]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/xfs/xfs_inode.c
Merge existing fixes from regmap/for-5.8
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38
39 kmem_zone_t *xfs_inode_zone;
40
41 /*
42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
43 * freed from a file in a single transaction.
44 */
45 #define XFS_ITRUNC_MAX_EXTENTS 2
46
47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
50
51 /*
52 * helper function to extract extent size hint from inode
53 */
54 xfs_extlen_t
55 xfs_get_extsz_hint(
56 struct xfs_inode *ip)
57 {
58 /*
59 * No point in aligning allocations if we need to COW to actually
60 * write to them.
61 */
62 if (xfs_is_always_cow_inode(ip))
63 return 0;
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
69 }
70
71 /*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
76 */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
80 {
81 xfs_extlen_t a, b;
82
83 a = 0;
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
87
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
92 }
93
94 /*
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
105 *
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
108 */
109 uint
110 xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
112 {
113 uint lock_mode = XFS_ILOCK_SHARED;
114
115 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 lock_mode = XFS_ILOCK_EXCL;
118 xfs_ilock(ip, lock_mode);
119 return lock_mode;
120 }
121
122 uint
123 xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
125 {
126 uint lock_mode = XFS_ILOCK_SHARED;
127
128 if (ip->i_afp &&
129 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
130 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
131 lock_mode = XFS_ILOCK_EXCL;
132 xfs_ilock(ip, lock_mode);
133 return lock_mode;
134 }
135
136 /*
137 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
138 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
139 * various combinations of the locks to be obtained.
140 *
141 * The 3 locks should always be ordered so that the IO lock is obtained first,
142 * the mmap lock second and the ilock last in order to prevent deadlock.
143 *
144 * Basic locking order:
145 *
146 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
147 *
148 * mmap_lock locking order:
149 *
150 * i_rwsem -> page lock -> mmap_lock
151 * mmap_lock -> i_mmap_lock -> page_lock
152 *
153 * The difference in mmap_lock locking order mean that we cannot hold the
154 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
155 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
156 * in get_user_pages() to map the user pages into the kernel address space for
157 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
158 * page faults already hold the mmap_lock.
159 *
160 * Hence to serialise fully against both syscall and mmap based IO, we need to
161 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
162 * taken in places where we need to invalidate the page cache in a race
163 * free manner (e.g. truncate, hole punch and other extent manipulation
164 * functions).
165 */
166 void
167 xfs_ilock(
168 xfs_inode_t *ip,
169 uint lock_flags)
170 {
171 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
172
173 /*
174 * You can't set both SHARED and EXCL for the same lock,
175 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
176 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
177 */
178 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
179 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
180 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
181 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
182 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
183 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
184 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
185
186 if (lock_flags & XFS_IOLOCK_EXCL) {
187 down_write_nested(&VFS_I(ip)->i_rwsem,
188 XFS_IOLOCK_DEP(lock_flags));
189 } else if (lock_flags & XFS_IOLOCK_SHARED) {
190 down_read_nested(&VFS_I(ip)->i_rwsem,
191 XFS_IOLOCK_DEP(lock_flags));
192 }
193
194 if (lock_flags & XFS_MMAPLOCK_EXCL)
195 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
196 else if (lock_flags & XFS_MMAPLOCK_SHARED)
197 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
198
199 if (lock_flags & XFS_ILOCK_EXCL)
200 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
201 else if (lock_flags & XFS_ILOCK_SHARED)
202 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
203 }
204
205 /*
206 * This is just like xfs_ilock(), except that the caller
207 * is guaranteed not to sleep. It returns 1 if it gets
208 * the requested locks and 0 otherwise. If the IO lock is
209 * obtained but the inode lock cannot be, then the IO lock
210 * is dropped before returning.
211 *
212 * ip -- the inode being locked
213 * lock_flags -- this parameter indicates the inode's locks to be
214 * to be locked. See the comment for xfs_ilock() for a list
215 * of valid values.
216 */
217 int
218 xfs_ilock_nowait(
219 xfs_inode_t *ip,
220 uint lock_flags)
221 {
222 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
223
224 /*
225 * You can't set both SHARED and EXCL for the same lock,
226 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
227 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 */
229 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
230 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
231 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
232 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
233 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
234 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
235 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236
237 if (lock_flags & XFS_IOLOCK_EXCL) {
238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 goto out;
240 } else if (lock_flags & XFS_IOLOCK_SHARED) {
241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 goto out;
243 }
244
245 if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 if (!mrtryupdate(&ip->i_mmaplock))
247 goto out_undo_iolock;
248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 if (!mrtryaccess(&ip->i_mmaplock))
250 goto out_undo_iolock;
251 }
252
253 if (lock_flags & XFS_ILOCK_EXCL) {
254 if (!mrtryupdate(&ip->i_lock))
255 goto out_undo_mmaplock;
256 } else if (lock_flags & XFS_ILOCK_SHARED) {
257 if (!mrtryaccess(&ip->i_lock))
258 goto out_undo_mmaplock;
259 }
260 return 1;
261
262 out_undo_mmaplock:
263 if (lock_flags & XFS_MMAPLOCK_EXCL)
264 mrunlock_excl(&ip->i_mmaplock);
265 else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 mrunlock_shared(&ip->i_mmaplock);
267 out_undo_iolock:
268 if (lock_flags & XFS_IOLOCK_EXCL)
269 up_write(&VFS_I(ip)->i_rwsem);
270 else if (lock_flags & XFS_IOLOCK_SHARED)
271 up_read(&VFS_I(ip)->i_rwsem);
272 out:
273 return 0;
274 }
275
276 /*
277 * xfs_iunlock() is used to drop the inode locks acquired with
278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280 * that we know which locks to drop.
281 *
282 * ip -- the inode being unlocked
283 * lock_flags -- this parameter indicates the inode's locks to be
284 * to be unlocked. See the comment for xfs_ilock() for a list
285 * of valid values for this parameter.
286 *
287 */
288 void
289 xfs_iunlock(
290 xfs_inode_t *ip,
291 uint lock_flags)
292 {
293 /*
294 * You can't set both SHARED and EXCL for the same lock,
295 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
296 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 */
298 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
299 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
300 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
301 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
302 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
303 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
304 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
305 ASSERT(lock_flags != 0);
306
307 if (lock_flags & XFS_IOLOCK_EXCL)
308 up_write(&VFS_I(ip)->i_rwsem);
309 else if (lock_flags & XFS_IOLOCK_SHARED)
310 up_read(&VFS_I(ip)->i_rwsem);
311
312 if (lock_flags & XFS_MMAPLOCK_EXCL)
313 mrunlock_excl(&ip->i_mmaplock);
314 else if (lock_flags & XFS_MMAPLOCK_SHARED)
315 mrunlock_shared(&ip->i_mmaplock);
316
317 if (lock_flags & XFS_ILOCK_EXCL)
318 mrunlock_excl(&ip->i_lock);
319 else if (lock_flags & XFS_ILOCK_SHARED)
320 mrunlock_shared(&ip->i_lock);
321
322 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
323 }
324
325 /*
326 * give up write locks. the i/o lock cannot be held nested
327 * if it is being demoted.
328 */
329 void
330 xfs_ilock_demote(
331 xfs_inode_t *ip,
332 uint lock_flags)
333 {
334 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 ASSERT((lock_flags &
336 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337
338 if (lock_flags & XFS_ILOCK_EXCL)
339 mrdemote(&ip->i_lock);
340 if (lock_flags & XFS_MMAPLOCK_EXCL)
341 mrdemote(&ip->i_mmaplock);
342 if (lock_flags & XFS_IOLOCK_EXCL)
343 downgrade_write(&VFS_I(ip)->i_rwsem);
344
345 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
346 }
347
348 #if defined(DEBUG) || defined(XFS_WARN)
349 int
350 xfs_isilocked(
351 xfs_inode_t *ip,
352 uint lock_flags)
353 {
354 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
355 if (!(lock_flags & XFS_ILOCK_SHARED))
356 return !!ip->i_lock.mr_writer;
357 return rwsem_is_locked(&ip->i_lock.mr_lock);
358 }
359
360 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
361 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
362 return !!ip->i_mmaplock.mr_writer;
363 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
364 }
365
366 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
367 if (!(lock_flags & XFS_IOLOCK_SHARED))
368 return !debug_locks ||
369 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
370 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
371 }
372
373 ASSERT(0);
374 return 0;
375 }
376 #endif
377
378 /*
379 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
380 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
381 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
382 * errors and warnings.
