]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_inode.c
Merge branches 'acpi-soc', 'acpi-wdat' and 'acpi-cppc'
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_attr.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
50 #include "xfs_log.h"
51 #include "xfs_bmap_btree.h"
52 #include "xfs_reflink.h"
53 #include "xfs_dir2_priv.h"
54
55 kmem_zone_t *xfs_inode_zone;
56
57 /*
58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
59 * freed from a file in a single transaction.
60 */
61 #define XFS_ITRUNC_MAX_EXTENTS 2
62
63 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
64 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
65 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
66
67 /*
68 * helper function to extract extent size hint from inode
69 */
70 xfs_extlen_t
71 xfs_get_extsz_hint(
72 struct xfs_inode *ip)
73 {
74 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
75 return ip->i_d.di_extsize;
76 if (XFS_IS_REALTIME_INODE(ip))
77 return ip->i_mount->m_sb.sb_rextsize;
78 return 0;
79 }
80
81 /*
82 * Helper function to extract CoW extent size hint from inode.
83 * Between the extent size hint and the CoW extent size hint, we
84 * return the greater of the two. If the value is zero (automatic),
85 * use the default size.
86 */
87 xfs_extlen_t
88 xfs_get_cowextsz_hint(
89 struct xfs_inode *ip)
90 {
91 xfs_extlen_t a, b;
92
93 a = 0;
94 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
95 a = ip->i_d.di_cowextsize;
96 b = xfs_get_extsz_hint(ip);
97
98 a = max(a, b);
99 if (a == 0)
100 return XFS_DEFAULT_COWEXTSZ_HINT;
101 return a;
102 }
103
104 /*
105 * These two are wrapper routines around the xfs_ilock() routine used to
106 * centralize some grungy code. They are used in places that wish to lock the
107 * inode solely for reading the extents. The reason these places can't just
108 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
109 * bringing in of the extents from disk for a file in b-tree format. If the
110 * inode is in b-tree format, then we need to lock the inode exclusively until
111 * the extents are read in. Locking it exclusively all the time would limit
112 * our parallelism unnecessarily, though. What we do instead is check to see
113 * if the extents have been read in yet, and only lock the inode exclusively
114 * if they have not.
115 *
116 * The functions return a value which should be given to the corresponding
117 * xfs_iunlock() call.
118 */
119 uint
120 xfs_ilock_data_map_shared(
121 struct xfs_inode *ip)
122 {
123 uint lock_mode = XFS_ILOCK_SHARED;
124
125 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
126 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
127 lock_mode = XFS_ILOCK_EXCL;
128 xfs_ilock(ip, lock_mode);
129 return lock_mode;
130 }
131
132 uint
133 xfs_ilock_attr_map_shared(
134 struct xfs_inode *ip)
135 {
136 uint lock_mode = XFS_ILOCK_SHARED;
137
138 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
139 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
140 lock_mode = XFS_ILOCK_EXCL;
141 xfs_ilock(ip, lock_mode);
142 return lock_mode;
143 }
144
145 /*
146 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
147 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
148 * various combinations of the locks to be obtained.
149 *
150 * The 3 locks should always be ordered so that the IO lock is obtained first,
151 * the mmap lock second and the ilock last in order to prevent deadlock.
152 *
153 * Basic locking order:
154 *
155 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
156 *
157 * mmap_sem locking order:
158 *
159 * i_rwsem -> page lock -> mmap_sem
160 * mmap_sem -> i_mmap_lock -> page_lock
161 *
162 * The difference in mmap_sem locking order mean that we cannot hold the
163 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
164 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
165 * in get_user_pages() to map the user pages into the kernel address space for
166 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
167 * page faults already hold the mmap_sem.
168 *
169 * Hence to serialise fully against both syscall and mmap based IO, we need to
170 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
171 * taken in places where we need to invalidate the page cache in a race
172 * free manner (e.g. truncate, hole punch and other extent manipulation
173 * functions).
174 */
175 void
176 xfs_ilock(
177 xfs_inode_t *ip,
178 uint lock_flags)
179 {
180 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
181
182 /*
183 * You can't set both SHARED and EXCL for the same lock,
184 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
185 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
186 */
187 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
188 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
189 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
190 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
191 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
192 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
193 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
194
195 if (lock_flags & XFS_IOLOCK_EXCL) {
196 down_write_nested(&VFS_I(ip)->i_rwsem,
197 XFS_IOLOCK_DEP(lock_flags));
198 } else if (lock_flags & XFS_IOLOCK_SHARED) {
199 down_read_nested(&VFS_I(ip)->i_rwsem,
200 XFS_IOLOCK_DEP(lock_flags));
201 }
202
203 if (lock_flags & XFS_MMAPLOCK_EXCL)
204 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
205 else if (lock_flags & XFS_MMAPLOCK_SHARED)
206 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207
208 if (lock_flags & XFS_ILOCK_EXCL)
209 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
210 else if (lock_flags & XFS_ILOCK_SHARED)
211 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 }
213
214 /*
215 * This is just like xfs_ilock(), except that the caller
216 * is guaranteed not to sleep. It returns 1 if it gets
217 * the requested locks and 0 otherwise. If the IO lock is
218 * obtained but the inode lock cannot be, then the IO lock
219 * is dropped before returning.
220 *
221 * ip -- the inode being locked
222 * lock_flags -- this parameter indicates the inode's locks to be
223 * to be locked. See the comment for xfs_ilock() for a list
224 * of valid values.
225 */
226 int
227 xfs_ilock_nowait(
228 xfs_inode_t *ip,
229 uint lock_flags)
230 {
231 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
232
233 /*
234 * You can't set both SHARED and EXCL for the same lock,
235 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
236 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
237 */
238 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
239 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
240 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
241 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
242 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
243 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
244 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
245
246 if (lock_flags & XFS_IOLOCK_EXCL) {
247 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
248 goto out;
249 } else if (lock_flags & XFS_IOLOCK_SHARED) {
250 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
251 goto out;
252 }
253
254 if (lock_flags & XFS_MMAPLOCK_EXCL) {
255 if (!mrtryupdate(&ip->i_mmaplock))
256 goto out_undo_iolock;
257 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
258 if (!mrtryaccess(&ip->i_mmaplock))
259 goto out_undo_iolock;
260 }
261
262 if (lock_flags & XFS_ILOCK_EXCL) {
263 if (!mrtryupdate(&ip->i_lock))
264 goto out_undo_mmaplock;
265 } else if (lock_flags & XFS_ILOCK_SHARED) {
266 if (!mrtryaccess(&ip->i_lock))
267 goto out_undo_mmaplock;
268 }
269 return 1;
270
271 out_undo_mmaplock:
272 if (lock_flags & XFS_MMAPLOCK_EXCL)
273 mrunlock_excl(&ip->i_mmaplock);
274 else if (lock_flags & XFS_MMAPLOCK_SHARED)
275 mrunlock_shared(&ip->i_mmaplock);
276 out_undo_iolock:
277 if (lock_flags & XFS_IOLOCK_EXCL)
278 up_write(&VFS_I(ip)->i_rwsem);
279 else if (lock_flags & XFS_IOLOCK_SHARED)
280 up_read(&VFS_I(ip)->i_rwsem);
281 out:
282 return 0;
283 }
284
285 /*
286 * xfs_iunlock() is used to drop the inode locks acquired with
287 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
288 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
289 * that we know which locks to drop.
290 *
291 * ip -- the inode being unlocked
292 * lock_flags -- this parameter indicates the inode's locks to be
293 * to be unlocked. See the comment for xfs_ilock() for a list
294 * of valid values for this parameter.
295 *
296 */
297 void
298 xfs_iunlock(
299 xfs_inode_t *ip,
300 uint lock_flags)
301 {
302 /*
303 * You can't set both SHARED and EXCL for the same lock,
304 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
305 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
306 */
307 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
308 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
309 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
310 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
311 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
312 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
313 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
314 ASSERT(lock_flags != 0);
315
316 if (lock_flags & XFS_IOLOCK_EXCL)
317 up_write(&VFS_I(ip)->i_rwsem);
318 else if (lock_flags & XFS_IOLOCK_SHARED)
319 up_read(&VFS_I(ip)->i_rwsem);
320
321 if (lock_flags & XFS_MMAPLOCK_EXCL)
322 mrunlock_excl(&ip->i_mmaplock);
323 else if (lock_flags & XFS_MMAPLOCK_SHARED)
324 mrunlock_shared(&ip->i_mmaplock);
325
326 if (lock_flags & XFS_ILOCK_EXCL)
327 mrunlock_excl(&ip->i_lock);
328 else if (lock_flags & XFS_ILOCK_SHARED)
329 mrunlock_shared(&ip->i_lock);
330
331 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
332 }
333
334 /*
335 * give up write locks. the i/o lock cannot be held nested
336 * if it is being demoted.
337 */
338 void
339 xfs_ilock_demote(
340 xfs_inode_t *ip,
341 uint lock_flags)
342 {
343 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
344 ASSERT((lock_flags &
345 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
346
347 if (lock_flags & XFS_ILOCK_EXCL)
348 mrdemote(&ip->i_lock);
349 if (lock_flags & XFS_MMAPLOCK_EXCL)
350 mrdemote(&ip->i_mmaplock);
351 if (lock_flags & XFS_IOLOCK_EXCL)
352 downgrade_write(&VFS_I(ip)->i_rwsem);
353
354 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
355 }
356
357 #if defined(DEBUG) || defined(XFS_WARN)
358 int
359 xfs_isilocked(
360 xfs_inode_t *ip,
361 uint lock_flags)
362 {
363 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
364 if (!(lock_flags & XFS_ILOCK_SHARED))
365 return !!ip->i_lock.mr_writer;
366 return rwsem_is_locked(&ip->i_lock.mr_lock);
367 }
368
369 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
370 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
371 return !!ip->i_mmaplock.mr_writer;
372 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
373 }
374
375 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
376 if (!(lock_flags & XFS_IOLOCK_SHARED))
377 return !debug_locks ||
378 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
379 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
380 }
381
382 ASSERT(0);
383 return 0;
384 }
385 #endif
386
387 #ifdef DEBUG
388 int xfs_locked_n;
389 int xfs_small_retries;
390 int xfs_middle_retries;
391 int xfs_lots_retries;
392 int xfs_lock_delays;
393 #endif
394
395 /*
396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
399 * errors and warnings.
400 */
401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
402 static bool
403 xfs_lockdep_subclass_ok(
404 int subclass)
405 {
406 return subclass < MAX_LOCKDEP_SUBCLASSES;
407 }
408 #else
409 #define xfs_lockdep_subclass_ok(subclass) (true)
410 #endif
411
412 /*
413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
414 * value. This can be called for any type of inode lock combination, including
415 * parent locking. Care must be taken to ensure we don't overrun the subclass
416 * storage fields in the class mask we build.
417 */
418 static inline int
419 xfs_lock_inumorder(int lock_mode, int subclass)
420 {
421 int class = 0;
422
423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
424 XFS_ILOCK_RTSUM)));
425 ASSERT(xfs_lockdep_subclass_ok(subclass));
426
427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
429 class += subclass << XFS_IOLOCK_SHIFT;
430 }
431
432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 class += subclass << XFS_MMAPLOCK_SHIFT;
435 }
436
437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 class += subclass << XFS_ILOCK_SHIFT;
440 }
441
442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
443 }
444
445 /*
446 * The following routine will lock n inodes in exclusive mode. We assume the
447 * caller calls us with the inodes in i_ino order.
448 *
449 * We need to detect deadlock where an inode that we lock is in the AIL and we
450 * start waiting for another inode that is locked by a thread in a long running
451 * transaction (such as truncate). This can result in deadlock since the long
452 * running trans might need to wait for the inode we just locked in order to
453 * push the tail and free space in the log.
454 *
455 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457 * lock more than one at a time, lockdep will report false positives saying we
458 * have violated locking orders.
459 */
460 static void
461 xfs_lock_inodes(
462 xfs_inode_t **ips,
463 int inodes,
464 uint lock_mode)
465 {
466 int attempts = 0, i, j, try_lock;
467 xfs_log_item_t *lp;
468
469 /*
470 * Currently supports between 2 and 5 inodes with exclusive locking. We
471 * support an arbitrary depth of locking here, but absolute limits on
472 * inodes depend on the the type of locking and the limits placed by
473 * lockdep annotations in xfs_lock_inumorder. These are all checked by
474 * the asserts.
475 */
476 ASSERT(ips && inodes >= 2 && inodes <= 5);
477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 XFS_ILOCK_EXCL));
479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 XFS_ILOCK_SHARED)));
481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
485
486 if (lock_mode & XFS_IOLOCK_EXCL) {
487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
488 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
490
491 try_lock = 0;
492 i = 0;
493 again:
494 for (; i < inodes; i++) {
495 ASSERT(ips[i]);
496
497 if (i && (ips[i] == ips[i - 1])) /* Already locked */
498 continue;
499
500 /*
501 * If try_lock is not set yet, make sure all locked inodes are
502 * not in the AIL. If any are, set try_lock to be used later.
503 */
504 if (!try_lock) {
505 for (j = (i - 1); j >= 0 && !try_lock; j--) {
506 lp = (xfs_log_item_t *)ips[j]->i_itemp;
507 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
508 try_lock++;
509 }
510 }
511
512 /*
513 * If any of the previous locks we have locked is in the AIL,
514 * we must TRY to get the second and subsequent locks. If
515 * we can't get any, we must release all we have
516 * and try again.
