
2087 */
2088 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2089 0, 0);
2090 if (error) {
2091 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2092 __func__, error);
2093 return error;
2094 }
2095 next_agino = be32_to_cpu(dip->di_next_unlinked);
2096 ASSERT(next_agino != 0);
2097 ASSERT(next_agino != agino);
2098 if (next_agino != NULLAGINO) {
2099 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2100 offset = ip->i_imap.im_boffset +
2101 offsetof(xfs_dinode_t, di_next_unlinked);
2102
2103 /* need to recalc the inode CRC if appropriate */
2104 xfs_dinode_calc_crc(mp, dip);
2105
2106 xfs_trans_inode_buf(tp, ibp);
2107 xfs_trans_log_buf(tp, ibp, offset,
2108 (offset + sizeof(xfs_agino_t) - 1));
2109 xfs_inobp_check(mp, ibp);
2110 } else {
2111 xfs_trans_brelse(tp, ibp);
2112 }
2113 /*
2114 * Point the previous inode on the list to the next inode.
2115 */
2116 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2117 ASSERT(next_agino != 0);
2118 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2119
2120 /* need to recalc the inode CRC if appropriate */
2121 xfs_dinode_calc_crc(mp, last_dip);
2122
2123 xfs_trans_inode_buf(tp, last_ibp);
2124 xfs_trans_log_buf(tp, last_ibp, offset,
2125 (offset + sizeof(xfs_agino_t) - 1));
2126 xfs_inobp_check(mp, last_ibp);
2127 }
2128 return 0;
2129 }
2130
2131 /*
2132 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2133 * inodes that are in memory - they all must be marked stale and attached to
2134 * the cluster buffer.
2135 */
2136 STATIC int
2137 xfs_ifree_cluster(
2138 xfs_inode_t *free_ip,
2139 xfs_trans_t *tp,
2140 xfs_ino_t inum)
2141 {
2142 xfs_mount_t *mp = free_ip->i_mount;
2143 int blks_per_cluster;
2144 int nbufs;
2145 int ninodes;
2146 int i, j;
2147 xfs_daddr_t blkno;
2148 xfs_buf_t *bp;
2149 xfs_inode_t *ip;
2150 xfs_inode_log_item_t *iip;
2151 xfs_log_item_t *lip;
2152 struct xfs_perag *pag;
2153
2154 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2155 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2156 blks_per_cluster = 1;
2157 ninodes = mp->m_sb.sb_inopblock;
2158 nbufs = XFS_IALLOC_BLOCKS(mp);
2159 } else {
2160 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2161 mp->m_sb.sb_blocksize;
2162 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2163 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2164 }
2165
2166 for (j = 0; j < nbufs; j++, inum += ninodes) {
2167 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2168 XFS_INO_TO_AGBNO(mp, inum));
2169
2170 /*
2171 * We obtain and lock the backing buffer first in the process
2172 * here, as we have to ensure that any dirty inode that we
2173 * can't get the flush lock on is attached to the buffer.
2174 * If we scan the in-memory inodes first, then buffer IO can
2175 * complete before we get a lock on it, and hence we may fail
2176 * to mark all the active inodes on the buffer stale.
2177 */
2178 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2179 mp->m_bsize * blks_per_cluster,
2180 XBF_UNMAPPED);
2181
2182 if (!bp)
2183 return ENOMEM;
2184
2185 /*
2186 * This buffer may not have been correctly initialised as we
2187 * didn't read it from disk. That's not important because we are
2188 * only using to mark the buffer as stale in the log, and to
2189 * attach stale cached inodes on it. That means it will never be
2190 * dispatched for IO. If it is, we want to know about it, and we
2191 * want it to fail. We can acheive this by adding a write
2192 * verifier to the buffer.
2193 */
2194 bp->b_ops = &xfs_inode_buf_ops;
2195
2196 /*
2197 * Walk the inodes already attached to the buffer and mark them
2198 * stale. These will all have the flush locks held, so an
2199 * in-memory inode walk can't lock them. By marking them all
2200 * stale first, we will not attempt to lock them in the loop
2201 * below as the XFS_ISTALE flag will be set.
2202 */
2203 lip = bp->b_fspriv;
2204 while (lip) {
2205 if (lip->li_type == XFS_LI_INODE) {
2206 iip = (xfs_inode_log_item_t *)lip;
2207 ASSERT(iip->ili_logged == 1);
2208 lip->li_cb = xfs_istale_done;
2209 xfs_trans_ail_copy_lsn(mp->m_ail,
2210 &iip->ili_flush_lsn,
2211 &iip->ili_item.li_lsn);
2212 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2213 }
2214 lip = lip->li_bio_list;
2215 }
2216
2217
2218 /*
2219 * For each inode in memory attempt to add it to the inode
2220 * buffer and set it up for being staled on buffer IO
2221 * completion. This is safe as we've locked out tail pushing
2222 * and flushing by locking the buffer.