383 */
384 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
385 static bool
386 xfs_lockdep_subclass_ok(
387 int subclass)
388 {
389 return subclass < MAX_LOCKDEP_SUBCLASSES;
390 }
391 #else
392 #define xfs_lockdep_subclass_ok(subclass) (true)
393 #endif
394
395 /*
396 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
397 * value. This can be called for any type of inode lock combination, including
398 * parent locking. Care must be taken to ensure we don't overrun the subclass
399 * storage fields in the class mask we build.
400 */
401 static inline int
402 xfs_lock_inumorder(int lock_mode, int subclass)
403 {
404 int class = 0;
405
406 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
407 XFS_ILOCK_RTSUM)));
408 ASSERT(xfs_lockdep_subclass_ok(subclass));
409
410 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
411 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
412 class += subclass << XFS_IOLOCK_SHIFT;
413 }
414
415 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
416 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
417 class += subclass << XFS_MMAPLOCK_SHIFT;
418 }
419
420 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
421 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
422 class += subclass << XFS_ILOCK_SHIFT;
423 }
424
425 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
426 }
427
428 /*
429 * The following routine will lock n inodes in exclusive mode. We assume the
430 * caller calls us with the inodes in i_ino order.
431 *
432 * We need to detect deadlock where an inode that we lock is in the AIL and we
433 * start waiting for another inode that is locked by a thread in a long running
434 * transaction (such as truncate). This can result in deadlock since the long
435 * running trans might need to wait for the inode we just locked in order to
436 * push the tail and free space in the log.
437 *
438 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
439 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
440 * lock more than one at a time, lockdep will report false positives saying we
441 * have violated locking orders.
442 */
443 static void
444 xfs_lock_inodes(
445 struct xfs_inode **ips,
446 int inodes,
447 uint lock_mode)
448 {
449 int attempts = 0, i, j, try_lock;
450 struct xfs_log_item *lp;
451
452 /*
453 * Currently supports between 2 and 5 inodes with exclusive locking. We
454 * support an arbitrary depth of locking here, but absolute limits on
455 * inodes depend on the the type of locking and the limits placed by
456 * lockdep annotations in xfs_lock_inumorder. These are all checked by
457 * the asserts.
458 */
459 ASSERT(ips && inodes >= 2 && inodes <= 5);
460 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
461 XFS_ILOCK_EXCL));
462 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
463 XFS_ILOCK_SHARED)));
464 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
465 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
466 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
467 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
468
469 if (lock_mode & XFS_IOLOCK_EXCL) {
470 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
471 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
472 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
473
474 try_lock = 0;
475 i = 0;
476 again:
477 for (; i < inodes; i++) {
478 ASSERT(ips[i]);
479
480 if (i && (ips[i] == ips[i - 1])) /* Already locked */
481 continue;
482
483 /*
484 * If try_lock is not set yet, make sure all locked inodes are
485 * not in the AIL. If any are, set try_lock to be used later.
486 */
487 if (!try_lock) {
488 for (j = (i - 1); j >= 0 && !try_lock; j--) {
489 lp = &ips[j]->i_itemp->ili_item;
490 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
491 try_lock++;
492 }
493 }
494
495 /*
496 * If any of the previous locks we have locked is in the AIL,
497 * we must TRY to get the second and subsequent locks. If
498 * we can't get any, we must release all we have
499 * and try again.
500 */
501 if (!try_lock) {
502 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
503 continue;
504 }
505
506 /* try_lock means we have an inode locked that is in the AIL. */
507 ASSERT(i != 0);
508 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
509 continue;
510
511 /*
512 * Unlock all previous guys and try again. xfs_iunlock will try
513 * to push the tail if the inode is in the AIL.
514 */
515 attempts++;
516 for (j = i - 1; j >= 0; j--) {
517 /*
518 * Check to see if we've already unlocked this one. Not
519 * the first one going back, and the inode ptr is the
520 * same.
521 */
522 if (j != (i - 1) && ips[j] == ips[j + 1])
523 continue;
524
525 xfs_iunlock(ips[j], lock_mode);
526 }
527
528 if ((attempts % 5) == 0) {
529 delay(1); /* Don't just spin the CPU */
530 }
531 i = 0;
532 try_lock = 0;
533 goto again;
534 }
535 }
536
537 /*
538 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
539 * the mmaplock or the ilock, but not more than one type at a time. If we lock
540 * more than one at a time, lockdep will report false positives saying we have
541 * violated locking orders. The iolock must be double-locked separately since
542 * we use i_rwsem for that. We now support taking one lock EXCL and the other
543 * SHARED.
544 */
545 void
546 xfs_lock_two_inodes(
547 struct xfs_inode *ip0,
548 uint ip0_mode,
549 struct xfs_inode *ip1,
550 uint ip1_mode)
551 {
552 struct xfs_inode *temp;
553 uint mode_temp;
554 int attempts = 0;
555 struct xfs_log_item *lp;
556
557 ASSERT(hweight32(ip0_mode) == 1);
558 ASSERT(hweight32(ip1_mode) == 1);
559 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
561 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
562 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
563 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
564 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
565 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
566 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
567 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
568 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
569
570 ASSERT(ip0->i_ino != ip1->i_ino);
571
572 if (ip0->i_ino > ip1->i_ino) {
573 temp = ip0;
574 ip0 = ip1;
575 ip1 = temp;
576 mode_temp = ip0_mode;
577 ip0_mode = ip1_mode;
578 ip1_mode = mode_temp;
579 }
580
581 again:
582 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
583
584 /*
585 * If the first lock we have locked is in the AIL, we must TRY to get
586 * the second lock. If we can't get it, we must release the first one
587 * and try again.
588 */
589 lp = &ip0->i_itemp->ili_item;
590 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
591 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
592 xfs_iunlock(ip0, ip0_mode);
593 if ((++attempts % 5) == 0)
594 delay(1); /* Don't just spin the CPU */
595 goto again;
596 }
597 } else {
598 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
599 }
600 }
601
602 void
603 __xfs_iflock(
604 struct xfs_inode *ip)
605 {
606 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
607 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
608
609 do {
610 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
611 if (xfs_isiflocked(ip))
612 io_schedule();
613 } while (!xfs_iflock_nowait(ip));
614
615 finish_wait(wq, &wait.wq_entry);
616 }
617
618 STATIC uint
619 _xfs_dic2xflags(
620 uint16_t di_flags,
621 uint64_t di_flags2,
622 bool has_attr)
623 {
624 uint flags = 0;
625
626 if (di_flags & XFS_DIFLAG_ANY) {
627 if (di_flags & XFS_DIFLAG_REALTIME)
628 flags |= FS_XFLAG_REALTIME;
629 if (di_flags & XFS_DIFLAG_PREALLOC)
630 flags |= FS_XFLAG_PREALLOC;
631 if (di_flags & XFS_DIFLAG_IMMUTABLE)
632 flags |= FS_XFLAG_IMMUTABLE;
633 if (di_flags & XFS_DIFLAG_APPEND)
634 flags |= FS_XFLAG_APPEND;
635 if (di_flags & XFS_DIFLAG_SYNC)
636 flags |= FS_XFLAG_SYNC;
637 if (di_flags & XFS_DIFLAG_NOATIME)
638 flags |= FS_XFLAG_NOATIME;
639 if (di_flags & XFS_DIFLAG_NODUMP)
640 flags |= FS_XFLAG_NODUMP;
641 if (di_flags & XFS_DIFLAG_RTINHERIT)
642 flags |= FS_XFLAG_RTINHERIT;
643 if (di_flags & XFS_DIFLAG_PROJINHERIT)
644 flags |= FS_XFLAG_PROJINHERIT;
645 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
646 flags |= FS_XFLAG_NOSYMLINKS;
647 if (di_flags & XFS_DIFLAG_EXTSIZE)
648 flags |= FS_XFLAG_EXTSIZE;
649 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
650 flags |= FS_XFLAG_EXTSZINHERIT;
651 if (di_flags & XFS_DIFLAG_NODEFRAG)
652 flags |= FS_XFLAG_NODEFRAG;
653 if (di_flags & XFS_DIFLAG_FILESTREAM)
654 flags |= FS_XFLAG_FILESTREAM;
655 }
656
657 if (di_flags2 & XFS_DIFLAG2_ANY) {
658 if (di_flags2 & XFS_DIFLAG2_DAX)
659 flags |= FS_XFLAG_DAX;
660 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
661 flags |= FS_XFLAG_COWEXTSIZE;
662 }
663
664 if (has_attr)
665 flags |= FS_XFLAG_HASATTR;
666
667 return flags;
668 }
669
670 uint
671 xfs_ip2xflags(
672 struct xfs_inode *ip)
673 {
674 struct xfs_icdinode *dic = &ip->i_d;
675
676 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
677 }
678
679 /*
680 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
681 * is allowed, otherwise it has to be an exact match. If a CI match is found,
682 * ci_name->name will point to a the actual name (caller must free) or
683 * will be set to NULL if an exact match is found.