517 */
518 if (!try_lock) {
519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
520 continue;
521 }
522
523 /* try_lock means we have an inode locked that is in the AIL. */
524 ASSERT(i != 0);
525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
526 continue;
527
528 /*
529 * Unlock all previous guys and try again. xfs_iunlock will try
530 * to push the tail if the inode is in the AIL.
531 */
532 attempts++;
533 for (j = i - 1; j >= 0; j--) {
534 /*
535 * Check to see if we've already unlocked this one. Not
536 * the first one going back, and the inode ptr is the
537 * same.
538 */
539 if (j != (i - 1) && ips[j] == ips[j + 1])
540 continue;
541
542 xfs_iunlock(ips[j], lock_mode);
543 }
544
545 if ((attempts % 5) == 0) {
546 delay(1); /* Don't just spin the CPU */
547 #ifdef DEBUG
548 xfs_lock_delays++;
549 #endif
550 }
551 i = 0;
552 try_lock = 0;
553 goto again;
554 }
555
556 #ifdef DEBUG
557 if (attempts) {
558 if (attempts < 5) xfs_small_retries++;
559 else if (attempts < 100) xfs_middle_retries++;
560 else xfs_lots_retries++;
561 } else {
562 xfs_locked_n++;
563 }
564 #endif
565 }
566
567 /*
568 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
569 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
570 * lock more than one at a time, lockdep will report false positives saying we
571 * have violated locking orders.
572 */
573 void
574 xfs_lock_two_inodes(
575 xfs_inode_t *ip0,
576 xfs_inode_t *ip1,
577 uint lock_mode)
578 {
579 xfs_inode_t *temp;
580 int attempts = 0;
581 xfs_log_item_t *lp;
582
583 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
584 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
585 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
586
587 ASSERT(ip0->i_ino != ip1->i_ino);
588
589 if (ip0->i_ino > ip1->i_ino) {
590 temp = ip0;
591 ip0 = ip1;
592 ip1 = temp;
593 }
594
595 again:
596 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
597
598 /*
599 * If the first lock we have locked is in the AIL, we must TRY to get
600 * the second lock. If we can't get it, we must release the first one
601 * and try again.
602 */
603 lp = (xfs_log_item_t *)ip0->i_itemp;
604 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
605 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
606 xfs_iunlock(ip0, lock_mode);
607 if ((++attempts % 5) == 0)
608 delay(1); /* Don't just spin the CPU */
609 goto again;
610 }
611 } else {
612 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
613 }
614 }
615
616
617 void
618 __xfs_iflock(
619 struct xfs_inode *ip)
620 {
621 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
622 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
623
624 do {
625 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
626 if (xfs_isiflocked(ip))
627 io_schedule();
628 } while (!xfs_iflock_nowait(ip));
629
630 finish_wait(wq, &wait.wq_entry);
631 }
632
633 STATIC uint
634 _xfs_dic2xflags(
635 uint16_t di_flags,
636 uint64_t di_flags2,
637 bool has_attr)
638 {
639 uint flags = 0;
640
641 if (di_flags & XFS_DIFLAG_ANY) {
642 if (di_flags & XFS_DIFLAG_REALTIME)
643 flags |= FS_XFLAG_REALTIME;
644 if (di_flags & XFS_DIFLAG_PREALLOC)
645 flags |= FS_XFLAG_PREALLOC;
646 if (di_flags & XFS_DIFLAG_IMMUTABLE)
647 flags |= FS_XFLAG_IMMUTABLE;
648 if (di_flags & XFS_DIFLAG_APPEND)
649 flags |= FS_XFLAG_APPEND;
650 if (di_flags & XFS_DIFLAG_SYNC)
651 flags |= FS_XFLAG_SYNC;
652 if (di_flags & XFS_DIFLAG_NOATIME)
653 flags |= FS_XFLAG_NOATIME;
654 if (di_flags & XFS_DIFLAG_NODUMP)
655 flags |= FS_XFLAG_NODUMP;
656 if (di_flags & XFS_DIFLAG_RTINHERIT)
657 flags |= FS_XFLAG_RTINHERIT;
658 if (di_flags & XFS_DIFLAG_PROJINHERIT)
659 flags |= FS_XFLAG_PROJINHERIT;
660 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
661 flags |= FS_XFLAG_NOSYMLINKS;
662 if (di_flags & XFS_DIFLAG_EXTSIZE)
663 flags |= FS_XFLAG_EXTSIZE;
664 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
665 flags |= FS_XFLAG_EXTSZINHERIT;
666 if (di_flags & XFS_DIFLAG_NODEFRAG)
667 flags |= FS_XFLAG_NODEFRAG;
668 if (di_flags & XFS_DIFLAG_FILESTREAM)
669 flags |= FS_XFLAG_FILESTREAM;
670 }
671
672 if (di_flags2 & XFS_DIFLAG2_ANY) {
673 if (di_flags2 & XFS_DIFLAG2_DAX)
674 flags |= FS_XFLAG_DAX;
675 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
676 flags |= FS_XFLAG_COWEXTSIZE;
677 }
678
679 if (has_attr)
680 flags |= FS_XFLAG_HASATTR;
681
682 return flags;
683 }
684
685 uint
686 xfs_ip2xflags(
687 struct xfs_inode *ip)
688 {
689 struct xfs_icdinode *dic = &ip->i_d;
690
691 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
692 }
693
694 /*
695 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
696 * is allowed, otherwise it has to be an exact match. If a CI match is found,
697 * ci_name->name will point to a the actual name (caller must free) or
698 * will be set to NULL if an exact match is found.
699 */
700 int
701 xfs_lookup(
702 xfs_inode_t *dp,
703 struct xfs_name *name,
704 xfs_inode_t **ipp,
705 struct xfs_name *ci_name)
706 {
707 xfs_ino_t inum;
708 int error;
709
710 trace_xfs_lookup(dp, name);
711
712 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
713 return -EIO;
714
715 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
716 if (error)
717 goto out_unlock;
718
719 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
720 if (error)
721 goto out_free_name;
722
723 return 0;
724
725 out_free_name:
726 if (ci_name)
727 kmem_free(ci_name->name);
728 out_unlock:
729 *ipp = NULL;
730 return error;
731 }
732
733 /*
734 * Allocate an inode on disk and return a copy of its in-core version.
735 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
736 * appropriately within the inode. The uid and gid for the inode are
737 * set according to the contents of the given cred structure.
738 *
739 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
740 * has a free inode available, call xfs_iget() to obtain the in-core
741 * version of the allocated inode. Finally, fill in the inode and
742 * log its initial contents. In this case, ialloc_context would be
743 * set to NULL.
744 *
745 * If xfs_dialloc() does not have an available inode, it will replenish
746 * its supply by doing an allocation. Since we can only do one
747 * allocation within a transaction without deadlocks, we must commit
748 * the current transaction before returning the inode itself.
749 * In this case, therefore, we will set ialloc_context and return.
750 * The caller should then commit the current transaction, start a new
751 * transaction, and call xfs_ialloc() again to actually get the inode.
752 *
753 * To ensure that some other process does not grab the inode that
754 * was allocated during the first call to xfs_ialloc(), this routine
755 * also returns the [locked] bp pointing to the head of the freelist
756 * as ialloc_context. The caller should hold this buffer across
757 * the commit and pass it back into this routine on the second call.
758 *
759 * If we are allocating quota inodes, we do not have a parent inode
760 * to attach to or associate with (i.e. pip == NULL) because they
761 * are not linked into the directory structure - they are attached
762 * directly to the superblock - and so have no parent.
763 */
764 static int
765 xfs_ialloc(
766 xfs_trans_t *tp,
767 xfs_inode_t *pip,
768 umode_t mode,
769 xfs_nlink_t nlink,
770 xfs_dev_t rdev,
771 prid_t prid,
772 int okalloc,
773 xfs_buf_t **ialloc_context,
774 xfs_inode_t **ipp)
775 {
776 struct xfs_mount *mp = tp->t_mountp;
777 xfs_ino_t ino;
778 xfs_inode_t *ip;
779 uint flags;
780 int error;
781 struct timespec tv;
782 struct inode *inode;
783
784 /*
785 * Call the space management code to pick
786 * the on-disk inode to be allocated.
787 */
788 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
789 ialloc_context, &ino);
790 if (error)
791 return error;
792 if (*ialloc_context || ino == NULLFSINO) {
793 *ipp = NULL;
794 return 0;
795 }
796 ASSERT(*ialloc_context == NULL);
797
798 /*
799 * Get the in-core inode with the lock held exclusively.
800 * This is because we're setting fields here we need
801 * to prevent others from looking at until we're done.
802 */
803 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
804 XFS_ILOCK_EXCL, &ip);
805 if (error)
806 return error;
807 ASSERT(ip != NULL);
808 inode = VFS_I(ip);
809
810 /*
811 * We always convert v1 inodes to v2 now - we only support filesystems
812 * with >= v2 inode capability, so there is no reason for ever leaving
813 * an inode in v1 format.
814 */
815 if (ip->i_d.di_version == 1)
816 ip->i_d.di_version = 2;
817
818 inode->i_mode = mode;
819 set_nlink(inode, nlink);
820 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
821 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
822 xfs_set_projid(ip, prid);
823
824 if (pip && XFS_INHERIT_GID(pip)) {
825 ip->i_d.di_gid = pip->i_d.di_gid;
826 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
827 inode->i_mode |= S_ISGID;
828 }
829
830 /*
831 * If the group ID of the new file does not match the effective group
832 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
833 * (and only if the irix_sgid_inherit compatibility variable is set).
834 */
835 if ((irix_sgid_inherit) &&
836 (inode->i_mode & S_ISGID) &&
837 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
838 inode->i_mode &= ~S_ISGID;
839
840 ip->i_d.di_size = 0;
841 ip->i_d.di_nextents = 0;
842 ASSERT(ip->i_d.di_nblocks == 0);
843
844 tv = current_time(inode);
845 inode->i_mtime = tv;
846 inode->i_atime = tv;
847 inode->i_ctime = tv;
848
849 ip->i_d.di_extsize = 0;
850 ip->i_d.di_dmevmask = 0;
851 ip->i_d.di_dmstate = 0;
852 ip->i_d.di_flags = 0;
853
854 if (ip->i_d.di_version == 3) {
855 inode->i_version = 1;
856 ip->i_d.di_flags2 = 0;
857 ip->i_d.di_cowextsize = 0;
858 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
859 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
860 }
861
862
863 flags = XFS_ILOG_CORE;
864 switch (mode & S_IFMT) {
865 case S_IFIFO:
866 case S_IFCHR:
867 case S_IFBLK:
868 case S_IFSOCK:
869 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
870 ip->i_df.if_u2.if_rdev = rdev;
871 ip->i_df.if_flags = 0;
872 flags |= XFS_ILOG_DEV;
873 break;
874 case S_IFREG:
875 case S_IFDIR:
876 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
877 uint64_t di_flags2 = 0;
878 uint di_flags = 0;
879
880 if (S_ISDIR(mode)) {
881 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
882 di_flags |= XFS_DIFLAG_RTINHERIT;
883 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
884 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
885 ip->i_d.di_extsize = pip->i_d.di_extsize;
886 }
887 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
888 di_flags |= XFS_DIFLAG_PROJINHERIT;
889 } else if (S_ISREG(mode)) {
890 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
891 di_flags |= XFS_DIFLAG_REALTIME;
892 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
893 di_flags |= XFS_DIFLAG_EXTSIZE;
894 ip->i_d.di_extsize = pip->i_d.di_extsize;
895 }
896 }
897 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
898 xfs_inherit_noatime)
899 di_flags |= XFS_DIFLAG_NOATIME;
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
901 xfs_inherit_nodump)
902 di_flags |= XFS_DIFLAG_NODUMP;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
904 xfs_inherit_sync)
905 di_flags |= XFS_DIFLAG_SYNC;
906 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
907 xfs_inherit_nosymlinks)
908 di_flags |= XFS_DIFLAG_NOSYMLINKS;
909 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
910 xfs_inherit_nodefrag)
911 di_flags |= XFS_DIFLAG_NODEFRAG;
912 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
913 di_flags |= XFS_DIFLAG_FILESTREAM;
914 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
915 di_flags2 |= XFS_DIFLAG2_DAX;
916
917 ip->i_d.di_flags |= di_flags;
918 ip->i_d.di_flags2 |= di_flags2;
919 }
920 if (pip &&
921 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
922 pip->i_d.di_version == 3 &&
923 ip->i_d.di_version == 3) {
924 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
925 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
926 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
927 }
928 }
929 /* FALLTHROUGH */
930 case S_IFLNK:
931 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
932 ip->i_df.if_flags = XFS_IFEXTENTS;
933 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
934 ip->i_df.if_u1.if_extents = NULL;
935 break;
936 default:
937 ASSERT(0);
938 }
939 /*
940 * Attribute fork settings for new inode.
941 */
942 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
943 ip->i_d.di_anextents = 0;
944
945 /*
946 * Log the new values stuffed into the inode.
947 */
948 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
949 xfs_trans_log_inode(tp, ip, flags);
950
951 /* now that we have an i_mode we can setup the inode structure */
952 xfs_setup_inode(ip);
953
954 *ipp = ip;
955 return 0;
956 }
957
958 /*
959 * Allocates a new inode from disk and return a pointer to the
960 * incore copy. This routine will internally commit the current
961 * transaction and allocate a new one if the Space Manager needed
962 * to do an allocation to replenish the inode free-list.
963 *
964 * This routine is designed to be called from xfs_create and
965 * xfs_create_dir.
