]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_inode.c
Merge branch 'xfs-4.10-misc-fixes-3' into for-next
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_attr.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
50 #include "xfs_log.h"
51 #include "xfs_bmap_btree.h"
52 #include "xfs_reflink.h"
53
54 kmem_zone_t *xfs_inode_zone;
55
56 /*
57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
58 * freed from a file in a single transaction.
59 */
60 #define XFS_ITRUNC_MAX_EXTENTS 2
61
62 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
63 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
64 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
65
66 /*
67 * helper function to extract extent size hint from inode
68 */
69 xfs_extlen_t
70 xfs_get_extsz_hint(
71 struct xfs_inode *ip)
72 {
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
78 }
79
80 /*
81 * Helper function to extract CoW extent size hint from inode.
82 * Between the extent size hint and the CoW extent size hint, we
83 * return the greater of the two. If the value is zero (automatic),
84 * use the default size.
85 */
86 xfs_extlen_t
87 xfs_get_cowextsz_hint(
88 struct xfs_inode *ip)
89 {
90 xfs_extlen_t a, b;
91
92 a = 0;
93 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
94 a = ip->i_d.di_cowextsize;
95 b = xfs_get_extsz_hint(ip);
96
97 a = max(a, b);
98 if (a == 0)
99 return XFS_DEFAULT_COWEXTSZ_HINT;
100 return a;
101 }
102
103 /*
104 * These two are wrapper routines around the xfs_ilock() routine used to
105 * centralize some grungy code. They are used in places that wish to lock the
106 * inode solely for reading the extents. The reason these places can't just
107 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
108 * bringing in of the extents from disk for a file in b-tree format. If the
109 * inode is in b-tree format, then we need to lock the inode exclusively until
110 * the extents are read in. Locking it exclusively all the time would limit
111 * our parallelism unnecessarily, though. What we do instead is check to see
112 * if the extents have been read in yet, and only lock the inode exclusively
113 * if they have not.
114 *
115 * The functions return a value which should be given to the corresponding
116 * xfs_iunlock() call.
117 */
118 uint
119 xfs_ilock_data_map_shared(
120 struct xfs_inode *ip)
121 {
122 uint lock_mode = XFS_ILOCK_SHARED;
123
124 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
125 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
126 lock_mode = XFS_ILOCK_EXCL;
127 xfs_ilock(ip, lock_mode);
128 return lock_mode;
129 }
130
131 uint
132 xfs_ilock_attr_map_shared(
133 struct xfs_inode *ip)
134 {
135 uint lock_mode = XFS_ILOCK_SHARED;
136
137 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
138 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
139 lock_mode = XFS_ILOCK_EXCL;
140 xfs_ilock(ip, lock_mode);
141 return lock_mode;
142 }
143
144 /*
145 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
146 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
147 * various combinations of the locks to be obtained.
148 *
149 * The 3 locks should always be ordered so that the IO lock is obtained first,
150 * the mmap lock second and the ilock last in order to prevent deadlock.
151 *
152 * Basic locking order:
153 *
154 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
155 *
156 * mmap_sem locking order:
157 *
158 * i_rwsem -> page lock -> mmap_sem
159 * mmap_sem -> i_mmap_lock -> page_lock
160 *
161 * The difference in mmap_sem locking order mean that we cannot hold the
162 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
163 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
164 * in get_user_pages() to map the user pages into the kernel address space for
165 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
166 * page faults already hold the mmap_sem.
167 *
168 * Hence to serialise fully against both syscall and mmap based IO, we need to
169 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
170 * taken in places where we need to invalidate the page cache in a race
171 * free manner (e.g. truncate, hole punch and other extent manipulation
172 * functions).
173 */
174 void
175 xfs_ilock(
176 xfs_inode_t *ip,
177 uint lock_flags)
178 {
179 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
180
181 /*
182 * You can't set both SHARED and EXCL for the same lock,
183 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
184 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
185 */
186 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
187 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
188 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
189 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
190 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
191 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
192 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
193
194 if (lock_flags & XFS_IOLOCK_EXCL) {
195 down_write_nested(&VFS_I(ip)->i_rwsem,
196 XFS_IOLOCK_DEP(lock_flags));
197 } else if (lock_flags & XFS_IOLOCK_SHARED) {
198 down_read_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 }
201
202 if (lock_flags & XFS_MMAPLOCK_EXCL)
203 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
204 else if (lock_flags & XFS_MMAPLOCK_SHARED)
205 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
206
207 if (lock_flags & XFS_ILOCK_EXCL)
208 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
209 else if (lock_flags & XFS_ILOCK_SHARED)
210 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
211 }
212
213 /*
214 * This is just like xfs_ilock(), except that the caller
215 * is guaranteed not to sleep. It returns 1 if it gets
216 * the requested locks and 0 otherwise. If the IO lock is
217 * obtained but the inode lock cannot be, then the IO lock
218 * is dropped before returning.
219 *
220 * ip -- the inode being locked
221 * lock_flags -- this parameter indicates the inode's locks to be
222 * to be locked. See the comment for xfs_ilock() for a list
223 * of valid values.
224 */
225 int
226 xfs_ilock_nowait(
227 xfs_inode_t *ip,
228 uint lock_flags)
229 {
230 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
231
232 /*
233 * You can't set both SHARED and EXCL for the same lock,
234 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
235 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
236 */
237 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
238 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
239 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
240 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
241 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
242 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
243 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
244
245 if (lock_flags & XFS_IOLOCK_EXCL) {
246 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
247 goto out;
248 } else if (lock_flags & XFS_IOLOCK_SHARED) {
249 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
250 goto out;
251 }
252
253 if (lock_flags & XFS_MMAPLOCK_EXCL) {
254 if (!mrtryupdate(&ip->i_mmaplock))
255 goto out_undo_iolock;
256 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
257 if (!mrtryaccess(&ip->i_mmaplock))
258 goto out_undo_iolock;
259 }
260
261 if (lock_flags & XFS_ILOCK_EXCL) {
262 if (!mrtryupdate(&ip->i_lock))
263 goto out_undo_mmaplock;
264 } else if (lock_flags & XFS_ILOCK_SHARED) {
265 if (!mrtryaccess(&ip->i_lock))
266 goto out_undo_mmaplock;
267 }
268 return 1;
269
270 out_undo_mmaplock:
271 if (lock_flags & XFS_MMAPLOCK_EXCL)
272 mrunlock_excl(&ip->i_mmaplock);
273 else if (lock_flags & XFS_MMAPLOCK_SHARED)
274 mrunlock_shared(&ip->i_mmaplock);
275 out_undo_iolock:
276 if (lock_flags & XFS_IOLOCK_EXCL)
277 up_write(&VFS_I(ip)->i_rwsem);
278 else if (lock_flags & XFS_IOLOCK_SHARED)
279 up_read(&VFS_I(ip)->i_rwsem);
280 out:
281 return 0;
282 }
283
284 /*
285 * xfs_iunlock() is used to drop the inode locks acquired with
286 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
287 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
288 * that we know which locks to drop.
289 *
290 * ip -- the inode being unlocked
291 * lock_flags -- this parameter indicates the inode's locks to be
292 * to be unlocked. See the comment for xfs_ilock() for a list
293 * of valid values for this parameter.
294 *
295 */
296 void
297 xfs_iunlock(
298 xfs_inode_t *ip,
299 uint lock_flags)
300 {
301 /*
302 * You can't set both SHARED and EXCL for the same lock,
303 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
304 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
305 */
306 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
307 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
308 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
309 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
310 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
311 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
312 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
313 ASSERT(lock_flags != 0);
314
315 if (lock_flags & XFS_IOLOCK_EXCL)
316 up_write(&VFS_I(ip)->i_rwsem);
317 else if (lock_flags & XFS_IOLOCK_SHARED)
318 up_read(&VFS_I(ip)->i_rwsem);
319
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrunlock_excl(&ip->i_mmaplock);
322 else if (lock_flags & XFS_MMAPLOCK_SHARED)
323 mrunlock_shared(&ip->i_mmaplock);
324
325 if (lock_flags & XFS_ILOCK_EXCL)
326 mrunlock_excl(&ip->i_lock);
327 else if (lock_flags & XFS_ILOCK_SHARED)
328 mrunlock_shared(&ip->i_lock);
329
330 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
331 }
332
333 /*
334 * give up write locks. the i/o lock cannot be held nested
335 * if it is being demoted.
336 */
337 void
338 xfs_ilock_demote(
339 xfs_inode_t *ip,
340 uint lock_flags)
341 {
342 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
343 ASSERT((lock_flags &
344 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
345
346 if (lock_flags & XFS_ILOCK_EXCL)
347 mrdemote(&ip->i_lock);
348 if (lock_flags & XFS_MMAPLOCK_EXCL)
349 mrdemote(&ip->i_mmaplock);
350 if (lock_flags & XFS_IOLOCK_EXCL)
351 downgrade_write(&VFS_I(ip)->i_rwsem);
352
353 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
354 }
355
356 #if defined(DEBUG) || defined(XFS_WARN)
357 int
358 xfs_isilocked(
359 xfs_inode_t *ip,
360 uint lock_flags)
361 {
362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363 if (!(lock_flags & XFS_ILOCK_SHARED))
364 return !!ip->i_lock.mr_writer;
365 return rwsem_is_locked(&ip->i_lock.mr_lock);
366 }
367
368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
369 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
370 return !!ip->i_mmaplock.mr_writer;
371 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
372 }
373
374 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
375 if (!(lock_flags & XFS_IOLOCK_SHARED))
376 return !debug_locks ||
377 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
378 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
379 }
380
381 ASSERT(0);
382 return 0;
383 }
384 #endif
385
386 #ifdef DEBUG
387 int xfs_locked_n;
388 int xfs_small_retries;
389 int xfs_middle_retries;
390 int xfs_lots_retries;
391 int xfs_lock_delays;
392 #endif
393
394 /*
395 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
396 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
397 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
398 * errors and warnings.
399 */
400 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
401 static bool
402 xfs_lockdep_subclass_ok(
403 int subclass)
404 {
405 return subclass < MAX_LOCKDEP_SUBCLASSES;
406 }
407 #else
408 #define xfs_lockdep_subclass_ok(subclass) (true)
409 #endif
410
411 /*
412 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
413 * value. This can be called for any type of inode lock combination, including
414 * parent locking. Care must be taken to ensure we don't overrun the subclass
415 * storage fields in the class mask we build.
416 */
417 static inline int
418 xfs_lock_inumorder(int lock_mode, int subclass)
419 {
420 int class = 0;
421
422 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
423 XFS_ILOCK_RTSUM)));
424 ASSERT(xfs_lockdep_subclass_ok(subclass));
425
426 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
427 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
428 class += subclass << XFS_IOLOCK_SHIFT;
429 }
430
431 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
432 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
433 class += subclass << XFS_MMAPLOCK_SHIFT;
434 }
435
436 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
437 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
438 class += subclass << XFS_ILOCK_SHIFT;
439 }
440
441 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
442 }
443
444 /*
445 * The following routine will lock n inodes in exclusive mode. We assume the
446 * caller calls us with the inodes in i_ino order.
447 *
448 * We need to detect deadlock where an inode that we lock is in the AIL and we
449 * start waiting for another inode that is locked by a thread in a long running
450 * transaction (such as truncate). This can result in deadlock since the long
451 * running trans might need to wait for the inode we just locked in order to
452 * push the tail and free space in the log.
453 *
454 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
455 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
456 * lock more than one at a time, lockdep will report false positives saying we
457 * have violated locking orders.
458 */
459 static void
460 xfs_lock_inodes(
461 xfs_inode_t **ips,
462 int inodes,
463 uint lock_mode)
464 {
465 int attempts = 0, i, j, try_lock;
466 xfs_log_item_t *lp;
467
468 /*
469 * Currently supports between 2 and 5 inodes with exclusive locking. We
470 * support an arbitrary depth of locking here, but absolute limits on
471 * inodes depend on the the type of locking and the limits placed by
472 * lockdep annotations in xfs_lock_inumorder. These are all checked by
473 * the asserts.
474 */
475 ASSERT(ips && inodes >= 2 && inodes <= 5);
476 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
477 XFS_ILOCK_EXCL));
478 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
479 XFS_ILOCK_SHARED)));
480 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
481 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
483 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
484
485 if (lock_mode & XFS_IOLOCK_EXCL) {
486 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
487 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
488 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
489
490 try_lock = 0;
491 i = 0;
492 again:
493 for (; i < inodes; i++) {
494 ASSERT(ips[i]);
495
496 if (i && (ips[i] == ips[i - 1])) /* Already locked */
497 continue;
498
499 /*
500 * If try_lock is not set yet, make sure all locked inodes are
501 * not in the AIL. If any are, set try_lock to be used later.
502 */
503 if (!try_lock) {
504 for (j = (i - 1); j >= 0 && !try_lock; j--) {
505 lp = (xfs_log_item_t *)ips[j]->i_itemp;
506 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
507 try_lock++;
508 }
509 }
510
511 /*
512 * If any of the previous locks we have locked is in the AIL,
513 * we must TRY to get the second and subsequent locks. If
514 * we can't get any, we must release all we have
515 * and try again.
516 */
517 if (!try_lock) {
518 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
519 continue;
520 }
521
522 /* try_lock means we have an inode locked that is in the AIL. */
523 ASSERT(i != 0);
524 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
525 continue;
526
527 /*
528 * Unlock all previous guys and try again. xfs_iunlock will try
529 * to push the tail if the inode is in the AIL.