2223 *
2224 * We have already marked every inode that was part of a
2225 * transaction stale above, which means there is no point in
2226 * even trying to lock them.
2227 */
2228 for (i = 0; i < ninodes; i++) {
2229 retry:
2230 rcu_read_lock();
2231 ip = radix_tree_lookup(&pag->pag_ici_root,
2232 XFS_INO_TO_AGINO(mp, (inum + i)));
2233
2234 /* Inode not in memory, nothing to do */
2235 if (!ip) {
2236 rcu_read_unlock();
2237 continue;
2238 }
2239
2240 /*
2241 * because this is an RCU protected lookup, we could
2242 * find a recently freed or even reallocated inode
2243 * during the lookup. We need to check under the
2244 * i_flags_lock for a valid inode here. Skip it if it
2245 * is not valid, the wrong inode or stale.
2246 */
2247 spin_lock(&ip->i_flags_lock);
2248 if (ip->i_ino != inum + i ||
2249 __xfs_iflags_test(ip, XFS_ISTALE)) {
2250 spin_unlock(&ip->i_flags_lock);
2251 rcu_read_unlock();
2252 continue;
2253 }
2254 spin_unlock(&ip->i_flags_lock);
2255
2256 /*
2257 * Don't try to lock/unlock the current inode, but we
2258 * _cannot_ skip the other inodes that we did not find
2259 * in the list attached to the buffer and are not
2260 * already marked stale. If we can't lock it, back off
2261 * and retry.
2262 */
2263 if (ip != free_ip &&
2264 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2265 rcu_read_unlock();
2266 delay(1);
2267 goto retry;
2268 }
2269 rcu_read_unlock();
2270
2271 xfs_iflock(ip);
2272 xfs_iflags_set(ip, XFS_ISTALE);
2273
2274 /*
2275 * we don't need to attach clean inodes or those only
2276 * with unlogged changes (which we throw away, anyway).
2277 */
2278 iip = ip->i_itemp;
2279 if (!iip || xfs_inode_clean(ip)) {
2280 ASSERT(ip != free_ip);
2281 xfs_ifunlock(ip);
2282 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2283 continue;
2284 }
2285
2286 iip->ili_last_fields = iip->ili_fields;
2287 iip->ili_fields = 0;
2288 iip->ili_logged = 1;
2289 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2290 &iip->ili_item.li_lsn);
2291
2292 xfs_buf_attach_iodone(bp, xfs_istale_done,
2293 &iip->ili_item);
2294
2295 if (ip != free_ip)
2296 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2297 }
2298
2299 xfs_trans_stale_inode_buf(tp, bp);
2300 xfs_trans_binval(tp, bp);
2301 }
2302
2303 xfs_perag_put(pag);
2304 return 0;
2305 }
2306
2307 /*
2308 * This is called to return an inode to the inode free list.
2309 * The inode should already be truncated to 0 length and have
2310 * no pages associated with it. This routine also assumes that
2311 * the inode is already a part of the transaction.
2312 *
2313 * The on-disk copy of the inode will have been added to the list
2314 * of unlinked inodes in the AGI. We need to remove the inode from
2315 * that list atomically with respect to freeing it here.
2316 */
2317 int
2318 xfs_ifree(
2319 xfs_trans_t *tp,
2320 xfs_inode_t *ip,
2321 xfs_bmap_free_t *flist)
2322 {
2323 int error;
2324 int delete;
2325 xfs_ino_t first_ino;
2326
2327 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2328 ASSERT(ip->i_d.di_nlink == 0);
2329 ASSERT(ip->i_d.di_nextents == 0);
2330 ASSERT(ip->i_d.di_anextents == 0);
2331 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2332 ASSERT(ip->i_d.di_nblocks == 0);
2333
2334 /*
2335 * Pull the on-disk inode from the AGI unlinked list.
2336 */
2337 error = xfs_iunlink_remove(tp, ip);
2338 if (error)
2339 return error;
2340
2341 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2342 if (error)
2343 return error;
2344
2345 ip->i_d.di_mode = 0; /* mark incore inode as free */
2346 ip->i_d.di_flags = 0;
2347 ip->i_d.di_dmevmask = 0;
2348 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2349 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2350 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2351 /*
2352 * Bump the generation count so no one will be confused
2353 * by reincarnations of this inode.
2354 */
2355 ip->i_d.di_gen++;
2356 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2357
2358 if (delete)
2359 error = xfs_ifree_cluster(ip, tp, first_ino);
2360
2361 return error;
2362 }
2363
2364 /*
2365 * This is called to unpin an inode. The caller must have the inode locked
2366 * in at least shared mode so that the buffer cannot be subsequently pinned
2367 * once someone is waiting for it to be unpinned.