966 *
967 */
968 int
969 xfs_dir_ialloc(
970 xfs_trans_t **tpp, /* input: current transaction;
971 output: may be a new transaction. */
972 xfs_inode_t *dp, /* directory within whose allocate
973 the inode. */
974 umode_t mode,
975 xfs_nlink_t nlink,
976 xfs_dev_t rdev,
977 prid_t prid, /* project id */
978 int okalloc, /* ok to allocate new space */
979 xfs_inode_t **ipp, /* pointer to inode; it will be
980 locked. */
981 int *committed)
982
983 {
984 xfs_trans_t *tp;
985 xfs_inode_t *ip;
986 xfs_buf_t *ialloc_context = NULL;
987 int code;
988 void *dqinfo;
989 uint tflags;
990
991 tp = *tpp;
992 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
993
994 /*
995 * xfs_ialloc will return a pointer to an incore inode if
996 * the Space Manager has an available inode on the free
997 * list. Otherwise, it will do an allocation and replenish
998 * the freelist. Since we can only do one allocation per
999 * transaction without deadlocks, we will need to commit the
1000 * current transaction and start a new one. We will then
1001 * need to call xfs_ialloc again to get the inode.
1002 *
1003 * If xfs_ialloc did an allocation to replenish the freelist,
1004 * it returns the bp containing the head of the freelist as
1005 * ialloc_context. We will hold a lock on it across the
1006 * transaction commit so that no other process can steal
1007 * the inode(s) that we've just allocated.
1008 */
1009 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1010 &ialloc_context, &ip);
1011
1012 /*
1013 * Return an error if we were unable to allocate a new inode.
1014 * This should only happen if we run out of space on disk or
1015 * encounter a disk error.
1016 */
1017 if (code) {
1018 *ipp = NULL;
1019 return code;
1020 }
1021 if (!ialloc_context && !ip) {
1022 *ipp = NULL;
1023 return -ENOSPC;
1024 }
1025
1026 /*
1027 * If the AGI buffer is non-NULL, then we were unable to get an
1028 * inode in one operation. We need to commit the current
1029 * transaction and call xfs_ialloc() again. It is guaranteed
1030 * to succeed the second time.
1031 */
1032 if (ialloc_context) {
1033 /*
1034 * Normally, xfs_trans_commit releases all the locks.
1035 * We call bhold to hang on to the ialloc_context across
1036 * the commit. Holding this buffer prevents any other
1037 * processes from doing any allocations in this
1038 * allocation group.
1039 */
1040 xfs_trans_bhold(tp, ialloc_context);
1041
1042 /*
1043 * We want the quota changes to be associated with the next
1044 * transaction, NOT this one. So, detach the dqinfo from this
1045 * and attach it to the next transaction.
1046 */
1047 dqinfo = NULL;
1048 tflags = 0;
1049 if (tp->t_dqinfo) {
1050 dqinfo = (void *)tp->t_dqinfo;
1051 tp->t_dqinfo = NULL;
1052 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1053 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1054 }
1055
1056 code = xfs_trans_roll(&tp, NULL);
1057 if (committed != NULL)
1058 *committed = 1;
1059
1060 /*
1061 * Re-attach the quota info that we detached from prev trx.
1062 */
1063 if (dqinfo) {
1064 tp->t_dqinfo = dqinfo;
1065 tp->t_flags |= tflags;
1066 }
1067
1068 if (code) {
1069 xfs_buf_relse(ialloc_context);
1070 *tpp = tp;
1071 *ipp = NULL;
1072 return code;
1073 }
1074 xfs_trans_bjoin(tp, ialloc_context);
1075
1076 /*
1077 * Call ialloc again. Since we've locked out all
1078 * other allocations in this allocation group,
1079 * this call should always succeed.
1080 */
1081 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1082 okalloc, &ialloc_context, &ip);
1083
1084 /*
1085 * If we get an error at this point, return to the caller
1086 * so that the current transaction can be aborted.
1087 */
1088 if (code) {
1089 *tpp = tp;
1090 *ipp = NULL;
1091 return code;
1092 }
1093 ASSERT(!ialloc_context && ip);
1094
1095 } else {
1096 if (committed != NULL)
1097 *committed = 0;
1098 }
1099
1100 *ipp = ip;
1101 *tpp = tp;
1102
1103 return 0;
1104 }
1105
1106 /*
1107 * Decrement the link count on an inode & log the change. If this causes the
1108 * link count to go to zero, move the inode to AGI unlinked list so that it can
1109 * be freed when the last active reference goes away via xfs_inactive().
1110 */
1111 static int /* error */
1112 xfs_droplink(
1113 xfs_trans_t *tp,
1114 xfs_inode_t *ip)
1115 {
1116 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1117
1118 drop_nlink(VFS_I(ip));
1119 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1120
1121 if (VFS_I(ip)->i_nlink)
1122 return 0;
1123
1124 return xfs_iunlink(tp, ip);
1125 }
1126
1127 /*
1128 * Increment the link count on an inode & log the change.
1129 */
1130 static int
1131 xfs_bumplink(
1132 xfs_trans_t *tp,
1133 xfs_inode_t *ip)
1134 {
1135 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1136
1137 ASSERT(ip->i_d.di_version > 1);
1138 inc_nlink(VFS_I(ip));
1139 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1140 return 0;
1141 }
1142
1143 int
1144 xfs_create(
1145 xfs_inode_t *dp,
1146 struct xfs_name *name,
1147 umode_t mode,
1148 xfs_dev_t rdev,
1149 xfs_inode_t **ipp)
1150 {
1151 int is_dir = S_ISDIR(mode);
1152 struct xfs_mount *mp = dp->i_mount;
1153 struct xfs_inode *ip = NULL;
1154 struct xfs_trans *tp = NULL;
1155 int error;
1156 struct xfs_defer_ops dfops;
1157 xfs_fsblock_t first_block;
1158 bool unlock_dp_on_error = false;
1159 prid_t prid;
1160 struct xfs_dquot *udqp = NULL;
1161 struct xfs_dquot *gdqp = NULL;
1162 struct xfs_dquot *pdqp = NULL;
1163 struct xfs_trans_res *tres;
1164 uint resblks;
1165
1166 trace_xfs_create(dp, name);
1167
1168 if (XFS_FORCED_SHUTDOWN(mp))
1169 return -EIO;
1170
1171 prid = xfs_get_initial_prid(dp);
1172
1173 /*
1174 * Make sure that we have allocated dquot(s) on disk.
1175 */
1176 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1177 xfs_kgid_to_gid(current_fsgid()), prid,
1178 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1179 &udqp, &gdqp, &pdqp);
1180 if (error)
1181 return error;
1182
1183 if (is_dir) {
1184 rdev = 0;
1185 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1186 tres = &M_RES(mp)->tr_mkdir;
1187 } else {
1188 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1189 tres = &M_RES(mp)->tr_create;
1190 }
1191
1192 /*
1193 * Initially assume that the file does not exist and
1194 * reserve the resources for that case. If that is not
1195 * the case we'll drop the one we have and get a more
1196 * appropriate transaction later.
1197 */
1198 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1199 if (error == -ENOSPC) {
1200 /* flush outstanding delalloc blocks and retry */
1201 xfs_flush_inodes(mp);
1202 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1203 }
1204 if (error == -ENOSPC) {
1205 /* No space at all so try a "no-allocation" reservation */
1206 resblks = 0;
1207 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1208 }
1209 if (error)
1210 goto out_release_inode;
1211
1212 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1213 unlock_dp_on_error = true;
1214
1215 xfs_defer_init(&dfops, &first_block);
1216
1217 /*
1218 * Reserve disk quota and the inode.
1219 */
1220 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1221 pdqp, resblks, 1, 0);
1222 if (error)
1223 goto out_trans_cancel;
1224
1225 if (!resblks) {
1226 error = xfs_dir_canenter(tp, dp, name);
1227 if (error)
1228 goto out_trans_cancel;
1229 }
1230
1231 /*
1232 * A newly created regular or special file just has one directory
1233 * entry pointing to them, but a directory also the "." entry
1234 * pointing to itself.
1235 */
1236 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1237 prid, resblks > 0, &ip, NULL);
1238 if (error)
1239 goto out_trans_cancel;
1240
1241 /*
1242 * Now we join the directory inode to the transaction. We do not do it
1243 * earlier because xfs_dir_ialloc might commit the previous transaction
1244 * (and release all the locks). An error from here on will result in
1245 * the transaction cancel unlocking dp so don't do it explicitly in the
1246 * error path.
1247 */
1248 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1249 unlock_dp_on_error = false;
1250
1251 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1252 &first_block, &dfops, resblks ?
1253 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1254 if (error) {
1255 ASSERT(error != -ENOSPC);
1256 goto out_trans_cancel;
1257 }
1258 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1259 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1260
1261 if (is_dir) {
1262 error = xfs_dir_init(tp, ip, dp);
1263 if (error)
1264 goto out_bmap_cancel;
1265
1266 error = xfs_bumplink(tp, dp);
1267 if (error)
1268 goto out_bmap_cancel;
1269 }
1270
1271 /*
1272 * If this is a synchronous mount, make sure that the
1273 * create transaction goes to disk before returning to
1274 * the user.
1275 */
1276 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1277 xfs_trans_set_sync(tp);
1278
1279 /*
1280 * Attach the dquot(s) to the inodes and modify them incore.
1281 * These ids of the inode couldn't have changed since the new
1282 * inode has been locked ever since it was created.
1283 */
1284 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1285
1286 error = xfs_defer_finish(&tp, &dfops, NULL);
1287 if (error)
1288 goto out_bmap_cancel;
1289
1290 error = xfs_trans_commit(tp);
1291 if (error)
1292 goto out_release_inode;
1293
1294 xfs_qm_dqrele(udqp);
1295 xfs_qm_dqrele(gdqp);
1296 xfs_qm_dqrele(pdqp);
1297
1298 *ipp = ip;
1299 return 0;
1300
1301 out_bmap_cancel:
1302 xfs_defer_cancel(&dfops);
1303 out_trans_cancel:
1304 xfs_trans_cancel(tp);
1305 out_release_inode:
1306 /*
1307 * Wait until after the current transaction is aborted to finish the
1308 * setup of the inode and release the inode. This prevents recursive
1309 * transactions and deadlocks from xfs_inactive.
1310 */
1311 if (ip) {
1312 xfs_finish_inode_setup(ip);
1313 IRELE(ip);
1314 }
1315
1316 xfs_qm_dqrele(udqp);
1317 xfs_qm_dqrele(gdqp);
1318 xfs_qm_dqrele(pdqp);
1319
1320 if (unlock_dp_on_error)
1321 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1322 return error;
1323 }
1324
1325 int
1326 xfs_create_tmpfile(
1327 struct xfs_inode *dp,
1328 struct dentry *dentry,
1329 umode_t mode,
1330 struct xfs_inode **ipp)
1331 {
1332 struct xfs_mount *mp = dp->i_mount;
1333 struct xfs_inode *ip = NULL;
1334 struct xfs_trans *tp = NULL;
1335 int error;
1336 prid_t prid;
1337 struct xfs_dquot *udqp = NULL;
1338 struct xfs_dquot *gdqp = NULL;
1339 struct xfs_dquot *pdqp = NULL;
1340 struct xfs_trans_res *tres;
1341 uint resblks;
1342
1343 if (XFS_FORCED_SHUTDOWN(mp))
1344 return -EIO;
1345
1346 prid = xfs_get_initial_prid(dp);
1347
1348 /*
1349 * Make sure that we have allocated dquot(s) on disk.
1350 */
1351 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1352 xfs_kgid_to_gid(current_fsgid()), prid,
1353 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1354 &udqp, &gdqp, &pdqp);
1355 if (error)
1356 return error;
1357
1358 resblks = XFS_IALLOC_SPACE_RES(mp);
1359 tres = &M_RES(mp)->tr_create_tmpfile;
1360
1361 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1362 if (error == -ENOSPC) {
1363 /* No space at all so try a "no-allocation" reservation */
1364 resblks = 0;
1365 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1366 }
1367 if (error)
1368 goto out_release_inode;
1369
1370 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1371 pdqp, resblks, 1, 0);
1372 if (error)
1373 goto out_trans_cancel;
1374
1375 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1376 prid, resblks > 0, &ip, NULL);
1377 if (error)
1378 goto out_trans_cancel;
1379
1380 if (mp->m_flags & XFS_MOUNT_WSYNC)
1381 xfs_trans_set_sync(tp);
1382
1383 /*
1384 * Attach the dquot(s) to the inodes and modify them incore.
1385 * These ids of the inode couldn't have changed since the new
1386 * inode has been locked ever since it was created.
1387 */
1388 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1389
1390 error = xfs_iunlink(tp, ip);
1391 if (error)
1392 goto out_trans_cancel;
1393
1394 error = xfs_trans_commit(tp);
1395 if (error)
1396 goto out_release_inode;
1397
1398 xfs_qm_dqrele(udqp);
1399 xfs_qm_dqrele(gdqp);
1400 xfs_qm_dqrele(pdqp);
1401
1402 *ipp = ip;
1403 return 0;
1404
1405 out_trans_cancel:
1406 xfs_trans_cancel(tp);
1407 out_release_inode:
1408 /*
1409 * Wait until after the current transaction is aborted to finish the
1410 * setup of the inode and release the inode. This prevents recursive
1411 * transactions and deadlocks from xfs_inactive.