530 */
531 attempts++;
532 for (j = i - 1; j >= 0; j--) {
533 /*
534 * Check to see if we've already unlocked this one. Not
535 * the first one going back, and the inode ptr is the
536 * same.
537 */
538 if (j != (i - 1) && ips[j] == ips[j + 1])
539 continue;
540
541 xfs_iunlock(ips[j], lock_mode);
542 }
543
544 if ((attempts % 5) == 0) {
545 delay(1); /* Don't just spin the CPU */
546 #ifdef DEBUG
547 xfs_lock_delays++;
548 #endif
549 }
550 i = 0;
551 try_lock = 0;
552 goto again;
553 }
554
555 #ifdef DEBUG
556 if (attempts) {
557 if (attempts < 5) xfs_small_retries++;
558 else if (attempts < 100) xfs_middle_retries++;
559 else xfs_lots_retries++;
560 } else {
561 xfs_locked_n++;
562 }
563 #endif
564 }
565
566 /*
567 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
568 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
569 * lock more than one at a time, lockdep will report false positives saying we
570 * have violated locking orders.
571 */
572 void
573 xfs_lock_two_inodes(
574 xfs_inode_t *ip0,
575 xfs_inode_t *ip1,
576 uint lock_mode)
577 {
578 xfs_inode_t *temp;
579 int attempts = 0;
580 xfs_log_item_t *lp;
581
582 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
583 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
584 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
585
586 ASSERT(ip0->i_ino != ip1->i_ino);
587
588 if (ip0->i_ino > ip1->i_ino) {
589 temp = ip0;
590 ip0 = ip1;
591 ip1 = temp;
592 }
593
594 again:
595 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
596
597 /*
598 * If the first lock we have locked is in the AIL, we must TRY to get
599 * the second lock. If we can't get it, we must release the first one
600 * and try again.
601 */
602 lp = (xfs_log_item_t *)ip0->i_itemp;
603 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
604 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
605 xfs_iunlock(ip0, lock_mode);
606 if ((++attempts % 5) == 0)
607 delay(1); /* Don't just spin the CPU */
608 goto again;
609 }
610 } else {
611 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
612 }
613 }
614
615
616 void
617 __xfs_iflock(
618 struct xfs_inode *ip)
619 {
620 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
621 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
622
623 do {
624 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
625 if (xfs_isiflocked(ip))
626 io_schedule();
627 } while (!xfs_iflock_nowait(ip));
628
629 finish_wait(wq, &wait.wait);
630 }
631
632 STATIC uint
633 _xfs_dic2xflags(
634 __uint16_t di_flags,
635 uint64_t di_flags2,
636 bool has_attr)
637 {
638 uint flags = 0;
639
640 if (di_flags & XFS_DIFLAG_ANY) {
641 if (di_flags & XFS_DIFLAG_REALTIME)
642 flags |= FS_XFLAG_REALTIME;
643 if (di_flags & XFS_DIFLAG_PREALLOC)
644 flags |= FS_XFLAG_PREALLOC;
645 if (di_flags & XFS_DIFLAG_IMMUTABLE)
646 flags |= FS_XFLAG_IMMUTABLE;
647 if (di_flags & XFS_DIFLAG_APPEND)
648 flags |= FS_XFLAG_APPEND;
649 if (di_flags & XFS_DIFLAG_SYNC)
650 flags |= FS_XFLAG_SYNC;
651 if (di_flags & XFS_DIFLAG_NOATIME)
652 flags |= FS_XFLAG_NOATIME;
653 if (di_flags & XFS_DIFLAG_NODUMP)
654 flags |= FS_XFLAG_NODUMP;
655 if (di_flags & XFS_DIFLAG_RTINHERIT)
656 flags |= FS_XFLAG_RTINHERIT;
657 if (di_flags & XFS_DIFLAG_PROJINHERIT)
658 flags |= FS_XFLAG_PROJINHERIT;
659 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
660 flags |= FS_XFLAG_NOSYMLINKS;
661 if (di_flags & XFS_DIFLAG_EXTSIZE)
662 flags |= FS_XFLAG_EXTSIZE;
663 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
664 flags |= FS_XFLAG_EXTSZINHERIT;
665 if (di_flags & XFS_DIFLAG_NODEFRAG)
666 flags |= FS_XFLAG_NODEFRAG;
667 if (di_flags & XFS_DIFLAG_FILESTREAM)
668 flags |= FS_XFLAG_FILESTREAM;
669 }
670
671 if (di_flags2 & XFS_DIFLAG2_ANY) {
672 if (di_flags2 & XFS_DIFLAG2_DAX)
673 flags |= FS_XFLAG_DAX;
674 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
675 flags |= FS_XFLAG_COWEXTSIZE;
676 }
677
678 if (has_attr)
679 flags |= FS_XFLAG_HASATTR;
680
681 return flags;
682 }
683
684 uint
685 xfs_ip2xflags(
686 struct xfs_inode *ip)
687 {
688 struct xfs_icdinode *dic = &ip->i_d;
689
690 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
691 }
692
693 /*
694 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
695 * is allowed, otherwise it has to be an exact match. If a CI match is found,
696 * ci_name->name will point to a the actual name (caller must free) or
697 * will be set to NULL if an exact match is found.
698 */
699 int
700 xfs_lookup(
701 xfs_inode_t *dp,
702 struct xfs_name *name,
703 xfs_inode_t **ipp,
704 struct xfs_name *ci_name)
705 {
706 xfs_ino_t inum;
707 int error;
708
709 trace_xfs_lookup(dp, name);
710
711 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
712 return -EIO;
713
714 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
715 if (error)
716 goto out_unlock;
717
718 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
719 if (error)
720 goto out_free_name;
721
722 return 0;
723
724 out_free_name:
725 if (ci_name)
726 kmem_free(ci_name->name);
727 out_unlock:
728 *ipp = NULL;
729 return error;
730 }
731
732 /*
733 * Allocate an inode on disk and return a copy of its in-core version.
734 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
735 * appropriately within the inode. The uid and gid for the inode are
736 * set according to the contents of the given cred structure.
737 *
738 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
739 * has a free inode available, call xfs_iget() to obtain the in-core
740 * version of the allocated inode. Finally, fill in the inode and
741 * log its initial contents. In this case, ialloc_context would be
742 * set to NULL.
743 *
744 * If xfs_dialloc() does not have an available inode, it will replenish
745 * its supply by doing an allocation. Since we can only do one
746 * allocation within a transaction without deadlocks, we must commit
747 * the current transaction before returning the inode itself.
748 * In this case, therefore, we will set ialloc_context and return.
749 * The caller should then commit the current transaction, start a new
750 * transaction, and call xfs_ialloc() again to actually get the inode.
751 *
752 * To ensure that some other process does not grab the inode that
753 * was allocated during the first call to xfs_ialloc(), this routine
754 * also returns the [locked] bp pointing to the head of the freelist
755 * as ialloc_context. The caller should hold this buffer across
756 * the commit and pass it back into this routine on the second call.
757 *
758 * If we are allocating quota inodes, we do not have a parent inode
759 * to attach to or associate with (i.e. pip == NULL) because they
760 * are not linked into the directory structure - they are attached
761 * directly to the superblock - and so have no parent.
762 */
763 static int
764 xfs_ialloc(
765 xfs_trans_t *tp,
766 xfs_inode_t *pip,
767 umode_t mode,
768 xfs_nlink_t nlink,
769 xfs_dev_t rdev,
770 prid_t prid,
771 int okalloc,
772 xfs_buf_t **ialloc_context,
773 xfs_inode_t **ipp)
774 {
775 struct xfs_mount *mp = tp->t_mountp;
776 xfs_ino_t ino;
777 xfs_inode_t *ip;
778 uint flags;
779 int error;
780 struct timespec tv;
781 struct inode *inode;
782
783 /*
784 * Call the space management code to pick
785 * the on-disk inode to be allocated.
786 */
787 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
788 ialloc_context, &ino);
789 if (error)
790 return error;
791 if (*ialloc_context || ino == NULLFSINO) {
792 *ipp = NULL;
793 return 0;
794 }
795 ASSERT(*ialloc_context == NULL);
796
797 /*
798 * Get the in-core inode with the lock held exclusively.
799 * This is because we're setting fields here we need
800 * to prevent others from looking at until we're done.
801 */
802 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
803 XFS_ILOCK_EXCL, &ip);
804 if (error)
805 return error;
806 ASSERT(ip != NULL);
807 inode = VFS_I(ip);
808
809 /*
810 * We always convert v1 inodes to v2 now - we only support filesystems
811 * with >= v2 inode capability, so there is no reason for ever leaving
812 * an inode in v1 format.
813 */
814 if (ip->i_d.di_version == 1)
815 ip->i_d.di_version = 2;
816
817 inode->i_mode = mode;
818 set_nlink(inode, nlink);
819 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
820 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
821 xfs_set_projid(ip, prid);
822
823 if (pip && XFS_INHERIT_GID(pip)) {
824 ip->i_d.di_gid = pip->i_d.di_gid;
825 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
826 inode->i_mode |= S_ISGID;
827 }
828
829 /*
830 * If the group ID of the new file does not match the effective group
831 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
832 * (and only if the irix_sgid_inherit compatibility variable is set).
833 */
834 if ((irix_sgid_inherit) &&
835 (inode->i_mode & S_ISGID) &&
836 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
837 inode->i_mode &= ~S_ISGID;
838
839 ip->i_d.di_size = 0;
840 ip->i_d.di_nextents = 0;
841 ASSERT(ip->i_d.di_nblocks == 0);
842
843 tv = current_time(inode);
844 inode->i_mtime = tv;
845 inode->i_atime = tv;
846 inode->i_ctime = tv;
847
848 ip->i_d.di_extsize = 0;
849 ip->i_d.di_dmevmask = 0;
850 ip->i_d.di_dmstate = 0;
851 ip->i_d.di_flags = 0;
852
853 if (ip->i_d.di_version == 3) {
854 inode->i_version = 1;
855 ip->i_d.di_flags2 = 0;
856 ip->i_d.di_cowextsize = 0;
857 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
858 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
859 }
860
861
862 flags = XFS_ILOG_CORE;
863 switch (mode & S_IFMT) {
864 case S_IFIFO:
865 case S_IFCHR:
866 case S_IFBLK:
867 case S_IFSOCK:
868 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
869 ip->i_df.if_u2.if_rdev = rdev;
870 ip->i_df.if_flags = 0;
871 flags |= XFS_ILOG_DEV;
872 break;
873 case S_IFREG:
874 case S_IFDIR:
875 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
876 uint64_t di_flags2 = 0;
877 uint di_flags = 0;
878
879 if (S_ISDIR(mode)) {
880 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
881 di_flags |= XFS_DIFLAG_RTINHERIT;
882 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
883 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
884 ip->i_d.di_extsize = pip->i_d.di_extsize;
885 }
886 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
887 di_flags |= XFS_DIFLAG_PROJINHERIT;
888 } else if (S_ISREG(mode)) {
889 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
890 di_flags |= XFS_DIFLAG_REALTIME;
891 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
892 di_flags |= XFS_DIFLAG_EXTSIZE;
893 ip->i_d.di_extsize = pip->i_d.di_extsize;
894 }
895 }
896 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
897 xfs_inherit_noatime)
898 di_flags |= XFS_DIFLAG_NOATIME;
899 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
900 xfs_inherit_nodump)
901 di_flags |= XFS_DIFLAG_NODUMP;
902 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
903 xfs_inherit_sync)
904 di_flags |= XFS_DIFLAG_SYNC;
905 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
906 xfs_inherit_nosymlinks)
907 di_flags |= XFS_DIFLAG_NOSYMLINKS;
908 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
909 xfs_inherit_nodefrag)
910 di_flags |= XFS_DIFLAG_NODEFRAG;
911 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
912 di_flags |= XFS_DIFLAG_FILESTREAM;
913 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
914 di_flags2 |= XFS_DIFLAG2_DAX;
915
916 ip->i_d.di_flags |= di_flags;
917 ip->i_d.di_flags2 |= di_flags2;
918 }
919 if (pip &&
920 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
921 pip->i_d.di_version == 3 &&
922 ip->i_d.di_version == 3) {
923 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
924 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
925 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
926 }
927 }
928 /* FALLTHROUGH */
929 case S_IFLNK:
930 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
931 ip->i_df.if_flags = XFS_IFEXTENTS;
932 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
933 ip->i_df.if_u1.if_extents = NULL;
934 break;
935 default:
936 ASSERT(0);
937 }
938 /*
939 * Attribute fork settings for new inode.
940 */
941 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
942 ip->i_d.di_anextents = 0;
943
944 /*
945 * Log the new values stuffed into the inode.
946 */
947 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
948 xfs_trans_log_inode(tp, ip, flags);
949
950 /* now that we have an i_mode we can setup the inode structure */
951 xfs_setup_inode(ip);
952
953 *ipp = ip;
954 return 0;
955 }
956
957 /*
958 * Allocates a new inode from disk and return a pointer to the
959 * incore copy. This routine will internally commit the current
960 * transaction and allocate a new one if the Space Manager needed
961 * to do an allocation to replenish the inode free-list.
962 *
963 * This routine is designed to be called from xfs_create and
964 * xfs_create_dir.