684 */
685 int
686 xfs_lookup(
687 xfs_inode_t *dp,
688 struct xfs_name *name,
689 xfs_inode_t **ipp,
690 struct xfs_name *ci_name)
691 {
692 xfs_ino_t inum;
693 int error;
694
695 trace_xfs_lookup(dp, name);
696
697 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
698 return -EIO;
699
700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
701 if (error)
702 goto out_unlock;
703
704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 if (error)
706 goto out_free_name;
707
708 return 0;
709
710 out_free_name:
711 if (ci_name)
712 kmem_free(ci_name->name);
713 out_unlock:
714 *ipp = NULL;
715 return error;
716 }
717
718 /*
719 * Allocate an inode on disk and return a copy of its in-core version.
720 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
721 * appropriately within the inode. The uid and gid for the inode are
722 * set according to the contents of the given cred structure.
723 *
724 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
725 * has a free inode available, call xfs_iget() to obtain the in-core
726 * version of the allocated inode. Finally, fill in the inode and
727 * log its initial contents. In this case, ialloc_context would be
728 * set to NULL.
729 *
730 * If xfs_dialloc() does not have an available inode, it will replenish
731 * its supply by doing an allocation. Since we can only do one
732 * allocation within a transaction without deadlocks, we must commit
733 * the current transaction before returning the inode itself.
734 * In this case, therefore, we will set ialloc_context and return.
735 * The caller should then commit the current transaction, start a new
736 * transaction, and call xfs_ialloc() again to actually get the inode.
737 *
738 * To ensure that some other process does not grab the inode that
739 * was allocated during the first call to xfs_ialloc(), this routine
740 * also returns the [locked] bp pointing to the head of the freelist
741 * as ialloc_context. The caller should hold this buffer across
742 * the commit and pass it back into this routine on the second call.
743 *
744 * If we are allocating quota inodes, we do not have a parent inode
745 * to attach to or associate with (i.e. pip == NULL) because they
746 * are not linked into the directory structure - they are attached
747 * directly to the superblock - and so have no parent.
748 */
749 static int
750 xfs_ialloc(
751 xfs_trans_t *tp,
752 xfs_inode_t *pip,
753 umode_t mode,
754 xfs_nlink_t nlink,
755 dev_t rdev,
756 prid_t prid,
757 xfs_buf_t **ialloc_context,
758 xfs_inode_t **ipp)
759 {
760 struct xfs_mount *mp = tp->t_mountp;
761 xfs_ino_t ino;
762 xfs_inode_t *ip;
763 uint flags;
764 int error;
765 struct timespec64 tv;
766 struct inode *inode;
767
768 /*
769 * Call the space management code to pick
770 * the on-disk inode to be allocated.
771 */
772 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
773 ialloc_context, &ino);
774 if (error)
775 return error;
776 if (*ialloc_context || ino == NULLFSINO) {
777 *ipp = NULL;
778 return 0;
779 }
780 ASSERT(*ialloc_context == NULL);
781
782 /*
783 * Protect against obviously corrupt allocation btree records. Later
784 * xfs_iget checks will catch re-allocation of other active in-memory
785 * and on-disk inodes. If we don't catch reallocating the parent inode
786 * here we will deadlock in xfs_iget() so we have to do these checks
787 * first.
788 */
789 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
790 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
791 return -EFSCORRUPTED;
792 }
793
794 /*
795 * Get the in-core inode with the lock held exclusively.
796 * This is because we're setting fields here we need
797 * to prevent others from looking at until we're done.
798 */
799 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
800 XFS_ILOCK_EXCL, &ip);
801 if (error)
802 return error;
803 ASSERT(ip != NULL);
804 inode = VFS_I(ip);
805 inode->i_mode = mode;
806 set_nlink(inode, nlink);
807 inode->i_uid = current_fsuid();
808 inode->i_rdev = rdev;
809 ip->i_d.di_projid = prid;
810
811 if (pip && XFS_INHERIT_GID(pip)) {
812 inode->i_gid = VFS_I(pip)->i_gid;
813 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
814 inode->i_mode |= S_ISGID;
815 } else {
816 inode->i_gid = current_fsgid();
817 }
818
819 /*
820 * If the group ID of the new file does not match the effective group
821 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
822 * (and only if the irix_sgid_inherit compatibility variable is set).
823 */
824 if (irix_sgid_inherit &&
825 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
826 inode->i_mode &= ~S_ISGID;
827
828 ip->i_d.di_size = 0;
829 ip->i_df.if_nextents = 0;
830 ASSERT(ip->i_d.di_nblocks == 0);
831
832 tv = current_time(inode);
833 inode->i_mtime = tv;
834 inode->i_atime = tv;
835 inode->i_ctime = tv;
836
837 ip->i_d.di_extsize = 0;
838 ip->i_d.di_dmevmask = 0;
839 ip->i_d.di_dmstate = 0;
840 ip->i_d.di_flags = 0;
841
842 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
843 inode_set_iversion(inode, 1);
844 ip->i_d.di_flags2 = 0;
845 ip->i_d.di_cowextsize = 0;
846 ip->i_d.di_crtime = tv;
847 }
848
849 flags = XFS_ILOG_CORE;
850 switch (mode & S_IFMT) {
851 case S_IFIFO:
852 case S_IFCHR:
853 case S_IFBLK:
854 case S_IFSOCK:
855 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
856 ip->i_df.if_flags = 0;
857 flags |= XFS_ILOG_DEV;
858 break;
859 case S_IFREG:
860 case S_IFDIR:
861 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
862 uint di_flags = 0;
863
864 if (S_ISDIR(mode)) {
865 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
866 di_flags |= XFS_DIFLAG_RTINHERIT;
867 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
868 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
869 ip->i_d.di_extsize = pip->i_d.di_extsize;
870 }
871 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
872 di_flags |= XFS_DIFLAG_PROJINHERIT;
873 } else if (S_ISREG(mode)) {
874 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
875 di_flags |= XFS_DIFLAG_REALTIME;
876 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
877 di_flags |= XFS_DIFLAG_EXTSIZE;
878 ip->i_d.di_extsize = pip->i_d.di_extsize;
879 }
880 }
881 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
882 xfs_inherit_noatime)
883 di_flags |= XFS_DIFLAG_NOATIME;
884 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
885 xfs_inherit_nodump)
886 di_flags |= XFS_DIFLAG_NODUMP;
887 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
888 xfs_inherit_sync)
889 di_flags |= XFS_DIFLAG_SYNC;
890 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
891 xfs_inherit_nosymlinks)
892 di_flags |= XFS_DIFLAG_NOSYMLINKS;
893 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
894 xfs_inherit_nodefrag)
895 di_flags |= XFS_DIFLAG_NODEFRAG;
896 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
897 di_flags |= XFS_DIFLAG_FILESTREAM;
898
899 ip->i_d.di_flags |= di_flags;
900 }
901 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
902 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
903 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
904 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
905 }
906 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
907 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
908 }
909 /* FALLTHROUGH */
910 case S_IFLNK:
911 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
912 ip->i_df.if_flags = XFS_IFEXTENTS;
913 ip->i_df.if_bytes = 0;
914 ip->i_df.if_u1.if_root = NULL;
915 break;
916 default:
917 ASSERT(0);
918 }
919
920 /*
921 * Log the new values stuffed into the inode.