1412 */
1413 if (ip) {
1414 xfs_finish_inode_setup(ip);
1415 IRELE(ip);
1416 }
1417
1418 xfs_qm_dqrele(udqp);
1419 xfs_qm_dqrele(gdqp);
1420 xfs_qm_dqrele(pdqp);
1421
1422 return error;
1423 }
1424
1425 int
1426 xfs_link(
1427 xfs_inode_t *tdp,
1428 xfs_inode_t *sip,
1429 struct xfs_name *target_name)
1430 {
1431 xfs_mount_t *mp = tdp->i_mount;
1432 xfs_trans_t *tp;
1433 int error;
1434 struct xfs_defer_ops dfops;
1435 xfs_fsblock_t first_block;
1436 int resblks;
1437
1438 trace_xfs_link(tdp, target_name);
1439
1440 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1441
1442 if (XFS_FORCED_SHUTDOWN(mp))
1443 return -EIO;
1444
1445 error = xfs_qm_dqattach(sip, 0);
1446 if (error)
1447 goto std_return;
1448
1449 error = xfs_qm_dqattach(tdp, 0);
1450 if (error)
1451 goto std_return;
1452
1453 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1454 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1455 if (error == -ENOSPC) {
1456 resblks = 0;
1457 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1458 }
1459 if (error)
1460 goto std_return;
1461
1462 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1463
1464 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1465 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1466
1467 /*
1468 * If we are using project inheritance, we only allow hard link
1469 * creation in our tree when the project IDs are the same; else
1470 * the tree quota mechanism could be circumvented.
1471 */
1472 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1473 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1474 error = -EXDEV;
1475 goto error_return;
1476 }
1477
1478 if (!resblks) {
1479 error = xfs_dir_canenter(tp, tdp, target_name);
1480 if (error)
1481 goto error_return;
1482 }
1483
1484 xfs_defer_init(&dfops, &first_block);
1485
1486 /*
1487 * Handle initial link state of O_TMPFILE inode
1488 */
1489 if (VFS_I(sip)->i_nlink == 0) {
1490 error = xfs_iunlink_remove(tp, sip);
1491 if (error)
1492 goto error_return;
1493 }
1494
1495 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1496 &first_block, &dfops, resblks);
1497 if (error)
1498 goto error_return;
1499 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1500 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1501
1502 error = xfs_bumplink(tp, sip);
1503 if (error)
1504 goto error_return;
1505
1506 /*
1507 * If this is a synchronous mount, make sure that the
1508 * link transaction goes to disk before returning to
1509 * the user.
1510 */
1511 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1512 xfs_trans_set_sync(tp);
1513
1514 error = xfs_defer_finish(&tp, &dfops, NULL);
1515 if (error) {
1516 xfs_defer_cancel(&dfops);
1517 goto error_return;
1518 }
1519
1520 return xfs_trans_commit(tp);
1521
1522 error_return:
1523 xfs_trans_cancel(tp);
1524 std_return:
1525 return error;
1526 }
1527
1528 /*
1529 * Free up the underlying blocks past new_size. The new size must be smaller
1530 * than the current size. This routine can be used both for the attribute and
1531 * data fork, and does not modify the inode size, which is left to the caller.
1532 *
1533 * The transaction passed to this routine must have made a permanent log
1534 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1535 * given transaction and start new ones, so make sure everything involved in
1536 * the transaction is tidy before calling here. Some transaction will be
1537 * returned to the caller to be committed. The incoming transaction must
1538 * already include the inode, and both inode locks must be held exclusively.
1539 * The inode must also be "held" within the transaction. On return the inode
1540 * will be "held" within the returned transaction. This routine does NOT
1541 * require any disk space to be reserved for it within the transaction.
1542 *
1543 * If we get an error, we must return with the inode locked and linked into the
1544 * current transaction. This keeps things simple for the higher level code,
1545 * because it always knows that the inode is locked and held in the transaction
1546 * that returns to it whether errors occur or not. We don't mark the inode
1547 * dirty on error so that transactions can be easily aborted if possible.
1548 */
1549 int
1550 xfs_itruncate_extents(
1551 struct xfs_trans **tpp,
1552 struct xfs_inode *ip,
1553 int whichfork,
1554 xfs_fsize_t new_size)
1555 {
1556 struct xfs_mount *mp = ip->i_mount;
1557 struct xfs_trans *tp = *tpp;
1558 struct xfs_defer_ops dfops;
1559 xfs_fsblock_t first_block;
1560 xfs_fileoff_t first_unmap_block;
1561 xfs_fileoff_t last_block;
1562 xfs_filblks_t unmap_len;
1563 int error = 0;
1564 int done = 0;
1565
1566 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1567 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1568 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1569 ASSERT(new_size <= XFS_ISIZE(ip));
1570 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1571 ASSERT(ip->i_itemp != NULL);
1572 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1573 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1574
1575 trace_xfs_itruncate_extents_start(ip, new_size);
1576
1577 /*
1578 * Since it is possible for space to become allocated beyond
1579 * the end of the file (in a crash where the space is allocated
1580 * but the inode size is not yet updated), simply remove any
1581 * blocks which show up between the new EOF and the maximum
1582 * possible file size. If the first block to be removed is
1583 * beyond the maximum file size (ie it is the same as last_block),
1584 * then there is nothing to do.
1585 */
1586 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1587 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1588 if (first_unmap_block == last_block)
1589 return 0;
1590
1591 ASSERT(first_unmap_block < last_block);
1592 unmap_len = last_block - first_unmap_block + 1;
1593 while (!done) {
1594 xfs_defer_init(&dfops, &first_block);
1595 error = xfs_bunmapi(tp, ip,
1596 first_unmap_block, unmap_len,
1597 xfs_bmapi_aflag(whichfork),
1598 XFS_ITRUNC_MAX_EXTENTS,
1599 &first_block, &dfops,
1600 &done);
1601 if (error)
1602 goto out_bmap_cancel;
1603
1604 /*
1605 * Duplicate the transaction that has the permanent
1606 * reservation and commit the old transaction.
1607 */
1608 error = xfs_defer_finish(&tp, &dfops, ip);
1609 if (error)
1610 goto out_bmap_cancel;
1611
1612 error = xfs_trans_roll(&tp, ip);
1613 if (error)
1614 goto out;
1615 }
1616
1617 /* Remove all pending CoW reservations. */
1618 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1619 last_block, true);
1620 if (error)
1621 goto out;
1622
1623 /*
1624 * Clear the reflink flag if we truncated everything.
1625 */
1626 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) {
1627 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1628 xfs_inode_clear_cowblocks_tag(ip);
1629 }
1630
1631 /*
1632 * Always re-log the inode so that our permanent transaction can keep
1633 * on rolling it forward in the log.
1634 */
1635 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1636
1637 trace_xfs_itruncate_extents_end(ip, new_size);
1638
1639 out:
1640 *tpp = tp;
1641 return error;
1642 out_bmap_cancel:
1643 /*
1644 * If the bunmapi call encounters an error, return to the caller where
1645 * the transaction can be properly aborted. We just need to make sure
1646 * we're not holding any resources that we were not when we came in.
1647 */
1648 xfs_defer_cancel(&dfops);
1649 goto out;
1650 }
1651
1652 int
1653 xfs_release(
1654 xfs_inode_t *ip)
1655 {
1656 xfs_mount_t *mp = ip->i_mount;
1657 int error;
1658
1659 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1660 return 0;
1661
1662 /* If this is a read-only mount, don't do this (would generate I/O) */
1663 if (mp->m_flags & XFS_MOUNT_RDONLY)
1664 return 0;
1665
1666 if (!XFS_FORCED_SHUTDOWN(mp)) {
1667 int truncated;
1668
1669 /*
1670 * If we previously truncated this file and removed old data
1671 * in the process, we want to initiate "early" writeout on
1672 * the last close. This is an attempt to combat the notorious
1673 * NULL files problem which is particularly noticeable from a
1674 * truncate down, buffered (re-)write (delalloc), followed by
1675 * a crash. What we are effectively doing here is
1676 * significantly reducing the time window where we'd otherwise
1677 * be exposed to that problem.
1678 */
1679 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1680 if (truncated) {
1681 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1682 if (ip->i_delayed_blks > 0) {
1683 error = filemap_flush(VFS_I(ip)->i_mapping);
1684 if (error)
1685 return error;
1686 }
1687 }
1688 }
1689
1690 if (VFS_I(ip)->i_nlink == 0)
1691 return 0;
1692
1693 if (xfs_can_free_eofblocks(ip, false)) {
1694
1695 /*
1696 * Check if the inode is being opened, written and closed
1697 * frequently and we have delayed allocation blocks outstanding
1698 * (e.g. streaming writes from the NFS server), truncating the
1699 * blocks past EOF will cause fragmentation to occur.
1700 *
1701 * In this case don't do the truncation, but we have to be
1702 * careful how we detect this case. Blocks beyond EOF show up as
1703 * i_delayed_blks even when the inode is clean, so we need to
1704 * truncate them away first before checking for a dirty release.
1705 * Hence on the first dirty close we will still remove the
1706 * speculative allocation, but after that we will leave it in
1707 * place.
1708 */
1709 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1710 return 0;
1711 /*
1712 * If we can't get the iolock just skip truncating the blocks
1713 * past EOF because we could deadlock with the mmap_sem
1714 * otherwise. We'll get another chance to drop them once the
1715 * last reference to the inode is dropped, so we'll never leak
1716 * blocks permanently.
1717 */
1718 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1719 error = xfs_free_eofblocks(ip);
1720 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1721 if (error)
1722 return error;
1723 }
1724
1725 /* delalloc blocks after truncation means it really is dirty */
1726 if (ip->i_delayed_blks)
1727 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1728 }
1729 return 0;
1730 }
1731
1732 /*
1733 * xfs_inactive_truncate
1734 *
1735 * Called to perform a truncate when an inode becomes unlinked.
1736 */
1737 STATIC int
1738 xfs_inactive_truncate(
1739 struct xfs_inode *ip)
1740 {
1741 struct xfs_mount *mp = ip->i_mount;
1742 struct xfs_trans *tp;
1743 int error;
1744
1745 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1746 if (error) {
1747 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1748 return error;
1749 }
1750
1751 xfs_ilock(ip, XFS_ILOCK_EXCL);
1752 xfs_trans_ijoin(tp, ip, 0);
1753
1754 /*
1755 * Log the inode size first to prevent stale data exposure in the event
1756 * of a system crash before the truncate completes. See the related
1757 * comment in xfs_vn_setattr_size() for details.
1758 */
1759 ip->i_d.di_size = 0;
1760 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1761
1762 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1763 if (error)
1764 goto error_trans_cancel;
1765
1766 ASSERT(ip->i_d.di_nextents == 0);
1767
1768 error = xfs_trans_commit(tp);
1769 if (error)
1770 goto error_unlock;
1771
1772 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1773 return 0;
1774
1775 error_trans_cancel:
1776 xfs_trans_cancel(tp);
1777 error_unlock:
1778 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1779 return error;
1780 }
1781
1782 /*
1783 * xfs_inactive_ifree()
1784 *
1785 * Perform the inode free when an inode is unlinked.
1786 */
1787 STATIC int
1788 xfs_inactive_ifree(
1789 struct xfs_inode *ip)
1790 {
1791 struct xfs_defer_ops dfops;
1792 xfs_fsblock_t first_block;
1793 struct xfs_mount *mp = ip->i_mount;
1794 struct xfs_trans *tp;
1795 int error;
1796
1797 /*
1798 * We try to use a per-AG reservation for any block needed by the finobt
1799 * tree, but as the finobt feature predates the per-AG reservation
1800 * support a degraded file system might not have enough space for the
1801 * reservation at mount time. In that case try to dip into the reserved
1802 * pool and pray.
1803 *
1804 * Send a warning if the reservation does happen to fail, as the inode
1805 * now remains allocated and sits on the unlinked list until the fs is
1806 * repaired.
1807 */
1808 if (unlikely(mp->m_inotbt_nores)) {
1809 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1810 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1811 &tp);
1812 } else {
1813 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1814 }
1815 if (error) {
1816 if (error == -ENOSPC) {
1817 xfs_warn_ratelimited(mp,
1818 "Failed to remove inode(s) from unlinked list. "
1819 "Please free space, unmount and run xfs_repair.");
1820 } else {
1821 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1822 }
1823 return error;
1824 }
1825
1826 xfs_ilock(ip, XFS_ILOCK_EXCL);
1827 xfs_trans_ijoin(tp, ip, 0);
1828
1829 xfs_defer_init(&dfops, &first_block);
1830 error = xfs_ifree(tp, ip, &dfops);
1831 if (error) {
1832 /*
1833 * If we fail to free the inode, shut down. The cancel
1834 * might do that, we need to make sure. Otherwise the
1835 * inode might be lost for a long time or forever.
1836 */
1837 if (!XFS_FORCED_SHUTDOWN(mp)) {
1838 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1839 __func__, error);
1840 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1841 }
1842 xfs_trans_cancel(tp);
1843 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1844 return error;
1845 }
1846
1847 /*
1848 * Credit the quota account(s). The inode is gone.
1849 */
1850 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1851
1852 /*
1853 * Just ignore errors at this point. There is nothing we can do except
1854 * to try to keep going. Make sure it's not a silent error.
1855 */
1856 error = xfs_defer_finish(&tp, &dfops, NULL);
1857 if (error) {
1858 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1859 __func__, error);
1860 xfs_defer_cancel(&dfops);
1861 }
1862 error = xfs_trans_commit(tp);
1863 if (error)
1864 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1865 __func__, error);
1866
1867 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1868 return 0;
1869 }
1870
1871 /*
1872 * xfs_inactive
1873 *
1874 * This is called when the vnode reference count for the vnode
1875 * goes to zero. If the file has been unlinked, then it must
1876 * now be truncated. Also, we clear all of the read-ahead state
1877 * kept for the inode here since the file is now closed.