965 *
966 */
967 int
968 xfs_dir_ialloc(
969 xfs_trans_t **tpp, /* input: current transaction;
970 output: may be a new transaction. */
971 xfs_inode_t *dp, /* directory within whose allocate
972 the inode. */
973 umode_t mode,
974 xfs_nlink_t nlink,
975 xfs_dev_t rdev,
976 prid_t prid, /* project id */
977 int okalloc, /* ok to allocate new space */
978 xfs_inode_t **ipp, /* pointer to inode; it will be
979 locked. */
980 int *committed)
981
982 {
983 xfs_trans_t *tp;
984 xfs_inode_t *ip;
985 xfs_buf_t *ialloc_context = NULL;
986 int code;
987 void *dqinfo;
988 uint tflags;
989
990 tp = *tpp;
991 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
992
993 /*
994 * xfs_ialloc will return a pointer to an incore inode if
995 * the Space Manager has an available inode on the free
996 * list. Otherwise, it will do an allocation and replenish
997 * the freelist. Since we can only do one allocation per
998 * transaction without deadlocks, we will need to commit the
999 * current transaction and start a new one. We will then
1000 * need to call xfs_ialloc again to get the inode.
1001 *
1002 * If xfs_ialloc did an allocation to replenish the freelist,
1003 * it returns the bp containing the head of the freelist as
1004 * ialloc_context. We will hold a lock on it across the
1005 * transaction commit so that no other process can steal
1006 * the inode(s) that we've just allocated.
1007 */
1008 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1009 &ialloc_context, &ip);
1010
1011 /*
1012 * Return an error if we were unable to allocate a new inode.
1013 * This should only happen if we run out of space on disk or
1014 * encounter a disk error.
1015 */
1016 if (code) {
1017 *ipp = NULL;
1018 return code;
1019 }
1020 if (!ialloc_context && !ip) {
1021 *ipp = NULL;
1022 return -ENOSPC;
1023 }
1024
1025 /*
1026 * If the AGI buffer is non-NULL, then we were unable to get an
1027 * inode in one operation. We need to commit the current
1028 * transaction and call xfs_ialloc() again. It is guaranteed
1029 * to succeed the second time.
1030 */
1031 if (ialloc_context) {
1032 /*
1033 * Normally, xfs_trans_commit releases all the locks.
1034 * We call bhold to hang on to the ialloc_context across
1035 * the commit. Holding this buffer prevents any other
1036 * processes from doing any allocations in this
1037 * allocation group.
1038 */
1039 xfs_trans_bhold(tp, ialloc_context);
1040
1041 /*
1042 * We want the quota changes to be associated with the next
1043 * transaction, NOT this one. So, detach the dqinfo from this
1044 * and attach it to the next transaction.
1045 */
1046 dqinfo = NULL;
1047 tflags = 0;
1048 if (tp->t_dqinfo) {
1049 dqinfo = (void *)tp->t_dqinfo;
1050 tp->t_dqinfo = NULL;
1051 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1052 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1053 }
1054
1055 code = xfs_trans_roll(&tp, NULL);
1056 if (committed != NULL)
1057 *committed = 1;
1058
1059 /*
1060 * Re-attach the quota info that we detached from prev trx.
1061 */
1062 if (dqinfo) {
1063 tp->t_dqinfo = dqinfo;
1064 tp->t_flags |= tflags;
1065 }
1066
1067 if (code) {
1068 xfs_buf_relse(ialloc_context);
1069 *tpp = tp;
1070 *ipp = NULL;
1071 return code;
1072 }
1073 xfs_trans_bjoin(tp, ialloc_context);
1074
1075 /*
1076 * Call ialloc again. Since we've locked out all
1077 * other allocations in this allocation group,
1078 * this call should always succeed.
1079 */
1080 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1081 okalloc, &ialloc_context, &ip);
1082
1083 /*
1084 * If we get an error at this point, return to the caller
1085 * so that the current transaction can be aborted.
1086 */
1087 if (code) {
1088 *tpp = tp;
1089 *ipp = NULL;
1090 return code;
1091 }
1092 ASSERT(!ialloc_context && ip);
1093
1094 } else {
1095 if (committed != NULL)
1096 *committed = 0;
1097 }
1098
1099 *ipp = ip;
1100 *tpp = tp;
1101
1102 return 0;
1103 }
1104
1105 /*
1106 * Decrement the link count on an inode & log the change. If this causes the
1107 * link count to go to zero, move the inode to AGI unlinked list so that it can
1108 * be freed when the last active reference goes away via xfs_inactive().
1109 */
1110 static int /* error */
1111 xfs_droplink(
1112 xfs_trans_t *tp,
1113 xfs_inode_t *ip)
1114 {
1115 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1116
1117 drop_nlink(VFS_I(ip));
1118 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1119
1120 if (VFS_I(ip)->i_nlink)
1121 return 0;
1122
1123 return xfs_iunlink(tp, ip);
1124 }
1125
1126 /*
1127 * Increment the link count on an inode & log the change.
1128 */
1129 static int
1130 xfs_bumplink(
1131 xfs_trans_t *tp,
1132 xfs_inode_t *ip)
1133 {
1134 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1135
1136 ASSERT(ip->i_d.di_version > 1);
1137 inc_nlink(VFS_I(ip));
1138 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1139 return 0;
1140 }
1141
1142 int
1143 xfs_create(
1144 xfs_inode_t *dp,
1145 struct xfs_name *name,
1146 umode_t mode,
1147 xfs_dev_t rdev,
1148 xfs_inode_t **ipp)
1149 {
1150 int is_dir = S_ISDIR(mode);
1151 struct xfs_mount *mp = dp->i_mount;
1152 struct xfs_inode *ip = NULL;
1153 struct xfs_trans *tp = NULL;
1154 int error;
1155 struct xfs_defer_ops dfops;
1156 xfs_fsblock_t first_block;
1157 bool unlock_dp_on_error = false;
1158 prid_t prid;
1159 struct xfs_dquot *udqp = NULL;
1160 struct xfs_dquot *gdqp = NULL;
1161 struct xfs_dquot *pdqp = NULL;
1162 struct xfs_trans_res *tres;
1163 uint resblks;
1164
1165 trace_xfs_create(dp, name);
1166
1167 if (XFS_FORCED_SHUTDOWN(mp))
1168 return -EIO;
1169
1170 prid = xfs_get_initial_prid(dp);
1171
1172 /*
1173 * Make sure that we have allocated dquot(s) on disk.
1174 */
1175 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1176 xfs_kgid_to_gid(current_fsgid()), prid,
1177 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1178 &udqp, &gdqp, &pdqp);
1179 if (error)
1180 return error;
1181
1182 if (is_dir) {
1183 rdev = 0;
1184 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1185 tres = &M_RES(mp)->tr_mkdir;
1186 } else {
1187 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1188 tres = &M_RES(mp)->tr_create;
1189 }
1190
1191 /*
1192 * Initially assume that the file does not exist and
1193 * reserve the resources for that case. If that is not
1194 * the case we'll drop the one we have and get a more
1195 * appropriate transaction later.
1196 */
1197 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1198 if (error == -ENOSPC) {
1199 /* flush outstanding delalloc blocks and retry */
1200 xfs_flush_inodes(mp);
1201 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1202 }
1203 if (error == -ENOSPC) {
1204 /* No space at all so try a "no-allocation" reservation */
1205 resblks = 0;
1206 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1207 }
1208 if (error)
1209 goto out_release_inode;
1210
1211 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1212 unlock_dp_on_error = true;
1213
1214 xfs_defer_init(&dfops, &first_block);
1215
1216 /*
1217 * Reserve disk quota and the inode.
1218 */
1219 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1220 pdqp, resblks, 1, 0);
1221 if (error)
1222 goto out_trans_cancel;
1223
1224 if (!resblks) {
1225 error = xfs_dir_canenter(tp, dp, name);
1226 if (error)
1227 goto out_trans_cancel;
1228 }
1229
1230 /*
1231 * A newly created regular or special file just has one directory
1232 * entry pointing to them, but a directory also the "." entry
1233 * pointing to itself.
1234 */
1235 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1236 prid, resblks > 0, &ip, NULL);
1237 if (error)
1238 goto out_trans_cancel;
1239
1240 /*
1241 * Now we join the directory inode to the transaction. We do not do it
1242 * earlier because xfs_dir_ialloc might commit the previous transaction
1243 * (and release all the locks). An error from here on will result in
1244 * the transaction cancel unlocking dp so don't do it explicitly in the
1245 * error path.
1246 */
1247 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1248 unlock_dp_on_error = false;
1249
1250 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1251 &first_block, &dfops, resblks ?
1252 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1253 if (error) {
1254 ASSERT(error != -ENOSPC);
1255 goto out_trans_cancel;
1256 }
1257 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1258 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1259
1260 if (is_dir) {
1261 error = xfs_dir_init(tp, ip, dp);
1262 if (error)
1263 goto out_bmap_cancel;
1264
1265 error = xfs_bumplink(tp, dp);
1266 if (error)
1267 goto out_bmap_cancel;
1268 }
1269
1270 /*
1271 * If this is a synchronous mount, make sure that the
1272 * create transaction goes to disk before returning to
1273 * the user.
1274 */
1275 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1276 xfs_trans_set_sync(tp);
1277
1278 /*
1279 * Attach the dquot(s) to the inodes and modify them incore.
1280 * These ids of the inode couldn't have changed since the new
1281 * inode has been locked ever since it was created.
1282 */
1283 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1284
1285 error = xfs_defer_finish(&tp, &dfops, NULL);
1286 if (error)
1287 goto out_bmap_cancel;
1288
1289 error = xfs_trans_commit(tp);
1290 if (error)
1291 goto out_release_inode;
1292
1293 xfs_qm_dqrele(udqp);
1294 xfs_qm_dqrele(gdqp);
1295 xfs_qm_dqrele(pdqp);
1296
1297 *ipp = ip;
1298 return 0;
1299
1300 out_bmap_cancel:
1301 xfs_defer_cancel(&dfops);
1302 out_trans_cancel:
1303 xfs_trans_cancel(tp);
1304 out_release_inode:
1305 /*
1306 * Wait until after the current transaction is aborted to finish the
1307 * setup of the inode and release the inode. This prevents recursive
1308 * transactions and deadlocks from xfs_inactive.
1309 */
1310 if (ip) {
1311 xfs_finish_inode_setup(ip);
1312 IRELE(ip);
1313 }
1314
1315 xfs_qm_dqrele(udqp);
1316 xfs_qm_dqrele(gdqp);
1317 xfs_qm_dqrele(pdqp);
1318
1319 if (unlock_dp_on_error)
1320 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1321 return error;
1322 }
1323
1324 int
1325 xfs_create_tmpfile(
1326 struct xfs_inode *dp,
1327 struct dentry *dentry,
1328 umode_t mode,
1329 struct xfs_inode **ipp)
1330 {
1331 struct xfs_mount *mp = dp->i_mount;
1332 struct xfs_inode *ip = NULL;
1333 struct xfs_trans *tp = NULL;
1334 int error;
1335 prid_t prid;
1336 struct xfs_dquot *udqp = NULL;
1337 struct xfs_dquot *gdqp = NULL;
1338 struct xfs_dquot *pdqp = NULL;
1339 struct xfs_trans_res *tres;
1340 uint resblks;
1341
1342 if (XFS_FORCED_SHUTDOWN(mp))
1343 return -EIO;
1344
1345 prid = xfs_get_initial_prid(dp);
1346
1347 /*
1348 * Make sure that we have allocated dquot(s) on disk.
1349 */
1350 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1351 xfs_kgid_to_gid(current_fsgid()), prid,
1352 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1353 &udqp, &gdqp, &pdqp);
1354 if (error)
1355 return error;
1356
1357 resblks = XFS_IALLOC_SPACE_RES(mp);
1358 tres = &M_RES(mp)->tr_create_tmpfile;
1359
1360 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1361 if (error == -ENOSPC) {
1362 /* No space at all so try a "no-allocation" reservation */
1363 resblks = 0;
1364 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1365 }
1366 if (error)
1367 goto out_release_inode;
1368
1369 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1370 pdqp, resblks, 1, 0);
1371 if (error)
1372 goto out_trans_cancel;
1373
1374 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1375 prid, resblks > 0, &ip, NULL);
1376 if (error)
1377 goto out_trans_cancel;
1378
1379 if (mp->m_flags & XFS_MOUNT_WSYNC)
1380 xfs_trans_set_sync(tp);
1381
1382 /*
1383 * Attach the dquot(s) to the inodes and modify them incore.
1384 * These ids of the inode couldn't have changed since the new
1385 * inode has been locked ever since it was created.
1386 */
1387 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1388
1389 error = xfs_iunlink(tp, ip);
1390 if (error)
1391 goto out_trans_cancel;
1392
1393 error = xfs_trans_commit(tp);
1394 if (error)
1395 goto out_release_inode;
1396
1397 xfs_qm_dqrele(udqp);
1398 xfs_qm_dqrele(gdqp);
1399 xfs_qm_dqrele(pdqp);
1400
1401 *ipp = ip;
1402 return 0;
1403
1404 out_trans_cancel:
1405 xfs_trans_cancel(tp);
1406 out_release_inode:
1407 /*
1408 * Wait until after the current transaction is aborted to finish the
1409 * setup of the inode and release the inode. This prevents recursive
1410 * transactions and deadlocks from xfs_inactive.
