]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_inode.c
Merge tag 'wireless-drivers-for-davem-2018-01-09' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_attr.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_errortag.h"
43 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_cksum.h"
47 #include "xfs_trace.h"
48 #include "xfs_icache.h"
49 #include "xfs_symlink.h"
50 #include "xfs_trans_priv.h"
51 #include "xfs_log.h"
52 #include "xfs_bmap_btree.h"
53 #include "xfs_reflink.h"
54 #include "xfs_dir2_priv.h"
55
56 kmem_zone_t *xfs_inode_zone;
57
58 /*
59 * Used in xfs_itruncate_extents(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62 #define XFS_ITRUNC_MAX_EXTENTS 2
63
64 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
65 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
66 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
67
68 /*
69 * helper function to extract extent size hint from inode
70 */
71 xfs_extlen_t
72 xfs_get_extsz_hint(
73 struct xfs_inode *ip)
74 {
75 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
76 return ip->i_d.di_extsize;
77 if (XFS_IS_REALTIME_INODE(ip))
78 return ip->i_mount->m_sb.sb_rextsize;
79 return 0;
80 }
81
82 /*
83 * Helper function to extract CoW extent size hint from inode.
84 * Between the extent size hint and the CoW extent size hint, we
85 * return the greater of the two. If the value is zero (automatic),
86 * use the default size.
87 */
88 xfs_extlen_t
89 xfs_get_cowextsz_hint(
90 struct xfs_inode *ip)
91 {
92 xfs_extlen_t a, b;
93
94 a = 0;
95 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
96 a = ip->i_d.di_cowextsize;
97 b = xfs_get_extsz_hint(ip);
98
99 a = max(a, b);
100 if (a == 0)
101 return XFS_DEFAULT_COWEXTSZ_HINT;
102 return a;
103 }
104
105 /*
106 * These two are wrapper routines around the xfs_ilock() routine used to
107 * centralize some grungy code. They are used in places that wish to lock the
108 * inode solely for reading the extents. The reason these places can't just
109 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
110 * bringing in of the extents from disk for a file in b-tree format. If the
111 * inode is in b-tree format, then we need to lock the inode exclusively until
112 * the extents are read in. Locking it exclusively all the time would limit
113 * our parallelism unnecessarily, though. What we do instead is check to see
114 * if the extents have been read in yet, and only lock the inode exclusively
115 * if they have not.
116 *
117 * The functions return a value which should be given to the corresponding
118 * xfs_iunlock() call.
119 */
120 uint
121 xfs_ilock_data_map_shared(
122 struct xfs_inode *ip)
123 {
124 uint lock_mode = XFS_ILOCK_SHARED;
125
126 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
127 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
128 lock_mode = XFS_ILOCK_EXCL;
129 xfs_ilock(ip, lock_mode);
130 return lock_mode;
131 }
132
133 uint
134 xfs_ilock_attr_map_shared(
135 struct xfs_inode *ip)
136 {
137 uint lock_mode = XFS_ILOCK_SHARED;
138
139 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
140 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
141 lock_mode = XFS_ILOCK_EXCL;
142 xfs_ilock(ip, lock_mode);
143 return lock_mode;
144 }
145
146 /*
147 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
148 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
149 * various combinations of the locks to be obtained.
150 *
151 * The 3 locks should always be ordered so that the IO lock is obtained first,
152 * the mmap lock second and the ilock last in order to prevent deadlock.
153 *
154 * Basic locking order:
155 *
156 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
157 *
158 * mmap_sem locking order:
159 *
160 * i_rwsem -> page lock -> mmap_sem
161 * mmap_sem -> i_mmap_lock -> page_lock
162 *
163 * The difference in mmap_sem locking order mean that we cannot hold the
164 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
165 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
166 * in get_user_pages() to map the user pages into the kernel address space for
167 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
168 * page faults already hold the mmap_sem.
169 *
170 * Hence to serialise fully against both syscall and mmap based IO, we need to
171 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
172 * taken in places where we need to invalidate the page cache in a race
173 * free manner (e.g. truncate, hole punch and other extent manipulation
174 * functions).
175 */
176 void
177 xfs_ilock(
178 xfs_inode_t *ip,
179 uint lock_flags)
180 {
181 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
182
183 /*
184 * You can't set both SHARED and EXCL for the same lock,
185 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
186 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
187 */
188 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
189 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
190 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
191 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
192 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
193 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
194 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
195
196 if (lock_flags & XFS_IOLOCK_EXCL) {
197 down_write_nested(&VFS_I(ip)->i_rwsem,
198 XFS_IOLOCK_DEP(lock_flags));
199 } else if (lock_flags & XFS_IOLOCK_SHARED) {
200 down_read_nested(&VFS_I(ip)->i_rwsem,
201 XFS_IOLOCK_DEP(lock_flags));
202 }
203
204 if (lock_flags & XFS_MMAPLOCK_EXCL)
205 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
206 else if (lock_flags & XFS_MMAPLOCK_SHARED)
207 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
208
209 if (lock_flags & XFS_ILOCK_EXCL)
210 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
211 else if (lock_flags & XFS_ILOCK_SHARED)
212 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
213 }
214
215 /*
216 * This is just like xfs_ilock(), except that the caller
217 * is guaranteed not to sleep. It returns 1 if it gets
218 * the requested locks and 0 otherwise. If the IO lock is
219 * obtained but the inode lock cannot be, then the IO lock
220 * is dropped before returning.
221 *
222 * ip -- the inode being locked
223 * lock_flags -- this parameter indicates the inode's locks to be
224 * to be locked. See the comment for xfs_ilock() for a list
225 * of valid values.
226 */
227 int
228 xfs_ilock_nowait(
229 xfs_inode_t *ip,
230 uint lock_flags)
231 {
232 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
233
234 /*
235 * You can't set both SHARED and EXCL for the same lock,
236 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
237 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
238 */
239 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
240 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
241 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
242 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
243 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
244 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
245 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
246
247 if (lock_flags & XFS_IOLOCK_EXCL) {
248 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
249 goto out;
250 } else if (lock_flags & XFS_IOLOCK_SHARED) {
251 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
252 goto out;
253 }
254
255 if (lock_flags & XFS_MMAPLOCK_EXCL) {
256 if (!mrtryupdate(&ip->i_mmaplock))
257 goto out_undo_iolock;
258 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
259 if (!mrtryaccess(&ip->i_mmaplock))
260 goto out_undo_iolock;
261 }
262
263 if (lock_flags & XFS_ILOCK_EXCL) {
264 if (!mrtryupdate(&ip->i_lock))
265 goto out_undo_mmaplock;
266 } else if (lock_flags & XFS_ILOCK_SHARED) {
267 if (!mrtryaccess(&ip->i_lock))
268 goto out_undo_mmaplock;
269 }
270 return 1;
271
272 out_undo_mmaplock:
273 if (lock_flags & XFS_MMAPLOCK_EXCL)
274 mrunlock_excl(&ip->i_mmaplock);
275 else if (lock_flags & XFS_MMAPLOCK_SHARED)
276 mrunlock_shared(&ip->i_mmaplock);
277 out_undo_iolock:
278 if (lock_flags & XFS_IOLOCK_EXCL)
279 up_write(&VFS_I(ip)->i_rwsem);
280 else if (lock_flags & XFS_IOLOCK_SHARED)
281 up_read(&VFS_I(ip)->i_rwsem);
282 out:
283 return 0;
284 }
285
286 /*
287 * xfs_iunlock() is used to drop the inode locks acquired with
288 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
289 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
290 * that we know which locks to drop.
291 *
292 * ip -- the inode being unlocked
293 * lock_flags -- this parameter indicates the inode's locks to be
294 * to be unlocked. See the comment for xfs_ilock() for a list
295 * of valid values for this parameter.
296 *
297 */
298 void
299 xfs_iunlock(
300 xfs_inode_t *ip,
301 uint lock_flags)
302 {
303 /*
304 * You can't set both SHARED and EXCL for the same lock,
305 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
306 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
307 */
308 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
309 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
310 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
311 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
312 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
313 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
314 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
315 ASSERT(lock_flags != 0);
316
317 if (lock_flags & XFS_IOLOCK_EXCL)
318 up_write(&VFS_I(ip)->i_rwsem);
319 else if (lock_flags & XFS_IOLOCK_SHARED)
320 up_read(&VFS_I(ip)->i_rwsem);
321
322 if (lock_flags & XFS_MMAPLOCK_EXCL)
323 mrunlock_excl(&ip->i_mmaplock);
324 else if (lock_flags & XFS_MMAPLOCK_SHARED)
325 mrunlock_shared(&ip->i_mmaplock);
326
327 if (lock_flags & XFS_ILOCK_EXCL)
328 mrunlock_excl(&ip->i_lock);
329 else if (lock_flags & XFS_ILOCK_SHARED)
330 mrunlock_shared(&ip->i_lock);
331
332 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
333 }
334
335 /*
336 * give up write locks. the i/o lock cannot be held nested
337 * if it is being demoted.
338 */
339 void
340 xfs_ilock_demote(
341 xfs_inode_t *ip,
342 uint lock_flags)
343 {
344 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
345 ASSERT((lock_flags &
346 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
347
348 if (lock_flags & XFS_ILOCK_EXCL)
349 mrdemote(&ip->i_lock);
350 if (lock_flags & XFS_MMAPLOCK_EXCL)
351 mrdemote(&ip->i_mmaplock);
352 if (lock_flags & XFS_IOLOCK_EXCL)
353 downgrade_write(&VFS_I(ip)->i_rwsem);
354
355 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
356 }
357
358 #if defined(DEBUG) || defined(XFS_WARN)
359 int
360 xfs_isilocked(
361 xfs_inode_t *ip,
362 uint lock_flags)
363 {
364 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
365 if (!(lock_flags & XFS_ILOCK_SHARED))
366 return !!ip->i_lock.mr_writer;
367 return rwsem_is_locked(&ip->i_lock.mr_lock);
368 }
369
370 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
371 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
372 return !!ip->i_mmaplock.mr_writer;
373 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
374 }
375
376 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
377 if (!(lock_flags & XFS_IOLOCK_SHARED))
378 return !debug_locks ||
379 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
380 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
381 }
382
383 ASSERT(0);
384 return 0;
385 }
386 #endif
387
388 /*
389 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
390 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
391 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
392 * errors and warnings.
393 */
394 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
395 static bool
396 xfs_lockdep_subclass_ok(
397 int subclass)
398 {
399 return subclass < MAX_LOCKDEP_SUBCLASSES;
400 }
401 #else
402 #define xfs_lockdep_subclass_ok(subclass) (true)
403 #endif
404
405 /*
406 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
407 * value. This can be called for any type of inode lock combination, including
408 * parent locking. Care must be taken to ensure we don't overrun the subclass
409 * storage fields in the class mask we build.
410 */
411 static inline int
412 xfs_lock_inumorder(int lock_mode, int subclass)
413 {
414 int class = 0;
415
416 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
417 XFS_ILOCK_RTSUM)));
418 ASSERT(xfs_lockdep_subclass_ok(subclass));
419
420 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
421 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
422 class += subclass << XFS_IOLOCK_SHIFT;
423 }
424
425 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
426 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
427 class += subclass << XFS_MMAPLOCK_SHIFT;
428 }
429
430 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
431 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
432 class += subclass << XFS_ILOCK_SHIFT;
433 }
434
435 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
436 }
437
438 /*
439 * The following routine will lock n inodes in exclusive mode. We assume the
440 * caller calls us with the inodes in i_ino order.
441 *
442 * We need to detect deadlock where an inode that we lock is in the AIL and we
443 * start waiting for another inode that is locked by a thread in a long running
444 * transaction (such as truncate). This can result in deadlock since the long
445 * running trans might need to wait for the inode we just locked in order to
446 * push the tail and free space in the log.
447 *
448 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
449 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
450 * lock more than one at a time, lockdep will report false positives saying we
451 * have violated locking orders.
452 */
453 static void
454 xfs_lock_inodes(
455 xfs_inode_t **ips,
456 int inodes,
457 uint lock_mode)
458 {
459 int attempts = 0, i, j, try_lock;
460 xfs_log_item_t *lp;
461
462 /*
463 * Currently supports between 2 and 5 inodes with exclusive locking. We
464 * support an arbitrary depth of locking here, but absolute limits on
465 * inodes depend on the the type of locking and the limits placed by
466 * lockdep annotations in xfs_lock_inumorder. These are all checked by
467 * the asserts.
468 */
469 ASSERT(ips && inodes >= 2 && inodes <= 5);
470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 XFS_ILOCK_EXCL));
472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 XFS_ILOCK_SHARED)));
474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478
479 if (lock_mode & XFS_IOLOCK_EXCL) {
480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
483
484 try_lock = 0;
485 i = 0;
486 again:
487 for (; i < inodes; i++) {
488 ASSERT(ips[i]);
489
490 if (i && (ips[i] == ips[i - 1])) /* Already locked */
491 continue;
492
493 /*
494 * If try_lock is not set yet, make sure all locked inodes are
495 * not in the AIL. If any are, set try_lock to be used later.
496 */
497 if (!try_lock) {
498 for (j = (i - 1); j >= 0 && !try_lock; j--) {
499 lp = (xfs_log_item_t *)ips[j]->i_itemp;
500 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
501 try_lock++;
502 }
503 }
504
505 /*
506 * If any of the previous locks we have locked is in the AIL,
507 * we must TRY to get the second and subsequent locks. If
508 * we can't get any, we must release all we have
509 * and try again.