1878 */
1879 void
1880 xfs_inactive(
1881 xfs_inode_t *ip)
1882 {
1883 struct xfs_mount *mp;
1884 int error;
1885 int truncate = 0;
1886
1887 /*
1888 * If the inode is already free, then there can be nothing
1889 * to clean up here.
1890 */
1891 if (VFS_I(ip)->i_mode == 0) {
1892 ASSERT(ip->i_df.if_real_bytes == 0);
1893 ASSERT(ip->i_df.if_broot_bytes == 0);
1894 return;
1895 }
1896
1897 mp = ip->i_mount;
1898 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1899
1900 /* If this is a read-only mount, don't do this (would generate I/O) */
1901 if (mp->m_flags & XFS_MOUNT_RDONLY)
1902 return;
1903
1904 if (VFS_I(ip)->i_nlink != 0) {
1905 /*
1906 * force is true because we are evicting an inode from the
1907 * cache. Post-eof blocks must be freed, lest we end up with
1908 * broken free space accounting.
1909 *
1910 * Note: don't bother with iolock here since lockdep complains
1911 * about acquiring it in reclaim context. We have the only
1912 * reference to the inode at this point anyways.
1913 */
1914 if (xfs_can_free_eofblocks(ip, true))
1915 xfs_free_eofblocks(ip);
1916
1917 return;
1918 }
1919
1920 if (S_ISREG(VFS_I(ip)->i_mode) &&
1921 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1922 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1923 truncate = 1;
1924
1925 error = xfs_qm_dqattach(ip, 0);
1926 if (error)
1927 return;
1928
1929 if (S_ISLNK(VFS_I(ip)->i_mode))
1930 error = xfs_inactive_symlink(ip);
1931 else if (truncate)
1932 error = xfs_inactive_truncate(ip);
1933 if (error)
1934 return;
1935
1936 /*
1937 * If there are attributes associated with the file then blow them away
1938 * now. The code calls a routine that recursively deconstructs the
1939 * attribute fork. If also blows away the in-core attribute fork.
1940 */
1941 if (XFS_IFORK_Q(ip)) {
1942 error = xfs_attr_inactive(ip);
1943 if (error)
1944 return;
1945 }
1946
1947 ASSERT(!ip->i_afp);
1948 ASSERT(ip->i_d.di_anextents == 0);
1949 ASSERT(ip->i_d.di_forkoff == 0);
1950
1951 /*
1952 * Free the inode.
1953 */
1954 error = xfs_inactive_ifree(ip);
1955 if (error)
1956 return;
1957
1958 /*
1959 * Release the dquots held by inode, if any.
1960 */
1961 xfs_qm_dqdetach(ip);
1962 }
1963
1964 /*
1965 * This is called when the inode's link count goes to 0 or we are creating a
1966 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1967 * set to true as the link count is dropped to zero by the VFS after we've
1968 * created the file successfully, so we have to add it to the unlinked list
1969 * while the link count is non-zero.
1970 *
1971 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1972 * list when the inode is freed.
1973 */
1974 STATIC int
1975 xfs_iunlink(
1976 struct xfs_trans *tp,
1977 struct xfs_inode *ip)
1978 {
1979 xfs_mount_t *mp = tp->t_mountp;
1980 xfs_agi_t *agi;
1981 xfs_dinode_t *dip;
1982 xfs_buf_t *agibp;
1983 xfs_buf_t *ibp;
1984 xfs_agino_t agino;
1985 short bucket_index;
1986 int offset;
1987 int error;
1988
1989 ASSERT(VFS_I(ip)->i_mode != 0);
1990
1991 /*
1992 * Get the agi buffer first. It ensures lock ordering
1993 * on the list.
1994 */
1995 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1996 if (error)
1997 return error;
1998 agi = XFS_BUF_TO_AGI(agibp);
1999
2000 /*
2001 * Get the index into the agi hash table for the
2002 * list this inode will go on.
2003 */
2004 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2005 ASSERT(agino != 0);
2006 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2007 ASSERT(agi->agi_unlinked[bucket_index]);
2008 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2009
2010 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2011 /*
2012 * There is already another inode in the bucket we need
2013 * to add ourselves to. Add us at the front of the list.
2014 * Here we put the head pointer into our next pointer,
2015 * and then we fall through to point the head at us.
2016 */
2017 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2018 0, 0);
2019 if (error)
2020 return error;
2021
2022 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2023 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2024 offset = ip->i_imap.im_boffset +
2025 offsetof(xfs_dinode_t, di_next_unlinked);
2026
2027 /* need to recalc the inode CRC if appropriate */
2028 xfs_dinode_calc_crc(mp, dip);
2029
2030 xfs_trans_inode_buf(tp, ibp);
2031 xfs_trans_log_buf(tp, ibp, offset,
2032 (offset + sizeof(xfs_agino_t) - 1));
2033 xfs_inobp_check(mp, ibp);
2034 }
2035
2036 /*
2037 * Point the bucket head pointer at the inode being inserted.
2038 */
2039 ASSERT(agino != 0);
2040 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2041 offset = offsetof(xfs_agi_t, agi_unlinked) +
2042 (sizeof(xfs_agino_t) * bucket_index);
2043 xfs_trans_log_buf(tp, agibp, offset,
2044 (offset + sizeof(xfs_agino_t) - 1));
2045 return 0;
2046 }
2047
2048 /*
2049 * Pull the on-disk inode from the AGI unlinked list.
2050 */
2051 STATIC int
2052 xfs_iunlink_remove(
2053 xfs_trans_t *tp,
2054 xfs_inode_t *ip)
2055 {
2056 xfs_ino_t next_ino;
2057 xfs_mount_t *mp;
2058 xfs_agi_t *agi;
2059 xfs_dinode_t *dip;
2060 xfs_buf_t *agibp;
2061 xfs_buf_t *ibp;
2062 xfs_agnumber_t agno;
2063 xfs_agino_t agino;
2064 xfs_agino_t next_agino;
2065 xfs_buf_t *last_ibp;
2066 xfs_dinode_t *last_dip = NULL;
2067 short bucket_index;
2068 int offset, last_offset = 0;
2069 int error;
2070
2071 mp = tp->t_mountp;
2072 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2073
2074 /*
2075 * Get the agi buffer first. It ensures lock ordering
2076 * on the list.
2077 */
2078 error = xfs_read_agi(mp, tp, agno, &agibp);
2079 if (error)
2080 return error;
2081
2082 agi = XFS_BUF_TO_AGI(agibp);
2083
2084 /*
2085 * Get the index into the agi hash table for the
2086 * list this inode will go on.
2087 */
2088 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2089 ASSERT(agino != 0);
2090 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2091 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2092 ASSERT(agi->agi_unlinked[bucket_index]);
2093
2094 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2095 /*
2096 * We're at the head of the list. Get the inode's on-disk
2097 * buffer to see if there is anyone after us on the list.
2098 * Only modify our next pointer if it is not already NULLAGINO.
2099 * This saves us the overhead of dealing with the buffer when
2100 * there is no need to change it.
2101 */
2102 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2103 0, 0);
2104 if (error) {
2105 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2106 __func__, error);
2107 return error;
2108 }
2109 next_agino = be32_to_cpu(dip->di_next_unlinked);
2110 ASSERT(next_agino != 0);
2111 if (next_agino != NULLAGINO) {
2112 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2113 offset = ip->i_imap.im_boffset +
2114 offsetof(xfs_dinode_t, di_next_unlinked);
2115
2116 /* need to recalc the inode CRC if appropriate */
2117 xfs_dinode_calc_crc(mp, dip);
2118
2119 xfs_trans_inode_buf(tp, ibp);
2120 xfs_trans_log_buf(tp, ibp, offset,
2121 (offset + sizeof(xfs_agino_t) - 1));
2122 xfs_inobp_check(mp, ibp);
2123 } else {
2124 xfs_trans_brelse(tp, ibp);
2125 }
2126 /*
2127 * Point the bucket head pointer at the next inode.
2128 */
2129 ASSERT(next_agino != 0);
2130 ASSERT(next_agino != agino);
2131 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2132 offset = offsetof(xfs_agi_t, agi_unlinked) +
2133 (sizeof(xfs_agino_t) * bucket_index);
2134 xfs_trans_log_buf(tp, agibp, offset,
2135 (offset + sizeof(xfs_agino_t) - 1));
2136 } else {
2137 /*
2138 * We need to search the list for the inode being freed.
2139 */
2140 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2141 last_ibp = NULL;
2142 while (next_agino != agino) {
2143 struct xfs_imap imap;
2144
2145 if (last_ibp)
2146 xfs_trans_brelse(tp, last_ibp);
2147
2148 imap.im_blkno = 0;
2149 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2150
2151 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2152 if (error) {
2153 xfs_warn(mp,
2154 "%s: xfs_imap returned error %d.",
2155 __func__, error);
2156 return error;
2157 }
2158
2159 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2160 &last_ibp, 0, 0);
2161 if (error) {
2162 xfs_warn(mp,
2163 "%s: xfs_imap_to_bp returned error %d.",
2164 __func__, error);
2165 return error;
2166 }
2167
2168 last_offset = imap.im_boffset;
2169 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2170 ASSERT(next_agino != NULLAGINO);
2171 ASSERT(next_agino != 0);
2172 }
2173
2174 /*
2175 * Now last_ibp points to the buffer previous to us on the
2176 * unlinked list. Pull us from the list.
2177 */
2178 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2179 0, 0);
2180 if (error) {
2181 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2182 __func__, error);
2183 return error;
2184 }
2185 next_agino = be32_to_cpu(dip->di_next_unlinked);
2186 ASSERT(next_agino != 0);
2187 ASSERT(next_agino != agino);
2188 if (next_agino != NULLAGINO) {
2189 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2190 offset = ip->i_imap.im_boffset +
2191 offsetof(xfs_dinode_t, di_next_unlinked);
2192
2193 /* need to recalc the inode CRC if appropriate */
2194 xfs_dinode_calc_crc(mp, dip);
2195
2196 xfs_trans_inode_buf(tp, ibp);
2197 xfs_trans_log_buf(tp, ibp, offset,
2198 (offset + sizeof(xfs_agino_t) - 1));
2199 xfs_inobp_check(mp, ibp);
2200 } else {
2201 xfs_trans_brelse(tp, ibp);
2202 }
2203 /*
2204 * Point the previous inode on the list to the next inode.
2205 */
2206 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2207 ASSERT(next_agino != 0);
2208 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2209
2210 /* need to recalc the inode CRC if appropriate */
2211 xfs_dinode_calc_crc(mp, last_dip);
2212
2213 xfs_trans_inode_buf(tp, last_ibp);
2214 xfs_trans_log_buf(tp, last_ibp, offset,
2215 (offset + sizeof(xfs_agino_t) - 1));
2216 xfs_inobp_check(mp, last_ibp);
2217 }
2218 return 0;
2219 }
2220
2221 /*
2222 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2223 * inodes that are in memory - they all must be marked stale and attached to
2224 * the cluster buffer.
2225 */
2226 STATIC int
2227 xfs_ifree_cluster(
2228 xfs_inode_t *free_ip,
2229 xfs_trans_t *tp,
2230 struct xfs_icluster *xic)
2231 {
2232 xfs_mount_t *mp = free_ip->i_mount;
2233 int blks_per_cluster;
2234 int inodes_per_cluster;
2235 int nbufs;
2236 int i, j;
2237 int ioffset;
2238 xfs_daddr_t blkno;
2239 xfs_buf_t *bp;
2240 xfs_inode_t *ip;
2241 xfs_inode_log_item_t *iip;
2242 xfs_log_item_t *lip;
2243 struct xfs_perag *pag;
2244 xfs_ino_t inum;
2245
2246 inum = xic->first_ino;
2247 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2248 blks_per_cluster = xfs_icluster_size_fsb(mp);
2249 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2250 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2251
2252 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2253 /*
2254 * The allocation bitmap tells us which inodes of the chunk were
2255 * physically allocated. Skip the cluster if an inode falls into
2256 * a sparse region.
2257 */
2258 ioffset = inum - xic->first_ino;
2259 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2260 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2261 continue;
2262 }
2263
2264 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2265 XFS_INO_TO_AGBNO(mp, inum));
2266
2267 /*
2268 * We obtain and lock the backing buffer first in the process
2269 * here, as we have to ensure that any dirty inode that we
2270 * can't get the flush lock on is attached to the buffer.
2271 * If we scan the in-memory inodes first, then buffer IO can
2272 * complete before we get a lock on it, and hence we may fail
2273 * to mark all the active inodes on the buffer stale.
2274 */
2275 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2276 mp->m_bsize * blks_per_cluster,
2277 XBF_UNMAPPED);
2278
2279 if (!bp)
2280 return -ENOMEM;
2281
2282 /*
2283 * This buffer may not have been correctly initialised as we
2284 * didn't read it from disk. That's not important because we are
2285 * only using to mark the buffer as stale in the log, and to
2286 * attach stale cached inodes on it. That means it will never be
2287 * dispatched for IO. If it is, we want to know about it, and we
2288 * want it to fail. We can acheive this by adding a write
2289 * verifier to the buffer.