1411 */
1412 if (ip) {
1413 xfs_finish_inode_setup(ip);
1414 IRELE(ip);
1415 }
1416
1417 xfs_qm_dqrele(udqp);
1418 xfs_qm_dqrele(gdqp);
1419 xfs_qm_dqrele(pdqp);
1420
1421 return error;
1422 }
1423
1424 int
1425 xfs_link(
1426 xfs_inode_t *tdp,
1427 xfs_inode_t *sip,
1428 struct xfs_name *target_name)
1429 {
1430 xfs_mount_t *mp = tdp->i_mount;
1431 xfs_trans_t *tp;
1432 int error;
1433 struct xfs_defer_ops dfops;
1434 xfs_fsblock_t first_block;
1435 int resblks;
1436
1437 trace_xfs_link(tdp, target_name);
1438
1439 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1440
1441 if (XFS_FORCED_SHUTDOWN(mp))
1442 return -EIO;
1443
1444 error = xfs_qm_dqattach(sip, 0);
1445 if (error)
1446 goto std_return;
1447
1448 error = xfs_qm_dqattach(tdp, 0);
1449 if (error)
1450 goto std_return;
1451
1452 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1453 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1454 if (error == -ENOSPC) {
1455 resblks = 0;
1456 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1457 }
1458 if (error)
1459 goto std_return;
1460
1461 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1462
1463 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1464 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1465
1466 /*
1467 * If we are using project inheritance, we only allow hard link
1468 * creation in our tree when the project IDs are the same; else
1469 * the tree quota mechanism could be circumvented.
1470 */
1471 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1472 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1473 error = -EXDEV;
1474 goto error_return;
1475 }
1476
1477 if (!resblks) {
1478 error = xfs_dir_canenter(tp, tdp, target_name);
1479 if (error)
1480 goto error_return;
1481 }
1482
1483 xfs_defer_init(&dfops, &first_block);
1484
1485 /*
1486 * Handle initial link state of O_TMPFILE inode
1487 */
1488 if (VFS_I(sip)->i_nlink == 0) {
1489 error = xfs_iunlink_remove(tp, sip);
1490 if (error)
1491 goto error_return;
1492 }
1493
1494 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1495 &first_block, &dfops, resblks);
1496 if (error)
1497 goto error_return;
1498 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1499 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1500
1501 error = xfs_bumplink(tp, sip);
1502 if (error)
1503 goto error_return;
1504
1505 /*
1506 * If this is a synchronous mount, make sure that the
1507 * link transaction goes to disk before returning to
1508 * the user.
1509 */
1510 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1511 xfs_trans_set_sync(tp);
1512
1513 error = xfs_defer_finish(&tp, &dfops, NULL);
1514 if (error) {
1515 xfs_defer_cancel(&dfops);
1516 goto error_return;
1517 }
1518
1519 return xfs_trans_commit(tp);
1520
1521 error_return:
1522 xfs_trans_cancel(tp);
1523 std_return:
1524 return error;
1525 }
1526
1527 /*
1528 * Free up the underlying blocks past new_size. The new size must be smaller
1529 * than the current size. This routine can be used both for the attribute and
1530 * data fork, and does not modify the inode size, which is left to the caller.
1531 *
1532 * The transaction passed to this routine must have made a permanent log
1533 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1534 * given transaction and start new ones, so make sure everything involved in
1535 * the transaction is tidy before calling here. Some transaction will be
1536 * returned to the caller to be committed. The incoming transaction must
1537 * already include the inode, and both inode locks must be held exclusively.
1538 * The inode must also be "held" within the transaction. On return the inode
1539 * will be "held" within the returned transaction. This routine does NOT
1540 * require any disk space to be reserved for it within the transaction.
1541 *
1542 * If we get an error, we must return with the inode locked and linked into the
1543 * current transaction. This keeps things simple for the higher level code,
1544 * because it always knows that the inode is locked and held in the transaction
1545 * that returns to it whether errors occur or not. We don't mark the inode
1546 * dirty on error so that transactions can be easily aborted if possible.
1547 */
1548 int
1549 xfs_itruncate_extents(
1550 struct xfs_trans **tpp,
1551 struct xfs_inode *ip,
1552 int whichfork,
1553 xfs_fsize_t new_size)
1554 {
1555 struct xfs_mount *mp = ip->i_mount;
1556 struct xfs_trans *tp = *tpp;
1557 struct xfs_defer_ops dfops;
1558 xfs_fsblock_t first_block;
1559 xfs_fileoff_t first_unmap_block;
1560 xfs_fileoff_t last_block;
1561 xfs_filblks_t unmap_len;
1562 int error = 0;
1563 int done = 0;
1564
1565 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1566 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1567 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1568 ASSERT(new_size <= XFS_ISIZE(ip));
1569 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1570 ASSERT(ip->i_itemp != NULL);
1571 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1572 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1573
1574 trace_xfs_itruncate_extents_start(ip, new_size);
1575
1576 /*
1577 * Since it is possible for space to become allocated beyond
1578 * the end of the file (in a crash where the space is allocated
1579 * but the inode size is not yet updated), simply remove any
1580 * blocks which show up between the new EOF and the maximum
1581 * possible file size. If the first block to be removed is
1582 * beyond the maximum file size (ie it is the same as last_block),
1583 * then there is nothing to do.
1584 */
1585 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1586 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1587 if (first_unmap_block == last_block)
1588 return 0;
1589
1590 ASSERT(first_unmap_block < last_block);
1591 unmap_len = last_block - first_unmap_block + 1;
1592 while (!done) {
1593 xfs_defer_init(&dfops, &first_block);
1594 error = xfs_bunmapi(tp, ip,
1595 first_unmap_block, unmap_len,
1596 xfs_bmapi_aflag(whichfork),
1597 XFS_ITRUNC_MAX_EXTENTS,
1598 &first_block, &dfops,
1599 &done);
1600 if (error)
1601 goto out_bmap_cancel;
1602
1603 /*
1604 * Duplicate the transaction that has the permanent
1605 * reservation and commit the old transaction.
1606 */
1607 error = xfs_defer_finish(&tp, &dfops, ip);
1608 if (error)
1609 goto out_bmap_cancel;
1610
1611 error = xfs_trans_roll(&tp, ip);
1612 if (error)
1613 goto out;
1614 }
1615
1616 /* Remove all pending CoW reservations. */
1617 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1618 last_block);
1619 if (error)
1620 goto out;
1621
1622 /*
1623 * Clear the reflink flag if we truncated everything.
1624 */
1625 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) {
1626 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1627 xfs_inode_clear_cowblocks_tag(ip);
1628 }
1629
1630 /*
1631 * Always re-log the inode so that our permanent transaction can keep
1632 * on rolling it forward in the log.
1633 */
1634 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1635
1636 trace_xfs_itruncate_extents_end(ip, new_size);
1637
1638 out:
1639 *tpp = tp;
1640 return error;
1641 out_bmap_cancel:
1642 /*
1643 * If the bunmapi call encounters an error, return to the caller where
1644 * the transaction can be properly aborted. We just need to make sure
1645 * we're not holding any resources that we were not when we came in.
1646 */
1647 xfs_defer_cancel(&dfops);
1648 goto out;
1649 }
1650
1651 int
1652 xfs_release(
1653 xfs_inode_t *ip)
1654 {
1655 xfs_mount_t *mp = ip->i_mount;
1656 int error;
1657
1658 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1659 return 0;
1660
1661 /* If this is a read-only mount, don't do this (would generate I/O) */
1662 if (mp->m_flags & XFS_MOUNT_RDONLY)
1663 return 0;
1664
1665 if (!XFS_FORCED_SHUTDOWN(mp)) {
1666 int truncated;
1667
1668 /*
1669 * If we previously truncated this file and removed old data
1670 * in the process, we want to initiate "early" writeout on
1671 * the last close. This is an attempt to combat the notorious
1672 * NULL files problem which is particularly noticeable from a
1673 * truncate down, buffered (re-)write (delalloc), followed by
1674 * a crash. What we are effectively doing here is
1675 * significantly reducing the time window where we'd otherwise
1676 * be exposed to that problem.
1677 */
1678 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1679 if (truncated) {
1680 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1681 if (ip->i_delayed_blks > 0) {
1682 error = filemap_flush(VFS_I(ip)->i_mapping);
1683 if (error)
1684 return error;
1685 }
1686 }
1687 }
1688
1689 if (VFS_I(ip)->i_nlink == 0)
1690 return 0;
1691
1692 if (xfs_can_free_eofblocks(ip, false)) {
1693
1694 /*
1695 * If we can't get the iolock just skip truncating the blocks
1696 * past EOF because we could deadlock with the mmap_sem
1697 * otherwise. We'll get another chance to drop them once the
1698 * last reference to the inode is dropped, so we'll never leak
1699 * blocks permanently.
1700 *
1701 * Further, check if the inode is being opened, written and
1702 * closed frequently and we have delayed allocation blocks
1703 * outstanding (e.g. streaming writes from the NFS server),
1704 * truncating the blocks past EOF will cause fragmentation to
1705 * occur.
1706 *
1707 * In this case don't do the truncation, either, but we have to
1708 * be careful how we detect this case. Blocks beyond EOF show
1709 * up as i_delayed_blks even when the inode is clean, so we
1710 * need to truncate them away first before checking for a dirty
1711 * release. Hence on the first dirty close we will still remove
1712 * the speculative allocation, but after that we will leave it
1713 * in place.
1714 */
1715 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1716 return 0;
1717
1718 error = xfs_free_eofblocks(mp, ip, true);
1719 if (error && error != -EAGAIN)
1720 return error;
1721
1722 /* delalloc blocks after truncation means it really is dirty */
1723 if (ip->i_delayed_blks)
1724 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1725 }
1726 return 0;
1727 }
1728
1729 /*
1730 * xfs_inactive_truncate
1731 *
1732 * Called to perform a truncate when an inode becomes unlinked.
1733 */
1734 STATIC int
1735 xfs_inactive_truncate(
1736 struct xfs_inode *ip)
1737 {
1738 struct xfs_mount *mp = ip->i_mount;
1739 struct xfs_trans *tp;
1740 int error;
1741
1742 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1743 if (error) {
1744 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1745 return error;
1746 }
1747
1748 xfs_ilock(ip, XFS_ILOCK_EXCL);
1749 xfs_trans_ijoin(tp, ip, 0);
1750
1751 /*
1752 * Log the inode size first to prevent stale data exposure in the event
1753 * of a system crash before the truncate completes. See the related
1754 * comment in xfs_vn_setattr_size() for details.
1755 */
1756 ip->i_d.di_size = 0;
1757 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1758
1759 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1760 if (error)
1761 goto error_trans_cancel;
1762
1763 ASSERT(ip->i_d.di_nextents == 0);
1764
1765 error = xfs_trans_commit(tp);
1766 if (error)
1767 goto error_unlock;
1768
1769 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1770 return 0;
1771
1772 error_trans_cancel:
1773 xfs_trans_cancel(tp);
1774 error_unlock:
1775 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1776 return error;
1777 }
1778
1779 /*
1780 * xfs_inactive_ifree()
1781 *
1782 * Perform the inode free when an inode is unlinked.
1783 */
1784 STATIC int
1785 xfs_inactive_ifree(
1786 struct xfs_inode *ip)
1787 {
1788 struct xfs_defer_ops dfops;
1789 xfs_fsblock_t first_block;
1790 struct xfs_mount *mp = ip->i_mount;
1791 struct xfs_trans *tp;
1792 int error;
1793
1794 /*
1795 * The ifree transaction might need to allocate blocks for record
1796 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1797 * allow ifree to dip into the reserved block pool if necessary.
1798 *
1799 * Freeing large sets of inodes generally means freeing inode chunks,
1800 * directory and file data blocks, so this should be relatively safe.
1801 * Only under severe circumstances should it be possible to free enough
1802 * inodes to exhaust the reserve block pool via finobt expansion while
1803 * at the same time not creating free space in the filesystem.
1804 *
1805 * Send a warning if the reservation does happen to fail, as the inode
1806 * now remains allocated and sits on the unlinked list until the fs is
1807 * repaired.
1808 */
1809 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1810 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1811 if (error) {
1812 if (error == -ENOSPC) {
1813 xfs_warn_ratelimited(mp,
1814 "Failed to remove inode(s) from unlinked list. "
1815 "Please free space, unmount and run xfs_repair.");
1816 } else {
1817 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1818 }
1819 return error;
1820 }
1821
1822 xfs_ilock(ip, XFS_ILOCK_EXCL);
1823 xfs_trans_ijoin(tp, ip, 0);
1824
1825 xfs_defer_init(&dfops, &first_block);
1826 error = xfs_ifree(tp, ip, &dfops);
1827 if (error) {
1828 /*
1829 * If we fail to free the inode, shut down. The cancel
1830 * might do that, we need to make sure. Otherwise the
1831 * inode might be lost for a long time or forever.
1832 */
1833 if (!XFS_FORCED_SHUTDOWN(mp)) {
1834 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1835 __func__, error);
1836 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1837 }
1838 xfs_trans_cancel(tp);
1839 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1840 return error;
1841 }
1842
1843 /*
1844 * Credit the quota account(s). The inode is gone.
1845 */
1846 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1847
1848 /*
1849 * Just ignore errors at this point. There is nothing we can do except
1850 * to try to keep going. Make sure it's not a silent error.