922 */
923 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
924 xfs_trans_log_inode(tp, ip, flags);
925
926 /* now that we have an i_mode we can setup the inode structure */
927 xfs_setup_inode(ip);
928
929 *ipp = ip;
930 return 0;
931 }
932
933 /*
934 * Allocates a new inode from disk and return a pointer to the
935 * incore copy. This routine will internally commit the current
936 * transaction and allocate a new one if the Space Manager needed
937 * to do an allocation to replenish the inode free-list.
938 *
939 * This routine is designed to be called from xfs_create and
940 * xfs_create_dir.
941 *
942 */
943 int
944 xfs_dir_ialloc(
945 xfs_trans_t **tpp, /* input: current transaction;
946 output: may be a new transaction. */
947 xfs_inode_t *dp, /* directory within whose allocate
948 the inode. */
949 umode_t mode,
950 xfs_nlink_t nlink,
951 dev_t rdev,
952 prid_t prid, /* project id */
953 xfs_inode_t **ipp) /* pointer to inode; it will be
954 locked. */
955 {
956 xfs_trans_t *tp;
957 xfs_inode_t *ip;
958 xfs_buf_t *ialloc_context = NULL;
959 int code;
960 void *dqinfo;
961 uint tflags;
962
963 tp = *tpp;
964 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
965
966 /*
967 * xfs_ialloc will return a pointer to an incore inode if
968 * the Space Manager has an available inode on the free
969 * list. Otherwise, it will do an allocation and replenish
970 * the freelist. Since we can only do one allocation per
971 * transaction without deadlocks, we will need to commit the
972 * current transaction and start a new one. We will then
973 * need to call xfs_ialloc again to get the inode.
974 *
975 * If xfs_ialloc did an allocation to replenish the freelist,
976 * it returns the bp containing the head of the freelist as
977 * ialloc_context. We will hold a lock on it across the
978 * transaction commit so that no other process can steal
979 * the inode(s) that we've just allocated.
980 */
981 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
982 &ip);
983
984 /*
985 * Return an error if we were unable to allocate a new inode.
986 * This should only happen if we run out of space on disk or
987 * encounter a disk error.
988 */
989 if (code) {
990 *ipp = NULL;
991 return code;
992 }
993 if (!ialloc_context && !ip) {
994 *ipp = NULL;
995 return -ENOSPC;
996 }
997
998 /*
999 * If the AGI buffer is non-NULL, then we were unable to get an
1000 * inode in one operation. We need to commit the current
1001 * transaction and call xfs_ialloc() again. It is guaranteed
1002 * to succeed the second time.
1003 */
1004 if (ialloc_context) {
1005 /*
1006 * Normally, xfs_trans_commit releases all the locks.
1007 * We call bhold to hang on to the ialloc_context across
1008 * the commit. Holding this buffer prevents any other
1009 * processes from doing any allocations in this
1010 * allocation group.
1011 */
1012 xfs_trans_bhold(tp, ialloc_context);
1013
1014 /*
1015 * We want the quota changes to be associated with the next
1016 * transaction, NOT this one. So, detach the dqinfo from this
1017 * and attach it to the next transaction.
1018 */
1019 dqinfo = NULL;
1020 tflags = 0;
1021 if (tp->t_dqinfo) {
1022 dqinfo = (void *)tp->t_dqinfo;
1023 tp->t_dqinfo = NULL;
1024 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1025 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1026 }
1027
1028 code = xfs_trans_roll(&tp);
1029
1030 /*
1031 * Re-attach the quota info that we detached from prev trx.
1032 */
1033 if (dqinfo) {
1034 tp->t_dqinfo = dqinfo;
1035 tp->t_flags |= tflags;
1036 }
1037
1038 if (code) {
1039 xfs_buf_relse(ialloc_context);
1040 *tpp = tp;
1041 *ipp = NULL;
1042 return code;
1043 }
1044 xfs_trans_bjoin(tp, ialloc_context);
1045
1046 /*
1047 * Call ialloc again. Since we've locked out all
1048 * other allocations in this allocation group,
1049 * this call should always succeed.
1050 */
1051 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1052 &ialloc_context, &ip);
1053
1054 /*
1055 * If we get an error at this point, return to the caller
1056 * so that the current transaction can be aborted.
1057 */
1058 if (code) {
1059 *tpp = tp;
1060 *ipp = NULL;
1061 return code;
1062 }
1063 ASSERT(!ialloc_context && ip);
1064
1065 }
1066
1067 *ipp = ip;
1068 *tpp = tp;
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * Decrement the link count on an inode & log the change. If this causes the
1075 * link count to go to zero, move the inode to AGI unlinked list so that it can
1076 * be freed when the last active reference goes away via xfs_inactive().
1077 */
1078 static int /* error */
1079 xfs_droplink(
1080 xfs_trans_t *tp,
1081 xfs_inode_t *ip)
1082 {
1083 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1084
1085 drop_nlink(VFS_I(ip));
1086 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1087
1088 if (VFS_I(ip)->i_nlink)
1089 return 0;
1090
1091 return xfs_iunlink(tp, ip);
1092 }
1093
1094 /*
1095 * Increment the link count on an inode & log the change.
1096 */
1097 static void
1098 xfs_bumplink(
1099 xfs_trans_t *tp,
1100 xfs_inode_t *ip)
1101 {
1102 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1103
1104 inc_nlink(VFS_I(ip));
1105 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1106 }
1107
1108 int
1109 xfs_create(
1110 xfs_inode_t *dp,
1111 struct xfs_name *name,
1112 umode_t mode,
1113 dev_t rdev,
1114 xfs_inode_t **ipp)
1115 {
1116 int is_dir = S_ISDIR(mode);
1117 struct xfs_mount *mp = dp->i_mount;
1118 struct xfs_inode *ip = NULL;
1119 struct xfs_trans *tp = NULL;
1120 int error;
1121 bool unlock_dp_on_error = false;
1122 prid_t prid;
1123 struct xfs_dquot *udqp = NULL;
1124 struct xfs_dquot *gdqp = NULL;
1125 struct xfs_dquot *pdqp = NULL;
1126 struct xfs_trans_res *tres;
1127 uint resblks;
1128
1129 trace_xfs_create(dp, name);
1130
1131 if (XFS_FORCED_SHUTDOWN(mp))
1132 return -EIO;
1133
1134 prid = xfs_get_initial_prid(dp);
1135
1136 /*
1137 * Make sure that we have allocated dquot(s) on disk.
1138 */
1139 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1140 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1141 &udqp, &gdqp, &pdqp);
1142 if (error)
1143 return error;
1144
1145 if (is_dir) {
1146 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1147 tres = &M_RES(mp)->tr_mkdir;
1148 } else {
1149 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1150 tres = &M_RES(mp)->tr_create;
1151 }
1152
1153 /*
1154 * Initially assume that the file does not exist and
1155 * reserve the resources for that case. If that is not
1156 * the case we'll drop the one we have and get a more
1157 * appropriate transaction later.