510 */
511 if (!try_lock) {
512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
513 continue;
514 }
515
516 /* try_lock means we have an inode locked that is in the AIL. */
517 ASSERT(i != 0);
518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
519 continue;
520
521 /*
522 * Unlock all previous guys and try again. xfs_iunlock will try
523 * to push the tail if the inode is in the AIL.
524 */
525 attempts++;
526 for (j = i - 1; j >= 0; j--) {
527 /*
528 * Check to see if we've already unlocked this one. Not
529 * the first one going back, and the inode ptr is the
530 * same.
531 */
532 if (j != (i - 1) && ips[j] == ips[j + 1])
533 continue;
534
535 xfs_iunlock(ips[j], lock_mode);
536 }
537
538 if ((attempts % 5) == 0) {
539 delay(1); /* Don't just spin the CPU */
540 }
541 i = 0;
542 try_lock = 0;
543 goto again;
544 }
545 }
546
547 /*
548 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
549 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
550 * lock more than one at a time, lockdep will report false positives saying we
551 * have violated locking orders.
552 */
553 void
554 xfs_lock_two_inodes(
555 xfs_inode_t *ip0,
556 xfs_inode_t *ip1,
557 uint lock_mode)
558 {
559 xfs_inode_t *temp;
560 int attempts = 0;
561 xfs_log_item_t *lp;
562
563 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
565 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566
567 ASSERT(ip0->i_ino != ip1->i_ino);
568
569 if (ip0->i_ino > ip1->i_ino) {
570 temp = ip0;
571 ip0 = ip1;
572 ip1 = temp;
573 }
574
575 again:
576 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
577
578 /*
579 * If the first lock we have locked is in the AIL, we must TRY to get
580 * the second lock. If we can't get it, we must release the first one
581 * and try again.
582 */
583 lp = (xfs_log_item_t *)ip0->i_itemp;
584 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
585 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
586 xfs_iunlock(ip0, lock_mode);
587 if ((++attempts % 5) == 0)
588 delay(1); /* Don't just spin the CPU */
589 goto again;
590 }
591 } else {
592 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
593 }
594 }
595
596
597 void
598 __xfs_iflock(
599 struct xfs_inode *ip)
600 {
601 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
602 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
603
604 do {
605 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
606 if (xfs_isiflocked(ip))
607 io_schedule();
608 } while (!xfs_iflock_nowait(ip));
609
610 finish_wait(wq, &wait.wq_entry);
611 }
612
613 STATIC uint
614 _xfs_dic2xflags(
615 uint16_t di_flags,
616 uint64_t di_flags2,
617 bool has_attr)
618 {
619 uint flags = 0;
620
621 if (di_flags & XFS_DIFLAG_ANY) {
622 if (di_flags & XFS_DIFLAG_REALTIME)
623 flags |= FS_XFLAG_REALTIME;
624 if (di_flags & XFS_DIFLAG_PREALLOC)
625 flags |= FS_XFLAG_PREALLOC;
626 if (di_flags & XFS_DIFLAG_IMMUTABLE)
627 flags |= FS_XFLAG_IMMUTABLE;
628 if (di_flags & XFS_DIFLAG_APPEND)
629 flags |= FS_XFLAG_APPEND;
630 if (di_flags & XFS_DIFLAG_SYNC)
631 flags |= FS_XFLAG_SYNC;
632 if (di_flags & XFS_DIFLAG_NOATIME)
633 flags |= FS_XFLAG_NOATIME;
634 if (di_flags & XFS_DIFLAG_NODUMP)
635 flags |= FS_XFLAG_NODUMP;
636 if (di_flags & XFS_DIFLAG_RTINHERIT)
637 flags |= FS_XFLAG_RTINHERIT;
638 if (di_flags & XFS_DIFLAG_PROJINHERIT)
639 flags |= FS_XFLAG_PROJINHERIT;
640 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
641 flags |= FS_XFLAG_NOSYMLINKS;
642 if (di_flags & XFS_DIFLAG_EXTSIZE)
643 flags |= FS_XFLAG_EXTSIZE;
644 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
645 flags |= FS_XFLAG_EXTSZINHERIT;
646 if (di_flags & XFS_DIFLAG_NODEFRAG)
647 flags |= FS_XFLAG_NODEFRAG;
648 if (di_flags & XFS_DIFLAG_FILESTREAM)
649 flags |= FS_XFLAG_FILESTREAM;
650 }
651
652 if (di_flags2 & XFS_DIFLAG2_ANY) {
653 if (di_flags2 & XFS_DIFLAG2_DAX)
654 flags |= FS_XFLAG_DAX;
655 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
656 flags |= FS_XFLAG_COWEXTSIZE;
657 }
658
659 if (has_attr)
660 flags |= FS_XFLAG_HASATTR;
661
662 return flags;
663 }
664
665 uint
666 xfs_ip2xflags(
667 struct xfs_inode *ip)
668 {
669 struct xfs_icdinode *dic = &ip->i_d;
670
671 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
672 }
673
674 /*
675 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
676 * is allowed, otherwise it has to be an exact match. If a CI match is found,
677 * ci_name->name will point to a the actual name (caller must free) or
678 * will be set to NULL if an exact match is found.
679 */
680 int
681 xfs_lookup(
682 xfs_inode_t *dp,
683 struct xfs_name *name,
684 xfs_inode_t **ipp,
685 struct xfs_name *ci_name)
686 {
687 xfs_ino_t inum;
688 int error;
689
690 trace_xfs_lookup(dp, name);
691
692 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
693 return -EIO;
694
695 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
696 if (error)
697 goto out_unlock;
698
699 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
700 if (error)
701 goto out_free_name;
702
703 return 0;
704
705 out_free_name:
706 if (ci_name)
707 kmem_free(ci_name->name);
708 out_unlock:
709 *ipp = NULL;
710 return error;
711 }
712
713 /*
714 * Allocate an inode on disk and return a copy of its in-core version.
715 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
716 * appropriately within the inode. The uid and gid for the inode are
717 * set according to the contents of the given cred structure.
718 *
719 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
720 * has a free inode available, call xfs_iget() to obtain the in-core
721 * version of the allocated inode. Finally, fill in the inode and
722 * log its initial contents. In this case, ialloc_context would be
723 * set to NULL.
724 *
725 * If xfs_dialloc() does not have an available inode, it will replenish
726 * its supply by doing an allocation. Since we can only do one
727 * allocation within a transaction without deadlocks, we must commit
728 * the current transaction before returning the inode itself.
729 * In this case, therefore, we will set ialloc_context and return.
730 * The caller should then commit the current transaction, start a new
731 * transaction, and call xfs_ialloc() again to actually get the inode.
732 *
733 * To ensure that some other process does not grab the inode that
734 * was allocated during the first call to xfs_ialloc(), this routine
735 * also returns the [locked] bp pointing to the head of the freelist
736 * as ialloc_context. The caller should hold this buffer across
737 * the commit and pass it back into this routine on the second call.
738 *
739 * If we are allocating quota inodes, we do not have a parent inode
740 * to attach to or associate with (i.e. pip == NULL) because they
741 * are not linked into the directory structure - they are attached
742 * directly to the superblock - and so have no parent.
743 */
744 static int
745 xfs_ialloc(
746 xfs_trans_t *tp,
747 xfs_inode_t *pip,
748 umode_t mode,
749 xfs_nlink_t nlink,
750 dev_t rdev,
751 prid_t prid,
752 xfs_buf_t **ialloc_context,
753 xfs_inode_t **ipp)
754 {
755 struct xfs_mount *mp = tp->t_mountp;
756 xfs_ino_t ino;
757 xfs_inode_t *ip;
758 uint flags;
759 int error;
760 struct timespec tv;
761 struct inode *inode;
762
763 /*
764 * Call the space management code to pick
765 * the on-disk inode to be allocated.
766 */
767 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
768 ialloc_context, &ino);
769 if (error)
770 return error;
771 if (*ialloc_context || ino == NULLFSINO) {
772 *ipp = NULL;
773 return 0;
774 }
775 ASSERT(*ialloc_context == NULL);
776
777 /*
778 * Get the in-core inode with the lock held exclusively.
779 * This is because we're setting fields here we need
780 * to prevent others from looking at until we're done.
781 */
782 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
783 XFS_ILOCK_EXCL, &ip);
784 if (error)
785 return error;
786 ASSERT(ip != NULL);
787 inode = VFS_I(ip);
788
789 /*
790 * We always convert v1 inodes to v2 now - we only support filesystems
791 * with >= v2 inode capability, so there is no reason for ever leaving
792 * an inode in v1 format.
793 */
794 if (ip->i_d.di_version == 1)
795 ip->i_d.di_version = 2;
796
797 inode->i_mode = mode;
798 set_nlink(inode, nlink);
799 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
800 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
801 inode->i_rdev = rdev;
802 xfs_set_projid(ip, prid);
803
804 if (pip && XFS_INHERIT_GID(pip)) {
805 ip->i_d.di_gid = pip->i_d.di_gid;
806 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
807 inode->i_mode |= S_ISGID;
808 }
809
810 /*
811 * If the group ID of the new file does not match the effective group
812 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 * (and only if the irix_sgid_inherit compatibility variable is set).
814 */
815 if ((irix_sgid_inherit) &&
816 (inode->i_mode & S_ISGID) &&
817 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
818 inode->i_mode &= ~S_ISGID;
819
820 ip->i_d.di_size = 0;
821 ip->i_d.di_nextents = 0;
822 ASSERT(ip->i_d.di_nblocks == 0);
823
824 tv = current_time(inode);
825 inode->i_mtime = tv;
826 inode->i_atime = tv;
827 inode->i_ctime = tv;
828
829 ip->i_d.di_extsize = 0;
830 ip->i_d.di_dmevmask = 0;
831 ip->i_d.di_dmstate = 0;
832 ip->i_d.di_flags = 0;
833
834 if (ip->i_d.di_version == 3) {
835 inode->i_version = 1;
836 ip->i_d.di_flags2 = 0;
837 ip->i_d.di_cowextsize = 0;
838 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
839 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
840 }
841
842
843 flags = XFS_ILOG_CORE;
844 switch (mode & S_IFMT) {
845 case S_IFIFO:
846 case S_IFCHR:
847 case S_IFBLK:
848 case S_IFSOCK:
849 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
850 ip->i_df.if_flags = 0;
851 flags |= XFS_ILOG_DEV;
852 break;
853 case S_IFREG:
854 case S_IFDIR:
855 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
856 uint di_flags = 0;
857
858 if (S_ISDIR(mode)) {
859 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
860 di_flags |= XFS_DIFLAG_RTINHERIT;
861 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
862 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
863 ip->i_d.di_extsize = pip->i_d.di_extsize;
864 }
865 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
866 di_flags |= XFS_DIFLAG_PROJINHERIT;
867 } else if (S_ISREG(mode)) {
868 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
869 di_flags |= XFS_DIFLAG_REALTIME;
870 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
871 di_flags |= XFS_DIFLAG_EXTSIZE;
872 ip->i_d.di_extsize = pip->i_d.di_extsize;
873 }
874 }
875 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
876 xfs_inherit_noatime)
877 di_flags |= XFS_DIFLAG_NOATIME;
878 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
879 xfs_inherit_nodump)
880 di_flags |= XFS_DIFLAG_NODUMP;
881 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
882 xfs_inherit_sync)
883 di_flags |= XFS_DIFLAG_SYNC;
884 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
885 xfs_inherit_nosymlinks)
886 di_flags |= XFS_DIFLAG_NOSYMLINKS;
887 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
888 xfs_inherit_nodefrag)
889 di_flags |= XFS_DIFLAG_NODEFRAG;
890 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
891 di_flags |= XFS_DIFLAG_FILESTREAM;
892
893 ip->i_d.di_flags |= di_flags;
894 }
895 if (pip &&
896 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
897 pip->i_d.di_version == 3 &&
898 ip->i_d.di_version == 3) {
899 uint64_t di_flags2 = 0;
900
901 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
902 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
903 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
904 }
905 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
906 di_flags2 |= XFS_DIFLAG2_DAX;
907
908 ip->i_d.di_flags2 |= di_flags2;
909 }
910 /* FALLTHROUGH */
911 case S_IFLNK:
912 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
913 ip->i_df.if_flags = XFS_IFEXTENTS;
914 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
915 ip->i_df.if_u1.if_root = NULL;
916 break;
917 default:
918 ASSERT(0);
919 }
920 /*
921 * Attribute fork settings for new inode.
922 */
923 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
924 ip->i_d.di_anextents = 0;
925
926 /*
927 * Log the new values stuffed into the inode.
928 */
929 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
930 xfs_trans_log_inode(tp, ip, flags);
931
932 /* now that we have an i_mode we can setup the inode structure */
933 xfs_setup_inode(ip);
934
935 *ipp = ip;
936 return 0;
937 }
938
939 /*
940 * Allocates a new inode from disk and return a pointer to the
941 * incore copy. This routine will internally commit the current
942 * transaction and allocate a new one if the Space Manager needed
943 * to do an allocation to replenish the inode free-list.
944 *
945 * This routine is designed to be called from xfs_create and
946 * xfs_create_dir.