1851 */
1852 error = xfs_defer_finish(&tp, &dfops, NULL);
1853 if (error) {
1854 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1855 __func__, error);
1856 xfs_defer_cancel(&dfops);
1857 }
1858 error = xfs_trans_commit(tp);
1859 if (error)
1860 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1861 __func__, error);
1862
1863 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1864 return 0;
1865 }
1866
1867 /*
1868 * xfs_inactive
1869 *
1870 * This is called when the vnode reference count for the vnode
1871 * goes to zero. If the file has been unlinked, then it must
1872 * now be truncated. Also, we clear all of the read-ahead state
1873 * kept for the inode here since the file is now closed.
1874 */
1875 void
1876 xfs_inactive(
1877 xfs_inode_t *ip)
1878 {
1879 struct xfs_mount *mp;
1880 int error;
1881 int truncate = 0;
1882
1883 /*
1884 * If the inode is already free, then there can be nothing
1885 * to clean up here.
1886 */
1887 if (VFS_I(ip)->i_mode == 0) {
1888 ASSERT(ip->i_df.if_real_bytes == 0);
1889 ASSERT(ip->i_df.if_broot_bytes == 0);
1890 return;
1891 }
1892
1893 mp = ip->i_mount;
1894 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1895
1896 /* If this is a read-only mount, don't do this (would generate I/O) */
1897 if (mp->m_flags & XFS_MOUNT_RDONLY)
1898 return;
1899
1900 if (VFS_I(ip)->i_nlink != 0) {
1901 /*
1902 * force is true because we are evicting an inode from the
1903 * cache. Post-eof blocks must be freed, lest we end up with
1904 * broken free space accounting.
1905 */
1906 if (xfs_can_free_eofblocks(ip, true))
1907 xfs_free_eofblocks(mp, ip, false);
1908
1909 return;
1910 }
1911
1912 if (S_ISREG(VFS_I(ip)->i_mode) &&
1913 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1914 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1915 truncate = 1;
1916
1917 error = xfs_qm_dqattach(ip, 0);
1918 if (error)
1919 return;
1920
1921 if (S_ISLNK(VFS_I(ip)->i_mode))
1922 error = xfs_inactive_symlink(ip);
1923 else if (truncate)
1924 error = xfs_inactive_truncate(ip);
1925 if (error)
1926 return;
1927
1928 /*
1929 * If there are attributes associated with the file then blow them away
1930 * now. The code calls a routine that recursively deconstructs the
1931 * attribute fork. If also blows away the in-core attribute fork.
1932 */
1933 if (XFS_IFORK_Q(ip)) {
1934 error = xfs_attr_inactive(ip);
1935 if (error)
1936 return;
1937 }
1938
1939 ASSERT(!ip->i_afp);
1940 ASSERT(ip->i_d.di_anextents == 0);
1941 ASSERT(ip->i_d.di_forkoff == 0);
1942
1943 /*
1944 * Free the inode.
1945 */
1946 error = xfs_inactive_ifree(ip);
1947 if (error)
1948 return;
1949
1950 /*
1951 * Release the dquots held by inode, if any.
1952 */
1953 xfs_qm_dqdetach(ip);
1954 }
1955
1956 /*
1957 * This is called when the inode's link count goes to 0 or we are creating a
1958 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1959 * set to true as the link count is dropped to zero by the VFS after we've
1960 * created the file successfully, so we have to add it to the unlinked list
1961 * while the link count is non-zero.
1962 *
1963 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1964 * list when the inode is freed.
1965 */
1966 STATIC int
1967 xfs_iunlink(
1968 struct xfs_trans *tp,
1969 struct xfs_inode *ip)
1970 {
1971 xfs_mount_t *mp = tp->t_mountp;
1972 xfs_agi_t *agi;
1973 xfs_dinode_t *dip;
1974 xfs_buf_t *agibp;
1975 xfs_buf_t *ibp;
1976 xfs_agino_t agino;
1977 short bucket_index;
1978 int offset;
1979 int error;
1980
1981 ASSERT(VFS_I(ip)->i_mode != 0);
1982
1983 /*
1984 * Get the agi buffer first. It ensures lock ordering
1985 * on the list.
1986 */
1987 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1988 if (error)
1989 return error;
1990 agi = XFS_BUF_TO_AGI(agibp);
1991
1992 /*
1993 * Get the index into the agi hash table for the
1994 * list this inode will go on.
1995 */
1996 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1997 ASSERT(agino != 0);
1998 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1999 ASSERT(agi->agi_unlinked[bucket_index]);
2000 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2001
2002 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2003 /*
2004 * There is already another inode in the bucket we need
2005 * to add ourselves to. Add us at the front of the list.
2006 * Here we put the head pointer into our next pointer,
2007 * and then we fall through to point the head at us.
2008 */
2009 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2010 0, 0);
2011 if (error)
2012 return error;
2013
2014 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2015 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2016 offset = ip->i_imap.im_boffset +
2017 offsetof(xfs_dinode_t, di_next_unlinked);
2018
2019 /* need to recalc the inode CRC if appropriate */
2020 xfs_dinode_calc_crc(mp, dip);
2021
2022 xfs_trans_inode_buf(tp, ibp);
2023 xfs_trans_log_buf(tp, ibp, offset,
2024 (offset + sizeof(xfs_agino_t) - 1));
2025 xfs_inobp_check(mp, ibp);
2026 }
2027
2028 /*
2029 * Point the bucket head pointer at the inode being inserted.
2030 */
2031 ASSERT(agino != 0);
2032 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2033 offset = offsetof(xfs_agi_t, agi_unlinked) +
2034 (sizeof(xfs_agino_t) * bucket_index);
2035 xfs_trans_log_buf(tp, agibp, offset,
2036 (offset + sizeof(xfs_agino_t) - 1));
2037 return 0;
2038 }
2039
2040 /*
2041 * Pull the on-disk inode from the AGI unlinked list.
2042 */
2043 STATIC int
2044 xfs_iunlink_remove(
2045 xfs_trans_t *tp,
2046 xfs_inode_t *ip)
2047 {
2048 xfs_ino_t next_ino;
2049 xfs_mount_t *mp;
2050 xfs_agi_t *agi;
2051 xfs_dinode_t *dip;
2052 xfs_buf_t *agibp;
2053 xfs_buf_t *ibp;
2054 xfs_agnumber_t agno;
2055 xfs_agino_t agino;
2056 xfs_agino_t next_agino;
2057 xfs_buf_t *last_ibp;
2058 xfs_dinode_t *last_dip = NULL;
2059 short bucket_index;
2060 int offset, last_offset = 0;
2061 int error;
2062
2063 mp = tp->t_mountp;
2064 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2065
2066 /*
2067 * Get the agi buffer first. It ensures lock ordering
2068 * on the list.
2069 */
2070 error = xfs_read_agi(mp, tp, agno, &agibp);
2071 if (error)
2072 return error;
2073
2074 agi = XFS_BUF_TO_AGI(agibp);
2075
2076 /*
2077 * Get the index into the agi hash table for the
2078 * list this inode will go on.
2079 */
2080 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2081 ASSERT(agino != 0);
2082 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2083 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2084 ASSERT(agi->agi_unlinked[bucket_index]);
2085
2086 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2087 /*
2088 * We're at the head of the list. Get the inode's on-disk
2089 * buffer to see if there is anyone after us on the list.
2090 * Only modify our next pointer if it is not already NULLAGINO.
2091 * This saves us the overhead of dealing with the buffer when
2092 * there is no need to change it.
2093 */
2094 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2095 0, 0);
2096 if (error) {
2097 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2098 __func__, error);
2099 return error;
2100 }
2101 next_agino = be32_to_cpu(dip->di_next_unlinked);
2102 ASSERT(next_agino != 0);
2103 if (next_agino != NULLAGINO) {
2104 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2105 offset = ip->i_imap.im_boffset +
2106 offsetof(xfs_dinode_t, di_next_unlinked);
2107
2108 /* need to recalc the inode CRC if appropriate */
2109 xfs_dinode_calc_crc(mp, dip);
2110
2111 xfs_trans_inode_buf(tp, ibp);
2112 xfs_trans_log_buf(tp, ibp, offset,
2113 (offset + sizeof(xfs_agino_t) - 1));
2114 xfs_inobp_check(mp, ibp);
2115 } else {
2116 xfs_trans_brelse(tp, ibp);
2117 }
2118 /*
2119 * Point the bucket head pointer at the next inode.
2120 */
2121 ASSERT(next_agino != 0);
2122 ASSERT(next_agino != agino);
2123 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2124 offset = offsetof(xfs_agi_t, agi_unlinked) +
2125 (sizeof(xfs_agino_t) * bucket_index);
2126 xfs_trans_log_buf(tp, agibp, offset,
2127 (offset + sizeof(xfs_agino_t) - 1));
2128 } else {
2129 /*
2130 * We need to search the list for the inode being freed.
2131 */
2132 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2133 last_ibp = NULL;
2134 while (next_agino != agino) {
2135 struct xfs_imap imap;
2136
2137 if (last_ibp)
2138 xfs_trans_brelse(tp, last_ibp);
2139
2140 imap.im_blkno = 0;
2141 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2142
2143 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2144 if (error) {
2145 xfs_warn(mp,
2146 "%s: xfs_imap returned error %d.",
2147 __func__, error);
2148 return error;
2149 }
2150
2151 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2152 &last_ibp, 0, 0);
2153 if (error) {
2154 xfs_warn(mp,
2155 "%s: xfs_imap_to_bp returned error %d.",
2156 __func__, error);
2157 return error;
2158 }
2159
2160 last_offset = imap.im_boffset;
2161 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2162 ASSERT(next_agino != NULLAGINO);
2163 ASSERT(next_agino != 0);
2164 }
2165
2166 /*
2167 * Now last_ibp points to the buffer previous to us on the
2168 * unlinked list. Pull us from the list.
2169 */
2170 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2171 0, 0);
2172 if (error) {
2173 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2174 __func__, error);
2175 return error;
2176 }
2177 next_agino = be32_to_cpu(dip->di_next_unlinked);
2178 ASSERT(next_agino != 0);
2179 ASSERT(next_agino != agino);
2180 if (next_agino != NULLAGINO) {
2181 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2182 offset = ip->i_imap.im_boffset +
2183 offsetof(xfs_dinode_t, di_next_unlinked);
2184
2185 /* need to recalc the inode CRC if appropriate */
2186 xfs_dinode_calc_crc(mp, dip);
2187
2188 xfs_trans_inode_buf(tp, ibp);
2189 xfs_trans_log_buf(tp, ibp, offset,
2190 (offset + sizeof(xfs_agino_t) - 1));
2191 xfs_inobp_check(mp, ibp);
2192 } else {
2193 xfs_trans_brelse(tp, ibp);
2194 }
2195 /*
2196 * Point the previous inode on the list to the next inode.
2197 */
2198 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2199 ASSERT(next_agino != 0);
2200 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2201
2202 /* need to recalc the inode CRC if appropriate */
2203 xfs_dinode_calc_crc(mp, last_dip);
2204
2205 xfs_trans_inode_buf(tp, last_ibp);
2206 xfs_trans_log_buf(tp, last_ibp, offset,
2207 (offset + sizeof(xfs_agino_t) - 1));
2208 xfs_inobp_check(mp, last_ibp);
2209 }
2210 return 0;
2211 }
2212
2213 /*
2214 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2215 * inodes that are in memory - they all must be marked stale and attached to
2216 * the cluster buffer.
2217 */
2218 STATIC int
2219 xfs_ifree_cluster(
2220 xfs_inode_t *free_ip,
2221 xfs_trans_t *tp,
2222 struct xfs_icluster *xic)
2223 {
2224 xfs_mount_t *mp = free_ip->i_mount;
2225 int blks_per_cluster;
2226 int inodes_per_cluster;
2227 int nbufs;
2228 int i, j;
2229 int ioffset;
2230 xfs_daddr_t blkno;
2231 xfs_buf_t *bp;
2232 xfs_inode_t *ip;
2233 xfs_inode_log_item_t *iip;
2234 xfs_log_item_t *lip;
2235 struct xfs_perag *pag;
2236 xfs_ino_t inum;
2237
2238 inum = xic->first_ino;
2239 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2240 blks_per_cluster = xfs_icluster_size_fsb(mp);
2241 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2242 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2243
2244 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2245 /*
2246 * The allocation bitmap tells us which inodes of the chunk were
2247 * physically allocated. Skip the cluster if an inode falls into
2248 * a sparse region.
2249 */
2250 ioffset = inum - xic->first_ino;
2251 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2252 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2253 continue;
2254 }
2255
2256 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2257 XFS_INO_TO_AGBNO(mp, inum));
2258
2259 /*
2260 * We obtain and lock the backing buffer first in the process
2261 * here, as we have to ensure that any dirty inode that we
2262 * can't get the flush lock on is attached to the buffer.
2263 * If we scan the in-memory inodes first, then buffer IO can
2264 * complete before we get a lock on it, and hence we may fail
2265 * to mark all the active inodes on the buffer stale.
2266 */
2267 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2268 mp->m_bsize * blks_per_cluster,
2269 XBF_UNMAPPED);
2270
2271 if (!bp)
2272 return -ENOMEM;
2273
2274 /*
2275 * This buffer may not have been correctly initialised as we
2276 * didn't read it from disk. That's not important because we are
2277 * only using to mark the buffer as stale in the log, and to
2278 * attach stale cached inodes on it. That means it will never be
2279 * dispatched for IO. If it is, we want to know about it, and we
2280 * want it to fail. We can acheive this by adding a write
2281 * verifier to the buffer.