2290 */
2291 bp->b_ops = &xfs_inode_buf_ops;
2292
2293 /*
2294 * Walk the inodes already attached to the buffer and mark them
2295 * stale. These will all have the flush locks held, so an
2296 * in-memory inode walk can't lock them. By marking them all
2297 * stale first, we will not attempt to lock them in the loop
2298 * below as the XFS_ISTALE flag will be set.
2299 */
2300 lip = bp->b_fspriv;
2301 while (lip) {
2302 if (lip->li_type == XFS_LI_INODE) {
2303 iip = (xfs_inode_log_item_t *)lip;
2304 ASSERT(iip->ili_logged == 1);
2305 lip->li_cb = xfs_istale_done;
2306 xfs_trans_ail_copy_lsn(mp->m_ail,
2307 &iip->ili_flush_lsn,
2308 &iip->ili_item.li_lsn);
2309 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2310 }
2311 lip = lip->li_bio_list;
2312 }
2313
2314
2315 /*
2316 * For each inode in memory attempt to add it to the inode
2317 * buffer and set it up for being staled on buffer IO
2318 * completion. This is safe as we've locked out tail pushing
2319 * and flushing by locking the buffer.
2320 *
2321 * We have already marked every inode that was part of a
2322 * transaction stale above, which means there is no point in
2323 * even trying to lock them.
2324 */
2325 for (i = 0; i < inodes_per_cluster; i++) {
2326 retry:
2327 rcu_read_lock();
2328 ip = radix_tree_lookup(&pag->pag_ici_root,
2329 XFS_INO_TO_AGINO(mp, (inum + i)));
2330
2331 /* Inode not in memory, nothing to do */
2332 if (!ip) {
2333 rcu_read_unlock();
2334 continue;
2335 }
2336
2337 /*
2338 * because this is an RCU protected lookup, we could
2339 * find a recently freed or even reallocated inode
2340 * during the lookup. We need to check under the
2341 * i_flags_lock for a valid inode here. Skip it if it
2342 * is not valid, the wrong inode or stale.
2343 */
2344 spin_lock(&ip->i_flags_lock);
2345 if (ip->i_ino != inum + i ||
2346 __xfs_iflags_test(ip, XFS_ISTALE)) {
2347 spin_unlock(&ip->i_flags_lock);
2348 rcu_read_unlock();
2349 continue;
2350 }
2351 spin_unlock(&ip->i_flags_lock);
2352
2353 /*
2354 * Don't try to lock/unlock the current inode, but we
2355 * _cannot_ skip the other inodes that we did not find
2356 * in the list attached to the buffer and are not
2357 * already marked stale. If we can't lock it, back off
2358 * and retry.
2359 */
2360 if (ip != free_ip &&
2361 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2362 rcu_read_unlock();
2363 delay(1);
2364 goto retry;
2365 }
2366 rcu_read_unlock();
2367
2368 xfs_iflock(ip);
2369 xfs_iflags_set(ip, XFS_ISTALE);
2370
2371 /*
2372 * we don't need to attach clean inodes or those only
2373 * with unlogged changes (which we throw away, anyway).
2374 */
2375 iip = ip->i_itemp;
2376 if (!iip || xfs_inode_clean(ip)) {
2377 ASSERT(ip != free_ip);
2378 xfs_ifunlock(ip);
2379 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2380 continue;
2381 }
2382
2383 iip->ili_last_fields = iip->ili_fields;
2384 iip->ili_fields = 0;
2385 iip->ili_fsync_fields = 0;
2386 iip->ili_logged = 1;
2387 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2388 &iip->ili_item.li_lsn);
2389
2390 xfs_buf_attach_iodone(bp, xfs_istale_done,
2391 &iip->ili_item);
2392
2393 if (ip != free_ip)
2394 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2395 }
2396
2397 xfs_trans_stale_inode_buf(tp, bp);
2398 xfs_trans_binval(tp, bp);
2399 }
2400
2401 xfs_perag_put(pag);
2402 return 0;
2403 }
2404
2405 /*
2406 * This is called to return an inode to the inode free list.
2407 * The inode should already be truncated to 0 length and have
2408 * no pages associated with it. This routine also assumes that
2409 * the inode is already a part of the transaction.
2410 *
2411 * The on-disk copy of the inode will have been added to the list
2412 * of unlinked inodes in the AGI. We need to remove the inode from
2413 * that list atomically with respect to freeing it here.
2414 */
2415 int
2416 xfs_ifree(
2417 xfs_trans_t *tp,
2418 xfs_inode_t *ip,
2419 struct xfs_defer_ops *dfops)
2420 {
2421 int error;
2422 struct xfs_icluster xic = { 0 };
2423
2424 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2425 ASSERT(VFS_I(ip)->i_nlink == 0);
2426 ASSERT(ip->i_d.di_nextents == 0);
2427 ASSERT(ip->i_d.di_anextents == 0);
2428 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2429 ASSERT(ip->i_d.di_nblocks == 0);
2430
2431 /*
2432 * Pull the on-disk inode from the AGI unlinked list.
2433 */
2434 error = xfs_iunlink_remove(tp, ip);
2435 if (error)
2436 return error;
2437
2438 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2439 if (error)
2440 return error;
2441
2442 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2443 ip->i_d.di_flags = 0;
2444 ip->i_d.di_dmevmask = 0;
2445 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2446 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2447 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2448 /*
2449 * Bump the generation count so no one will be confused
2450 * by reincarnations of this inode.
2451 */
2452 VFS_I(ip)->i_generation++;
2453 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2454
2455 if (xic.deleted)
2456 error = xfs_ifree_cluster(ip, tp, &xic);
2457
2458 return error;
2459 }
2460
2461 /*
2462 * This is called to unpin an inode. The caller must have the inode locked
2463 * in at least shared mode so that the buffer cannot be subsequently pinned
2464 * once someone is waiting for it to be unpinned.
2465 */
2466 static void
2467 xfs_iunpin(
2468 struct xfs_inode *ip)
2469 {
2470 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2471
2472 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2473
2474 /* Give the log a push to start the unpinning I/O */
2475 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2476
2477 }
2478
2479 static void
2480 __xfs_iunpin_wait(
2481 struct xfs_inode *ip)
2482 {
2483 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2484 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2485
2486 xfs_iunpin(ip);
2487
2488 do {
2489 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2490 if (xfs_ipincount(ip))
2491 io_schedule();
2492 } while (xfs_ipincount(ip));
2493 finish_wait(wq, &wait.wq_entry);
2494 }
2495
2496 void
2497 xfs_iunpin_wait(
2498 struct xfs_inode *ip)
2499 {
2500 if (xfs_ipincount(ip))
2501 __xfs_iunpin_wait(ip);
2502 }
2503
2504 /*
2505 * Removing an inode from the namespace involves removing the directory entry
2506 * and dropping the link count on the inode. Removing the directory entry can
2507 * result in locking an AGF (directory blocks were freed) and removing a link
2508 * count can result in placing the inode on an unlinked list which results in
2509 * locking an AGI.
2510 *
2511 * The big problem here is that we have an ordering constraint on AGF and AGI
2512 * locking - inode allocation locks the AGI, then can allocate a new extent for
2513 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2514 * removes the inode from the unlinked list, requiring that we lock the AGI
2515 * first, and then freeing the inode can result in an inode chunk being freed
2516 * and hence freeing disk space requiring that we lock an AGF.
2517 *
2518 * Hence the ordering that is imposed by other parts of the code is AGI before
2519 * AGF. This means we cannot remove the directory entry before we drop the inode
2520 * reference count and put it on the unlinked list as this results in a lock
2521 * order of AGF then AGI, and this can deadlock against inode allocation and
2522 * freeing. Therefore we must drop the link counts before we remove the
2523 * directory entry.
2524 *
2525 * This is still safe from a transactional point of view - it is not until we
2526 * get to xfs_defer_finish() that we have the possibility of multiple
2527 * transactions in this operation. Hence as long as we remove the directory
2528 * entry and drop the link count in the first transaction of the remove
2529 * operation, there are no transactional constraints on the ordering here.
2530 */
2531 int
2532 xfs_remove(
2533 xfs_inode_t *dp,
2534 struct xfs_name *name,
2535 xfs_inode_t *ip)
2536 {
2537 xfs_mount_t *mp = dp->i_mount;
2538 xfs_trans_t *tp = NULL;
2539 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2540 int error = 0;
2541 struct xfs_defer_ops dfops;
2542 xfs_fsblock_t first_block;
2543 uint resblks;
2544
2545 trace_xfs_remove(dp, name);
2546
2547 if (XFS_FORCED_SHUTDOWN(mp))
2548 return -EIO;
2549
2550 error = xfs_qm_dqattach(dp, 0);
2551 if (error)
2552 goto std_return;
2553
2554 error = xfs_qm_dqattach(ip, 0);
2555 if (error)
2556 goto std_return;
2557
2558 /*
2559 * We try to get the real space reservation first,
2560 * allowing for directory btree deletion(s) implying
2561 * possible bmap insert(s). If we can't get the space
2562 * reservation then we use 0 instead, and avoid the bmap
2563 * btree insert(s) in the directory code by, if the bmap
2564 * insert tries to happen, instead trimming the LAST
2565 * block from the directory.
2566 */
2567 resblks = XFS_REMOVE_SPACE_RES(mp);
2568 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2569 if (error == -ENOSPC) {
2570 resblks = 0;
2571 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2572 &tp);
2573 }
2574 if (error) {
2575 ASSERT(error != -ENOSPC);
2576 goto std_return;
2577 }
2578
2579 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2580
2581 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2582 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2583
2584 /*
2585 * If we're removing a directory perform some additional validation.
2586 */
2587 if (is_dir) {
2588 ASSERT(VFS_I(ip)->i_nlink >= 2);
2589 if (VFS_I(ip)->i_nlink != 2) {
2590 error = -ENOTEMPTY;
2591 goto out_trans_cancel;
2592 }
2593 if (!xfs_dir_isempty(ip)) {
2594 error = -ENOTEMPTY;
2595 goto out_trans_cancel;
2596 }
2597
2598 /* Drop the link from ip's "..". */
2599 error = xfs_droplink(tp, dp);
2600 if (error)
2601 goto out_trans_cancel;
2602
2603 /* Drop the "." link from ip to self. */
2604 error = xfs_droplink(tp, ip);
2605 if (error)
2606 goto out_trans_cancel;
2607 } else {
2608 /*
2609 * When removing a non-directory we need to log the parent
2610 * inode here. For a directory this is done implicitly
2611 * by the xfs_droplink call for the ".." entry.
2612 */
2613 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2614 }
2615 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2616
2617 /* Drop the link from dp to ip. */
2618 error = xfs_droplink(tp, ip);
2619 if (error)
2620 goto out_trans_cancel;
2621
2622 xfs_defer_init(&dfops, &first_block);
2623 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2624 &first_block, &dfops, resblks);
2625 if (error) {
2626 ASSERT(error != -ENOENT);
2627 goto out_bmap_cancel;
2628 }
2629
2630 /*
2631 * If this is a synchronous mount, make sure that the
2632 * remove transaction goes to disk before returning to
2633 * the user.
2634 */
2635 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2636 xfs_trans_set_sync(tp);
2637
2638 error = xfs_defer_finish(&tp, &dfops, NULL);
2639 if (error)
2640 goto out_bmap_cancel;
2641
2642 error = xfs_trans_commit(tp);
2643 if (error)
2644 goto std_return;
2645
2646 if (is_dir && xfs_inode_is_filestream(ip))
2647 xfs_filestream_deassociate(ip);
2648
2649 return 0;
2650
2651 out_bmap_cancel:
2652 xfs_defer_cancel(&dfops);
2653 out_trans_cancel:
2654 xfs_trans_cancel(tp);
2655 std_return:
2656 return error;
2657 }
2658
2659 /*
2660 * Enter all inodes for a rename transaction into a sorted array.
2661 */
2662 #define __XFS_SORT_INODES 5
2663 STATIC void
2664 xfs_sort_for_rename(
2665 struct xfs_inode *dp1, /* in: old (source) directory inode */
2666 struct xfs_inode *dp2, /* in: new (target) directory inode */
2667 struct xfs_inode *ip1, /* in: inode of old entry */
2668 struct xfs_inode *ip2, /* in: inode of new entry */
2669 struct xfs_inode *wip, /* in: whiteout inode */
2670 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2671 int *num_inodes) /* in/out: inodes in array */
2672 {
2673 int i, j;
2674
2675 ASSERT(*num_inodes == __XFS_SORT_INODES);
2676 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2677
2678 /*
2679 * i_tab contains a list of pointers to inodes. We initialize
2680 * the table here & we'll sort it. We will then use it to
2681 * order the acquisition of the inode locks.
2682 *
2683 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2684 */
2685 i = 0;
2686 i_tab[i++] = dp1;
2687 i_tab[i++] = dp2;
2688 i_tab[i++] = ip1;
2689 if (ip2)
2690 i_tab[i++] = ip2;
2691 if (wip)
2692 i_tab[i++] = wip;
2693 *num_inodes = i;
2694
2695 /*
2696 * Sort the elements via bubble sort. (Remember, there are at
2697 * most 5 elements to sort, so this is adequate.)
2698 */
2699 for (i = 0; i < *num_inodes; i++) {
2700 for (j = 1; j < *num_inodes; j++) {
2701 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2702 struct xfs_inode *temp = i_tab[j];
2703 i_tab[j] = i_tab[j-1];
2704 i_tab[j-1] = temp;
2705 }
2706 }
2707 }
2708 }
2709
2710 static int
2711 xfs_finish_rename(
2712 struct xfs_trans *tp,
2713 struct xfs_defer_ops *dfops)
2714 {
2715 int error;
2716
2717 /*
2718 * If this is a synchronous mount, make sure that the rename transaction
2719 * goes to disk before returning to the user.