2368 */
2369 static void
2370 xfs_iunpin(
2371 struct xfs_inode *ip)
2372 {
2373 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2374
2375 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2376
2377 /* Give the log a push to start the unpinning I/O */
2378 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2379
2380 }
2381
2382 static void
2383 __xfs_iunpin_wait(
2384 struct xfs_inode *ip)
2385 {
2386 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2387 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2388
2389 xfs_iunpin(ip);
2390
2391 do {
2392 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2393 if (xfs_ipincount(ip))
2394 io_schedule();
2395 } while (xfs_ipincount(ip));
2396 finish_wait(wq, &wait.wait);
2397 }
2398
2399 void
2400 xfs_iunpin_wait(
2401 struct xfs_inode *ip)
2402 {
2403 if (xfs_ipincount(ip))
2404 __xfs_iunpin_wait(ip);
2405 }
2406
2407 /*
2408 * Removing an inode from the namespace involves removing the directory entry
2409 * and dropping the link count on the inode. Removing the directory entry can
2410 * result in locking an AGF (directory blocks were freed) and removing a link
2411 * count can result in placing the inode on an unlinked list which results in
2412 * locking an AGI.
2413 *
2414 * The big problem here is that we have an ordering constraint on AGF and AGI
2415 * locking - inode allocation locks the AGI, then can allocate a new extent for
2416 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2417 * removes the inode from the unlinked list, requiring that we lock the AGI
2418 * first, and then freeing the inode can result in an inode chunk being freed
2419 * and hence freeing disk space requiring that we lock an AGF.
2420 *
2421 * Hence the ordering that is imposed by other parts of the code is AGI before
2422 * AGF. This means we cannot remove the directory entry before we drop the inode
2423 * reference count and put it on the unlinked list as this results in a lock
2424 * order of AGF then AGI, and this can deadlock against inode allocation and
2425 * freeing. Therefore we must drop the link counts before we remove the
2426 * directory entry.
2427 *
2428 * This is still safe from a transactional point of view - it is not until we
2429 * get to xfs_bmap_finish() that we have the possibility of multiple
2430 * transactions in this operation. Hence as long as we remove the directory
2431 * entry and drop the link count in the first transaction of the remove
2432 * operation, there are no transactional constraints on the ordering here.
2433 */
2434 int
2435 xfs_remove(
2436 xfs_inode_t *dp,
2437 struct xfs_name *name,
2438 xfs_inode_t *ip)
2439 {
2440 xfs_mount_t *mp = dp->i_mount;
2441 xfs_trans_t *tp = NULL;
2442 int is_dir = S_ISDIR(ip->i_d.di_mode);
2443 int error = 0;
2444 xfs_bmap_free_t free_list;
2445 xfs_fsblock_t first_block;
2446 int cancel_flags;
2447 int committed;
2448 int link_zero;
2449 uint resblks;
2450 uint log_count;
2451
2452 trace_xfs_remove(dp, name);
2453
2454 if (XFS_FORCED_SHUTDOWN(mp))
2455 return XFS_ERROR(EIO);
2456
2457 error = xfs_qm_dqattach(dp, 0);
2458 if (error)
2459 goto std_return;
2460
2461 error = xfs_qm_dqattach(ip, 0);
2462 if (error)
2463 goto std_return;
2464
2465 if (is_dir) {
2466 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2467 log_count = XFS_DEFAULT_LOG_COUNT;
2468 } else {
2469 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2470 log_count = XFS_REMOVE_LOG_COUNT;
2471 }
2472 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2473
2474 /*
2475 * We try to get the real space reservation first,
2476 * allowing for directory btree deletion(s) implying
2477 * possible bmap insert(s). If we can't get the space
2478 * reservation then we use 0 instead, and avoid the bmap
2479 * btree insert(s) in the directory code by, if the bmap
2480 * insert tries to happen, instead trimming the LAST
2481 * block from the directory.
2482 */
2483 resblks = XFS_REMOVE_SPACE_RES(mp);
2484 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2485 if (error == ENOSPC) {
2486 resblks = 0;
2487 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2488 }
2489 if (error) {
2490 ASSERT(error != ENOSPC);
2491 cancel_flags = 0;
2492 goto out_trans_cancel;
2493 }
2494
2495 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2496
2497 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2498 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2499
2500 /*
2501 * If we're removing a directory perform some additional validation.
2502 */
2503 cancel_flags |= XFS_TRANS_ABORT;
2504 if (is_dir) {
2505 ASSERT(ip->i_d.di_nlink >= 2);
2506 if (ip->i_d.di_nlink != 2) {
2507 error = XFS_ERROR(ENOTEMPTY);
2508 goto out_trans_cancel;
2509 }
2510 if (!xfs_dir_isempty(ip)) {
2511 error = XFS_ERROR(ENOTEMPTY);
2512 goto out_trans_cancel;
2513 }
2514
2515 /* Drop the link from ip's "..". */
2516 error = xfs_droplink(tp, dp);
2517 if (error)
2518 goto out_trans_cancel;
2519
2520 /* Drop the "." link from ip to self. */
2521 error = xfs_droplink(tp, ip);
2522 if (error)
2523 goto out_trans_cancel;
2524 } else {
2525 /*
2526 * When removing a non-directory we need to log the parent
2527 * inode here. For a directory this is done implicitly
2528 * by the xfs_droplink call for the ".." entry.