1158 */
1159 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1160 if (error == -ENOSPC) {
1161 /* flush outstanding delalloc blocks and retry */
1162 xfs_flush_inodes(mp);
1163 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1164 }
1165 if (error)
1166 goto out_release_inode;
1167
1168 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1169 unlock_dp_on_error = true;
1170
1171 /*
1172 * Reserve disk quota and the inode.
1173 */
1174 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1175 pdqp, resblks, 1, 0);
1176 if (error)
1177 goto out_trans_cancel;
1178
1179 /*
1180 * A newly created regular or special file just has one directory
1181 * entry pointing to them, but a directory also the "." entry
1182 * pointing to itself.
1183 */
1184 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1185 if (error)
1186 goto out_trans_cancel;
1187
1188 /*
1189 * Now we join the directory inode to the transaction. We do not do it
1190 * earlier because xfs_dir_ialloc might commit the previous transaction
1191 * (and release all the locks). An error from here on will result in
1192 * the transaction cancel unlocking dp so don't do it explicitly in the
1193 * error path.
1194 */
1195 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1196 unlock_dp_on_error = false;
1197
1198 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1199 resblks - XFS_IALLOC_SPACE_RES(mp));
1200 if (error) {
1201 ASSERT(error != -ENOSPC);
1202 goto out_trans_cancel;
1203 }
1204 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1205 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1206
1207 if (is_dir) {
1208 error = xfs_dir_init(tp, ip, dp);
1209 if (error)
1210 goto out_trans_cancel;
1211
1212 xfs_bumplink(tp, dp);
1213 }
1214
1215 /*
1216 * If this is a synchronous mount, make sure that the
1217 * create transaction goes to disk before returning to
1218 * the user.
1219 */
1220 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1221 xfs_trans_set_sync(tp);
1222
1223 /*
1224 * Attach the dquot(s) to the inodes and modify them incore.
1225 * These ids of the inode couldn't have changed since the new
1226 * inode has been locked ever since it was created.
1227 */
1228 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1229
1230 error = xfs_trans_commit(tp);
1231 if (error)
1232 goto out_release_inode;
1233
1234 xfs_qm_dqrele(udqp);
1235 xfs_qm_dqrele(gdqp);
1236 xfs_qm_dqrele(pdqp);
1237
1238 *ipp = ip;
1239 return 0;
1240
1241 out_trans_cancel:
1242 xfs_trans_cancel(tp);
1243 out_release_inode:
1244 /*
1245 * Wait until after the current transaction is aborted to finish the
1246 * setup of the inode and release the inode. This prevents recursive
1247 * transactions and deadlocks from xfs_inactive.
1248 */
1249 if (ip) {
1250 xfs_finish_inode_setup(ip);
1251 xfs_irele(ip);
1252 }
1253
1254 xfs_qm_dqrele(udqp);
1255 xfs_qm_dqrele(gdqp);
1256 xfs_qm_dqrele(pdqp);
1257
1258 if (unlock_dp_on_error)
1259 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1260 return error;
1261 }
1262
1263 int
1264 xfs_create_tmpfile(
1265 struct xfs_inode *dp,
1266 umode_t mode,
1267 struct xfs_inode **ipp)
1268 {
1269 struct xfs_mount *mp = dp->i_mount;
1270 struct xfs_inode *ip = NULL;
1271 struct xfs_trans *tp = NULL;
1272 int error;
1273 prid_t prid;
1274 struct xfs_dquot *udqp = NULL;
1275 struct xfs_dquot *gdqp = NULL;
1276 struct xfs_dquot *pdqp = NULL;
1277 struct xfs_trans_res *tres;
1278 uint resblks;
1279
1280 if (XFS_FORCED_SHUTDOWN(mp))
1281 return -EIO;
1282
1283 prid = xfs_get_initial_prid(dp);
1284
1285 /*
1286 * Make sure that we have allocated dquot(s) on disk.
1287 */
1288 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1289 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1290 &udqp, &gdqp, &pdqp);
1291 if (error)
1292 return error;
1293
1294 resblks = XFS_IALLOC_SPACE_RES(mp);
1295 tres = &M_RES(mp)->tr_create_tmpfile;
1296
1297 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1298 if (error)
1299 goto out_release_inode;
1300
1301 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1302 pdqp, resblks, 1, 0);
1303 if (error)
1304 goto out_trans_cancel;
1305
1306 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1307 if (error)
1308 goto out_trans_cancel;
1309
1310 if (mp->m_flags & XFS_MOUNT_WSYNC)
1311 xfs_trans_set_sync(tp);
1312
1313 /*
1314 * Attach the dquot(s) to the inodes and modify them incore.
1315 * These ids of the inode couldn't have changed since the new
1316 * inode has been locked ever since it was created.
1317 */
1318 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1319
1320 error = xfs_iunlink(tp, ip);
1321 if (error)
1322 goto out_trans_cancel;
1323
1324 error = xfs_trans_commit(tp);
1325 if (error)
1326 goto out_release_inode;
1327
1328 xfs_qm_dqrele(udqp);
1329 xfs_qm_dqrele(gdqp);
1330 xfs_qm_dqrele(pdqp);
1331
1332 *ipp = ip;
1333 return 0;
1334
1335 out_trans_cancel:
1336 xfs_trans_cancel(tp);
1337 out_release_inode:
1338 /*
1339 * Wait until after the current transaction is aborted to finish the
1340 * setup of the inode and release the inode. This prevents recursive
1341 * transactions and deadlocks from xfs_inactive.
1342 */
1343 if (ip) {
1344 xfs_finish_inode_setup(ip);
1345 xfs_irele(ip);
1346 }
1347
1348 xfs_qm_dqrele(udqp);
1349 xfs_qm_dqrele(gdqp);
1350 xfs_qm_dqrele(pdqp);
1351
1352 return error;
1353 }
1354
1355 int
1356 xfs_link(
1357 xfs_inode_t *tdp,
1358 xfs_inode_t *sip,
1359 struct xfs_name *target_name)
1360 {
1361 xfs_mount_t *mp = tdp->i_mount;
1362 xfs_trans_t *tp;
1363 int error;
1364 int resblks;
1365
1366 trace_xfs_link(tdp, target_name);
1367
1368 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1369
1370 if (XFS_FORCED_SHUTDOWN(mp))
1371 return -EIO;
1372
1373 error = xfs_qm_dqattach(sip);
1374 if (error)
1375 goto std_return;
1376
1377 error = xfs_qm_dqattach(tdp);
1378 if (error)
1379 goto std_return;
1380
1381 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1382 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1383 if (error == -ENOSPC) {
1384 resblks = 0;
1385 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1386 }
1387 if (error)
1388 goto std_return;
1389
1390 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1391
1392 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1393 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1394
1395 /*
1396 * If we are using project inheritance, we only allow hard link
1397 * creation in our tree when the project IDs are the same; else
1398 * the tree quota mechanism could be circumvented.
1399 */
1400 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1401 tdp->i_d.di_projid != sip->i_d.di_projid)) {
1402 error = -EXDEV;
1403 goto error_return;
1404 }
1405
1406 if (!resblks) {
1407 error = xfs_dir_canenter(tp, tdp, target_name);
1408 if (error)
1409 goto error_return;
1410 }
1411
1412 /*
1413 * Handle initial link state of O_TMPFILE inode
1414 */
1415 if (VFS_I(sip)->i_nlink == 0) {
1416 error = xfs_iunlink_remove(tp, sip);
1417 if (error)
1418 goto error_return;
1419 }
1420
1421 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1422 resblks);
1423 if (error)
1424 goto error_return;
1425 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1426 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1427
1428 xfs_bumplink(tp, sip);
1429
1430 /*
1431 * If this is a synchronous mount, make sure that the
1432 * link transaction goes to disk before returning to
1433 * the user.