2720 */
2721 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2722 xfs_trans_set_sync(tp);
2723
2724 error = xfs_defer_finish(&tp, dfops, NULL);
2725 if (error) {
2726 xfs_defer_cancel(dfops);
2727 xfs_trans_cancel(tp);
2728 return error;
2729 }
2730
2731 return xfs_trans_commit(tp);
2732 }
2733
2734 /*
2735 * xfs_cross_rename()
2736 *
2737 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2738 */
2739 STATIC int
2740 xfs_cross_rename(
2741 struct xfs_trans *tp,
2742 struct xfs_inode *dp1,
2743 struct xfs_name *name1,
2744 struct xfs_inode *ip1,
2745 struct xfs_inode *dp2,
2746 struct xfs_name *name2,
2747 struct xfs_inode *ip2,
2748 struct xfs_defer_ops *dfops,
2749 xfs_fsblock_t *first_block,
2750 int spaceres)
2751 {
2752 int error = 0;
2753 int ip1_flags = 0;
2754 int ip2_flags = 0;
2755 int dp2_flags = 0;
2756
2757 /* Swap inode number for dirent in first parent */
2758 error = xfs_dir_replace(tp, dp1, name1,
2759 ip2->i_ino,
2760 first_block, dfops, spaceres);
2761 if (error)
2762 goto out_trans_abort;
2763
2764 /* Swap inode number for dirent in second parent */
2765 error = xfs_dir_replace(tp, dp2, name2,
2766 ip1->i_ino,
2767 first_block, dfops, spaceres);
2768 if (error)
2769 goto out_trans_abort;
2770
2771 /*
2772 * If we're renaming one or more directories across different parents,
2773 * update the respective ".." entries (and link counts) to match the new
2774 * parents.
2775 */
2776 if (dp1 != dp2) {
2777 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2778
2779 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2780 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2781 dp1->i_ino, first_block,
2782 dfops, spaceres);
2783 if (error)
2784 goto out_trans_abort;
2785
2786 /* transfer ip2 ".." reference to dp1 */
2787 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2788 error = xfs_droplink(tp, dp2);
2789 if (error)
2790 goto out_trans_abort;
2791 error = xfs_bumplink(tp, dp1);
2792 if (error)
2793 goto out_trans_abort;
2794 }
2795
2796 /*
2797 * Although ip1 isn't changed here, userspace needs
2798 * to be warned about the change, so that applications
2799 * relying on it (like backup ones), will properly
2800 * notify the change
2801 */
2802 ip1_flags |= XFS_ICHGTIME_CHG;
2803 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2804 }
2805
2806 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2807 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2808 dp2->i_ino, first_block,
2809 dfops, spaceres);
2810 if (error)
2811 goto out_trans_abort;
2812
2813 /* transfer ip1 ".." reference to dp2 */
2814 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2815 error = xfs_droplink(tp, dp1);
2816 if (error)
2817 goto out_trans_abort;
2818 error = xfs_bumplink(tp, dp2);
2819 if (error)
2820 goto out_trans_abort;
2821 }
2822
2823 /*
2824 * Although ip2 isn't changed here, userspace needs
2825 * to be warned about the change, so that applications
2826 * relying on it (like backup ones), will properly
2827 * notify the change
2828 */
2829 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2830 ip2_flags |= XFS_ICHGTIME_CHG;
2831 }
2832 }
2833
2834 if (ip1_flags) {
2835 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2836 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2837 }
2838 if (ip2_flags) {
2839 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2840 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2841 }
2842 if (dp2_flags) {
2843 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2844 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2845 }
2846 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2847 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2848 return xfs_finish_rename(tp, dfops);
2849
2850 out_trans_abort:
2851 xfs_defer_cancel(dfops);
2852 xfs_trans_cancel(tp);
2853 return error;
2854 }
2855
2856 /*
2857 * xfs_rename_alloc_whiteout()
2858 *
2859 * Return a referenced, unlinked, unlocked inode that that can be used as a
2860 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2861 * crash between allocating the inode and linking it into the rename transaction
2862 * recovery will free the inode and we won't leak it.
2863 */
2864 static int
2865 xfs_rename_alloc_whiteout(
2866 struct xfs_inode *dp,
2867 struct xfs_inode **wip)
2868 {
2869 struct xfs_inode *tmpfile;
2870 int error;
2871
2872 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2873 if (error)
2874 return error;
2875
2876 /*
2877 * Prepare the tmpfile inode as if it were created through the VFS.
2878 * Otherwise, the link increment paths will complain about nlink 0->1.
2879 * Drop the link count as done by d_tmpfile(), complete the inode setup
2880 * and flag it as linkable.
2881 */
2882 drop_nlink(VFS_I(tmpfile));
2883 xfs_setup_iops(tmpfile);
2884 xfs_finish_inode_setup(tmpfile);
2885 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2886
2887 *wip = tmpfile;
2888 return 0;
2889 }
2890
2891 /*
2892 * xfs_rename
2893 */
2894 int
2895 xfs_rename(
2896 struct xfs_inode *src_dp,
2897 struct xfs_name *src_name,
2898 struct xfs_inode *src_ip,
2899 struct xfs_inode *target_dp,
2900 struct xfs_name *target_name,
2901 struct xfs_inode *target_ip,
2902 unsigned int flags)
2903 {
2904 struct xfs_mount *mp = src_dp->i_mount;
2905 struct xfs_trans *tp;
2906 struct xfs_defer_ops dfops;
2907 xfs_fsblock_t first_block;
2908 struct xfs_inode *wip = NULL; /* whiteout inode */
2909 struct xfs_inode *inodes[__XFS_SORT_INODES];
2910 int num_inodes = __XFS_SORT_INODES;
2911 bool new_parent = (src_dp != target_dp);
2912 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2913 int spaceres;
2914 int error;
2915
2916 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2917
2918 if ((flags & RENAME_EXCHANGE) && !target_ip)
2919 return -EINVAL;
2920
2921 /*
2922 * If we are doing a whiteout operation, allocate the whiteout inode
2923 * we will be placing at the target and ensure the type is set
2924 * appropriately.
2925 */
2926 if (flags & RENAME_WHITEOUT) {
2927 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2928 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2929 if (error)
2930 return error;
2931
2932 /* setup target dirent info as whiteout */
2933 src_name->type = XFS_DIR3_FT_CHRDEV;
2934 }
2935
2936 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2937 inodes, &num_inodes);
2938
2939 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2940 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2941 if (error == -ENOSPC) {
2942 spaceres = 0;
2943 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2944 &tp);
2945 }
2946 if (error)
2947 goto out_release_wip;
2948
2949 /*
2950 * Attach the dquots to the inodes
2951 */
2952 error = xfs_qm_vop_rename_dqattach(inodes);
2953 if (error)
2954 goto out_trans_cancel;
2955
2956 /*
2957 * Lock all the participating inodes. Depending upon whether
2958 * the target_name exists in the target directory, and
2959 * whether the target directory is the same as the source
2960 * directory, we can lock from 2 to 4 inodes.
2961 */
2962 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2963
2964 /*
2965 * Join all the inodes to the transaction. From this point on,
2966 * we can rely on either trans_commit or trans_cancel to unlock
2967 * them.
2968 */
2969 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2970 if (new_parent)
2971 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2972 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2973 if (target_ip)
2974 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2975 if (wip)
2976 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2977
2978 /*
2979 * If we are using project inheritance, we only allow renames
2980 * into our tree when the project IDs are the same; else the
2981 * tree quota mechanism would be circumvented.
2982 */
2983 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2984 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2985 error = -EXDEV;
2986 goto out_trans_cancel;
2987 }
2988
2989 xfs_defer_init(&dfops, &first_block);
2990
2991 /* RENAME_EXCHANGE is unique from here on. */
2992 if (flags & RENAME_EXCHANGE)
2993 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2994 target_dp, target_name, target_ip,
2995 &dfops, &first_block, spaceres);
2996
2997 /*
2998 * Set up the target.
2999 */
3000 if (target_ip == NULL) {
3001 /*
3002 * If there's no space reservation, check the entry will
3003 * fit before actually inserting it.
3004 */
3005 if (!spaceres) {
3006 error = xfs_dir_canenter(tp, target_dp, target_name);
3007 if (error)
3008 goto out_trans_cancel;
3009 }
3010 /*
3011 * If target does not exist and the rename crosses
3012 * directories, adjust the target directory link count
3013 * to account for the ".." reference from the new entry.
3014 */
3015 error = xfs_dir_createname(tp, target_dp, target_name,
3016 src_ip->i_ino, &first_block,
3017 &dfops, spaceres);
3018 if (error)
3019 goto out_bmap_cancel;
3020
3021 xfs_trans_ichgtime(tp, target_dp,
3022 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3023
3024 if (new_parent && src_is_directory) {
3025 error = xfs_bumplink(tp, target_dp);
3026 if (error)
3027 goto out_bmap_cancel;
3028 }
3029 } else { /* target_ip != NULL */
3030 /*
3031 * If target exists and it's a directory, check that both
3032 * target and source are directories and that target can be
3033 * destroyed, or that neither is a directory.
3034 */
3035 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3036 /*
3037 * Make sure target dir is empty.
3038 */
3039 if (!(xfs_dir_isempty(target_ip)) ||
3040 (VFS_I(target_ip)->i_nlink > 2)) {
3041 error = -EEXIST;
3042 goto out_trans_cancel;
3043 }
3044 }
3045
3046 /*
3047 * Link the source inode under the target name.
3048 * If the source inode is a directory and we are moving
3049 * it across directories, its ".." entry will be
3050 * inconsistent until we replace that down below.
3051 *
3052 * In case there is already an entry with the same
3053 * name at the destination directory, remove it first.
3054 */
3055 error = xfs_dir_replace(tp, target_dp, target_name,
3056 src_ip->i_ino,
3057 &first_block, &dfops, spaceres);
3058 if (error)
3059 goto out_bmap_cancel;
3060
3061 xfs_trans_ichgtime(tp, target_dp,
3062 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3063
3064 /*
3065 * Decrement the link count on the target since the target
3066 * dir no longer points to it.
3067 */
3068 error = xfs_droplink(tp, target_ip);
3069 if (error)
3070 goto out_bmap_cancel;
3071
3072 if (src_is_directory) {
3073 /*
3074 * Drop the link from the old "." entry.
3075 */
3076 error = xfs_droplink(tp, target_ip);
3077 if (error)
3078 goto out_bmap_cancel;
3079 }
3080 } /* target_ip != NULL */
3081
3082 /*
3083 * Remove the source.
3084 */
3085 if (new_parent && src_is_directory) {
3086 /*
3087 * Rewrite the ".." entry to point to the new
3088 * directory.
3089 */
3090 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3091 target_dp->i_ino,
3092 &first_block, &dfops, spaceres);
3093 ASSERT(error != -EEXIST);
3094 if (error)
3095 goto out_bmap_cancel;
3096 }
3097
3098 /*
3099 * We always want to hit the ctime on the source inode.
3100 *
3101 * This isn't strictly required by the standards since the source
3102 * inode isn't really being changed, but old unix file systems did
3103 * it and some incremental backup programs won't work without it.
3104 */
3105 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3106 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3107
3108 /*
3109 * Adjust the link count on src_dp. This is necessary when
3110 * renaming a directory, either within one parent when
3111 * the target existed, or across two parent directories.
3112 */
3113 if (src_is_directory && (new_parent || target_ip != NULL)) {
3114
3115 /*
3116 * Decrement link count on src_directory since the
3117 * entry that's moved no longer points to it.
3118 */
3119 error = xfs_droplink(tp, src_dp);
3120 if (error)
3121 goto out_bmap_cancel;
3122 }
3123
3124 /*
3125 * For whiteouts, we only need to update the source dirent with the
3126 * inode number of the whiteout inode rather than removing it
3127 * altogether.
3128 */
3129 if (wip) {
3130 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3131 &first_block, &dfops, spaceres);
3132 } else
3133 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3134 &first_block, &dfops, spaceres);
3135 if (error)
3136 goto out_bmap_cancel;
3137
3138 /*
3139 * For whiteouts, we need to bump the link count on the whiteout inode.
3140 * This means that failures all the way up to this point leave the inode
3141 * on the unlinked list and so cleanup is a simple matter of dropping
3142 * the remaining reference to it. If we fail here after bumping the link
3143 * count, we're shutting down the filesystem so we'll never see the
3144 * intermediate state on disk.
3145 */
3146 if (wip) {
3147 ASSERT(VFS_I(wip)->i_nlink == 0);
3148 error = xfs_bumplink(tp, wip);
3149 if (error)
3150 goto out_bmap_cancel;
3151 error = xfs_iunlink_remove(tp, wip);
3152 if (error)
3153 goto out_bmap_cancel;
3154 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3155
3156 /*
3157 * Now we have a real link, clear the "I'm a tmpfile" state
3158 * flag from the inode so it doesn't accidentally get misused in
3159 * future.