947 *
948 */
949 int
950 xfs_dir_ialloc(
951 xfs_trans_t **tpp, /* input: current transaction;
952 output: may be a new transaction. */
953 xfs_inode_t *dp, /* directory within whose allocate
954 the inode. */
955 umode_t mode,
956 xfs_nlink_t nlink,
957 dev_t rdev,
958 prid_t prid, /* project id */
959 xfs_inode_t **ipp, /* pointer to inode; it will be
960 locked. */
961 int *committed)
962
963 {
964 xfs_trans_t *tp;
965 xfs_inode_t *ip;
966 xfs_buf_t *ialloc_context = NULL;
967 int code;
968 void *dqinfo;
969 uint tflags;
970
971 tp = *tpp;
972 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
973
974 /*
975 * xfs_ialloc will return a pointer to an incore inode if
976 * the Space Manager has an available inode on the free
977 * list. Otherwise, it will do an allocation and replenish
978 * the freelist. Since we can only do one allocation per
979 * transaction without deadlocks, we will need to commit the
980 * current transaction and start a new one. We will then
981 * need to call xfs_ialloc again to get the inode.
982 *
983 * If xfs_ialloc did an allocation to replenish the freelist,
984 * it returns the bp containing the head of the freelist as
985 * ialloc_context. We will hold a lock on it across the
986 * transaction commit so that no other process can steal
987 * the inode(s) that we've just allocated.
988 */
989 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
990 &ip);
991
992 /*
993 * Return an error if we were unable to allocate a new inode.
994 * This should only happen if we run out of space on disk or
995 * encounter a disk error.
996 */
997 if (code) {
998 *ipp = NULL;
999 return code;
1000 }
1001 if (!ialloc_context && !ip) {
1002 *ipp = NULL;
1003 return -ENOSPC;
1004 }
1005
1006 /*
1007 * If the AGI buffer is non-NULL, then we were unable to get an
1008 * inode in one operation. We need to commit the current
1009 * transaction and call xfs_ialloc() again. It is guaranteed
1010 * to succeed the second time.
1011 */
1012 if (ialloc_context) {
1013 /*
1014 * Normally, xfs_trans_commit releases all the locks.
1015 * We call bhold to hang on to the ialloc_context across
1016 * the commit. Holding this buffer prevents any other
1017 * processes from doing any allocations in this
1018 * allocation group.
1019 */
1020 xfs_trans_bhold(tp, ialloc_context);
1021
1022 /*
1023 * We want the quota changes to be associated with the next
1024 * transaction, NOT this one. So, detach the dqinfo from this
1025 * and attach it to the next transaction.
1026 */
1027 dqinfo = NULL;
1028 tflags = 0;
1029 if (tp->t_dqinfo) {
1030 dqinfo = (void *)tp->t_dqinfo;
1031 tp->t_dqinfo = NULL;
1032 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1033 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1034 }
1035
1036 code = xfs_trans_roll(&tp);
1037 if (committed != NULL)
1038 *committed = 1;
1039
1040 /*
1041 * Re-attach the quota info that we detached from prev trx.
1042 */
1043 if (dqinfo) {
1044 tp->t_dqinfo = dqinfo;
1045 tp->t_flags |= tflags;
1046 }
1047
1048 if (code) {
1049 xfs_buf_relse(ialloc_context);
1050 *tpp = tp;
1051 *ipp = NULL;
1052 return code;
1053 }
1054 xfs_trans_bjoin(tp, ialloc_context);
1055
1056 /*
1057 * Call ialloc again. Since we've locked out all
1058 * other allocations in this allocation group,
1059 * this call should always succeed.
1060 */
1061 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1062 &ialloc_context, &ip);
1063
1064 /*
1065 * If we get an error at this point, return to the caller
1066 * so that the current transaction can be aborted.
1067 */
1068 if (code) {
1069 *tpp = tp;
1070 *ipp = NULL;
1071 return code;
1072 }
1073 ASSERT(!ialloc_context && ip);
1074
1075 } else {
1076 if (committed != NULL)
1077 *committed = 0;
1078 }
1079
1080 *ipp = ip;
1081 *tpp = tp;
1082
1083 return 0;
1084 }
1085
1086 /*
1087 * Decrement the link count on an inode & log the change. If this causes the
1088 * link count to go to zero, move the inode to AGI unlinked list so that it can
1089 * be freed when the last active reference goes away via xfs_inactive().
1090 */
1091 static int /* error */
1092 xfs_droplink(
1093 xfs_trans_t *tp,
1094 xfs_inode_t *ip)
1095 {
1096 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1097
1098 drop_nlink(VFS_I(ip));
1099 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1100
1101 if (VFS_I(ip)->i_nlink)
1102 return 0;
1103
1104 return xfs_iunlink(tp, ip);
1105 }
1106
1107 /*
1108 * Increment the link count on an inode & log the change.
1109 */
1110 static int
1111 xfs_bumplink(
1112 xfs_trans_t *tp,
1113 xfs_inode_t *ip)
1114 {
1115 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1116
1117 ASSERT(ip->i_d.di_version > 1);
1118 inc_nlink(VFS_I(ip));
1119 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1120 return 0;
1121 }
1122
1123 int
1124 xfs_create(
1125 xfs_inode_t *dp,
1126 struct xfs_name *name,
1127 umode_t mode,
1128 dev_t rdev,
1129 xfs_inode_t **ipp)
1130 {
1131 int is_dir = S_ISDIR(mode);
1132 struct xfs_mount *mp = dp->i_mount;
1133 struct xfs_inode *ip = NULL;
1134 struct xfs_trans *tp = NULL;
1135 int error;
1136 struct xfs_defer_ops dfops;
1137 xfs_fsblock_t first_block;
1138 bool unlock_dp_on_error = false;
1139 prid_t prid;
1140 struct xfs_dquot *udqp = NULL;
1141 struct xfs_dquot *gdqp = NULL;
1142 struct xfs_dquot *pdqp = NULL;
1143 struct xfs_trans_res *tres;
1144 uint resblks;
1145
1146 trace_xfs_create(dp, name);
1147
1148 if (XFS_FORCED_SHUTDOWN(mp))
1149 return -EIO;
1150
1151 prid = xfs_get_initial_prid(dp);
1152
1153 /*
1154 * Make sure that we have allocated dquot(s) on disk.
1155 */
1156 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1157 xfs_kgid_to_gid(current_fsgid()), prid,
1158 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1159 &udqp, &gdqp, &pdqp);
1160 if (error)
1161 return error;
1162
1163 if (is_dir) {
1164 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1165 tres = &M_RES(mp)->tr_mkdir;
1166 } else {
1167 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1168 tres = &M_RES(mp)->tr_create;
1169 }
1170
1171 /*
1172 * Initially assume that the file does not exist and
1173 * reserve the resources for that case. If that is not
1174 * the case we'll drop the one we have and get a more
1175 * appropriate transaction later.
1176 */
1177 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1178 if (error == -ENOSPC) {
1179 /* flush outstanding delalloc blocks and retry */
1180 xfs_flush_inodes(mp);
1181 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1182 }
1183 if (error)
1184 goto out_release_inode;
1185
1186 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1187 unlock_dp_on_error = true;
1188
1189 xfs_defer_init(&dfops, &first_block);
1190
1191 /*
1192 * Reserve disk quota and the inode.
1193 */
1194 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1195 pdqp, resblks, 1, 0);
1196 if (error)
1197 goto out_trans_cancel;
1198
1199 /*
1200 * A newly created regular or special file just has one directory
1201 * entry pointing to them, but a directory also the "." entry
1202 * pointing to itself.
1203 */
1204 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip,
1205 NULL);
1206 if (error)
1207 goto out_trans_cancel;
1208
1209 /*
1210 * Now we join the directory inode to the transaction. We do not do it
1211 * earlier because xfs_dir_ialloc might commit the previous transaction
1212 * (and release all the locks). An error from here on will result in
1213 * the transaction cancel unlocking dp so don't do it explicitly in the
1214 * error path.
1215 */
1216 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1217 unlock_dp_on_error = false;
1218
1219 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1220 &first_block, &dfops, resblks ?
1221 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1222 if (error) {
1223 ASSERT(error != -ENOSPC);
1224 goto out_trans_cancel;
1225 }
1226 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1227 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1228
1229 if (is_dir) {
1230 error = xfs_dir_init(tp, ip, dp);
1231 if (error)
1232 goto out_bmap_cancel;
1233
1234 error = xfs_bumplink(tp, dp);
1235 if (error)
1236 goto out_bmap_cancel;
1237 }
1238
1239 /*
1240 * If this is a synchronous mount, make sure that the
1241 * create transaction goes to disk before returning to
1242 * the user.
1243 */
1244 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1245 xfs_trans_set_sync(tp);
1246
1247 /*
1248 * Attach the dquot(s) to the inodes and modify them incore.
1249 * These ids of the inode couldn't have changed since the new
1250 * inode has been locked ever since it was created.
1251 */
1252 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1253
1254 error = xfs_defer_finish(&tp, &dfops);
1255 if (error)
1256 goto out_bmap_cancel;
1257
1258 error = xfs_trans_commit(tp);
1259 if (error)
1260 goto out_release_inode;
1261
1262 xfs_qm_dqrele(udqp);
1263 xfs_qm_dqrele(gdqp);
1264 xfs_qm_dqrele(pdqp);
1265
1266 *ipp = ip;
1267 return 0;
1268
1269 out_bmap_cancel:
1270 xfs_defer_cancel(&dfops);
1271 out_trans_cancel:
1272 xfs_trans_cancel(tp);
1273 out_release_inode:
1274 /*
1275 * Wait until after the current transaction is aborted to finish the
1276 * setup of the inode and release the inode. This prevents recursive
1277 * transactions and deadlocks from xfs_inactive.
1278 */
1279 if (ip) {
1280 xfs_finish_inode_setup(ip);
1281 IRELE(ip);
1282 }
1283
1284 xfs_qm_dqrele(udqp);
1285 xfs_qm_dqrele(gdqp);
1286 xfs_qm_dqrele(pdqp);
1287
1288 if (unlock_dp_on_error)
1289 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1290 return error;
1291 }
1292
1293 int
1294 xfs_create_tmpfile(
1295 struct xfs_inode *dp,
1296 struct dentry *dentry,
1297 umode_t mode,
1298 struct xfs_inode **ipp)
1299 {
1300 struct xfs_mount *mp = dp->i_mount;
1301 struct xfs_inode *ip = NULL;
1302 struct xfs_trans *tp = NULL;
1303 int error;
1304 prid_t prid;
1305 struct xfs_dquot *udqp = NULL;
1306 struct xfs_dquot *gdqp = NULL;
1307 struct xfs_dquot *pdqp = NULL;
1308 struct xfs_trans_res *tres;
1309 uint resblks;
1310
1311 if (XFS_FORCED_SHUTDOWN(mp))
1312 return -EIO;
1313
1314 prid = xfs_get_initial_prid(dp);
1315
1316 /*
1317 * Make sure that we have allocated dquot(s) on disk.
1318 */
1319 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1320 xfs_kgid_to_gid(current_fsgid()), prid,
1321 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1322 &udqp, &gdqp, &pdqp);
1323 if (error)
1324 return error;
1325
1326 resblks = XFS_IALLOC_SPACE_RES(mp);
1327 tres = &M_RES(mp)->tr_create_tmpfile;
1328
1329 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1330 if (error)
1331 goto out_release_inode;
1332
1333 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1334 pdqp, resblks, 1, 0);
1335 if (error)
1336 goto out_trans_cancel;
1337
1338 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip, NULL);
1339 if (error)
1340 goto out_trans_cancel;
1341
1342 if (mp->m_flags & XFS_MOUNT_WSYNC)
1343 xfs_trans_set_sync(tp);
1344
1345 /*
1346 * Attach the dquot(s) to the inodes and modify them incore.
1347 * These ids of the inode couldn't have changed since the new
1348 * inode has been locked ever since it was created.
1349 */
1350 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1351
1352 error = xfs_iunlink(tp, ip);
1353 if (error)
1354 goto out_trans_cancel;
1355
1356 error = xfs_trans_commit(tp);
1357 if (error)
1358 goto out_release_inode;
1359
1360 xfs_qm_dqrele(udqp);
1361 xfs_qm_dqrele(gdqp);
1362 xfs_qm_dqrele(pdqp);
1363
1364 *ipp = ip;
1365 return 0;
1366
1367 out_trans_cancel:
1368 xfs_trans_cancel(tp);
1369 out_release_inode:
1370 /*
1371 * Wait until after the current transaction is aborted to finish the
1372 * setup of the inode and release the inode. This prevents recursive
1373 * transactions and deadlocks from xfs_inactive.
1374 */
1375 if (ip) {
1376 xfs_finish_inode_setup(ip);
1377 IRELE(ip);
1378 }
1379
1380 xfs_qm_dqrele(udqp);
1381 xfs_qm_dqrele(gdqp);
1382 xfs_qm_dqrele(pdqp);
1383
1384 return error;
1385 }
1386
1387 int
1388 xfs_link(
1389 xfs_inode_t *tdp,
1390 xfs_inode_t *sip,
1391 struct xfs_name *target_name)
1392 {
1393 xfs_mount_t *mp = tdp->i_mount;
1394 xfs_trans_t *tp;
1395 int error;
1396 struct xfs_defer_ops dfops;
1397 xfs_fsblock_t first_block;
1398 int resblks;
1399
1400 trace_xfs_link(tdp, target_name);
1401
1402 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1403
1404 if (XFS_FORCED_SHUTDOWN(mp))
1405 return -EIO;
1406
1407 error = xfs_qm_dqattach(sip, 0);
1408 if (error)
1409 goto std_return;
1410
1411 error = xfs_qm_dqattach(tdp, 0);
1412 if (error)
1413 goto std_return;
1414
1415 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1416 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1417 if (error == -ENOSPC) {
1418 resblks = 0;
1419 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1420 }
1421 if (error)
1422 goto std_return;
1423
1424 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1425
1426 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1427 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1428
1429 /*
1430 * If we are using project inheritance, we only allow hard link
1431 * creation in our tree when the project IDs are the same; else
1432 * the tree quota mechanism could be circumvented.