2529 */
2530 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2531 }
2532 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2533
2534 /* Drop the link from dp to ip. */
2535 error = xfs_droplink(tp, ip);
2536 if (error)
2537 goto out_trans_cancel;
2538
2539 /* Determine if this is the last link while the inode is locked */
2540 link_zero = (ip->i_d.di_nlink == 0);
2541
2542 xfs_bmap_init(&free_list, &first_block);
2543 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2544 &first_block, &free_list, resblks);
2545 if (error) {
2546 ASSERT(error != ENOENT);
2547 goto out_bmap_cancel;
2548 }
2549
2550 /*
2551 * If this is a synchronous mount, make sure that the
2552 * remove transaction goes to disk before returning to
2553 * the user.
2554 */
2555 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2556 xfs_trans_set_sync(tp);
2557
2558 error = xfs_bmap_finish(&tp, &free_list, &committed);
2559 if (error)
2560 goto out_bmap_cancel;
2561
2562 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2563 if (error)
2564 goto std_return;
2565
2566 /*
2567 * If we are using filestreams, kill the stream association.
2568 * If the file is still open it may get a new one but that
2569 * will get killed on last close in xfs_close() so we don't
2570 * have to worry about that.
2571 */
2572 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2573 xfs_filestream_deassociate(ip);
2574
2575 return 0;
2576
2577 out_bmap_cancel:
2578 xfs_bmap_cancel(&free_list);
2579 out_trans_cancel:
2580 xfs_trans_cancel(tp, cancel_flags);
2581 std_return:
2582 return error;
2583 }
2584
2585 /*
2586 * Enter all inodes for a rename transaction into a sorted array.
2587 */
2588 STATIC void
2589 xfs_sort_for_rename(
2590 xfs_inode_t *dp1, /* in: old (source) directory inode */
2591 xfs_inode_t *dp2, /* in: new (target) directory inode */
2592 xfs_inode_t *ip1, /* in: inode of old entry */
2593 xfs_inode_t *ip2, /* in: inode of new entry, if it
2594 already exists, NULL otherwise. */
2595 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2596 int *num_inodes) /* out: number of inodes in array */
2597 {
2598 xfs_inode_t *temp;
2599 int i, j;
2600
2601 /*
2602 * i_tab contains a list of pointers to inodes. We initialize
2603 * the table here & we'll sort it. We will then use it to
2604 * order the acquisition of the inode locks.
2605 *
2606 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2607 */
2608 i_tab[0] = dp1;
2609 i_tab[1] = dp2;
2610 i_tab[2] = ip1;
2611 if (ip2) {
2612 *num_inodes = 4;
2613 i_tab[3] = ip2;
2614 } else {
2615 *num_inodes = 3;
2616 i_tab[3] = NULL;
2617 }
2618
2619 /*
2620 * Sort the elements via bubble sort. (Remember, there are at
2621 * most 4 elements to sort, so this is adequate.)
2622 */
2623 for (i = 0; i < *num_inodes; i++) {
2624 for (j = 1; j < *num_inodes; j++) {
2625 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2626 temp = i_tab[j];
2627 i_tab[j] = i_tab[j-1];
2628 i_tab[j-1] = temp;
2629 }
2630 }
2631 }
2632 }
2633
2634 /*
2635 * xfs_rename
2636 */
2637 int
2638 xfs_rename(
2639 xfs_inode_t *src_dp,
2640 struct xfs_name *src_name,
2641 xfs_inode_t *src_ip,
2642 xfs_inode_t *target_dp,
2643 struct xfs_name *target_name,
2644 xfs_inode_t *target_ip)
2645 {
2646 xfs_trans_t *tp = NULL;
2647 xfs_mount_t *mp = src_dp->i_mount;
2648 int new_parent; /* moving to a new dir */
2649 int src_is_directory; /* src_name is a directory */
2650 int error;
2651 xfs_bmap_free_t free_list;
2652 xfs_fsblock_t first_block;
2653 int cancel_flags;
2654 int committed;
2655 xfs_inode_t *inodes[4];
2656 int spaceres;
2657 int num_inodes;
2658
2659 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2660
2661 new_parent = (src_dp != target_dp);
2662 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2663
2664 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2665 inodes, &num_inodes);
2666
2667 xfs_bmap_init(&free_list, &first_block);
2668 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2669 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2670 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2671 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2672 if (error == ENOSPC) {
2673 spaceres = 0;
2674 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2675 }
2676 if (error) {
2677 xfs_trans_cancel(tp, 0);
2678 goto std_return;
2679 }
2680
2681 /*
2682 * Attach the dquots to the inodes
2683 */
2684 error = xfs_qm_vop_rename_dqattach(inodes);
2685 if (error) {
2686 xfs_trans_cancel(tp, cancel_flags);
2687 goto std_return;
2688 }
2689
2690 /*
2691 * Lock all the participating inodes. Depending upon whether
2692 * the target_name exists in the target directory, and
2693 * whether the target directory is the same as the source
2694 * directory, we can lock from 2 to 4 inodes.