3160 */
3161 VFS_I(wip)->i_state &= ~I_LINKABLE;
3162 }
3163
3164 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3165 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3166 if (new_parent)
3167 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3168
3169 error = xfs_finish_rename(tp, &dfops);
3170 if (wip)
3171 IRELE(wip);
3172 return error;
3173
3174 out_bmap_cancel:
3175 xfs_defer_cancel(&dfops);
3176 out_trans_cancel:
3177 xfs_trans_cancel(tp);
3178 out_release_wip:
3179 if (wip)
3180 IRELE(wip);
3181 return error;
3182 }
3183
3184 STATIC int
3185 xfs_iflush_cluster(
3186 struct xfs_inode *ip,
3187 struct xfs_buf *bp)
3188 {
3189 struct xfs_mount *mp = ip->i_mount;
3190 struct xfs_perag *pag;
3191 unsigned long first_index, mask;
3192 unsigned long inodes_per_cluster;
3193 int cilist_size;
3194 struct xfs_inode **cilist;
3195 struct xfs_inode *cip;
3196 int nr_found;
3197 int clcount = 0;
3198 int bufwasdelwri;
3199 int i;
3200
3201 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3202
3203 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3204 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3205 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3206 if (!cilist)
3207 goto out_put;
3208
3209 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3210 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3211 rcu_read_lock();
3212 /* really need a gang lookup range call here */
3213 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3214 first_index, inodes_per_cluster);
3215 if (nr_found == 0)
3216 goto out_free;
3217
3218 for (i = 0; i < nr_found; i++) {
3219 cip = cilist[i];
3220 if (cip == ip)
3221 continue;
3222
3223 /*
3224 * because this is an RCU protected lookup, we could find a
3225 * recently freed or even reallocated inode during the lookup.
3226 * We need to check under the i_flags_lock for a valid inode
3227 * here. Skip it if it is not valid or the wrong inode.
3228 */
3229 spin_lock(&cip->i_flags_lock);
3230 if (!cip->i_ino ||
3231 __xfs_iflags_test(cip, XFS_ISTALE)) {
3232 spin_unlock(&cip->i_flags_lock);
3233 continue;
3234 }
3235
3236 /*
3237 * Once we fall off the end of the cluster, no point checking
3238 * any more inodes in the list because they will also all be
3239 * outside the cluster.
3240 */
3241 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3242 spin_unlock(&cip->i_flags_lock);
3243 break;
3244 }
3245 spin_unlock(&cip->i_flags_lock);
3246
3247 /*
3248 * Do an un-protected check to see if the inode is dirty and
3249 * is a candidate for flushing. These checks will be repeated
3250 * later after the appropriate locks are acquired.
3251 */
3252 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3253 continue;
3254
3255 /*
3256 * Try to get locks. If any are unavailable or it is pinned,
3257 * then this inode cannot be flushed and is skipped.
3258 */
3259
3260 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3261 continue;
3262 if (!xfs_iflock_nowait(cip)) {
3263 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3264 continue;
3265 }
3266 if (xfs_ipincount(cip)) {
3267 xfs_ifunlock(cip);
3268 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3269 continue;
3270 }
3271
3272
3273 /*
3274 * Check the inode number again, just to be certain we are not
3275 * racing with freeing in xfs_reclaim_inode(). See the comments
3276 * in that function for more information as to why the initial
3277 * check is not sufficient.
3278 */
3279 if (!cip->i_ino) {
3280 xfs_ifunlock(cip);
3281 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3282 continue;
3283 }
3284
3285 /*
3286 * arriving here means that this inode can be flushed. First
3287 * re-check that it's dirty before flushing.
3288 */
3289 if (!xfs_inode_clean(cip)) {
3290 int error;
3291 error = xfs_iflush_int(cip, bp);
3292 if (error) {
3293 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3294 goto cluster_corrupt_out;
3295 }
3296 clcount++;
3297 } else {
3298 xfs_ifunlock(cip);
3299 }
3300 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3301 }
3302
3303 if (clcount) {
3304 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3305 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3306 }
3307
3308 out_free:
3309 rcu_read_unlock();
3310 kmem_free(cilist);
3311 out_put:
3312 xfs_perag_put(pag);
3313 return 0;
3314
3315
3316 cluster_corrupt_out:
3317 /*
3318 * Corruption detected in the clustering loop. Invalidate the
3319 * inode buffer and shut down the filesystem.
3320 */
3321 rcu_read_unlock();
3322 /*
3323 * Clean up the buffer. If it was delwri, just release it --
3324 * brelse can handle it with no problems. If not, shut down the
3325 * filesystem before releasing the buffer.
3326 */
3327 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3328 if (bufwasdelwri)
3329 xfs_buf_relse(bp);
3330
3331 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3332
3333 if (!bufwasdelwri) {
3334 /*
3335 * Just like incore_relse: if we have b_iodone functions,
3336 * mark the buffer as an error and call them. Otherwise
3337 * mark it as stale and brelse.
3338 */
3339 if (bp->b_iodone) {
3340 bp->b_flags &= ~XBF_DONE;
3341 xfs_buf_stale(bp);
3342 xfs_buf_ioerror(bp, -EIO);
3343 xfs_buf_ioend(bp);
3344 } else {
3345 xfs_buf_stale(bp);
3346 xfs_buf_relse(bp);
3347 }
3348 }
3349
3350 /*
3351 * Unlocks the flush lock
3352 */
3353 xfs_iflush_abort(cip, false);
3354 kmem_free(cilist);
3355 xfs_perag_put(pag);
3356 return -EFSCORRUPTED;
3357 }
3358
3359 /*
3360 * Flush dirty inode metadata into the backing buffer.
3361 *
3362 * The caller must have the inode lock and the inode flush lock held. The
3363 * inode lock will still be held upon return to the caller, and the inode
3364 * flush lock will be released after the inode has reached the disk.
3365 *
3366 * The caller must write out the buffer returned in *bpp and release it.
3367 */
3368 int
3369 xfs_iflush(
3370 struct xfs_inode *ip,
3371 struct xfs_buf **bpp)
3372 {
3373 struct xfs_mount *mp = ip->i_mount;
3374 struct xfs_buf *bp = NULL;
3375 struct xfs_dinode *dip;
3376 int error;
3377
3378 XFS_STATS_INC(mp, xs_iflush_count);
3379
3380 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3381 ASSERT(xfs_isiflocked(ip));
3382 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3383 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3384
3385 *bpp = NULL;
3386
3387 xfs_iunpin_wait(ip);
3388
3389 /*
3390 * For stale inodes we cannot rely on the backing buffer remaining
3391 * stale in cache for the remaining life of the stale inode and so
3392 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3393 * inodes below. We have to check this after ensuring the inode is
3394 * unpinned so that it is safe to reclaim the stale inode after the
3395 * flush call.
3396 */
3397 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3398 xfs_ifunlock(ip);
3399 return 0;
3400 }
3401
3402 /*
3403 * This may have been unpinned because the filesystem is shutting
3404 * down forcibly. If that's the case we must not write this inode
3405 * to disk, because the log record didn't make it to disk.
3406 *
3407 * We also have to remove the log item from the AIL in this case,
3408 * as we wait for an empty AIL as part of the unmount process.
3409 */
3410 if (XFS_FORCED_SHUTDOWN(mp)) {
3411 error = -EIO;
3412 goto abort_out;
3413 }
3414
3415 /*
3416 * Get the buffer containing the on-disk inode. We are doing a try-lock
3417 * operation here, so we may get an EAGAIN error. In that case, we
3418 * simply want to return with the inode still dirty.
3419 *
3420 * If we get any other error, we effectively have a corruption situation
3421 * and we cannot flush the inode, so we treat it the same as failing
3422 * xfs_iflush_int().
3423 */
3424 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3425 0);
3426 if (error == -EAGAIN) {
3427 xfs_ifunlock(ip);
3428 return error;
3429 }
3430 if (error)
3431 goto corrupt_out;
3432
3433 /*
3434 * First flush out the inode that xfs_iflush was called with.
3435 */
3436 error = xfs_iflush_int(ip, bp);
3437 if (error)
3438 goto corrupt_out;
3439
3440 /*
3441 * If the buffer is pinned then push on the log now so we won't
3442 * get stuck waiting in the write for too long.
3443 */
3444 if (xfs_buf_ispinned(bp))
3445 xfs_log_force(mp, 0);
3446
3447 /*
3448 * inode clustering:
3449 * see if other inodes can be gathered into this write
3450 */
3451 error = xfs_iflush_cluster(ip, bp);
3452 if (error)
3453 goto cluster_corrupt_out;
3454
3455 *bpp = bp;
3456 return 0;
3457
3458 corrupt_out:
3459 if (bp)
3460 xfs_buf_relse(bp);
3461 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3462 cluster_corrupt_out:
3463 error = -EFSCORRUPTED;
3464 abort_out:
3465 /*
3466 * Unlocks the flush lock
3467 */
3468 xfs_iflush_abort(ip, false);
3469 return error;
3470 }
3471
3472 STATIC int
3473 xfs_iflush_int(
3474 struct xfs_inode *ip,
3475 struct xfs_buf *bp)
3476 {
3477 struct xfs_inode_log_item *iip = ip->i_itemp;
3478 struct xfs_dinode *dip;
3479 struct xfs_mount *mp = ip->i_mount;
3480
3481 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3482 ASSERT(xfs_isiflocked(ip));
3483 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3484 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3485 ASSERT(iip != NULL && iip->ili_fields != 0);
3486 ASSERT(ip->i_d.di_version > 1);
3487
3488 /* set *dip = inode's place in the buffer */
3489 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3490
3491 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3492 mp, XFS_ERRTAG_IFLUSH_1)) {
3493 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3494 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3495 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3496 goto corrupt_out;
3497 }
3498 if (S_ISREG(VFS_I(ip)->i_mode)) {
3499 if (XFS_TEST_ERROR(
3500 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3501 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3502 mp, XFS_ERRTAG_IFLUSH_3)) {
3503 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3504 "%s: Bad regular inode %Lu, ptr 0x%p",
3505 __func__, ip->i_ino, ip);
3506 goto corrupt_out;
3507 }
3508 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3509 if (XFS_TEST_ERROR(
3510 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3511 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3512 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3513 mp, XFS_ERRTAG_IFLUSH_4)) {
3514 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3515 "%s: Bad directory inode %Lu, ptr 0x%p",
3516 __func__, ip->i_ino, ip);
3517 goto corrupt_out;
3518 }
3519 }
3520 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3521 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3522 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3523 "%s: detected corrupt incore inode %Lu, "
3524 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3525 __func__, ip->i_ino,
3526 ip->i_d.di_nextents + ip->i_d.di_anextents,
3527 ip->i_d.di_nblocks, ip);
3528 goto corrupt_out;
3529 }
3530 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3531 mp, XFS_ERRTAG_IFLUSH_6)) {
3532 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3533 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3534 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3535 goto corrupt_out;
3536 }
3537
3538 /*
3539 * Inode item log recovery for v2 inodes are dependent on the
3540 * di_flushiter count for correct sequencing. We bump the flush
3541 * iteration count so we can detect flushes which postdate a log record
3542 * during recovery. This is redundant as we now log every change and
3543 * hence this can't happen but we need to still do it to ensure
3544 * backwards compatibility with old kernels that predate logging all
3545 * inode changes.
3546 */
3547 if (ip->i_d.di_version < 3)
3548 ip->i_d.di_flushiter++;
3549
3550 /* Check the inline directory data. */
3551 if (S_ISDIR(VFS_I(ip)->i_mode) &&
3552 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL &&
3553 xfs_dir2_sf_verify(ip))
3554 goto corrupt_out;
3555
3556 /*
3557 * Copy the dirty parts of the inode into the on-disk inode. We always
3558 * copy out the core of the inode, because if the inode is dirty at all
3559 * the core must be.
3560 */
3561 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3562
3563 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3564 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3565 ip->i_d.di_flushiter = 0;
3566
3567 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3568 if (XFS_IFORK_Q(ip))
3569 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3570 xfs_inobp_check(mp, bp);
3571
3572 /*
3573 * We've recorded everything logged in the inode, so we'd like to clear
3574 * the ili_fields bits so we don't log and flush things unnecessarily.
3575 * However, we can't stop logging all this information until the data
3576 * we've copied into the disk buffer is written to disk. If we did we
3577 * might overwrite the copy of the inode in the log with all the data
3578 * after re-logging only part of it, and in the face of a crash we
3579 * wouldn't have all the data we need to recover.
3580 *
3581 * What we do is move the bits to the ili_last_fields field. When
3582 * logging the inode, these bits are moved back to the ili_fields field.
3583 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3584 * know that the information those bits represent is permanently on
3585 * disk. As long as the flush completes before the inode is logged
3586 * again, then both ili_fields and ili_last_fields will be cleared.
3587 *
3588 * We can play with the ili_fields bits here, because the inode lock
3589 * must be held exclusively in order to set bits there and the flush
3590 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3591 * done routine can tell whether or not to look in the AIL. Also, store
3592 * the current LSN of the inode so that we can tell whether the item has
3593 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3594 * need the AIL lock, because it is a 64 bit value that cannot be read
3595 * atomically.
3596 */
3597 iip->ili_last_fields = iip->ili_fields;
3598 iip->ili_fields = 0;
3599 iip->ili_fsync_fields = 0;
3600 iip->ili_logged = 1;
3601
3602 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3603 &iip->ili_item.li_lsn);
3604
3605 /*
3606 * Attach the function xfs_iflush_done to the inode's
3607 * buffer. This will remove the inode from the AIL
3608 * and unlock the inode's flush lock when the inode is
3609 * completely written to disk.
3610 */
3611 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3612
3613 /* generate the checksum. */
3614 xfs_dinode_calc_crc(mp, dip);
3615
3616 ASSERT(bp->b_fspriv != NULL);
3617 ASSERT(bp->b_iodone != NULL);
3618 return 0;
3619
3620 corrupt_out:
3621 return -EFSCORRUPTED;
3622 }