2282 */
2283 bp->b_ops = &xfs_inode_buf_ops;
2284
2285 /*
2286 * Walk the inodes already attached to the buffer and mark them
2287 * stale. These will all have the flush locks held, so an
2288 * in-memory inode walk can't lock them. By marking them all
2289 * stale first, we will not attempt to lock them in the loop
2290 * below as the XFS_ISTALE flag will be set.
2291 */
2292 lip = bp->b_fspriv;
2293 while (lip) {
2294 if (lip->li_type == XFS_LI_INODE) {
2295 iip = (xfs_inode_log_item_t *)lip;
2296 ASSERT(iip->ili_logged == 1);
2297 lip->li_cb = xfs_istale_done;
2298 xfs_trans_ail_copy_lsn(mp->m_ail,
2299 &iip->ili_flush_lsn,
2300 &iip->ili_item.li_lsn);
2301 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2302 }
2303 lip = lip->li_bio_list;
2304 }
2305
2306
2307 /*
2308 * For each inode in memory attempt to add it to the inode
2309 * buffer and set it up for being staled on buffer IO
2310 * completion. This is safe as we've locked out tail pushing
2311 * and flushing by locking the buffer.
2312 *
2313 * We have already marked every inode that was part of a
2314 * transaction stale above, which means there is no point in
2315 * even trying to lock them.
2316 */
2317 for (i = 0; i < inodes_per_cluster; i++) {
2318 retry:
2319 rcu_read_lock();
2320 ip = radix_tree_lookup(&pag->pag_ici_root,
2321 XFS_INO_TO_AGINO(mp, (inum + i)));
2322
2323 /* Inode not in memory, nothing to do */
2324 if (!ip) {
2325 rcu_read_unlock();
2326 continue;
2327 }
2328
2329 /*
2330 * because this is an RCU protected lookup, we could
2331 * find a recently freed or even reallocated inode
2332 * during the lookup. We need to check under the
2333 * i_flags_lock for a valid inode here. Skip it if it
2334 * is not valid, the wrong inode or stale.
2335 */
2336 spin_lock(&ip->i_flags_lock);
2337 if (ip->i_ino != inum + i ||
2338 __xfs_iflags_test(ip, XFS_ISTALE)) {
2339 spin_unlock(&ip->i_flags_lock);
2340 rcu_read_unlock();
2341 continue;
2342 }
2343 spin_unlock(&ip->i_flags_lock);
2344
2345 /*
2346 * Don't try to lock/unlock the current inode, but we
2347 * _cannot_ skip the other inodes that we did not find
2348 * in the list attached to the buffer and are not
2349 * already marked stale. If we can't lock it, back off
2350 * and retry.
2351 */
2352 if (ip != free_ip &&
2353 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2354 rcu_read_unlock();
2355 delay(1);
2356 goto retry;
2357 }
2358 rcu_read_unlock();
2359
2360 xfs_iflock(ip);
2361 xfs_iflags_set(ip, XFS_ISTALE);
2362
2363 /*
2364 * we don't need to attach clean inodes or those only
2365 * with unlogged changes (which we throw away, anyway).
2366 */
2367 iip = ip->i_itemp;
2368 if (!iip || xfs_inode_clean(ip)) {
2369 ASSERT(ip != free_ip);
2370 xfs_ifunlock(ip);
2371 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2372 continue;
2373 }
2374
2375 iip->ili_last_fields = iip->ili_fields;
2376 iip->ili_fields = 0;
2377 iip->ili_fsync_fields = 0;
2378 iip->ili_logged = 1;
2379 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2380 &iip->ili_item.li_lsn);
2381
2382 xfs_buf_attach_iodone(bp, xfs_istale_done,
2383 &iip->ili_item);
2384
2385 if (ip != free_ip)
2386 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2387 }
2388
2389 xfs_trans_stale_inode_buf(tp, bp);
2390 xfs_trans_binval(tp, bp);
2391 }
2392
2393 xfs_perag_put(pag);
2394 return 0;
2395 }
2396
2397 /*
2398 * This is called to return an inode to the inode free list.
2399 * The inode should already be truncated to 0 length and have
2400 * no pages associated with it. This routine also assumes that
2401 * the inode is already a part of the transaction.
2402 *
2403 * The on-disk copy of the inode will have been added to the list
2404 * of unlinked inodes in the AGI. We need to remove the inode from
2405 * that list atomically with respect to freeing it here.
2406 */
2407 int
2408 xfs_ifree(
2409 xfs_trans_t *tp,
2410 xfs_inode_t *ip,
2411 struct xfs_defer_ops *dfops)
2412 {
2413 int error;
2414 struct xfs_icluster xic = { 0 };
2415
2416 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2417 ASSERT(VFS_I(ip)->i_nlink == 0);
2418 ASSERT(ip->i_d.di_nextents == 0);
2419 ASSERT(ip->i_d.di_anextents == 0);
2420 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2421 ASSERT(ip->i_d.di_nblocks == 0);
2422
2423 /*
2424 * Pull the on-disk inode from the AGI unlinked list.
2425 */
2426 error = xfs_iunlink_remove(tp, ip);
2427 if (error)
2428 return error;
2429
2430 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2431 if (error)
2432 return error;
2433
2434 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2435 ip->i_d.di_flags = 0;
2436 ip->i_d.di_dmevmask = 0;
2437 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2438 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2439 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2440 /*
2441 * Bump the generation count so no one will be confused
2442 * by reincarnations of this inode.
2443 */
2444 VFS_I(ip)->i_generation++;
2445 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2446
2447 if (xic.deleted)
2448 error = xfs_ifree_cluster(ip, tp, &xic);
2449
2450 return error;
2451 }
2452
2453 /*
2454 * This is called to unpin an inode. The caller must have the inode locked
2455 * in at least shared mode so that the buffer cannot be subsequently pinned
2456 * once someone is waiting for it to be unpinned.
2457 */
2458 static void
2459 xfs_iunpin(
2460 struct xfs_inode *ip)
2461 {
2462 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2463
2464 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2465
2466 /* Give the log a push to start the unpinning I/O */
2467 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2468
2469 }
2470
2471 static void
2472 __xfs_iunpin_wait(
2473 struct xfs_inode *ip)
2474 {
2475 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2476 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2477
2478 xfs_iunpin(ip);
2479
2480 do {
2481 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2482 if (xfs_ipincount(ip))
2483 io_schedule();
2484 } while (xfs_ipincount(ip));
2485 finish_wait(wq, &wait.wait);
2486 }
2487
2488 void
2489 xfs_iunpin_wait(
2490 struct xfs_inode *ip)
2491 {
2492 if (xfs_ipincount(ip))
2493 __xfs_iunpin_wait(ip);
2494 }
2495
2496 /*
2497 * Removing an inode from the namespace involves removing the directory entry
2498 * and dropping the link count on the inode. Removing the directory entry can
2499 * result in locking an AGF (directory blocks were freed) and removing a link
2500 * count can result in placing the inode on an unlinked list which results in
2501 * locking an AGI.
2502 *
2503 * The big problem here is that we have an ordering constraint on AGF and AGI
2504 * locking - inode allocation locks the AGI, then can allocate a new extent for
2505 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2506 * removes the inode from the unlinked list, requiring that we lock the AGI
2507 * first, and then freeing the inode can result in an inode chunk being freed
2508 * and hence freeing disk space requiring that we lock an AGF.
2509 *
2510 * Hence the ordering that is imposed by other parts of the code is AGI before
2511 * AGF. This means we cannot remove the directory entry before we drop the inode
2512 * reference count and put it on the unlinked list as this results in a lock
2513 * order of AGF then AGI, and this can deadlock against inode allocation and
2514 * freeing. Therefore we must drop the link counts before we remove the
2515 * directory entry.
2516 *
2517 * This is still safe from a transactional point of view - it is not until we
2518 * get to xfs_defer_finish() that we have the possibility of multiple
2519 * transactions in this operation. Hence as long as we remove the directory
2520 * entry and drop the link count in the first transaction of the remove
2521 * operation, there are no transactional constraints on the ordering here.
2522 */
2523 int
2524 xfs_remove(
2525 xfs_inode_t *dp,
2526 struct xfs_name *name,
2527 xfs_inode_t *ip)
2528 {
2529 xfs_mount_t *mp = dp->i_mount;
2530 xfs_trans_t *tp = NULL;
2531 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2532 int error = 0;
2533 struct xfs_defer_ops dfops;
2534 xfs_fsblock_t first_block;
2535 uint resblks;
2536
2537 trace_xfs_remove(dp, name);
2538
2539 if (XFS_FORCED_SHUTDOWN(mp))
2540 return -EIO;
2541
2542 error = xfs_qm_dqattach(dp, 0);
2543 if (error)
2544 goto std_return;
2545
2546 error = xfs_qm_dqattach(ip, 0);
2547 if (error)
2548 goto std_return;
2549
2550 /*
2551 * We try to get the real space reservation first,
2552 * allowing for directory btree deletion(s) implying
2553 * possible bmap insert(s). If we can't get the space
2554 * reservation then we use 0 instead, and avoid the bmap
2555 * btree insert(s) in the directory code by, if the bmap
2556 * insert tries to happen, instead trimming the LAST
2557 * block from the directory.
2558 */
2559 resblks = XFS_REMOVE_SPACE_RES(mp);
2560 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2561 if (error == -ENOSPC) {
2562 resblks = 0;
2563 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2564 &tp);
2565 }
2566 if (error) {
2567 ASSERT(error != -ENOSPC);
2568 goto std_return;
2569 }
2570
2571 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2572
2573 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2574 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2575
2576 /*
2577 * If we're removing a directory perform some additional validation.
2578 */
2579 if (is_dir) {
2580 ASSERT(VFS_I(ip)->i_nlink >= 2);
2581 if (VFS_I(ip)->i_nlink != 2) {
2582 error = -ENOTEMPTY;
2583 goto out_trans_cancel;
2584 }
2585 if (!xfs_dir_isempty(ip)) {
2586 error = -ENOTEMPTY;
2587 goto out_trans_cancel;
2588 }
2589
2590 /* Drop the link from ip's "..". */
2591 error = xfs_droplink(tp, dp);
2592 if (error)
2593 goto out_trans_cancel;
2594
2595 /* Drop the "." link from ip to self. */
2596 error = xfs_droplink(tp, ip);
2597 if (error)
2598 goto out_trans_cancel;
2599 } else {
2600 /*
2601 * When removing a non-directory we need to log the parent
2602 * inode here. For a directory this is done implicitly
2603 * by the xfs_droplink call for the ".." entry.
2604 */
2605 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2606 }
2607 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2608
2609 /* Drop the link from dp to ip. */
2610 error = xfs_droplink(tp, ip);
2611 if (error)
2612 goto out_trans_cancel;
2613
2614 xfs_defer_init(&dfops, &first_block);
2615 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2616 &first_block, &dfops, resblks);
2617 if (error) {
2618 ASSERT(error != -ENOENT);
2619 goto out_bmap_cancel;
2620 }
2621
2622 /*
2623 * If this is a synchronous mount, make sure that the
2624 * remove transaction goes to disk before returning to
2625 * the user.
2626 */
2627 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2628 xfs_trans_set_sync(tp);
2629
2630 error = xfs_defer_finish(&tp, &dfops, NULL);
2631 if (error)
2632 goto out_bmap_cancel;
2633
2634 error = xfs_trans_commit(tp);
2635 if (error)
2636 goto std_return;
2637
2638 if (is_dir && xfs_inode_is_filestream(ip))
2639 xfs_filestream_deassociate(ip);
2640
2641 return 0;
2642
2643 out_bmap_cancel:
2644 xfs_defer_cancel(&dfops);
2645 out_trans_cancel:
2646 xfs_trans_cancel(tp);
2647 std_return:
2648 return error;
2649 }
2650
2651 /*
2652 * Enter all inodes for a rename transaction into a sorted array.
2653 */
2654 #define __XFS_SORT_INODES 5
2655 STATIC void
2656 xfs_sort_for_rename(
2657 struct xfs_inode *dp1, /* in: old (source) directory inode */
2658 struct xfs_inode *dp2, /* in: new (target) directory inode */
2659 struct xfs_inode *ip1, /* in: inode of old entry */
2660 struct xfs_inode *ip2, /* in: inode of new entry */
2661 struct xfs_inode *wip, /* in: whiteout inode */
2662 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2663 int *num_inodes) /* in/out: inodes in array */
2664 {
2665 int i, j;
2666
2667 ASSERT(*num_inodes == __XFS_SORT_INODES);
2668 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2669
2670 /*
2671 * i_tab contains a list of pointers to inodes. We initialize
2672 * the table here & we'll sort it. We will then use it to
2673 * order the acquisition of the inode locks.
2674 *
2675 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2676 */
2677 i = 0;
2678 i_tab[i++] = dp1;
2679 i_tab[i++] = dp2;
2680 i_tab[i++] = ip1;
2681 if (ip2)
2682 i_tab[i++] = ip2;
2683 if (wip)
2684 i_tab[i++] = wip;
2685 *num_inodes = i;
2686
2687 /*
2688 * Sort the elements via bubble sort. (Remember, there are at
2689 * most 5 elements to sort, so this is adequate.)