1433 */
1434 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1435 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1436 error = -EXDEV;
1437 goto error_return;
1438 }
1439
1440 if (!resblks) {
1441 error = xfs_dir_canenter(tp, tdp, target_name);
1442 if (error)
1443 goto error_return;
1444 }
1445
1446 xfs_defer_init(&dfops, &first_block);
1447
1448 /*
1449 * Handle initial link state of O_TMPFILE inode
1450 */
1451 if (VFS_I(sip)->i_nlink == 0) {
1452 error = xfs_iunlink_remove(tp, sip);
1453 if (error)
1454 goto error_return;
1455 }
1456
1457 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1458 &first_block, &dfops, resblks);
1459 if (error)
1460 goto error_return;
1461 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1462 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1463
1464 error = xfs_bumplink(tp, sip);
1465 if (error)
1466 goto error_return;
1467
1468 /*
1469 * If this is a synchronous mount, make sure that the
1470 * link transaction goes to disk before returning to
1471 * the user.
1472 */
1473 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1474 xfs_trans_set_sync(tp);
1475
1476 error = xfs_defer_finish(&tp, &dfops);
1477 if (error) {
1478 xfs_defer_cancel(&dfops);
1479 goto error_return;
1480 }
1481
1482 return xfs_trans_commit(tp);
1483
1484 error_return:
1485 xfs_trans_cancel(tp);
1486 std_return:
1487 return error;
1488 }
1489
1490 /* Clear the reflink flag and the cowblocks tag if possible. */
1491 static void
1492 xfs_itruncate_clear_reflink_flags(
1493 struct xfs_inode *ip)
1494 {
1495 struct xfs_ifork *dfork;
1496 struct xfs_ifork *cfork;
1497
1498 if (!xfs_is_reflink_inode(ip))
1499 return;
1500 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1501 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1502 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1503 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1504 if (cfork->if_bytes == 0)
1505 xfs_inode_clear_cowblocks_tag(ip);
1506 }
1507
1508 /*
1509 * Free up the underlying blocks past new_size. The new size must be smaller
1510 * than the current size. This routine can be used both for the attribute and
1511 * data fork, and does not modify the inode size, which is left to the caller.
1512 *
1513 * The transaction passed to this routine must have made a permanent log
1514 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1515 * given transaction and start new ones, so make sure everything involved in
1516 * the transaction is tidy before calling here. Some transaction will be
1517 * returned to the caller to be committed. The incoming transaction must
1518 * already include the inode, and both inode locks must be held exclusively.
1519 * The inode must also be "held" within the transaction. On return the inode
1520 * will be "held" within the returned transaction. This routine does NOT
1521 * require any disk space to be reserved for it within the transaction.
1522 *
1523 * If we get an error, we must return with the inode locked and linked into the
1524 * current transaction. This keeps things simple for the higher level code,
1525 * because it always knows that the inode is locked and held in the transaction
1526 * that returns to it whether errors occur or not. We don't mark the inode
1527 * dirty on error so that transactions can be easily aborted if possible.
1528 */
1529 int
1530 xfs_itruncate_extents(
1531 struct xfs_trans **tpp,
1532 struct xfs_inode *ip,
1533 int whichfork,
1534 xfs_fsize_t new_size)
1535 {
1536 struct xfs_mount *mp = ip->i_mount;
1537 struct xfs_trans *tp = *tpp;
1538 struct xfs_defer_ops dfops;
1539 xfs_fsblock_t first_block;
1540 xfs_fileoff_t first_unmap_block;
1541 xfs_fileoff_t last_block;
1542 xfs_filblks_t unmap_len;
1543 int error = 0;
1544 int done = 0;
1545
1546 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1547 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1548 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1549 ASSERT(new_size <= XFS_ISIZE(ip));
1550 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1551 ASSERT(ip->i_itemp != NULL);
1552 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1553 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1554
1555 trace_xfs_itruncate_extents_start(ip, new_size);
1556
1557 /*
1558 * Since it is possible for space to become allocated beyond
1559 * the end of the file (in a crash where the space is allocated
1560 * but the inode size is not yet updated), simply remove any
1561 * blocks which show up between the new EOF and the maximum
1562 * possible file size. If the first block to be removed is
1563 * beyond the maximum file size (ie it is the same as last_block),
1564 * then there is nothing to do.
1565 */
1566 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1567 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1568 if (first_unmap_block == last_block)
1569 return 0;
1570
1571 ASSERT(first_unmap_block < last_block);
1572 unmap_len = last_block - first_unmap_block + 1;
1573 while (!done) {
1574 xfs_defer_init(&dfops, &first_block);
1575 error = xfs_bunmapi(tp, ip,
1576 first_unmap_block, unmap_len,
1577 xfs_bmapi_aflag(whichfork),
1578 XFS_ITRUNC_MAX_EXTENTS,
1579 &first_block, &dfops,
1580 &done);
1581 if (error)
1582 goto out_bmap_cancel;
1583
1584 /*
1585 * Duplicate the transaction that has the permanent
1586 * reservation and commit the old transaction.
1587 */
1588 xfs_defer_ijoin(&dfops, ip);
1589 error = xfs_defer_finish(&tp, &dfops);
1590 if (error)
1591 goto out_bmap_cancel;
1592
1593 error = xfs_trans_roll_inode(&tp, ip);
1594 if (error)
1595 goto out;
1596 }
1597
1598 /* Remove all pending CoW reservations. */
1599 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1600 last_block, true);
1601 if (error)
1602 goto out;
1603
1604 xfs_itruncate_clear_reflink_flags(ip);
1605
1606 /*
1607 * Always re-log the inode so that our permanent transaction can keep
1608 * on rolling it forward in the log.
1609 */
1610 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1611
1612 trace_xfs_itruncate_extents_end(ip, new_size);
1613
1614 out:
1615 *tpp = tp;
1616 return error;
1617 out_bmap_cancel:
1618 /*
1619 * If the bunmapi call encounters an error, return to the caller where
1620 * the transaction can be properly aborted. We just need to make sure
1621 * we're not holding any resources that we were not when we came in.
1622 */
1623 xfs_defer_cancel(&dfops);
1624 goto out;
1625 }
1626
1627 int
1628 xfs_release(
1629 xfs_inode_t *ip)
1630 {
1631 xfs_mount_t *mp = ip->i_mount;
1632 int error;
1633
1634 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1635 return 0;
1636
1637 /* If this is a read-only mount, don't do this (would generate I/O) */
1638 if (mp->m_flags & XFS_MOUNT_RDONLY)
1639 return 0;
1640
1641 if (!XFS_FORCED_SHUTDOWN(mp)) {
1642 int truncated;
1643
1644 /*
1645 * If we previously truncated this file and removed old data
1646 * in the process, we want to initiate "early" writeout on
1647 * the last close. This is an attempt to combat the notorious
1648 * NULL files problem which is particularly noticeable from a
1649 * truncate down, buffered (re-)write (delalloc), followed by
1650 * a crash. What we are effectively doing here is
1651 * significantly reducing the time window where we'd otherwise
1652 * be exposed to that problem.
1653 */
1654 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1655 if (truncated) {
1656 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1657 if (ip->i_delayed_blks > 0) {
1658 error = filemap_flush(VFS_I(ip)->i_mapping);
1659 if (error)
1660 return error;
1661 }
1662 }
1663 }
1664
1665 if (VFS_I(ip)->i_nlink == 0)
1666 return 0;
1667
1668 if (xfs_can_free_eofblocks(ip, false)) {
1669
1670 /*
1671 * Check if the inode is being opened, written and closed
1672 * frequently and we have delayed allocation blocks outstanding
1673 * (e.g. streaming writes from the NFS server), truncating the
1674 * blocks past EOF will cause fragmentation to occur.
1675 *
1676 * In this case don't do the truncation, but we have to be
1677 * careful how we detect this case. Blocks beyond EOF show up as
1678 * i_delayed_blks even when the inode is clean, so we need to
1679 * truncate them away first before checking for a dirty release.
1680 * Hence on the first dirty close we will still remove the
1681 * speculative allocation, but after that we will leave it in
1682 * place.
1683 */
1684 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1685 return 0;
1686 /*
1687 * If we can't get the iolock just skip truncating the blocks
1688 * past EOF because we could deadlock with the mmap_sem
1689 * otherwise. We'll get another chance to drop them once the
1690 * last reference to the inode is dropped, so we'll never leak
1691 * blocks permanently.
1692 */
1693 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1694 error = xfs_free_eofblocks(ip);
1695 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1696 if (error)
1697 return error;
1698 }
1699
1700 /* delalloc blocks after truncation means it really is dirty */
1701 if (ip->i_delayed_blks)
1702 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1703 }
1704 return 0;
1705 }
1706
1707 /*
1708 * xfs_inactive_truncate
1709 *
1710 * Called to perform a truncate when an inode becomes unlinked.
1711 */
1712 STATIC int
1713 xfs_inactive_truncate(
1714 struct xfs_inode *ip)
1715 {
1716 struct xfs_mount *mp = ip->i_mount;
1717 struct xfs_trans *tp;
1718 int error;
1719
1720 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1721 if (error) {
1722 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1723 return error;
1724 }
1725
1726 xfs_ilock(ip, XFS_ILOCK_EXCL);
1727 xfs_trans_ijoin(tp, ip, 0);
1728
1729 /*
1730 * Log the inode size first to prevent stale data exposure in the event
1731 * of a system crash before the truncate completes. See the related
1732 * comment in xfs_vn_setattr_size() for details.
1733 */
1734 ip->i_d.di_size = 0;
1735 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1736
1737 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1738 if (error)
1739 goto error_trans_cancel;
1740
1741 ASSERT(ip->i_d.di_nextents == 0);
1742
1743 error = xfs_trans_commit(tp);
1744 if (error)
1745 goto error_unlock;
1746
1747 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1748 return 0;
1749
1750 error_trans_cancel:
1751 xfs_trans_cancel(tp);
1752 error_unlock:
1753 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1754 return error;
1755 }
1756
1757 /*
1758 * xfs_inactive_ifree()
1759 *
1760 * Perform the inode free when an inode is unlinked.
1761 */
1762 STATIC int
1763 xfs_inactive_ifree(
1764 struct xfs_inode *ip)
1765 {
1766 struct xfs_defer_ops dfops;
1767 xfs_fsblock_t first_block;
1768 struct xfs_mount *mp = ip->i_mount;
1769 struct xfs_trans *tp;
1770 int error;
1771
1772 /*
1773 * We try to use a per-AG reservation for any block needed by the finobt
1774 * tree, but as the finobt feature predates the per-AG reservation
1775 * support a degraded file system might not have enough space for the
1776 * reservation at mount time. In that case try to dip into the reserved
1777 * pool and pray.
1778 *
1779 * Send a warning if the reservation does happen to fail, as the inode
1780 * now remains allocated and sits on the unlinked list until the fs is
1781 * repaired.
1782 */
1783 if (unlikely(mp->m_inotbt_nores)) {
1784 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1785 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1786 &tp);
1787 } else {
1788 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1789 }
1790 if (error) {
1791 if (error == -ENOSPC) {
1792 xfs_warn_ratelimited(mp,
1793 "Failed to remove inode(s) from unlinked list. "
1794 "Please free space, unmount and run xfs_repair.");
1795 } else {
1796 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1797 }
1798 return error;
1799 }
1800
1801 xfs_ilock(ip, XFS_ILOCK_EXCL);
1802 xfs_trans_ijoin(tp, ip, 0);
1803
1804 xfs_defer_init(&dfops, &first_block);
1805 error = xfs_ifree(tp, ip, &dfops);
1806 if (error) {
1807 /*
1808 * If we fail to free the inode, shut down. The cancel
1809 * might do that, we need to make sure. Otherwise the
1810 * inode might be lost for a long time or forever.
1811 */
1812 if (!XFS_FORCED_SHUTDOWN(mp)) {
1813 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1814 __func__, error);
1815 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1816 }
1817 xfs_trans_cancel(tp);
1818 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1819 return error;
1820 }
1821
1822 /*
1823 * Credit the quota account(s). The inode is gone.
1824 */
1825 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1826
1827 /*
1828 * Just ignore errors at this point. There is nothing we can do except
1829 * to try to keep going. Make sure it's not a silent error.
1830 */
1831 error = xfs_defer_finish(&tp, &dfops);
1832 if (error) {
1833 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1834 __func__, error);
1835 xfs_defer_cancel(&dfops);
1836 }
1837 error = xfs_trans_commit(tp);
1838 if (error)
1839 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1840 __func__, error);
1841
1842 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1843 return 0;
1844 }
1845
1846 /*
1847 * xfs_inactive
1848 *
1849 * This is called when the vnode reference count for the vnode
1850 * goes to zero. If the file has been unlinked, then it must
1851 * now be truncated. Also, we clear all of the read-ahead state
1852 * kept for the inode here since the file is now closed.
1853 */
1854 void
1855 xfs_inactive(
1856 xfs_inode_t *ip)
1857 {
1858 struct xfs_mount *mp;
1859 int error;
1860 int truncate = 0;
1861
1862 /*
1863 * If the inode is already free, then there can be nothing
1864 * to clean up here.