2695 */
2696 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2697
2698 /*
2699 * Join all the inodes to the transaction. From this point on,
2700 * we can rely on either trans_commit or trans_cancel to unlock
2701 * them.
2702 */
2703 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2704 if (new_parent)
2705 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2706 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2707 if (target_ip)
2708 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2709
2710 /*
2711 * If we are using project inheritance, we only allow renames
2712 * into our tree when the project IDs are the same; else the
2713 * tree quota mechanism would be circumvented.
2714 */
2715 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2716 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2717 error = XFS_ERROR(EXDEV);
2718 goto error_return;
2719 }
2720
2721 /*
2722 * Set up the target.
2723 */
2724 if (target_ip == NULL) {
2725 /*
2726 * If there's no space reservation, check the entry will
2727 * fit before actually inserting it.
2728 */
2729 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2730 if (error)
2731 goto error_return;
2732 /*
2733 * If target does not exist and the rename crosses
2734 * directories, adjust the target directory link count
2735 * to account for the ".." reference from the new entry.
2736 */
2737 error = xfs_dir_createname(tp, target_dp, target_name,
2738 src_ip->i_ino, &first_block,
2739 &free_list, spaceres);
2740 if (error == ENOSPC)
2741 goto error_return;
2742 if (error)
2743 goto abort_return;
2744
2745 xfs_trans_ichgtime(tp, target_dp,
2746 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2747
2748 if (new_parent && src_is_directory) {
2749 error = xfs_bumplink(tp, target_dp);
2750 if (error)
2751 goto abort_return;
2752 }
2753 } else { /* target_ip != NULL */
2754 /*
2755 * If target exists and it's a directory, check that both
2756 * target and source are directories and that target can be
2757 * destroyed, or that neither is a directory.
2758 */
2759 if (S_ISDIR(target_ip->i_d.di_mode)) {
2760 /*
2761 * Make sure target dir is empty.
2762 */
2763 if (!(xfs_dir_isempty(target_ip)) ||
2764 (target_ip->i_d.di_nlink > 2)) {
2765 error = XFS_ERROR(EEXIST);
2766 goto error_return;
2767 }
2768 }
2769
2770 /*
2771 * Link the source inode under the target name.
2772 * If the source inode is a directory and we are moving
2773 * it across directories, its ".." entry will be
2774 * inconsistent until we replace that down below.
2775 *
2776 * In case there is already an entry with the same
2777 * name at the destination directory, remove it first.
2778 */
2779 error = xfs_dir_replace(tp, target_dp, target_name,
2780 src_ip->i_ino,
2781 &first_block, &free_list, spaceres);
2782 if (error)
2783 goto abort_return;
2784
2785 xfs_trans_ichgtime(tp, target_dp,
2786 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2787
2788 /*
2789 * Decrement the link count on the target since the target
2790 * dir no longer points to it.
2791 */
2792 error = xfs_droplink(tp, target_ip);
2793 if (error)
2794 goto abort_return;
2795
2796 if (src_is_directory) {
2797 /*
2798 * Drop the link from the old "." entry.
2799 */
2800 error = xfs_droplink(tp, target_ip);
2801 if (error)
2802 goto abort_return;
2803 }
2804 } /* target_ip != NULL */
2805
2806 /*
2807 * Remove the source.
2808 */
2809 if (new_parent && src_is_directory) {
2810 /*
2811 * Rewrite the ".." entry to point to the new
2812 * directory.
2813 */
2814 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2815 target_dp->i_ino,
2816 &first_block, &free_list, spaceres);
2817 ASSERT(error != EEXIST);
2818 if (error)
2819 goto abort_return;
2820 }
2821
2822 /*
2823 * We always want to hit the ctime on the source inode.
2824 *
2825 * This isn't strictly required by the standards since the source
2826 * inode isn't really being changed, but old unix file systems did
2827 * it and some incremental backup programs won't work without it.
2828 */
2829 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2830 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2831
2832 /*
2833 * Adjust the link count on src_dp. This is necessary when
2834 * renaming a directory, either within one parent when
2835 * the target existed, or across two parent directories.
2836 */
2837 if (src_is_directory && (new_parent || target_ip != NULL)) {
2838
2839 /*
2840 * Decrement link count on src_directory since the
2841 * entry that's moved no longer points to it.