2690 */
2691 for (i = 0; i < *num_inodes; i++) {
2692 for (j = 1; j < *num_inodes; j++) {
2693 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2694 struct xfs_inode *temp = i_tab[j];
2695 i_tab[j] = i_tab[j-1];
2696 i_tab[j-1] = temp;
2697 }
2698 }
2699 }
2700 }
2701
2702 static int
2703 xfs_finish_rename(
2704 struct xfs_trans *tp,
2705 struct xfs_defer_ops *dfops)
2706 {
2707 int error;
2708
2709 /*
2710 * If this is a synchronous mount, make sure that the rename transaction
2711 * goes to disk before returning to the user.
2712 */
2713 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2714 xfs_trans_set_sync(tp);
2715
2716 error = xfs_defer_finish(&tp, dfops, NULL);
2717 if (error) {
2718 xfs_defer_cancel(dfops);
2719 xfs_trans_cancel(tp);
2720 return error;
2721 }
2722
2723 return xfs_trans_commit(tp);
2724 }
2725
2726 /*
2727 * xfs_cross_rename()
2728 *
2729 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2730 */
2731 STATIC int
2732 xfs_cross_rename(
2733 struct xfs_trans *tp,
2734 struct xfs_inode *dp1,
2735 struct xfs_name *name1,
2736 struct xfs_inode *ip1,
2737 struct xfs_inode *dp2,
2738 struct xfs_name *name2,
2739 struct xfs_inode *ip2,
2740 struct xfs_defer_ops *dfops,
2741 xfs_fsblock_t *first_block,
2742 int spaceres)
2743 {
2744 int error = 0;
2745 int ip1_flags = 0;
2746 int ip2_flags = 0;
2747 int dp2_flags = 0;
2748
2749 /* Swap inode number for dirent in first parent */
2750 error = xfs_dir_replace(tp, dp1, name1,
2751 ip2->i_ino,
2752 first_block, dfops, spaceres);
2753 if (error)
2754 goto out_trans_abort;
2755
2756 /* Swap inode number for dirent in second parent */
2757 error = xfs_dir_replace(tp, dp2, name2,
2758 ip1->i_ino,
2759 first_block, dfops, spaceres);
2760 if (error)
2761 goto out_trans_abort;
2762
2763 /*
2764 * If we're renaming one or more directories across different parents,
2765 * update the respective ".." entries (and link counts) to match the new
2766 * parents.
2767 */
2768 if (dp1 != dp2) {
2769 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2770
2771 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2772 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2773 dp1->i_ino, first_block,
2774 dfops, spaceres);
2775 if (error)
2776 goto out_trans_abort;
2777
2778 /* transfer ip2 ".." reference to dp1 */
2779 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2780 error = xfs_droplink(tp, dp2);
2781 if (error)
2782 goto out_trans_abort;
2783 error = xfs_bumplink(tp, dp1);
2784 if (error)
2785 goto out_trans_abort;
2786 }
2787
2788 /*
2789 * Although ip1 isn't changed here, userspace needs
2790 * to be warned about the change, so that applications
2791 * relying on it (like backup ones), will properly
2792 * notify the change
2793 */
2794 ip1_flags |= XFS_ICHGTIME_CHG;
2795 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2796 }
2797
2798 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2799 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2800 dp2->i_ino, first_block,
2801 dfops, spaceres);
2802 if (error)
2803 goto out_trans_abort;
2804
2805 /* transfer ip1 ".." reference to dp2 */
2806 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2807 error = xfs_droplink(tp, dp1);
2808 if (error)
2809 goto out_trans_abort;
2810 error = xfs_bumplink(tp, dp2);
2811 if (error)
2812 goto out_trans_abort;
2813 }
2814
2815 /*
2816 * Although ip2 isn't changed here, userspace needs
2817 * to be warned about the change, so that applications
2818 * relying on it (like backup ones), will properly
2819 * notify the change
2820 */
2821 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2822 ip2_flags |= XFS_ICHGTIME_CHG;
2823 }
2824 }
2825
2826 if (ip1_flags) {
2827 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2828 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2829 }
2830 if (ip2_flags) {
2831 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2832 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2833 }
2834 if (dp2_flags) {
2835 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2836 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2837 }
2838 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2839 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2840 return xfs_finish_rename(tp, dfops);
2841
2842 out_trans_abort:
2843 xfs_defer_cancel(dfops);
2844 xfs_trans_cancel(tp);
2845 return error;
2846 }
2847
2848 /*
2849 * xfs_rename_alloc_whiteout()
2850 *
2851 * Return a referenced, unlinked, unlocked inode that that can be used as a
2852 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2853 * crash between allocating the inode and linking it into the rename transaction
2854 * recovery will free the inode and we won't leak it.
2855 */
2856 static int
2857 xfs_rename_alloc_whiteout(
2858 struct xfs_inode *dp,
2859 struct xfs_inode **wip)
2860 {
2861 struct xfs_inode *tmpfile;
2862 int error;
2863
2864 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2865 if (error)
2866 return error;
2867
2868 /*
2869 * Prepare the tmpfile inode as if it were created through the VFS.
2870 * Otherwise, the link increment paths will complain about nlink 0->1.
2871 * Drop the link count as done by d_tmpfile(), complete the inode setup
2872 * and flag it as linkable.
2873 */
2874 drop_nlink(VFS_I(tmpfile));
2875 xfs_setup_iops(tmpfile);
2876 xfs_finish_inode_setup(tmpfile);
2877 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2878
2879 *wip = tmpfile;
2880 return 0;
2881 }
2882
2883 /*
2884 * xfs_rename
2885 */
2886 int
2887 xfs_rename(
2888 struct xfs_inode *src_dp,
2889 struct xfs_name *src_name,
2890 struct xfs_inode *src_ip,
2891 struct xfs_inode *target_dp,
2892 struct xfs_name *target_name,
2893 struct xfs_inode *target_ip,
2894 unsigned int flags)
2895 {
2896 struct xfs_mount *mp = src_dp->i_mount;
2897 struct xfs_trans *tp;
2898 struct xfs_defer_ops dfops;
2899 xfs_fsblock_t first_block;
2900 struct xfs_inode *wip = NULL; /* whiteout inode */
2901 struct xfs_inode *inodes[__XFS_SORT_INODES];
2902 int num_inodes = __XFS_SORT_INODES;
2903 bool new_parent = (src_dp != target_dp);
2904 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2905 int spaceres;
2906 int error;
2907
2908 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2909
2910 if ((flags & RENAME_EXCHANGE) && !target_ip)
2911 return -EINVAL;
2912
2913 /*
2914 * If we are doing a whiteout operation, allocate the whiteout inode
2915 * we will be placing at the target and ensure the type is set
2916 * appropriately.
2917 */
2918 if (flags & RENAME_WHITEOUT) {
2919 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2920 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2921 if (error)
2922 return error;
2923
2924 /* setup target dirent info as whiteout */
2925 src_name->type = XFS_DIR3_FT_CHRDEV;
2926 }
2927
2928 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2929 inodes, &num_inodes);
2930
2931 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2932 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2933 if (error == -ENOSPC) {
2934 spaceres = 0;
2935 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2936 &tp);
2937 }
2938 if (error)
2939 goto out_release_wip;
2940
2941 /*
2942 * Attach the dquots to the inodes
2943 */
2944 error = xfs_qm_vop_rename_dqattach(inodes);
2945 if (error)
2946 goto out_trans_cancel;
2947
2948 /*
2949 * Lock all the participating inodes. Depending upon whether
2950 * the target_name exists in the target directory, and
2951 * whether the target directory is the same as the source
2952 * directory, we can lock from 2 to 4 inodes.
2953 */
2954 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2955
2956 /*
2957 * Join all the inodes to the transaction. From this point on,
2958 * we can rely on either trans_commit or trans_cancel to unlock
2959 * them.
2960 */
2961 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2962 if (new_parent)
2963 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2964 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2965 if (target_ip)
2966 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2967 if (wip)
2968 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2969
2970 /*
2971 * If we are using project inheritance, we only allow renames
2972 * into our tree when the project IDs are the same; else the
2973 * tree quota mechanism would be circumvented.
2974 */
2975 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2976 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2977 error = -EXDEV;
2978 goto out_trans_cancel;
2979 }
2980
2981 xfs_defer_init(&dfops, &first_block);
2982
2983 /* RENAME_EXCHANGE is unique from here on. */
2984 if (flags & RENAME_EXCHANGE)
2985 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2986 target_dp, target_name, target_ip,
2987 &dfops, &first_block, spaceres);
2988
2989 /*
2990 * Set up the target.
2991 */
2992 if (target_ip == NULL) {
2993 /*
2994 * If there's no space reservation, check the entry will
2995 * fit before actually inserting it.
2996 */
2997 if (!spaceres) {
2998 error = xfs_dir_canenter(tp, target_dp, target_name);
2999 if (error)
3000 goto out_trans_cancel;
3001 }
3002 /*
3003 * If target does not exist and the rename crosses
3004 * directories, adjust the target directory link count
3005 * to account for the ".." reference from the new entry.
3006 */
3007 error = xfs_dir_createname(tp, target_dp, target_name,
3008 src_ip->i_ino, &first_block,
3009 &dfops, spaceres);
3010 if (error)
3011 goto out_bmap_cancel;
3012
3013 xfs_trans_ichgtime(tp, target_dp,
3014 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3015
3016 if (new_parent && src_is_directory) {
3017 error = xfs_bumplink(tp, target_dp);
3018 if (error)
3019 goto out_bmap_cancel;
3020 }
3021 } else { /* target_ip != NULL */
3022 /*
3023 * If target exists and it's a directory, check that both
3024 * target and source are directories and that target can be
3025 * destroyed, or that neither is a directory.
3026 */
3027 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3028 /*
3029 * Make sure target dir is empty.
3030 */
3031 if (!(xfs_dir_isempty(target_ip)) ||
3032 (VFS_I(target_ip)->i_nlink > 2)) {
3033 error = -EEXIST;
3034 goto out_trans_cancel;
3035 }
3036 }
3037
3038 /*
3039 * Link the source inode under the target name.
3040 * If the source inode is a directory and we are moving
3041 * it across directories, its ".." entry will be
3042 * inconsistent until we replace that down below.
3043 *
3044 * In case there is already an entry with the same
3045 * name at the destination directory, remove it first.
3046 */
3047 error = xfs_dir_replace(tp, target_dp, target_name,
3048 src_ip->i_ino,
3049 &first_block, &dfops, spaceres);
3050 if (error)
3051 goto out_bmap_cancel;
3052
3053 xfs_trans_ichgtime(tp, target_dp,
3054 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3055
3056 /*
3057 * Decrement the link count on the target since the target
3058 * dir no longer points to it.
3059 */
3060 error = xfs_droplink(tp, target_ip);
3061 if (error)
3062 goto out_bmap_cancel;
3063
3064 if (src_is_directory) {
3065 /*
3066 * Drop the link from the old "." entry.
3067 */
3068 error = xfs_droplink(tp, target_ip);
3069 if (error)
3070 goto out_bmap_cancel;
3071 }
3072 } /* target_ip != NULL */
3073
3074 /*
3075 * Remove the source.
3076 */
3077 if (new_parent && src_is_directory) {
3078 /*
3079 * Rewrite the ".." entry to point to the new
3080 * directory.
3081 */
3082 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3083 target_dp->i_ino,
3084 &first_block, &dfops, spaceres);
3085 ASSERT(error != -EEXIST);
3086 if (error)
3087 goto out_bmap_cancel;
3088 }
3089
3090 /*
3091 * We always want to hit the ctime on the source inode.
3092 *
3093 * This isn't strictly required by the standards since the source
3094 * inode isn't really being changed, but old unix file systems did
3095 * it and some incremental backup programs won't work without it.
3096 */
3097 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3098 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3099
3100 /*
3101 * Adjust the link count on src_dp. This is necessary when
3102 * renaming a directory, either within one parent when
3103 * the target existed, or across two parent directories.
3104 */
3105 if (src_is_directory && (new_parent || target_ip != NULL)) {
3106
3107 /*
3108 * Decrement link count on src_directory since the
3109 * entry that's moved no longer points to it.
3110 */
3111 error = xfs_droplink(tp, src_dp);
3112 if (error)
3113 goto out_bmap_cancel;
3114 }
3115
3116 /*
3117 * For whiteouts, we only need to update the source dirent with the
3118 * inode number of the whiteout inode rather than removing it
3119 * altogether.
3120 */
3121 if (wip) {
3122 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3123 &first_block, &dfops, spaceres);
3124 } else
3125 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3126 &first_block, &dfops, spaceres);
3127 if (error)
3128 goto out_bmap_cancel;
3129
3130 /*
3131 * For whiteouts, we need to bump the link count on the whiteout inode.
3132 * This means that failures all the way up to this point leave the inode
3133 * on the unlinked list and so cleanup is a simple matter of dropping
3134 * the remaining reference to it. If we fail here after bumping the link
3135 * count, we're shutting down the filesystem so we'll never see the
3136 * intermediate state on disk.
3137 */
3138 if (wip) {
3139 ASSERT(VFS_I(wip)->i_nlink == 0);
3140 error = xfs_bumplink(tp, wip);
3141 if (error)
3142 goto out_bmap_cancel;
3143 error = xfs_iunlink_remove(tp, wip);
3144 if (error)
3145 goto out_bmap_cancel;
3146 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3147
3148 /*
3149 * Now we have a real link, clear the "I'm a tmpfile" state
3150 * flag from the inode so it doesn't accidentally get misused in
3151 * future.