1865 */
1866 if (VFS_I(ip)->i_mode == 0) {
1867 ASSERT(ip->i_df.if_real_bytes == 0);
1868 ASSERT(ip->i_df.if_broot_bytes == 0);
1869 return;
1870 }
1871
1872 mp = ip->i_mount;
1873 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1874
1875 /* If this is a read-only mount, don't do this (would generate I/O) */
1876 if (mp->m_flags & XFS_MOUNT_RDONLY)
1877 return;
1878
1879 if (VFS_I(ip)->i_nlink != 0) {
1880 /*
1881 * force is true because we are evicting an inode from the
1882 * cache. Post-eof blocks must be freed, lest we end up with
1883 * broken free space accounting.
1884 *
1885 * Note: don't bother with iolock here since lockdep complains
1886 * about acquiring it in reclaim context. We have the only
1887 * reference to the inode at this point anyways.
1888 */
1889 if (xfs_can_free_eofblocks(ip, true))
1890 xfs_free_eofblocks(ip);
1891
1892 return;
1893 }
1894
1895 if (S_ISREG(VFS_I(ip)->i_mode) &&
1896 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1897 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1898 truncate = 1;
1899
1900 error = xfs_qm_dqattach(ip, 0);
1901 if (error)
1902 return;
1903
1904 if (S_ISLNK(VFS_I(ip)->i_mode))
1905 error = xfs_inactive_symlink(ip);
1906 else if (truncate)
1907 error = xfs_inactive_truncate(ip);
1908 if (error)
1909 return;
1910
1911 /*
1912 * If there are attributes associated with the file then blow them away
1913 * now. The code calls a routine that recursively deconstructs the
1914 * attribute fork. If also blows away the in-core attribute fork.
1915 */
1916 if (XFS_IFORK_Q(ip)) {
1917 error = xfs_attr_inactive(ip);
1918 if (error)
1919 return;
1920 }
1921
1922 ASSERT(!ip->i_afp);
1923 ASSERT(ip->i_d.di_anextents == 0);
1924 ASSERT(ip->i_d.di_forkoff == 0);
1925
1926 /*
1927 * Free the inode.
1928 */
1929 error = xfs_inactive_ifree(ip);
1930 if (error)
1931 return;
1932
1933 /*
1934 * Release the dquots held by inode, if any.
1935 */
1936 xfs_qm_dqdetach(ip);
1937 }
1938
1939 /*
1940 * This is called when the inode's link count goes to 0 or we are creating a
1941 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1942 * set to true as the link count is dropped to zero by the VFS after we've
1943 * created the file successfully, so we have to add it to the unlinked list
1944 * while the link count is non-zero.
1945 *
1946 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1947 * list when the inode is freed.
1948 */
1949 STATIC int
1950 xfs_iunlink(
1951 struct xfs_trans *tp,
1952 struct xfs_inode *ip)
1953 {
1954 xfs_mount_t *mp = tp->t_mountp;
1955 xfs_agi_t *agi;
1956 xfs_dinode_t *dip;
1957 xfs_buf_t *agibp;
1958 xfs_buf_t *ibp;
1959 xfs_agino_t agino;
1960 short bucket_index;
1961 int offset;
1962 int error;
1963
1964 ASSERT(VFS_I(ip)->i_mode != 0);
1965
1966 /*
1967 * Get the agi buffer first. It ensures lock ordering
1968 * on the list.
1969 */
1970 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1971 if (error)
1972 return error;
1973 agi = XFS_BUF_TO_AGI(agibp);
1974
1975 /*
1976 * Get the index into the agi hash table for the
1977 * list this inode will go on.
1978 */
1979 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1980 ASSERT(agino != 0);
1981 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1982 ASSERT(agi->agi_unlinked[bucket_index]);
1983 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1984
1985 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1986 /*
1987 * There is already another inode in the bucket we need
1988 * to add ourselves to. Add us at the front of the list.
1989 * Here we put the head pointer into our next pointer,
1990 * and then we fall through to point the head at us.
1991 */
1992 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1993 0, 0);
1994 if (error)
1995 return error;
1996
1997 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1998 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1999 offset = ip->i_imap.im_boffset +
2000 offsetof(xfs_dinode_t, di_next_unlinked);
2001
2002 /* need to recalc the inode CRC if appropriate */
2003 xfs_dinode_calc_crc(mp, dip);
2004
2005 xfs_trans_inode_buf(tp, ibp);
2006 xfs_trans_log_buf(tp, ibp, offset,
2007 (offset + sizeof(xfs_agino_t) - 1));
2008 xfs_inobp_check(mp, ibp);
2009 }
2010
2011 /*
2012 * Point the bucket head pointer at the inode being inserted.
2013 */
2014 ASSERT(agino != 0);
2015 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2016 offset = offsetof(xfs_agi_t, agi_unlinked) +
2017 (sizeof(xfs_agino_t) * bucket_index);
2018 xfs_trans_log_buf(tp, agibp, offset,
2019 (offset + sizeof(xfs_agino_t) - 1));
2020 return 0;
2021 }
2022
2023 /*
2024 * Pull the on-disk inode from the AGI unlinked list.
2025 */
2026 STATIC int
2027 xfs_iunlink_remove(
2028 xfs_trans_t *tp,
2029 xfs_inode_t *ip)
2030 {
2031 xfs_ino_t next_ino;
2032 xfs_mount_t *mp;
2033 xfs_agi_t *agi;
2034 xfs_dinode_t *dip;
2035 xfs_buf_t *agibp;
2036 xfs_buf_t *ibp;
2037 xfs_agnumber_t agno;
2038 xfs_agino_t agino;
2039 xfs_agino_t next_agino;
2040 xfs_buf_t *last_ibp;
2041 xfs_dinode_t *last_dip = NULL;
2042 short bucket_index;
2043 int offset, last_offset = 0;
2044 int error;
2045
2046 mp = tp->t_mountp;
2047 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2048
2049 /*
2050 * Get the agi buffer first. It ensures lock ordering
2051 * on the list.
2052 */
2053 error = xfs_read_agi(mp, tp, agno, &agibp);
2054 if (error)
2055 return error;
2056
2057 agi = XFS_BUF_TO_AGI(agibp);
2058
2059 /*
2060 * Get the index into the agi hash table for the
2061 * list this inode will go on.
2062 */
2063 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2064 ASSERT(agino != 0);
2065 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2066 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2067 ASSERT(agi->agi_unlinked[bucket_index]);
2068
2069 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2070 /*
2071 * We're at the head of the list. Get the inode's on-disk
2072 * buffer to see if there is anyone after us on the list.
2073 * Only modify our next pointer if it is not already NULLAGINO.
2074 * This saves us the overhead of dealing with the buffer when
2075 * there is no need to change it.
2076 */
2077 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2078 0, 0);
2079 if (error) {
2080 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2081 __func__, error);
2082 return error;
2083 }
2084 next_agino = be32_to_cpu(dip->di_next_unlinked);
2085 ASSERT(next_agino != 0);
2086 if (next_agino != NULLAGINO) {
2087 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2088 offset = ip->i_imap.im_boffset +
2089 offsetof(xfs_dinode_t, di_next_unlinked);
2090
2091 /* need to recalc the inode CRC if appropriate */
2092 xfs_dinode_calc_crc(mp, dip);
2093
2094 xfs_trans_inode_buf(tp, ibp);
2095 xfs_trans_log_buf(tp, ibp, offset,
2096 (offset + sizeof(xfs_agino_t) - 1));
2097 xfs_inobp_check(mp, ibp);
2098 } else {
2099 xfs_trans_brelse(tp, ibp);
2100 }
2101 /*
2102 * Point the bucket head pointer at the next inode.
2103 */
2104 ASSERT(next_agino != 0);
2105 ASSERT(next_agino != agino);
2106 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2107 offset = offsetof(xfs_agi_t, agi_unlinked) +
2108 (sizeof(xfs_agino_t) * bucket_index);
2109 xfs_trans_log_buf(tp, agibp, offset,
2110 (offset + sizeof(xfs_agino_t) - 1));
2111 } else {
2112 /*
2113 * We need to search the list for the inode being freed.
2114 */
2115 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2116 last_ibp = NULL;
2117 while (next_agino != agino) {
2118 struct xfs_imap imap;
2119
2120 if (last_ibp)
2121 xfs_trans_brelse(tp, last_ibp);
2122
2123 imap.im_blkno = 0;
2124 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2125
2126 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2127 if (error) {
2128 xfs_warn(mp,
2129 "%s: xfs_imap returned error %d.",
2130 __func__, error);
2131 return error;
2132 }
2133
2134 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2135 &last_ibp, 0, 0);
2136 if (error) {
2137 xfs_warn(mp,
2138 "%s: xfs_imap_to_bp returned error %d.",
2139 __func__, error);
2140 return error;
2141 }
2142
2143 last_offset = imap.im_boffset;
2144 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2145 ASSERT(next_agino != NULLAGINO);
2146 ASSERT(next_agino != 0);
2147 }
2148
2149 /*
2150 * Now last_ibp points to the buffer previous to us on the
2151 * unlinked list. Pull us from the list.
2152 */
2153 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2154 0, 0);
2155 if (error) {
2156 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2157 __func__, error);
2158 return error;
2159 }
2160 next_agino = be32_to_cpu(dip->di_next_unlinked);
2161 ASSERT(next_agino != 0);
2162 ASSERT(next_agino != agino);
2163 if (next_agino != NULLAGINO) {
2164 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2165 offset = ip->i_imap.im_boffset +
2166 offsetof(xfs_dinode_t, di_next_unlinked);
2167
2168 /* need to recalc the inode CRC if appropriate */
2169 xfs_dinode_calc_crc(mp, dip);
2170
2171 xfs_trans_inode_buf(tp, ibp);
2172 xfs_trans_log_buf(tp, ibp, offset,
2173 (offset + sizeof(xfs_agino_t) - 1));
2174 xfs_inobp_check(mp, ibp);
2175 } else {
2176 xfs_trans_brelse(tp, ibp);
2177 }
2178 /*
2179 * Point the previous inode on the list to the next inode.
2180 */
2181 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2182 ASSERT(next_agino != 0);
2183 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2184
2185 /* need to recalc the inode CRC if appropriate */
2186 xfs_dinode_calc_crc(mp, last_dip);
2187
2188 xfs_trans_inode_buf(tp, last_ibp);
2189 xfs_trans_log_buf(tp, last_ibp, offset,
2190 (offset + sizeof(xfs_agino_t) - 1));
2191 xfs_inobp_check(mp, last_ibp);
2192 }
2193 return 0;
2194 }
2195
2196 /*
2197 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2198 * inodes that are in memory - they all must be marked stale and attached to
2199 * the cluster buffer.
2200 */
2201 STATIC int
2202 xfs_ifree_cluster(
2203 xfs_inode_t *free_ip,
2204 xfs_trans_t *tp,
2205 struct xfs_icluster *xic)
2206 {
2207 xfs_mount_t *mp = free_ip->i_mount;
2208 int blks_per_cluster;
2209 int inodes_per_cluster;
2210 int nbufs;
2211 int i, j;
2212 int ioffset;
2213 xfs_daddr_t blkno;
2214 xfs_buf_t *bp;
2215 xfs_inode_t *ip;
2216 xfs_inode_log_item_t *iip;
2217 xfs_log_item_t *lip;
2218 struct xfs_perag *pag;
2219 xfs_ino_t inum;
2220
2221 inum = xic->first_ino;
2222 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2223 blks_per_cluster = xfs_icluster_size_fsb(mp);
2224 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2225 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2226
2227 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2228 /*
2229 * The allocation bitmap tells us which inodes of the chunk were
2230 * physically allocated. Skip the cluster if an inode falls into
2231 * a sparse region.
2232 */
2233 ioffset = inum - xic->first_ino;
2234 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2235 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2236 continue;
2237 }
2238
2239 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2240 XFS_INO_TO_AGBNO(mp, inum));
2241
2242 /*
2243 * We obtain and lock the backing buffer first in the process
2244 * here, as we have to ensure that any dirty inode that we
2245 * can't get the flush lock on is attached to the buffer.
2246 * If we scan the in-memory inodes first, then buffer IO can
2247 * complete before we get a lock on it, and hence we may fail
2248 * to mark all the active inodes on the buffer stale.
2249 */
2250 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2251 mp->m_bsize * blks_per_cluster,
2252 XBF_UNMAPPED);
2253
2254 if (!bp)
2255 return -ENOMEM;
2256
2257 /*
2258 * This buffer may not have been correctly initialised as we
2259 * didn't read it from disk. That's not important because we are
2260 * only using to mark the buffer as stale in the log, and to
2261 * attach stale cached inodes on it. That means it will never be
2262 * dispatched for IO. If it is, we want to know about it, and we
2263 * want it to fail. We can acheive this by adding a write
2264 * verifier to the buffer.
2265 */
2266 bp->b_ops = &xfs_inode_buf_ops;
2267
2268 /*
2269 * Walk the inodes already attached to the buffer and mark them
2270 * stale. These will all have the flush locks held, so an
2271 * in-memory inode walk can't lock them. By marking them all
2272 * stale first, we will not attempt to lock them in the loop
2273 * below as the XFS_ISTALE flag will be set.
2274 */
2275 lip = bp->b_fspriv;
2276 while (lip) {
2277 if (lip->li_type == XFS_LI_INODE) {
2278 iip = (xfs_inode_log_item_t *)lip;
2279 ASSERT(iip->ili_logged == 1);
2280 lip->li_cb = xfs_istale_done;
2281 xfs_trans_ail_copy_lsn(mp->m_ail,
2282 &iip->ili_flush_lsn,
2283 &iip->ili_item.li_lsn);
2284 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2285 }
2286 lip = lip->li_bio_list;
2287 }
2288
2289
2290 /*
2291 * For each inode in memory attempt to add it to the inode
2292 * buffer and set it up for being staled on buffer IO
2293 * completion. This is safe as we've locked out tail pushing
2294 * and flushing by locking the buffer.