2842 */
2843 error = xfs_droplink(tp, src_dp);
2844 if (error)
2845 goto abort_return;
2846 }
2847
2848 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2849 &first_block, &free_list, spaceres);
2850 if (error)
2851 goto abort_return;
2852
2853 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2854 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2855 if (new_parent)
2856 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2857
2858 /*
2859 * If this is a synchronous mount, make sure that the
2860 * rename transaction goes to disk before returning to
2861 * the user.
2862 */
2863 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2864 xfs_trans_set_sync(tp);
2865 }
2866
2867 error = xfs_bmap_finish(&tp, &free_list, &committed);
2868 if (error) {
2869 xfs_bmap_cancel(&free_list);
2870 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2871 XFS_TRANS_ABORT));
2872 goto std_return;
2873 }
2874
2875 /*
2876 * trans_commit will unlock src_ip, target_ip & decrement
2877 * the vnode references.
2878 */
2879 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2880
2881 abort_return:
2882 cancel_flags |= XFS_TRANS_ABORT;
2883 error_return:
2884 xfs_bmap_cancel(&free_list);
2885 xfs_trans_cancel(tp, cancel_flags);
2886 std_return:
2887 return error;
2888 }
2889
2890 STATIC int
2891 xfs_iflush_cluster(
2892 xfs_inode_t *ip,
2893 xfs_buf_t *bp)
2894 {
2895 xfs_mount_t *mp = ip->i_mount;
2896 struct xfs_perag *pag;
2897 unsigned long first_index, mask;
2898 unsigned long inodes_per_cluster;
2899 int ilist_size;
2900 xfs_inode_t **ilist;
2901 xfs_inode_t *iq;
2902 int nr_found;
2903 int clcount = 0;
2904 int bufwasdelwri;
2905 int i;
2906
2907 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2908
2909 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2910 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2911 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2912 if (!ilist)
2913 goto out_put;
2914
2915 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2916 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2917 rcu_read_lock();
2918 /* really need a gang lookup range call here */
2919 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2920 first_index, inodes_per_cluster);
2921 if (nr_found == 0)
2922 goto out_free;
2923
2924 for (i = 0; i < nr_found; i++) {
2925 iq = ilist[i];
2926 if (iq == ip)
2927 continue;
2928
2929 /*
2930 * because this is an RCU protected lookup, we could find a
2931 * recently freed or even reallocated inode during the lookup.
2932 * We need to check under the i_flags_lock for a valid inode
2933 * here. Skip it if it is not valid or the wrong inode.
2934 */
2935 spin_lock(&ip->i_flags_lock);
2936 if (!ip->i_ino ||
2937 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2938 spin_unlock(&ip->i_flags_lock);
2939 continue;
2940 }
2941 spin_unlock(&ip->i_flags_lock);
2942
2943 /*
2944 * Do an un-protected check to see if the inode is dirty and
2945 * is a candidate for flushing. These checks will be repeated
2946 * later after the appropriate locks are acquired.
2947 */
2948 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2949 continue;
2950
2951 /*
2952 * Try to get locks. If any are unavailable or it is pinned,
2953 * then this inode cannot be flushed and is skipped.
2954 */
2955
2956 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2957 continue;
2958 if (!xfs_iflock_nowait(iq)) {
2959 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2960 continue;
2961 }
2962 if (xfs_ipincount(iq)) {
2963 xfs_ifunlock(iq);
2964 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2965 continue;
2966 }
2967
2968 /*
2969 * arriving here means that this inode can be flushed. First
2970 * re-check that it's dirty before flushing.
2971 */
2972 if (!xfs_inode_clean(iq)) {
2973 int error;
2974 error = xfs_iflush_int(iq, bp);
2975 if (error) {
2976 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2977 goto cluster_corrupt_out;
2978 }
2979 clcount++;
2980 } else {
2981 xfs_ifunlock(iq);
2982 }
2983 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2984 }
2985
2986 if (clcount) {
2987 XFS_STATS_INC(xs_icluster_flushcnt);
2988 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2989 }
2990
2991 out_free:
2992 rcu_read_unlock();
2993 kmem_free(ilist);
2994 out_put:
2995 xfs_perag_put(pag);
2996 return 0;
2997
2998
2999 cluster_corrupt_out:
3000 /*
3001 * Corruption detected in the clustering loop. Invalidate the
3002 * inode buffer and shut down the filesystem.
3003 */
3004 rcu_read_unlock();
3005 /*
3006 * Clean up the buffer. If it was delwri, just release it --
3007 * brelse can handle it with no problems. If not, shut down the
3008 * filesystem before releasing the buffer.
3009 */
3010 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3011 if (bufwasdelwri)
3012 xfs_buf_relse(bp);
3013
3014 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3015
3016 if (!bufwasdelwri) {
3017 /*
3018 * Just like incore_relse: if we have b_iodone functions,
3019 * mark the buffer as an error and call them. Otherwise
3020 * mark it as stale and brelse.