3152 */
3153 VFS_I(wip)->i_state &= ~I_LINKABLE;
3154 }
3155
3156 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3157 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3158 if (new_parent)
3159 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3160
3161 error = xfs_finish_rename(tp, &dfops);
3162 if (wip)
3163 IRELE(wip);
3164 return error;
3165
3166 out_bmap_cancel:
3167 xfs_defer_cancel(&dfops);
3168 out_trans_cancel:
3169 xfs_trans_cancel(tp);
3170 out_release_wip:
3171 if (wip)
3172 IRELE(wip);
3173 return error;
3174 }
3175
3176 STATIC int
3177 xfs_iflush_cluster(
3178 struct xfs_inode *ip,
3179 struct xfs_buf *bp)
3180 {
3181 struct xfs_mount *mp = ip->i_mount;
3182 struct xfs_perag *pag;
3183 unsigned long first_index, mask;
3184 unsigned long inodes_per_cluster;
3185 int cilist_size;
3186 struct xfs_inode **cilist;
3187 struct xfs_inode *cip;
3188 int nr_found;
3189 int clcount = 0;
3190 int bufwasdelwri;
3191 int i;
3192
3193 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3194
3195 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3196 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3197 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3198 if (!cilist)
3199 goto out_put;
3200
3201 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3202 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3203 rcu_read_lock();
3204 /* really need a gang lookup range call here */
3205 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3206 first_index, inodes_per_cluster);
3207 if (nr_found == 0)
3208 goto out_free;
3209
3210 for (i = 0; i < nr_found; i++) {
3211 cip = cilist[i];
3212 if (cip == ip)
3213 continue;
3214
3215 /*
3216 * because this is an RCU protected lookup, we could find a
3217 * recently freed or even reallocated inode during the lookup.
3218 * We need to check under the i_flags_lock for a valid inode
3219 * here. Skip it if it is not valid or the wrong inode.
3220 */
3221 spin_lock(&cip->i_flags_lock);
3222 if (!cip->i_ino ||
3223 __xfs_iflags_test(cip, XFS_ISTALE)) {
3224 spin_unlock(&cip->i_flags_lock);
3225 continue;
3226 }
3227
3228 /*
3229 * Once we fall off the end of the cluster, no point checking
3230 * any more inodes in the list because they will also all be
3231 * outside the cluster.
3232 */
3233 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3234 spin_unlock(&cip->i_flags_lock);
3235 break;
3236 }
3237 spin_unlock(&cip->i_flags_lock);
3238
3239 /*
3240 * Do an un-protected check to see if the inode is dirty and
3241 * is a candidate for flushing. These checks will be repeated
3242 * later after the appropriate locks are acquired.
3243 */
3244 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3245 continue;
3246
3247 /*
3248 * Try to get locks. If any are unavailable or it is pinned,
3249 * then this inode cannot be flushed and is skipped.
3250 */
3251
3252 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3253 continue;
3254 if (!xfs_iflock_nowait(cip)) {
3255 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3256 continue;
3257 }
3258 if (xfs_ipincount(cip)) {
3259 xfs_ifunlock(cip);
3260 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3261 continue;
3262 }
3263
3264
3265 /*
3266 * Check the inode number again, just to be certain we are not
3267 * racing with freeing in xfs_reclaim_inode(). See the comments
3268 * in that function for more information as to why the initial
3269 * check is not sufficient.
3270 */
3271 if (!cip->i_ino) {
3272 xfs_ifunlock(cip);
3273 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3274 continue;
3275 }
3276
3277 /*
3278 * arriving here means that this inode can be flushed. First
3279 * re-check that it's dirty before flushing.
3280 */
3281 if (!xfs_inode_clean(cip)) {
3282 int error;
3283 error = xfs_iflush_int(cip, bp);
3284 if (error) {
3285 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3286 goto cluster_corrupt_out;
3287 }
3288 clcount++;
3289 } else {
3290 xfs_ifunlock(cip);
3291 }
3292 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3293 }
3294
3295 if (clcount) {
3296 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3297 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3298 }
3299
3300 out_free:
3301 rcu_read_unlock();
3302 kmem_free(cilist);
3303 out_put:
3304 xfs_perag_put(pag);
3305 return 0;
3306
3307
3308 cluster_corrupt_out:
3309 /*
3310 * Corruption detected in the clustering loop. Invalidate the
3311 * inode buffer and shut down the filesystem.
3312 */
3313 rcu_read_unlock();
3314 /*
3315 * Clean up the buffer. If it was delwri, just release it --
3316 * brelse can handle it with no problems. If not, shut down the
3317 * filesystem before releasing the buffer.
3318 */
3319 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3320 if (bufwasdelwri)
3321 xfs_buf_relse(bp);
3322
3323 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3324
3325 if (!bufwasdelwri) {
3326 /*
3327 * Just like incore_relse: if we have b_iodone functions,
3328 * mark the buffer as an error and call them. Otherwise
3329 * mark it as stale and brelse.
3330 */
3331 if (bp->b_iodone) {
3332 bp->b_flags &= ~XBF_DONE;
3333 xfs_buf_stale(bp);
3334 xfs_buf_ioerror(bp, -EIO);
3335 xfs_buf_ioend(bp);
3336 } else {
3337 xfs_buf_stale(bp);
3338 xfs_buf_relse(bp);
3339 }
3340 }
3341
3342 /*
3343 * Unlocks the flush lock
3344 */
3345 xfs_iflush_abort(cip, false);
3346 kmem_free(cilist);
3347 xfs_perag_put(pag);
3348 return -EFSCORRUPTED;
3349 }
3350
3351 /*
3352 * Flush dirty inode metadata into the backing buffer.
3353 *
3354 * The caller must have the inode lock and the inode flush lock held. The
3355 * inode lock will still be held upon return to the caller, and the inode
3356 * flush lock will be released after the inode has reached the disk.
3357 *
3358 * The caller must write out the buffer returned in *bpp and release it.
3359 */
3360 int
3361 xfs_iflush(
3362 struct xfs_inode *ip,
3363 struct xfs_buf **bpp)
3364 {
3365 struct xfs_mount *mp = ip->i_mount;
3366 struct xfs_buf *bp = NULL;
3367 struct xfs_dinode *dip;
3368 int error;
3369
3370 XFS_STATS_INC(mp, xs_iflush_count);
3371
3372 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3373 ASSERT(xfs_isiflocked(ip));
3374 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3375 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3376
3377 *bpp = NULL;
3378
3379 xfs_iunpin_wait(ip);
3380
3381 /*
3382 * For stale inodes we cannot rely on the backing buffer remaining
3383 * stale in cache for the remaining life of the stale inode and so
3384 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3385 * inodes below. We have to check this after ensuring the inode is
3386 * unpinned so that it is safe to reclaim the stale inode after the
3387 * flush call.
3388 */
3389 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3390 xfs_ifunlock(ip);
3391 return 0;
3392 }
3393
3394 /*
3395 * This may have been unpinned because the filesystem is shutting
3396 * down forcibly. If that's the case we must not write this inode
3397 * to disk, because the log record didn't make it to disk.
3398 *
3399 * We also have to remove the log item from the AIL in this case,
3400 * as we wait for an empty AIL as part of the unmount process.
3401 */
3402 if (XFS_FORCED_SHUTDOWN(mp)) {
3403 error = -EIO;
3404 goto abort_out;
3405 }
3406
3407 /*
3408 * Get the buffer containing the on-disk inode. We are doing a try-lock
3409 * operation here, so we may get an EAGAIN error. In that case, we
3410 * simply want to return with the inode still dirty.
3411 *
3412 * If we get any other error, we effectively have a corruption situation
3413 * and we cannot flush the inode, so we treat it the same as failing
3414 * xfs_iflush_int().
3415 */
3416 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3417 0);
3418 if (error == -EAGAIN) {
3419 xfs_ifunlock(ip);
3420 return error;
3421 }
3422 if (error)
3423 goto corrupt_out;
3424
3425 /*
3426 * First flush out the inode that xfs_iflush was called with.
3427 */
3428 error = xfs_iflush_int(ip, bp);
3429 if (error)
3430 goto corrupt_out;
3431
3432 /*
3433 * If the buffer is pinned then push on the log now so we won't
3434 * get stuck waiting in the write for too long.
3435 */
3436 if (xfs_buf_ispinned(bp))
3437 xfs_log_force(mp, 0);
3438
3439 /*
3440 * inode clustering:
3441 * see if other inodes can be gathered into this write
3442 */
3443 error = xfs_iflush_cluster(ip, bp);
3444 if (error)
3445 goto cluster_corrupt_out;
3446
3447 *bpp = bp;
3448 return 0;
3449
3450 corrupt_out:
3451 if (bp)
3452 xfs_buf_relse(bp);
3453 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3454 cluster_corrupt_out:
3455 error = -EFSCORRUPTED;
3456 abort_out:
3457 /*
3458 * Unlocks the flush lock
3459 */
3460 xfs_iflush_abort(ip, false);
3461 return error;
3462 }
3463
3464 STATIC int
3465 xfs_iflush_int(
3466 struct xfs_inode *ip,
3467 struct xfs_buf *bp)
3468 {
3469 struct xfs_inode_log_item *iip = ip->i_itemp;
3470 struct xfs_dinode *dip;
3471 struct xfs_mount *mp = ip->i_mount;
3472
3473 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3474 ASSERT(xfs_isiflocked(ip));
3475 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3476 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3477 ASSERT(iip != NULL && iip->ili_fields != 0);
3478 ASSERT(ip->i_d.di_version > 1);
3479
3480 /* set *dip = inode's place in the buffer */
3481 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3482
3483 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3484 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3485 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3486 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3487 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3488 goto corrupt_out;
3489 }
3490 if (S_ISREG(VFS_I(ip)->i_mode)) {
3491 if (XFS_TEST_ERROR(
3492 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3493 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3494 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3495 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3496 "%s: Bad regular inode %Lu, ptr 0x%p",
3497 __func__, ip->i_ino, ip);
3498 goto corrupt_out;
3499 }
3500 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3501 if (XFS_TEST_ERROR(
3502 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3503 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3504 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3505 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3506 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3507 "%s: Bad directory inode %Lu, ptr 0x%p",
3508 __func__, ip->i_ino, ip);
3509 goto corrupt_out;
3510 }
3511 }
3512 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3513 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3514 XFS_RANDOM_IFLUSH_5)) {
3515 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3516 "%s: detected corrupt incore inode %Lu, "
3517 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3518 __func__, ip->i_ino,
3519 ip->i_d.di_nextents + ip->i_d.di_anextents,
3520 ip->i_d.di_nblocks, ip);
3521 goto corrupt_out;
3522 }
3523 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3524 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3525 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3526 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3527 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3528 goto corrupt_out;
3529 }
3530
3531 /*
3532 * Inode item log recovery for v2 inodes are dependent on the
3533 * di_flushiter count for correct sequencing. We bump the flush
3534 * iteration count so we can detect flushes which postdate a log record
3535 * during recovery. This is redundant as we now log every change and
3536 * hence this can't happen but we need to still do it to ensure
3537 * backwards compatibility with old kernels that predate logging all
3538 * inode changes.
3539 */
3540 if (ip->i_d.di_version < 3)
3541 ip->i_d.di_flushiter++;
3542
3543 /*
3544 * Copy the dirty parts of the inode into the on-disk inode. We always
3545 * copy out the core of the inode, because if the inode is dirty at all
3546 * the core must be.
3547 */
3548 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3549
3550 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3551 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3552 ip->i_d.di_flushiter = 0;
3553
3554 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3555 if (XFS_IFORK_Q(ip))
3556 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3557 xfs_inobp_check(mp, bp);
3558
3559 /*
3560 * We've recorded everything logged in the inode, so we'd like to clear
3561 * the ili_fields bits so we don't log and flush things unnecessarily.
3562 * However, we can't stop logging all this information until the data
3563 * we've copied into the disk buffer is written to disk. If we did we
3564 * might overwrite the copy of the inode in the log with all the data
3565 * after re-logging only part of it, and in the face of a crash we
3566 * wouldn't have all the data we need to recover.
3567 *
3568 * What we do is move the bits to the ili_last_fields field. When
3569 * logging the inode, these bits are moved back to the ili_fields field.
3570 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3571 * know that the information those bits represent is permanently on
3572 * disk. As long as the flush completes before the inode is logged
3573 * again, then both ili_fields and ili_last_fields will be cleared.
3574 *
3575 * We can play with the ili_fields bits here, because the inode lock
3576 * must be held exclusively in order to set bits there and the flush
3577 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3578 * done routine can tell whether or not to look in the AIL. Also, store
3579 * the current LSN of the inode so that we can tell whether the item has
3580 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3581 * need the AIL lock, because it is a 64 bit value that cannot be read
3582 * atomically.
3583 */
3584 iip->ili_last_fields = iip->ili_fields;
3585 iip->ili_fields = 0;
3586 iip->ili_fsync_fields = 0;
3587 iip->ili_logged = 1;
3588
3589 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3590 &iip->ili_item.li_lsn);
3591
3592 /*
3593 * Attach the function xfs_iflush_done to the inode's
3594 * buffer. This will remove the inode from the AIL
3595 * and unlock the inode's flush lock when the inode is
3596 * completely written to disk.
3597 */
3598 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3599
3600 /* generate the checksum. */
3601 xfs_dinode_calc_crc(mp, dip);
3602
3603 ASSERT(bp->b_fspriv != NULL);
3604 ASSERT(bp->b_iodone != NULL);
3605 return 0;
3606
3607 corrupt_out:
3608 return -EFSCORRUPTED;
3609 }