2295 *
2296 * We have already marked every inode that was part of a
2297 * transaction stale above, which means there is no point in
2298 * even trying to lock them.
2299 */
2300 for (i = 0; i < inodes_per_cluster; i++) {
2301 retry:
2302 rcu_read_lock();
2303 ip = radix_tree_lookup(&pag->pag_ici_root,
2304 XFS_INO_TO_AGINO(mp, (inum + i)));
2305
2306 /* Inode not in memory, nothing to do */
2307 if (!ip) {
2308 rcu_read_unlock();
2309 continue;
2310 }
2311
2312 /*
2313 * because this is an RCU protected lookup, we could
2314 * find a recently freed or even reallocated inode
2315 * during the lookup. We need to check under the
2316 * i_flags_lock for a valid inode here. Skip it if it
2317 * is not valid, the wrong inode or stale.
2318 */
2319 spin_lock(&ip->i_flags_lock);
2320 if (ip->i_ino != inum + i ||
2321 __xfs_iflags_test(ip, XFS_ISTALE)) {
2322 spin_unlock(&ip->i_flags_lock);
2323 rcu_read_unlock();
2324 continue;
2325 }
2326 spin_unlock(&ip->i_flags_lock);
2327
2328 /*
2329 * Don't try to lock/unlock the current inode, but we
2330 * _cannot_ skip the other inodes that we did not find
2331 * in the list attached to the buffer and are not
2332 * already marked stale. If we can't lock it, back off
2333 * and retry.
2334 */
2335 if (ip != free_ip) {
2336 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2337 rcu_read_unlock();
2338 delay(1);
2339 goto retry;
2340 }
2341
2342 /*
2343 * Check the inode number again in case we're
2344 * racing with freeing in xfs_reclaim_inode().
2345 * See the comments in that function for more
2346 * information as to why the initial check is
2347 * not sufficient.
2348 */
2349 if (ip->i_ino != inum + i) {
2350 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2351 rcu_read_unlock();
2352 continue;
2353 }
2354 }
2355 rcu_read_unlock();
2356
2357 xfs_iflock(ip);
2358 xfs_iflags_set(ip, XFS_ISTALE);
2359
2360 /*
2361 * we don't need to attach clean inodes or those only
2362 * with unlogged changes (which we throw away, anyway).
2363 */
2364 iip = ip->i_itemp;
2365 if (!iip || xfs_inode_clean(ip)) {
2366 ASSERT(ip != free_ip);
2367 xfs_ifunlock(ip);
2368 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2369 continue;
2370 }
2371
2372 iip->ili_last_fields = iip->ili_fields;
2373 iip->ili_fields = 0;
2374 iip->ili_fsync_fields = 0;
2375 iip->ili_logged = 1;
2376 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2377 &iip->ili_item.li_lsn);
2378
2379 xfs_buf_attach_iodone(bp, xfs_istale_done,
2380 &iip->ili_item);
2381
2382 if (ip != free_ip)
2383 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2384 }
2385
2386 xfs_trans_stale_inode_buf(tp, bp);
2387 xfs_trans_binval(tp, bp);
2388 }
2389
2390 xfs_perag_put(pag);
2391 return 0;
2392 }
2393
2394 /*
2395 * Free any local-format buffers sitting around before we reset to
2396 * extents format.
2397 */
2398 static inline void
2399 xfs_ifree_local_data(
2400 struct xfs_inode *ip,
2401 int whichfork)
2402 {
2403 struct xfs_ifork *ifp;
2404
2405 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2406 return;
2407
2408 ifp = XFS_IFORK_PTR(ip, whichfork);
2409 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2410 }
2411
2412 /*
2413 * This is called to return an inode to the inode free list.
2414 * The inode should already be truncated to 0 length and have
2415 * no pages associated with it. This routine also assumes that
2416 * the inode is already a part of the transaction.
2417 *
2418 * The on-disk copy of the inode will have been added to the list
2419 * of unlinked inodes in the AGI. We need to remove the inode from
2420 * that list atomically with respect to freeing it here.
2421 */
2422 int
2423 xfs_ifree(
2424 xfs_trans_t *tp,
2425 xfs_inode_t *ip,
2426 struct xfs_defer_ops *dfops)
2427 {
2428 int error;
2429 struct xfs_icluster xic = { 0 };
2430
2431 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2432 ASSERT(VFS_I(ip)->i_nlink == 0);
2433 ASSERT(ip->i_d.di_nextents == 0);
2434 ASSERT(ip->i_d.di_anextents == 0);
2435 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2436 ASSERT(ip->i_d.di_nblocks == 0);
2437
2438 /*
2439 * Pull the on-disk inode from the AGI unlinked list.
2440 */
2441 error = xfs_iunlink_remove(tp, ip);
2442 if (error)
2443 return error;
2444
2445 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2446 if (error)
2447 return error;
2448
2449 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2450 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2451
2452 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2453 ip->i_d.di_flags = 0;
2454 ip->i_d.di_dmevmask = 0;
2455 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2456 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2457 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2458 /*
2459 * Bump the generation count so no one will be confused
2460 * by reincarnations of this inode.
2461 */
2462 VFS_I(ip)->i_generation++;
2463 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2464
2465 if (xic.deleted)
2466 error = xfs_ifree_cluster(ip, tp, &xic);
2467
2468 return error;
2469 }
2470
2471 /*
2472 * This is called to unpin an inode. The caller must have the inode locked
2473 * in at least shared mode so that the buffer cannot be subsequently pinned
2474 * once someone is waiting for it to be unpinned.
2475 */
2476 static void
2477 xfs_iunpin(
2478 struct xfs_inode *ip)
2479 {
2480 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2481
2482 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2483
2484 /* Give the log a push to start the unpinning I/O */
2485 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2486
2487 }
2488
2489 static void
2490 __xfs_iunpin_wait(
2491 struct xfs_inode *ip)
2492 {
2493 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2494 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2495
2496 xfs_iunpin(ip);
2497
2498 do {
2499 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2500 if (xfs_ipincount(ip))
2501 io_schedule();
2502 } while (xfs_ipincount(ip));
2503 finish_wait(wq, &wait.wq_entry);
2504 }
2505
2506 void
2507 xfs_iunpin_wait(
2508 struct xfs_inode *ip)
2509 {
2510 if (xfs_ipincount(ip))
2511 __xfs_iunpin_wait(ip);
2512 }
2513
2514 /*
2515 * Removing an inode from the namespace involves removing the directory entry
2516 * and dropping the link count on the inode. Removing the directory entry can
2517 * result in locking an AGF (directory blocks were freed) and removing a link
2518 * count can result in placing the inode on an unlinked list which results in
2519 * locking an AGI.
2520 *
2521 * The big problem here is that we have an ordering constraint on AGF and AGI
2522 * locking - inode allocation locks the AGI, then can allocate a new extent for
2523 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2524 * removes the inode from the unlinked list, requiring that we lock the AGI
2525 * first, and then freeing the inode can result in an inode chunk being freed
2526 * and hence freeing disk space requiring that we lock an AGF.
2527 *
2528 * Hence the ordering that is imposed by other parts of the code is AGI before
2529 * AGF. This means we cannot remove the directory entry before we drop the inode
2530 * reference count and put it on the unlinked list as this results in a lock
2531 * order of AGF then AGI, and this can deadlock against inode allocation and
2532 * freeing. Therefore we must drop the link counts before we remove the
2533 * directory entry.
2534 *
2535 * This is still safe from a transactional point of view - it is not until we
2536 * get to xfs_defer_finish() that we have the possibility of multiple
2537 * transactions in this operation. Hence as long as we remove the directory
2538 * entry and drop the link count in the first transaction of the remove
2539 * operation, there are no transactional constraints on the ordering here.
2540 */
2541 int
2542 xfs_remove(
2543 xfs_inode_t *dp,
2544 struct xfs_name *name,
2545 xfs_inode_t *ip)
2546 {
2547 xfs_mount_t *mp = dp->i_mount;
2548 xfs_trans_t *tp = NULL;
2549 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2550 int error = 0;
2551 struct xfs_defer_ops dfops;
2552 xfs_fsblock_t first_block;
2553 uint resblks;
2554
2555 trace_xfs_remove(dp, name);
2556
2557 if (XFS_FORCED_SHUTDOWN(mp))
2558 return -EIO;
2559
2560 error = xfs_qm_dqattach(dp, 0);
2561 if (error)
2562 goto std_return;
2563
2564 error = xfs_qm_dqattach(ip, 0);
2565 if (error)
2566 goto std_return;
2567
2568 /*
2569 * We try to get the real space reservation first,
2570 * allowing for directory btree deletion(s) implying
2571 * possible bmap insert(s). If we can't get the space
2572 * reservation then we use 0 instead, and avoid the bmap
2573 * btree insert(s) in the directory code by, if the bmap
2574 * insert tries to happen, instead trimming the LAST
2575 * block from the directory.
2576 */
2577 resblks = XFS_REMOVE_SPACE_RES(mp);
2578 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2579 if (error == -ENOSPC) {
2580 resblks = 0;
2581 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2582 &tp);
2583 }
2584 if (error) {
2585 ASSERT(error != -ENOSPC);
2586 goto std_return;
2587 }
2588
2589 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2590
2591 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2592 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2593
2594 /*
2595 * If we're removing a directory perform some additional validation.
2596 */
2597 if (is_dir) {
2598 ASSERT(VFS_I(ip)->i_nlink >= 2);
2599 if (VFS_I(ip)->i_nlink != 2) {
2600 error = -ENOTEMPTY;
2601 goto out_trans_cancel;
2602 }
2603 if (!xfs_dir_isempty(ip)) {
2604 error = -ENOTEMPTY;
2605 goto out_trans_cancel;
2606 }
2607
2608 /* Drop the link from ip's "..". */
2609 error = xfs_droplink(tp, dp);
2610 if (error)
2611 goto out_trans_cancel;
2612
2613 /* Drop the "." link from ip to self. */
2614 error = xfs_droplink(tp, ip);
2615 if (error)
2616 goto out_trans_cancel;
2617 } else {
2618 /*
2619 * When removing a non-directory we need to log the parent
2620 * inode here. For a directory this is done implicitly
2621 * by the xfs_droplink call for the ".." entry.
2622 */
2623 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2624 }
2625 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2626
2627 /* Drop the link from dp to ip. */
2628 error = xfs_droplink(tp, ip);
2629 if (error)
2630 goto out_trans_cancel;
2631
2632 xfs_defer_init(&dfops, &first_block);
2633 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2634 &first_block, &dfops, resblks);
2635 if (error) {
2636 ASSERT(error != -ENOENT);
2637 goto out_bmap_cancel;
2638 }
2639
2640 /*
2641 * If this is a synchronous mount, make sure that the
2642 * remove transaction goes to disk before returning to
2643 * the user.
2644 */
2645 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2646 xfs_trans_set_sync(tp);
2647
2648 error = xfs_defer_finish(&tp, &dfops);
2649 if (error)
2650 goto out_bmap_cancel;
2651
2652 error = xfs_trans_commit(tp);
2653 if (error)
2654 goto std_return;
2655
2656 if (is_dir && xfs_inode_is_filestream(ip))
2657 xfs_filestream_deassociate(ip);
2658
2659 return 0;
2660
2661 out_bmap_cancel:
2662 xfs_defer_cancel(&dfops);
2663 out_trans_cancel:
2664 xfs_trans_cancel(tp);
2665 std_return:
2666 return error;
2667 }
2668
2669 /*
2670 * Enter all inodes for a rename transaction into a sorted array.
2671 */
2672 #define __XFS_SORT_INODES 5
2673 STATIC void
2674 xfs_sort_for_rename(
2675 struct xfs_inode *dp1, /* in: old (source) directory inode */
2676 struct xfs_inode *dp2, /* in: new (target) directory inode */
2677 struct xfs_inode *ip1, /* in: inode of old entry */
2678 struct xfs_inode *ip2, /* in: inode of new entry */
2679 struct xfs_inode *wip, /* in: whiteout inode */
2680 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2681 int *num_inodes) /* in/out: inodes in array */
2682 {
2683 int i, j;
2684
2685 ASSERT(*num_inodes == __XFS_SORT_INODES);
2686 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2687
2688 /*
2689 * i_tab contains a list of pointers to inodes. We initialize
2690 * the table here & we'll sort it. We will then use it to
2691 * order the acquisition of the inode locks.
2692 *
2693 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2694 */
2695 i = 0;
2696 i_tab[i++] = dp1;
2697 i_tab[i++] = dp2;
2698 i_tab[i++] = ip1;
2699 if (ip2)
2700 i_tab[i++] = ip2;
2701 if (wip)
2702 i_tab[i++] = wip;
2703 *num_inodes = i;
2704
2705 /*
2706 * Sort the elements via bubble sort. (Remember, there are at
2707 * most 5 elements to sort, so this is adequate.)
2708 */
2709 for (i = 0; i < *num_inodes; i++) {
2710 for (j = 1; j < *num_inodes; j++) {
2711 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2712 struct xfs_inode *temp = i_tab[j];
2713 i_tab[j] = i_tab[j-1];
2714 i_tab[j-1] = temp;
2715 }
2716 }
2717 }
2718 }
2719
2720 static int
2721 xfs_finish_rename(
2722 struct xfs_trans *tp,
2723 struct xfs_defer_ops *dfops)
2724 {
2725 int error;
2726
2727 /*
2728 * If this is a synchronous mount, make sure that the rename transaction
2729 * goes to disk before returning to the user.