3021 */
3022 if (bp->b_iodone) {
3023 XFS_BUF_UNDONE(bp);
3024 xfs_buf_stale(bp);
3025 xfs_buf_ioerror(bp, EIO);
3026 xfs_buf_ioend(bp, 0);
3027 } else {
3028 xfs_buf_stale(bp);
3029 xfs_buf_relse(bp);
3030 }
3031 }
3032
3033 /*
3034 * Unlocks the flush lock
3035 */
3036 xfs_iflush_abort(iq, false);
3037 kmem_free(ilist);
3038 xfs_perag_put(pag);
3039 return XFS_ERROR(EFSCORRUPTED);
3040 }
3041
3042 /*
3043 * Flush dirty inode metadata into the backing buffer.
3044 *
3045 * The caller must have the inode lock and the inode flush lock held. The
3046 * inode lock will still be held upon return to the caller, and the inode
3047 * flush lock will be released after the inode has reached the disk.
3048 *
3049 * The caller must write out the buffer returned in *bpp and release it.
3050 */
3051 int
3052 xfs_iflush(
3053 struct xfs_inode *ip,
3054 struct xfs_buf **bpp)
3055 {
3056 struct xfs_mount *mp = ip->i_mount;
3057 struct xfs_buf *bp;
3058 struct xfs_dinode *dip;
3059 int error;
3060
3061 XFS_STATS_INC(xs_iflush_count);
3062
3063 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3064 ASSERT(xfs_isiflocked(ip));
3065 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3066 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3067
3068 *bpp = NULL;
3069
3070 xfs_iunpin_wait(ip);
3071
3072 /*
3073 * For stale inodes we cannot rely on the backing buffer remaining
3074 * stale in cache for the remaining life of the stale inode and so
3075 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3076 * inodes below. We have to check this after ensuring the inode is
3077 * unpinned so that it is safe to reclaim the stale inode after the
3078 * flush call.
3079 */
3080 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3081 xfs_ifunlock(ip);
3082 return 0;
3083 }
3084
3085 /*
3086 * This may have been unpinned because the filesystem is shutting
3087 * down forcibly. If that's the case we must not write this inode
3088 * to disk, because the log record didn't make it to disk.
3089 *
3090 * We also have to remove the log item from the AIL in this case,
3091 * as we wait for an empty AIL as part of the unmount process.
3092 */
3093 if (XFS_FORCED_SHUTDOWN(mp)) {
3094 error = XFS_ERROR(EIO);
3095 goto abort_out;
3096 }
3097
3098 /*
3099 * Get the buffer containing the on-disk inode.
3100 */
3101 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3102 0);
3103 if (error || !bp) {
3104 xfs_ifunlock(ip);
3105 return error;
3106 }
3107
3108 /*
3109 * First flush out the inode that xfs_iflush was called with.
3110 */
3111 error = xfs_iflush_int(ip, bp);
3112 if (error)
3113 goto corrupt_out;
3114
3115 /*
3116 * If the buffer is pinned then push on the log now so we won't
3117 * get stuck waiting in the write for too long.
3118 */
3119 if (xfs_buf_ispinned(bp))
3120 xfs_log_force(mp, 0);
3121
3122 /*
3123 * inode clustering:
3124 * see if other inodes can be gathered into this write
3125 */
3126 error = xfs_iflush_cluster(ip, bp);
3127 if (error)
3128 goto cluster_corrupt_out;
3129
3130 *bpp = bp;
3131 return 0;
3132
3133 corrupt_out:
3134 xfs_buf_relse(bp);
3135 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3136 cluster_corrupt_out:
3137 error = XFS_ERROR(EFSCORRUPTED);
3138 abort_out:
3139 /*
3140 * Unlocks the flush lock
3141 */
3142 xfs_iflush_abort(ip, false);
3143 return error;
3144 }
3145
3146 STATIC int
3147 xfs_iflush_int(
3148 struct xfs_inode *ip,
3149 struct xfs_buf *bp)
3150 {
3151 struct xfs_inode_log_item *iip = ip->i_itemp;
3152 struct xfs_dinode *dip;
3153 struct xfs_mount *mp = ip->i_mount;
3154
3155 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3156 ASSERT(xfs_isiflocked(ip));
3157 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3158 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3159 ASSERT(iip != NULL && iip->ili_fields != 0);
3160
3161 /* set *dip = inode's place in the buffer */
3162 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3163
3164 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3165 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3166 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3167 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3168 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3169 goto corrupt_out;
3170 }
3171 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3172 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3173 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3174 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3175 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3176 goto corrupt_out;
3177 }
3178 if (S_ISREG(ip->i_d.di_mode)) {
3179 if (XFS_TEST_ERROR(
3180 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3181 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3182 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3183 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3184 "%s: Bad regular inode %Lu, ptr 0x%p",
3185 __func__, ip->i_ino, ip);
3186 goto corrupt_out;
3187 }
3188 } else if (S_ISDIR(ip->i_d.di_mode)) {
3189 if (XFS_TEST_ERROR(
3190 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3191 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3192 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3193 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3194 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3195 "%s: Bad directory inode %Lu, ptr 0x%p",
3196 __func__, ip->i_ino, ip);
3197 goto corrupt_out;
3198 }
3199 }
3200 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3201 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3202 XFS_RANDOM_IFLUSH_5)) {
3203 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3204 "%s: detected corrupt incore inode %Lu, "
3205 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3206 __func__, ip->i_ino,
3207 ip->i_d.di_nextents + ip->i_d.di_anextents,
3208 ip->i_d.di_nblocks, ip);
3209 goto corrupt_out;
3210 }
3211 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3212 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3213 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3214 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3215 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3216 goto corrupt_out;
3217 }
3218
3219 /*
3220 * Inode item log recovery for v1/v2 inodes are dependent on the
3221 * di_flushiter count for correct sequencing. We bump the flush
3222 * iteration count so we can detect flushes which postdate a log record
3223 * during recovery. This is redundant as we now log every change and
3224 * hence this can't happen but we need to still do it to ensure
3225 * backwards compatibility with old kernels that predate logging all
3226 * inode changes.