1434 */
1435 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1436 xfs_trans_set_sync(tp);
1437
1438 return xfs_trans_commit(tp);
1439
1440 error_return:
1441 xfs_trans_cancel(tp);
1442 std_return:
1443 return error;
1444 }
1445
1446 /* Clear the reflink flag and the cowblocks tag if possible. */
1447 static void
1448 xfs_itruncate_clear_reflink_flags(
1449 struct xfs_inode *ip)
1450 {
1451 struct xfs_ifork *dfork;
1452 struct xfs_ifork *cfork;
1453
1454 if (!xfs_is_reflink_inode(ip))
1455 return;
1456 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1457 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1458 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1459 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1460 if (cfork->if_bytes == 0)
1461 xfs_inode_clear_cowblocks_tag(ip);
1462 }
1463
1464 /*
1465 * Free up the underlying blocks past new_size. The new size must be smaller
1466 * than the current size. This routine can be used both for the attribute and
1467 * data fork, and does not modify the inode size, which is left to the caller.
1468 *
1469 * The transaction passed to this routine must have made a permanent log
1470 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1471 * given transaction and start new ones, so make sure everything involved in
1472 * the transaction is tidy before calling here. Some transaction will be
1473 * returned to the caller to be committed. The incoming transaction must
1474 * already include the inode, and both inode locks must be held exclusively.
1475 * The inode must also be "held" within the transaction. On return the inode
1476 * will be "held" within the returned transaction. This routine does NOT
1477 * require any disk space to be reserved for it within the transaction.
1478 *
1479 * If we get an error, we must return with the inode locked and linked into the
1480 * current transaction. This keeps things simple for the higher level code,
1481 * because it always knows that the inode is locked and held in the transaction
1482 * that returns to it whether errors occur or not. We don't mark the inode
1483 * dirty on error so that transactions can be easily aborted if possible.
1484 */
1485 int
1486 xfs_itruncate_extents_flags(
1487 struct xfs_trans **tpp,
1488 struct xfs_inode *ip,
1489 int whichfork,
1490 xfs_fsize_t new_size,
1491 int flags)
1492 {
1493 struct xfs_mount *mp = ip->i_mount;
1494 struct xfs_trans *tp = *tpp;
1495 xfs_fileoff_t first_unmap_block;
1496 xfs_filblks_t unmap_len;
1497 int error = 0;
1498
1499 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1500 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1501 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1502 ASSERT(new_size <= XFS_ISIZE(ip));
1503 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1504 ASSERT(ip->i_itemp != NULL);
1505 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1506 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1507
1508 trace_xfs_itruncate_extents_start(ip, new_size);
1509
1510 flags |= xfs_bmapi_aflag(whichfork);
1511
1512 /*
1513 * Since it is possible for space to become allocated beyond
1514 * the end of the file (in a crash where the space is allocated
1515 * but the inode size is not yet updated), simply remove any
1516 * blocks which show up between the new EOF and the maximum
1517 * possible file size.
1518 *
1519 * We have to free all the blocks to the bmbt maximum offset, even if
1520 * the page cache can't scale that far.
1521 */
1522 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1523 if (first_unmap_block >= XFS_MAX_FILEOFF) {
1524 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1525 return 0;
1526 }
1527
1528 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1529 while (unmap_len > 0) {
1530 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1531 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1532 flags, XFS_ITRUNC_MAX_EXTENTS);
1533 if (error)
1534 goto out;
1535
1536 /*
1537 * Duplicate the transaction that has the permanent
1538 * reservation and commit the old transaction.
1539 */
1540 error = xfs_defer_finish(&tp);
1541 if (error)
1542 goto out;
1543
1544 error = xfs_trans_roll_inode(&tp, ip);
1545 if (error)
1546 goto out;
1547 }
1548
1549 if (whichfork == XFS_DATA_FORK) {
1550 /* Remove all pending CoW reservations. */
1551 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1552 first_unmap_block, XFS_MAX_FILEOFF, true);
1553 if (error)
1554 goto out;
1555
1556 xfs_itruncate_clear_reflink_flags(ip);
1557 }
1558
1559 /*
1560 * Always re-log the inode so that our permanent transaction can keep
1561 * on rolling it forward in the log.
1562 */
1563 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1564
1565 trace_xfs_itruncate_extents_end(ip, new_size);
1566
1567 out:
1568 *tpp = tp;
1569 return error;
1570 }
1571
1572 int
1573 xfs_release(
1574 xfs_inode_t *ip)
1575 {
1576 xfs_mount_t *mp = ip->i_mount;
1577 int error;
1578
1579 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1580 return 0;
1581
1582 /* If this is a read-only mount, don't do this (would generate I/O) */
1583 if (mp->m_flags & XFS_MOUNT_RDONLY)
1584 return 0;
1585
1586 if (!XFS_FORCED_SHUTDOWN(mp)) {
1587 int truncated;
1588
1589 /*
1590 * If we previously truncated this file and removed old data
1591 * in the process, we want to initiate "early" writeout on
1592 * the last close. This is an attempt to combat the notorious
1593 * NULL files problem which is particularly noticeable from a
1594 * truncate down, buffered (re-)write (delalloc), followed by
1595 * a crash. What we are effectively doing here is
1596 * significantly reducing the time window where we'd otherwise
1597 * be exposed to that problem.
1598 */
1599 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1600 if (truncated) {
1601 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1602 if (ip->i_delayed_blks > 0) {
1603 error = filemap_flush(VFS_I(ip)->i_mapping);
1604 if (error)
1605 return error;
1606 }
1607 }
1608 }
1609
1610 if (VFS_I(ip)->i_nlink == 0)
1611 return 0;
1612
1613 if (xfs_can_free_eofblocks(ip, false)) {
1614
1615 /*
1616 * Check if the inode is being opened, written and closed
1617 * frequently and we have delayed allocation blocks outstanding
1618 * (e.g. streaming writes from the NFS server), truncating the
1619 * blocks past EOF will cause fragmentation to occur.
1620 *
1621 * In this case don't do the truncation, but we have to be
1622 * careful how we detect this case. Blocks beyond EOF show up as
1623 * i_delayed_blks even when the inode is clean, so we need to
1624 * truncate them away first before checking for a dirty release.
1625 * Hence on the first dirty close we will still remove the
1626 * speculative allocation, but after that we will leave it in
1627 * place.
1628 */
1629 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1630 return 0;
1631 /*
1632 * If we can't get the iolock just skip truncating the blocks
1633 * past EOF because we could deadlock with the mmap_lock
1634 * otherwise. We'll get another chance to drop them once the
1635 * last reference to the inode is dropped, so we'll never leak
1636 * blocks permanently.
1637 */
1638 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1639 error = xfs_free_eofblocks(ip);
1640 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1641 if (error)
1642 return error;
1643 }
1644
1645 /* delalloc blocks after truncation means it really is dirty */
1646 if (ip->i_delayed_blks)
1647 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1648 }
1649 return 0;
1650 }
1651
1652 /*
1653 * xfs_inactive_truncate
1654 *
1655 * Called to perform a truncate when an inode becomes unlinked.
1656 */
1657 STATIC int
1658 xfs_inactive_truncate(
1659 struct xfs_inode *ip)
1660 {
1661 struct xfs_mount *mp = ip->i_mount;
1662 struct xfs_trans *tp;
1663 int error;
1664
1665 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1666 if (error) {
1667 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1668 return error;
1669 }
1670 xfs_ilock(ip, XFS_ILOCK_EXCL);
1671 xfs_trans_ijoin(tp, ip, 0);
1672
1673 /*
1674 * Log the inode size first to prevent stale data exposure in the event
1675 * of a system crash before the truncate completes. See the related
1676 * comment in xfs_vn_setattr_size() for details.
1677 */
1678 ip->i_d.di_size = 0;
1679 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1680
1681 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1682 if (error)
1683 goto error_trans_cancel;
1684
1685 ASSERT(ip->i_df.if_nextents == 0);
1686
1687 error = xfs_trans_commit(tp);
1688 if (error)
1689 goto error_unlock;
1690
1691 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1692 return 0;
1693
1694 error_trans_cancel:
1695 xfs_trans_cancel(tp);
1696 error_unlock:
1697 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1698 return error;
1699 }
1700
1701 /*
1702 * xfs_inactive_ifree()
1703 *
1704 * Perform the inode free when an inode is unlinked.