2730 */
2731 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2732 xfs_trans_set_sync(tp);
2733
2734 error = xfs_defer_finish(&tp, dfops);
2735 if (error) {
2736 xfs_defer_cancel(dfops);
2737 xfs_trans_cancel(tp);
2738 return error;
2739 }
2740
2741 return xfs_trans_commit(tp);
2742 }
2743
2744 /*
2745 * xfs_cross_rename()
2746 *
2747 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2748 */
2749 STATIC int
2750 xfs_cross_rename(
2751 struct xfs_trans *tp,
2752 struct xfs_inode *dp1,
2753 struct xfs_name *name1,
2754 struct xfs_inode *ip1,
2755 struct xfs_inode *dp2,
2756 struct xfs_name *name2,
2757 struct xfs_inode *ip2,
2758 struct xfs_defer_ops *dfops,
2759 xfs_fsblock_t *first_block,
2760 int spaceres)
2761 {
2762 int error = 0;
2763 int ip1_flags = 0;
2764 int ip2_flags = 0;
2765 int dp2_flags = 0;
2766
2767 /* Swap inode number for dirent in first parent */
2768 error = xfs_dir_replace(tp, dp1, name1,
2769 ip2->i_ino,
2770 first_block, dfops, spaceres);
2771 if (error)
2772 goto out_trans_abort;
2773
2774 /* Swap inode number for dirent in second parent */
2775 error = xfs_dir_replace(tp, dp2, name2,
2776 ip1->i_ino,
2777 first_block, dfops, spaceres);
2778 if (error)
2779 goto out_trans_abort;
2780
2781 /*
2782 * If we're renaming one or more directories across different parents,
2783 * update the respective ".." entries (and link counts) to match the new
2784 * parents.
2785 */
2786 if (dp1 != dp2) {
2787 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2788
2789 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2790 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2791 dp1->i_ino, first_block,
2792 dfops, spaceres);
2793 if (error)
2794 goto out_trans_abort;
2795
2796 /* transfer ip2 ".." reference to dp1 */
2797 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2798 error = xfs_droplink(tp, dp2);
2799 if (error)
2800 goto out_trans_abort;
2801 error = xfs_bumplink(tp, dp1);
2802 if (error)
2803 goto out_trans_abort;
2804 }
2805
2806 /*
2807 * Although ip1 isn't changed here, userspace needs
2808 * to be warned about the change, so that applications
2809 * relying on it (like backup ones), will properly
2810 * notify the change
2811 */
2812 ip1_flags |= XFS_ICHGTIME_CHG;
2813 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2814 }
2815
2816 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2817 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2818 dp2->i_ino, first_block,
2819 dfops, spaceres);
2820 if (error)
2821 goto out_trans_abort;
2822
2823 /* transfer ip1 ".." reference to dp2 */
2824 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2825 error = xfs_droplink(tp, dp1);
2826 if (error)
2827 goto out_trans_abort;
2828 error = xfs_bumplink(tp, dp2);
2829 if (error)
2830 goto out_trans_abort;
2831 }
2832
2833 /*
2834 * Although ip2 isn't changed here, userspace needs
2835 * to be warned about the change, so that applications
2836 * relying on it (like backup ones), will properly
2837 * notify the change
2838 */
2839 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2840 ip2_flags |= XFS_ICHGTIME_CHG;
2841 }
2842 }
2843
2844 if (ip1_flags) {
2845 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2846 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2847 }
2848 if (ip2_flags) {
2849 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2850 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2851 }
2852 if (dp2_flags) {
2853 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2854 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2855 }
2856 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2857 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2858 return xfs_finish_rename(tp, dfops);
2859
2860 out_trans_abort:
2861 xfs_defer_cancel(dfops);
2862 xfs_trans_cancel(tp);
2863 return error;
2864 }
2865
2866 /*
2867 * xfs_rename_alloc_whiteout()
2868 *
2869 * Return a referenced, unlinked, unlocked inode that that can be used as a
2870 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2871 * crash between allocating the inode and linking it into the rename transaction
2872 * recovery will free the inode and we won't leak it.
2873 */
2874 static int
2875 xfs_rename_alloc_whiteout(
2876 struct xfs_inode *dp,
2877 struct xfs_inode **wip)
2878 {
2879 struct xfs_inode *tmpfile;
2880 int error;
2881
2882 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2883 if (error)
2884 return error;
2885
2886 /*
2887 * Prepare the tmpfile inode as if it were created through the VFS.
2888 * Otherwise, the link increment paths will complain about nlink 0->1.
2889 * Drop the link count as done by d_tmpfile(), complete the inode setup
2890 * and flag it as linkable.
2891 */
2892 drop_nlink(VFS_I(tmpfile));
2893 xfs_setup_iops(tmpfile);
2894 xfs_finish_inode_setup(tmpfile);
2895 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2896
2897 *wip = tmpfile;
2898 return 0;
2899 }
2900
2901 /*
2902 * xfs_rename
2903 */
2904 int
2905 xfs_rename(
2906 struct xfs_inode *src_dp,
2907 struct xfs_name *src_name,
2908 struct xfs_inode *src_ip,
2909 struct xfs_inode *target_dp,
2910 struct xfs_name *target_name,
2911 struct xfs_inode *target_ip,
2912 unsigned int flags)
2913 {
2914 struct xfs_mount *mp = src_dp->i_mount;
2915 struct xfs_trans *tp;
2916 struct xfs_defer_ops dfops;
2917 xfs_fsblock_t first_block;
2918 struct xfs_inode *wip = NULL; /* whiteout inode */
2919 struct xfs_inode *inodes[__XFS_SORT_INODES];
2920 int num_inodes = __XFS_SORT_INODES;
2921 bool new_parent = (src_dp != target_dp);
2922 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2923 int spaceres;
2924 int error;
2925
2926 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2927
2928 if ((flags & RENAME_EXCHANGE) && !target_ip)
2929 return -EINVAL;
2930
2931 /*
2932 * If we are doing a whiteout operation, allocate the whiteout inode
2933 * we will be placing at the target and ensure the type is set
2934 * appropriately.
2935 */
2936 if (flags & RENAME_WHITEOUT) {
2937 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2938 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2939 if (error)
2940 return error;
2941
2942 /* setup target dirent info as whiteout */
2943 src_name->type = XFS_DIR3_FT_CHRDEV;
2944 }
2945
2946 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2947 inodes, &num_inodes);
2948
2949 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2950 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2951 if (error == -ENOSPC) {
2952 spaceres = 0;
2953 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2954 &tp);
2955 }
2956 if (error)
2957 goto out_release_wip;
2958
2959 /*
2960 * Attach the dquots to the inodes
2961 */
2962 error = xfs_qm_vop_rename_dqattach(inodes);
2963 if (error)
2964 goto out_trans_cancel;
2965
2966 /*
2967 * Lock all the participating inodes. Depending upon whether
2968 * the target_name exists in the target directory, and
2969 * whether the target directory is the same as the source
2970 * directory, we can lock from 2 to 4 inodes.
2971 */
2972 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2973
2974 /*
2975 * Join all the inodes to the transaction. From this point on,
2976 * we can rely on either trans_commit or trans_cancel to unlock
2977 * them.
2978 */
2979 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2980 if (new_parent)
2981 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2982 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2983 if (target_ip)
2984 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2985 if (wip)
2986 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2987
2988 /*
2989 * If we are using project inheritance, we only allow renames
2990 * into our tree when the project IDs are the same; else the
2991 * tree quota mechanism would be circumvented.
2992 */
2993 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2994 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2995 error = -EXDEV;
2996 goto out_trans_cancel;
2997 }
2998
2999 xfs_defer_init(&dfops, &first_block);
3000
3001 /* RENAME_EXCHANGE is unique from here on. */
3002 if (flags & RENAME_EXCHANGE)
3003 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3004 target_dp, target_name, target_ip,
3005 &dfops, &first_block, spaceres);
3006
3007 /*
3008 * Set up the target.
3009 */
3010 if (target_ip == NULL) {
3011 /*
3012 * If there's no space reservation, check the entry will
3013 * fit before actually inserting it.
3014 */
3015 if (!spaceres) {
3016 error = xfs_dir_canenter(tp, target_dp, target_name);
3017 if (error)
3018 goto out_trans_cancel;
3019 }
3020 /*
3021 * If target does not exist and the rename crosses
3022 * directories, adjust the target directory link count
3023 * to account for the ".." reference from the new entry.
3024 */
3025 error = xfs_dir_createname(tp, target_dp, target_name,
3026 src_ip->i_ino, &first_block,
3027 &dfops, spaceres);
3028 if (error)
3029 goto out_bmap_cancel;
3030
3031 xfs_trans_ichgtime(tp, target_dp,
3032 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3033
3034 if (new_parent && src_is_directory) {
3035 error = xfs_bumplink(tp, target_dp);
3036 if (error)
3037 goto out_bmap_cancel;
3038 }
3039 } else { /* target_ip != NULL */
3040 /*
3041 * If target exists and it's a directory, check that both
3042 * target and source are directories and that target can be
3043 * destroyed, or that neither is a directory.
3044 */
3045 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3046 /*
3047 * Make sure target dir is empty.
3048 */
3049 if (!(xfs_dir_isempty(target_ip)) ||
3050 (VFS_I(target_ip)->i_nlink > 2)) {
3051 error = -EEXIST;
3052 goto out_trans_cancel;
3053 }
3054 }
3055
3056 /*
3057 * Link the source inode under the target name.
3058 * If the source inode is a directory and we are moving
3059 * it across directories, its ".." entry will be
3060 * inconsistent until we replace that down below.
3061 *
3062 * In case there is already an entry with the same
3063 * name at the destination directory, remove it first.
3064 */
3065 error = xfs_dir_replace(tp, target_dp, target_name,
3066 src_ip->i_ino,
3067 &first_block, &dfops, spaceres);
3068 if (error)
3069 goto out_bmap_cancel;
3070
3071 xfs_trans_ichgtime(tp, target_dp,
3072 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3073
3074 /*
3075 * Decrement the link count on the target since the target
3076 * dir no longer points to it.
3077 */
3078 error = xfs_droplink(tp, target_ip);
3079 if (error)
3080 goto out_bmap_cancel;
3081
3082 if (src_is_directory) {
3083 /*
3084 * Drop the link from the old "." entry.
3085 */
3086 error = xfs_droplink(tp, target_ip);
3087 if (error)
3088 goto out_bmap_cancel;
3089 }
3090 } /* target_ip != NULL */
3091
3092 /*
3093 * Remove the source.
3094 */
3095 if (new_parent && src_is_directory) {
3096 /*
3097 * Rewrite the ".." entry to point to the new
3098 * directory.
3099 */
3100 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3101 target_dp->i_ino,
3102 &first_block, &dfops, spaceres);
3103 ASSERT(error != -EEXIST);
3104 if (error)
3105 goto out_bmap_cancel;
3106 }
3107
3108 /*
3109 * We always want to hit the ctime on the source inode.
3110 *
3111 * This isn't strictly required by the standards since the source
3112 * inode isn't really being changed, but old unix file systems did
3113 * it and some incremental backup programs won't work without it.
3114 */
3115 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3116 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3117
3118 /*
3119 * Adjust the link count on src_dp. This is necessary when
3120 * renaming a directory, either within one parent when
3121 * the target existed, or across two parent directories.
3122 */
3123 if (src_is_directory && (new_parent || target_ip != NULL)) {
3124
3125 /*
3126 * Decrement link count on src_directory since the
3127 * entry that's moved no longer points to it.
3128 */
3129 error = xfs_droplink(tp, src_dp);
3130 if (error)
3131 goto out_bmap_cancel;
3132 }
3133
3134 /*
3135 * For whiteouts, we only need to update the source dirent with the
3136 * inode number of the whiteout inode rather than removing it
3137 * altogether.
3138 */
3139 if (wip) {
3140 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3141 &first_block, &dfops, spaceres);
3142 } else
3143 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3144 &first_block, &dfops, spaceres);
3145 if (error)
3146 goto out_bmap_cancel;
3147
3148 /*
3149 * For whiteouts, we need to bump the link count on the whiteout inode.
3150 * This means that failures all the way up to this point leave the inode
3151 * on the unlinked list and so cleanup is a simple matter of dropping
3152 * the remaining reference to it. If we fail here after bumping the link
3153 * count, we're shutting down the filesystem so we'll never see the
3154 * intermediate state on disk.
3155 */
3156 if (wip) {
3157 ASSERT(VFS_I(wip)->i_nlink == 0);
3158 error = xfs_bumplink(tp, wip);
3159 if (error)
3160 goto out_bmap_cancel;
3161 error = xfs_iunlink_remove(tp, wip);
3162 if (error)
3163 goto out_bmap_cancel;
3164 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3165
3166 /*
3167 * Now we have a real link, clear the "I'm a tmpfile" state
3168 * flag from the inode so it doesn't accidentally get misused in
3169 * future.