3227 */
3228 if (ip->i_d.di_version < 3)
3229 ip->i_d.di_flushiter++;
3230
3231 /*
3232 * Copy the dirty parts of the inode into the on-disk
3233 * inode. We always copy out the core of the inode,
3234 * because if the inode is dirty at all the core must
3235 * be.
3236 */
3237 xfs_dinode_to_disk(dip, &ip->i_d);
3238
3239 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3240 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3241 ip->i_d.di_flushiter = 0;
3242
3243 /*
3244 * If this is really an old format inode and the superblock version
3245 * has not been updated to support only new format inodes, then
3246 * convert back to the old inode format. If the superblock version
3247 * has been updated, then make the conversion permanent.
3248 */
3249 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3250 if (ip->i_d.di_version == 1) {
3251 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3252 /*
3253 * Convert it back.
3254 */
3255 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3256 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3257 } else {
3258 /*
3259 * The superblock version has already been bumped,
3260 * so just make the conversion to the new inode
3261 * format permanent.
3262 */
3263 ip->i_d.di_version = 2;
3264 dip->di_version = 2;
3265 ip->i_d.di_onlink = 0;
3266 dip->di_onlink = 0;
3267 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3268 memset(&(dip->di_pad[0]), 0,
3269 sizeof(dip->di_pad));
3270 ASSERT(xfs_get_projid(ip) == 0);
3271 }
3272 }
3273
3274 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3275 if (XFS_IFORK_Q(ip))
3276 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3277 xfs_inobp_check(mp, bp);
3278
3279 /*
3280 * We've recorded everything logged in the inode, so we'd like to clear
3281 * the ili_fields bits so we don't log and flush things unnecessarily.
3282 * However, we can't stop logging all this information until the data
3283 * we've copied into the disk buffer is written to disk. If we did we
3284 * might overwrite the copy of the inode in the log with all the data
3285 * after re-logging only part of it, and in the face of a crash we
3286 * wouldn't have all the data we need to recover.
3287 *
3288 * What we do is move the bits to the ili_last_fields field. When
3289 * logging the inode, these bits are moved back to the ili_fields field.
3290 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3291 * know that the information those bits represent is permanently on
3292 * disk. As long as the flush completes before the inode is logged
3293 * again, then both ili_fields and ili_last_fields will be cleared.
3294 *
3295 * We can play with the ili_fields bits here, because the inode lock
3296 * must be held exclusively in order to set bits there and the flush
3297 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3298 * done routine can tell whether or not to look in the AIL. Also, store
3299 * the current LSN of the inode so that we can tell whether the item has
3300 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3301 * need the AIL lock, because it is a 64 bit value that cannot be read
3302 * atomically.
3303 */
3304 iip->ili_last_fields = iip->ili_fields;
3305 iip->ili_fields = 0;
3306 iip->ili_logged = 1;
3307
3308 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3309 &iip->ili_item.li_lsn);
3310
3311 /*
3312 * Attach the function xfs_iflush_done to the inode's
3313 * buffer. This will remove the inode from the AIL
3314 * and unlock the inode's flush lock when the inode is
3315 * completely written to disk.
3316 */
3317 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3318
3319 /* update the lsn in the on disk inode if required */
3320 if (ip->i_d.di_version == 3)
3321 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3322
3323 /* generate the checksum. */
3324 xfs_dinode_calc_crc(mp, dip);
3325
3326 ASSERT(bp->b_fspriv != NULL);
3327 ASSERT(bp->b_iodone != NULL);
3328 return 0;
3329
3330 corrupt_out:
3331 return XFS_ERROR(EFSCORRUPTED);
3332 }