1705 */
1706 STATIC int
1707 xfs_inactive_ifree(
1708 struct xfs_inode *ip)
1709 {
1710 struct xfs_mount *mp = ip->i_mount;
1711 struct xfs_trans *tp;
1712 int error;
1713
1714 /*
1715 * We try to use a per-AG reservation for any block needed by the finobt
1716 * tree, but as the finobt feature predates the per-AG reservation
1717 * support a degraded file system might not have enough space for the
1718 * reservation at mount time. In that case try to dip into the reserved
1719 * pool and pray.
1720 *
1721 * Send a warning if the reservation does happen to fail, as the inode
1722 * now remains allocated and sits on the unlinked list until the fs is
1723 * repaired.
1724 */
1725 if (unlikely(mp->m_finobt_nores)) {
1726 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1727 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1728 &tp);
1729 } else {
1730 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1731 }
1732 if (error) {
1733 if (error == -ENOSPC) {
1734 xfs_warn_ratelimited(mp,
1735 "Failed to remove inode(s) from unlinked list. "
1736 "Please free space, unmount and run xfs_repair.");
1737 } else {
1738 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1739 }
1740 return error;
1741 }
1742
1743 xfs_ilock(ip, XFS_ILOCK_EXCL);
1744 xfs_trans_ijoin(tp, ip, 0);
1745
1746 error = xfs_ifree(tp, ip);
1747 if (error) {
1748 /*
1749 * If we fail to free the inode, shut down. The cancel
1750 * might do that, we need to make sure. Otherwise the
1751 * inode might be lost for a long time or forever.
1752 */
1753 if (!XFS_FORCED_SHUTDOWN(mp)) {
1754 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1755 __func__, error);
1756 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1757 }
1758 xfs_trans_cancel(tp);
1759 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1760 return error;
1761 }
1762
1763 /*
1764 * Credit the quota account(s). The inode is gone.
1765 */
1766 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1767
1768 /*
1769 * Just ignore errors at this point. There is nothing we can do except
1770 * to try to keep going. Make sure it's not a silent error.
1771 */
1772 error = xfs_trans_commit(tp);
1773 if (error)
1774 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1775 __func__, error);
1776
1777 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1778 return 0;
1779 }
1780
1781 /*
1782 * xfs_inactive
1783 *
1784 * This is called when the vnode reference count for the vnode
1785 * goes to zero. If the file has been unlinked, then it must
1786 * now be truncated. Also, we clear all of the read-ahead state
1787 * kept for the inode here since the file is now closed.
1788 */
1789 void
1790 xfs_inactive(
1791 xfs_inode_t *ip)
1792 {
1793 struct xfs_mount *mp;
1794 int error;
1795 int truncate = 0;
1796
1797 /*
1798 * If the inode is already free, then there can be nothing
1799 * to clean up here.
1800 */
1801 if (VFS_I(ip)->i_mode == 0) {
1802 ASSERT(ip->i_df.if_broot_bytes == 0);
1803 return;
1804 }
1805
1806 mp = ip->i_mount;
1807 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1808
1809 /* If this is a read-only mount, don't do this (would generate I/O) */
1810 if (mp->m_flags & XFS_MOUNT_RDONLY)
1811 return;
1812
1813 /* Try to clean out the cow blocks if there are any. */
1814 if (xfs_inode_has_cow_data(ip))
1815 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1816
1817 if (VFS_I(ip)->i_nlink != 0) {
1818 /*
1819 * force is true because we are evicting an inode from the
1820 * cache. Post-eof blocks must be freed, lest we end up with
1821 * broken free space accounting.
1822 *
1823 * Note: don't bother with iolock here since lockdep complains
1824 * about acquiring it in reclaim context. We have the only
1825 * reference to the inode at this point anyways.
1826 */
1827 if (xfs_can_free_eofblocks(ip, true))
1828 xfs_free_eofblocks(ip);
1829
1830 return;
1831 }
1832
1833 if (S_ISREG(VFS_I(ip)->i_mode) &&
1834 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1835 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1836 truncate = 1;
1837
1838 error = xfs_qm_dqattach(ip);
1839 if (error)
1840 return;
1841
1842 if (S_ISLNK(VFS_I(ip)->i_mode))
1843 error = xfs_inactive_symlink(ip);
1844 else if (truncate)
1845 error = xfs_inactive_truncate(ip);
1846 if (error)
1847 return;
1848
1849 /*
1850 * If there are attributes associated with the file then blow them away
1851 * now. The code calls a routine that recursively deconstructs the
1852 * attribute fork. If also blows away the in-core attribute fork.
1853 */
1854 if (XFS_IFORK_Q(ip)) {
1855 error = xfs_attr_inactive(ip);
1856 if (error)
1857 return;
1858 }
1859
1860 ASSERT(!ip->i_afp);
1861 ASSERT(ip->i_d.di_forkoff == 0);
1862
1863 /*
1864 * Free the inode.
1865 */
1866 error = xfs_inactive_ifree(ip);
1867 if (error)
1868 return;
1869
1870 /*
1871 * Release the dquots held by inode, if any.
1872 */
1873 xfs_qm_dqdetach(ip);
1874 }
1875
1876 /*
1877 * In-Core Unlinked List Lookups
1878 * =============================
1879 *
1880 * Every inode is supposed to be reachable from some other piece of metadata
1881 * with the exception of the root directory. Inodes with a connection to a
1882 * file descriptor but not linked from anywhere in the on-disk directory tree
1883 * are collectively known as unlinked inodes, though the filesystem itself
1884 * maintains links to these inodes so that on-disk metadata are consistent.
1885 *
1886 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1887 * header contains a number of buckets that point to an inode, and each inode
1888 * record has a pointer to the next inode in the hash chain. This
1889 * singly-linked list causes scaling problems in the iunlink remove function
1890 * because we must walk that list to find the inode that points to the inode
1891 * being removed from the unlinked hash bucket list.
1892 *
1893 * What if we modelled the unlinked list as a collection of records capturing
1894 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1895 * have a fast way to look up unlinked list predecessors, which avoids the
1896 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1897 * rhashtable.
1898 *
1899 * Because this is a backref cache, we ignore operational failures since the
1900 * iunlink code can fall back to the slow bucket walk. The only errors that
1901 * should bubble out are for obviously incorrect situations.
1902 *
1903 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1904 * access or have otherwise provided for concurrency control.
1905 */
1906
1907 /* Capture a "X.next_unlinked = Y" relationship. */
1908 struct xfs_iunlink {
1909 struct rhash_head iu_rhash_head;
1910 xfs_agino_t iu_agino; /* X */
1911 xfs_agino_t iu_next_unlinked; /* Y */
1912 };
1913
1914 /* Unlinked list predecessor lookup hashtable construction */
1915 static int
1916 xfs_iunlink_obj_cmpfn(
1917 struct rhashtable_compare_arg *arg,
1918 const void *obj)
1919 {
1920 const xfs_agino_t *key = arg->key;
1921 const struct xfs_iunlink *iu = obj;
1922
1923 if (iu->iu_next_unlinked != *key)
1924 return 1;
1925 return 0;
1926 }
1927
1928 static const struct rhashtable_params xfs_iunlink_hash_params = {
1929 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1930 .key_len = sizeof(xfs_agino_t),
1931 .key_offset = offsetof(struct xfs_iunlink,
1932 iu_next_unlinked),
1933 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1934 .automatic_shrinking = true,
1935 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1936 };
1937
1938 /*
1939 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1940 * relation is found.
1941 */
1942 static xfs_agino_t
1943 xfs_iunlink_lookup_backref(
1944 struct xfs_perag *pag,
1945 xfs_agino_t agino)
1946 {
1947 struct xfs_iunlink *iu;
1948
1949 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1950 xfs_iunlink_hash_params);
1951 return iu ? iu->iu_agino : NULLAGINO;
1952 }
1953
1954 /*
1955 * Take ownership of an iunlink cache entry and insert it into the hash table.
1956 * If successful, the entry will be owned by the cache; if not, it is freed.