3170 */
3171 VFS_I(wip)->i_state &= ~I_LINKABLE;
3172 }
3173
3174 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3175 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3176 if (new_parent)
3177 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3178
3179 error = xfs_finish_rename(tp, &dfops);
3180 if (wip)
3181 IRELE(wip);
3182 return error;
3183
3184 out_bmap_cancel:
3185 xfs_defer_cancel(&dfops);
3186 out_trans_cancel:
3187 xfs_trans_cancel(tp);
3188 out_release_wip:
3189 if (wip)
3190 IRELE(wip);
3191 return error;
3192 }
3193
3194 STATIC int
3195 xfs_iflush_cluster(
3196 struct xfs_inode *ip,
3197 struct xfs_buf *bp)
3198 {
3199 struct xfs_mount *mp = ip->i_mount;
3200 struct xfs_perag *pag;
3201 unsigned long first_index, mask;
3202 unsigned long inodes_per_cluster;
3203 int cilist_size;
3204 struct xfs_inode **cilist;
3205 struct xfs_inode *cip;
3206 int nr_found;
3207 int clcount = 0;
3208 int bufwasdelwri;
3209 int i;
3210
3211 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3212
3213 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3214 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3215 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3216 if (!cilist)
3217 goto out_put;
3218
3219 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3220 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3221 rcu_read_lock();
3222 /* really need a gang lookup range call here */
3223 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3224 first_index, inodes_per_cluster);
3225 if (nr_found == 0)
3226 goto out_free;
3227
3228 for (i = 0; i < nr_found; i++) {
3229 cip = cilist[i];
3230 if (cip == ip)
3231 continue;
3232
3233 /*
3234 * because this is an RCU protected lookup, we could find a
3235 * recently freed or even reallocated inode during the lookup.
3236 * We need to check under the i_flags_lock for a valid inode
3237 * here. Skip it if it is not valid or the wrong inode.
3238 */
3239 spin_lock(&cip->i_flags_lock);
3240 if (!cip->i_ino ||
3241 __xfs_iflags_test(cip, XFS_ISTALE)) {
3242 spin_unlock(&cip->i_flags_lock);
3243 continue;
3244 }
3245
3246 /*
3247 * Once we fall off the end of the cluster, no point checking
3248 * any more inodes in the list because they will also all be
3249 * outside the cluster.
3250 */
3251 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3252 spin_unlock(&cip->i_flags_lock);
3253 break;
3254 }
3255 spin_unlock(&cip->i_flags_lock);
3256
3257 /*
3258 * Do an un-protected check to see if the inode is dirty and
3259 * is a candidate for flushing. These checks will be repeated
3260 * later after the appropriate locks are acquired.
3261 */
3262 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3263 continue;
3264
3265 /*
3266 * Try to get locks. If any are unavailable or it is pinned,
3267 * then this inode cannot be flushed and is skipped.
3268 */
3269
3270 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3271 continue;
3272 if (!xfs_iflock_nowait(cip)) {
3273 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3274 continue;
3275 }
3276 if (xfs_ipincount(cip)) {
3277 xfs_ifunlock(cip);
3278 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3279 continue;
3280 }
3281
3282
3283 /*
3284 * Check the inode number again, just to be certain we are not
3285 * racing with freeing in xfs_reclaim_inode(). See the comments
3286 * in that function for more information as to why the initial
3287 * check is not sufficient.
3288 */
3289 if (!cip->i_ino) {
3290 xfs_ifunlock(cip);
3291 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3292 continue;
3293 }
3294
3295 /*
3296 * arriving here means that this inode can be flushed. First
3297 * re-check that it's dirty before flushing.
3298 */
3299 if (!xfs_inode_clean(cip)) {
3300 int error;
3301 error = xfs_iflush_int(cip, bp);
3302 if (error) {
3303 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3304 goto cluster_corrupt_out;
3305 }
3306 clcount++;
3307 } else {
3308 xfs_ifunlock(cip);
3309 }
3310 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3311 }
3312
3313 if (clcount) {
3314 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3315 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3316 }
3317
3318 out_free:
3319 rcu_read_unlock();
3320 kmem_free(cilist);
3321 out_put:
3322 xfs_perag_put(pag);
3323 return 0;
3324
3325
3326 cluster_corrupt_out:
3327 /*
3328 * Corruption detected in the clustering loop. Invalidate the
3329 * inode buffer and shut down the filesystem.
3330 */
3331 rcu_read_unlock();
3332 /*
3333 * Clean up the buffer. If it was delwri, just release it --
3334 * brelse can handle it with no problems. If not, shut down the
3335 * filesystem before releasing the buffer.
3336 */
3337 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3338 if (bufwasdelwri)
3339 xfs_buf_relse(bp);
3340
3341 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3342
3343 if (!bufwasdelwri) {
3344 /*
3345 * Just like incore_relse: if we have b_iodone functions,
3346 * mark the buffer as an error and call them. Otherwise
3347 * mark it as stale and brelse.
3348 */
3349 if (bp->b_iodone) {
3350 bp->b_flags &= ~XBF_DONE;
3351 xfs_buf_stale(bp);
3352 xfs_buf_ioerror(bp, -EIO);
3353 xfs_buf_ioend(bp);
3354 } else {
3355 xfs_buf_stale(bp);
3356 xfs_buf_relse(bp);
3357 }
3358 }
3359
3360 /*
3361 * Unlocks the flush lock
3362 */
3363 xfs_iflush_abort(cip, false);
3364 kmem_free(cilist);
3365 xfs_perag_put(pag);
3366 return -EFSCORRUPTED;
3367 }
3368
3369 /*
3370 * Flush dirty inode metadata into the backing buffer.
3371 *
3372 * The caller must have the inode lock and the inode flush lock held. The
3373 * inode lock will still be held upon return to the caller, and the inode
3374 * flush lock will be released after the inode has reached the disk.
3375 *
3376 * The caller must write out the buffer returned in *bpp and release it.
3377 */
3378 int
3379 xfs_iflush(
3380 struct xfs_inode *ip,
3381 struct xfs_buf **bpp)
3382 {
3383 struct xfs_mount *mp = ip->i_mount;
3384 struct xfs_buf *bp = NULL;
3385 struct xfs_dinode *dip;
3386 int error;
3387
3388 XFS_STATS_INC(mp, xs_iflush_count);
3389
3390 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3391 ASSERT(xfs_isiflocked(ip));
3392 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3393 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3394
3395 *bpp = NULL;
3396
3397 xfs_iunpin_wait(ip);
3398
3399 /*
3400 * For stale inodes we cannot rely on the backing buffer remaining
3401 * stale in cache for the remaining life of the stale inode and so
3402 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3403 * inodes below. We have to check this after ensuring the inode is
3404 * unpinned so that it is safe to reclaim the stale inode after the
3405 * flush call.
3406 */
3407 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3408 xfs_ifunlock(ip);
3409 return 0;
3410 }
3411
3412 /*
3413 * This may have been unpinned because the filesystem is shutting
3414 * down forcibly. If that's the case we must not write this inode
3415 * to disk, because the log record didn't make it to disk.
3416 *
3417 * We also have to remove the log item from the AIL in this case,
3418 * as we wait for an empty AIL as part of the unmount process.
3419 */
3420 if (XFS_FORCED_SHUTDOWN(mp)) {
3421 error = -EIO;
3422 goto abort_out;
3423 }
3424
3425 /*
3426 * Get the buffer containing the on-disk inode. We are doing a try-lock
3427 * operation here, so we may get an EAGAIN error. In that case, we
3428 * simply want to return with the inode still dirty.
3429 *
3430 * If we get any other error, we effectively have a corruption situation
3431 * and we cannot flush the inode, so we treat it the same as failing
3432 * xfs_iflush_int().
3433 */
3434 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3435 0);
3436 if (error == -EAGAIN) {
3437 xfs_ifunlock(ip);
3438 return error;
3439 }
3440 if (error)
3441 goto corrupt_out;
3442
3443 /*
3444 * First flush out the inode that xfs_iflush was called with.
3445 */
3446 error = xfs_iflush_int(ip, bp);
3447 if (error)
3448 goto corrupt_out;
3449
3450 /*
3451 * If the buffer is pinned then push on the log now so we won't
3452 * get stuck waiting in the write for too long.
3453 */
3454 if (xfs_buf_ispinned(bp))
3455 xfs_log_force(mp, 0);
3456
3457 /*
3458 * inode clustering:
3459 * see if other inodes can be gathered into this write
3460 */
3461 error = xfs_iflush_cluster(ip, bp);
3462 if (error)
3463 goto cluster_corrupt_out;
3464
3465 *bpp = bp;
3466 return 0;
3467
3468 corrupt_out:
3469 if (bp)
3470 xfs_buf_relse(bp);
3471 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3472 cluster_corrupt_out:
3473 error = -EFSCORRUPTED;
3474 abort_out:
3475 /*
3476 * Unlocks the flush lock
3477 */
3478 xfs_iflush_abort(ip, false);
3479 return error;
3480 }
3481
3482 STATIC int
3483 xfs_iflush_int(
3484 struct xfs_inode *ip,
3485 struct xfs_buf *bp)
3486 {
3487 struct xfs_inode_log_item *iip = ip->i_itemp;
3488 struct xfs_dinode *dip;
3489 struct xfs_mount *mp = ip->i_mount;
3490
3491 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3492 ASSERT(xfs_isiflocked(ip));
3493 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3494 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3495 ASSERT(iip != NULL && iip->ili_fields != 0);
3496 ASSERT(ip->i_d.di_version > 1);
3497
3498 /* set *dip = inode's place in the buffer */
3499 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3500
3501 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3502 mp, XFS_ERRTAG_IFLUSH_1)) {
3503 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3504 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3505 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3506 goto corrupt_out;
3507 }
3508 if (S_ISREG(VFS_I(ip)->i_mode)) {
3509 if (XFS_TEST_ERROR(
3510 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3511 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3512 mp, XFS_ERRTAG_IFLUSH_3)) {
3513 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3514 "%s: Bad regular inode %Lu, ptr 0x%p",
3515 __func__, ip->i_ino, ip);
3516 goto corrupt_out;
3517 }
3518 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3519 if (XFS_TEST_ERROR(
3520 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3521 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3522 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3523 mp, XFS_ERRTAG_IFLUSH_4)) {
3524 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3525 "%s: Bad directory inode %Lu, ptr 0x%p",
3526 __func__, ip->i_ino, ip);
3527 goto corrupt_out;
3528 }
3529 }
3530 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3531 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3532 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3533 "%s: detected corrupt incore inode %Lu, "
3534 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3535 __func__, ip->i_ino,
3536 ip->i_d.di_nextents + ip->i_d.di_anextents,
3537 ip->i_d.di_nblocks, ip);
3538 goto corrupt_out;
3539 }
3540 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3541 mp, XFS_ERRTAG_IFLUSH_6)) {
3542 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3543 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3544 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3545 goto corrupt_out;
3546 }
3547
3548 /*
3549 * Inode item log recovery for v2 inodes are dependent on the
3550 * di_flushiter count for correct sequencing. We bump the flush
3551 * iteration count so we can detect flushes which postdate a log record
3552 * during recovery. This is redundant as we now log every change and
3553 * hence this can't happen but we need to still do it to ensure
3554 * backwards compatibility with old kernels that predate logging all
3555 * inode changes.
3556 */
3557 if (ip->i_d.di_version < 3)
3558 ip->i_d.di_flushiter++;
3559
3560 /* Check the inline directory data. */
3561 if (S_ISDIR(VFS_I(ip)->i_mode) &&
3562 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL &&
3563 xfs_dir2_sf_verify(ip))
3564 goto corrupt_out;
3565
3566 /*
3567 * Copy the dirty parts of the inode into the on-disk inode. We always
3568 * copy out the core of the inode, because if the inode is dirty at all
3569 * the core must be.
3570 */
3571 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3572
3573 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3574 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3575 ip->i_d.di_flushiter = 0;
3576
3577 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3578 if (XFS_IFORK_Q(ip))
3579 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3580 xfs_inobp_check(mp, bp);
3581
3582 /*
3583 * We've recorded everything logged in the inode, so we'd like to clear
3584 * the ili_fields bits so we don't log and flush things unnecessarily.
3585 * However, we can't stop logging all this information until the data
3586 * we've copied into the disk buffer is written to disk. If we did we
3587 * might overwrite the copy of the inode in the log with all the data
3588 * after re-logging only part of it, and in the face of a crash we
3589 * wouldn't have all the data we need to recover.
3590 *
3591 * What we do is move the bits to the ili_last_fields field. When
3592 * logging the inode, these bits are moved back to the ili_fields field.
3593 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3594 * know that the information those bits represent is permanently on
3595 * disk. As long as the flush completes before the inode is logged
3596 * again, then both ili_fields and ili_last_fields will be cleared.
3597 *
3598 * We can play with the ili_fields bits here, because the inode lock
3599 * must be held exclusively in order to set bits there and the flush
3600 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3601 * done routine can tell whether or not to look in the AIL. Also, store
3602 * the current LSN of the inode so that we can tell whether the item has
3603 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3604 * need the AIL lock, because it is a 64 bit value that cannot be read
3605 * atomically.
3606 */
3607 iip->ili_last_fields = iip->ili_fields;
3608 iip->ili_fields = 0;
3609 iip->ili_fsync_fields = 0;
3610 iip->ili_logged = 1;
3611
3612 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3613 &iip->ili_item.li_lsn);
3614
3615 /*
3616 * Attach the function xfs_iflush_done to the inode's
3617 * buffer. This will remove the inode from the AIL
3618 * and unlock the inode's flush lock when the inode is
3619 * completely written to disk.
3620 */
3621 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3622
3623 /* generate the checksum. */
3624 xfs_dinode_calc_crc(mp, dip);
3625
3626 ASSERT(bp->b_fspriv != NULL);
3627 ASSERT(bp->b_iodone != NULL);
3628 return 0;
3629
3630 corrupt_out:
3631 return -EFSCORRUPTED;
3632 }