1957 * Either way, the caller does not own @iu after this call.
1958 */
1959 static int
1960 xfs_iunlink_insert_backref(
1961 struct xfs_perag *pag,
1962 struct xfs_iunlink *iu)
1963 {
1964 int error;
1965
1966 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1967 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1968 /*
1969 * Fail loudly if there already was an entry because that's a sign of
1970 * corruption of in-memory data. Also fail loudly if we see an error
1971 * code we didn't anticipate from the rhashtable code. Currently we
1972 * only anticipate ENOMEM.
1973 */
1974 if (error) {
1975 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1976 kmem_free(iu);
1977 }
1978 /*
1979 * Absorb any runtime errors that aren't a result of corruption because
1980 * this is a cache and we can always fall back to bucket list scanning.
1981 */
1982 if (error != 0 && error != -EEXIST)
1983 error = 0;
1984 return error;
1985 }
1986
1987 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1988 static int
1989 xfs_iunlink_add_backref(
1990 struct xfs_perag *pag,
1991 xfs_agino_t prev_agino,
1992 xfs_agino_t this_agino)
1993 {
1994 struct xfs_iunlink *iu;
1995
1996 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1997 return 0;
1998
1999 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2000 iu->iu_agino = prev_agino;
2001 iu->iu_next_unlinked = this_agino;
2002
2003 return xfs_iunlink_insert_backref(pag, iu);
2004 }
2005
2006 /*
2007 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2008 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2009 * wasn't any such entry then we don't bother.
2010 */
2011 static int
2012 xfs_iunlink_change_backref(
2013 struct xfs_perag *pag,
2014 xfs_agino_t agino,
2015 xfs_agino_t next_unlinked)
2016 {
2017 struct xfs_iunlink *iu;
2018 int error;
2019
2020 /* Look up the old entry; if there wasn't one then exit. */
2021 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2022 xfs_iunlink_hash_params);
2023 if (!iu)
2024 return 0;
2025
2026 /*
2027 * Remove the entry. This shouldn't ever return an error, but if we
2028 * couldn't remove the old entry we don't want to add it again to the
2029 * hash table, and if the entry disappeared on us then someone's
2030 * violated the locking rules and we need to fail loudly. Either way
2031 * we cannot remove the inode because internal state is or would have
2032 * been corrupt.
2033 */
2034 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2035 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2036 if (error)
2037 return error;
2038
2039 /* If there is no new next entry just free our item and return. */
2040 if (next_unlinked == NULLAGINO) {
2041 kmem_free(iu);
2042 return 0;
2043 }
2044
2045 /* Update the entry and re-add it to the hash table. */
2046 iu->iu_next_unlinked = next_unlinked;
2047 return xfs_iunlink_insert_backref(pag, iu);
2048 }
2049
2050 /* Set up the in-core predecessor structures. */
2051 int
2052 xfs_iunlink_init(
2053 struct xfs_perag *pag)
2054 {
2055 return rhashtable_init(&pag->pagi_unlinked_hash,
2056 &xfs_iunlink_hash_params);
2057 }
2058
2059 /* Free the in-core predecessor structures. */
2060 static void
2061 xfs_iunlink_free_item(
2062 void *ptr,
2063 void *arg)
2064 {
2065 struct xfs_iunlink *iu = ptr;
2066 bool *freed_anything = arg;
2067
2068 *freed_anything = true;
2069 kmem_free(iu);
2070 }
2071
2072 void
2073 xfs_iunlink_destroy(
2074 struct xfs_perag *pag)
2075 {
2076 bool freed_anything = false;
2077
2078 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2079 xfs_iunlink_free_item, &freed_anything);
2080
2081 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2082 }
2083
2084 /*
2085 * Point the AGI unlinked bucket at an inode and log the results. The caller
2086 * is responsible for validating the old value.
2087 */
2088 STATIC int
2089 xfs_iunlink_update_bucket(
2090 struct xfs_trans *tp,
2091 xfs_agnumber_t agno,
2092 struct xfs_buf *agibp,
2093 unsigned int bucket_index,
2094 xfs_agino_t new_agino)
2095 {
2096 struct xfs_agi *agi = agibp->b_addr;
2097 xfs_agino_t old_value;
2098 int offset;
2099
2100 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2101
2102 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2103 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2104 old_value, new_agino);
2105
2106 /*
2107 * We should never find the head of the list already set to the value
2108 * passed in because either we're adding or removing ourselves from the
2109 * head of the list.
2110 */
2111 if (old_value == new_agino) {
2112 xfs_buf_mark_corrupt(agibp);
2113 return -EFSCORRUPTED;
2114 }
2115
2116 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2117 offset = offsetof(struct xfs_agi, agi_unlinked) +
2118 (sizeof(xfs_agino_t) * bucket_index);
2119 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2120 return 0;
2121 }
2122
2123 /* Set an on-disk inode's next_unlinked pointer. */
2124 STATIC void
2125 xfs_iunlink_update_dinode(
2126 struct xfs_trans *tp,
2127 xfs_agnumber_t agno,
2128 xfs_agino_t agino,
2129 struct xfs_buf *ibp,
2130 struct xfs_dinode *dip,
2131 struct xfs_imap *imap,
2132 xfs_agino_t next_agino)
2133 {
2134 struct xfs_mount *mp = tp->t_mountp;
2135 int offset;
2136
2137 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2138
2139 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2140 be32_to_cpu(dip->di_next_unlinked), next_agino);
2141
2142 dip->di_next_unlinked = cpu_to_be32(next_agino);
2143 offset = imap->im_boffset +
2144 offsetof(struct xfs_dinode, di_next_unlinked);
2145
2146 /* need to recalc the inode CRC if appropriate */
2147 xfs_dinode_calc_crc(mp, dip);
2148 xfs_trans_inode_buf(tp, ibp);
2149 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2150 xfs_inobp_check(mp, ibp);
2151 }
2152
2153 /* Set an in-core inode's unlinked pointer and return the old value. */
2154 STATIC int
2155 xfs_iunlink_update_inode(
2156 struct xfs_trans *tp,
2157 struct xfs_inode *ip,
2158 xfs_agnumber_t agno,
2159 xfs_agino_t next_agino,
2160 xfs_agino_t *old_next_agino)
2161 {
2162 struct xfs_mount *mp = tp->t_mountp;
2163 struct xfs_dinode *dip;
2164 struct xfs_buf *ibp;
2165 xfs_agino_t old_value;
2166 int error;
2167
2168 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2169
2170 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2171 if (error)
2172 return error;
2173
2174 /* Make sure the old pointer isn't garbage. */
2175 old_value = be32_to_cpu(dip->di_next_unlinked);
2176 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2177 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2178 sizeof(*dip), __this_address);
2179 error = -EFSCORRUPTED;
2180 goto out;
2181 }
2182
2183 /*
2184 * Since we're updating a linked list, we should never find that the
2185 * current pointer is the same as the new value, unless we're
2186 * terminating the list.
2187 */
2188 *old_next_agino = old_value;
2189 if (old_value == next_agino) {
2190 if (next_agino != NULLAGINO) {
2191 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2192 dip, sizeof(*dip), __this_address);
2193 error = -EFSCORRUPTED;
2194 }
2195 goto out;
2196 }
2197
2198 /* Ok, update the new pointer. */
2199 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2200 ibp, dip, &ip->i_imap, next_agino);
2201 return 0;
2202 out:
2203 xfs_trans_brelse(tp, ibp);
2204 return error;
2205 }
2206
2207 /*
2208 * This is called when the inode's link count has gone to 0 or we are creating
2209 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2210 *
2211 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2212 * list when the inode is freed.
2213 */
2214 STATIC int
2215 xfs_iunlink(
2216 struct xfs_trans *tp,
2217 struct xfs_inode *ip)
2218 {
2219 struct xfs_mount *mp = tp->t_mountp;
2220 struct xfs_agi *agi;
2221 struct xfs_buf *agibp;
2222 xfs_agino_t next_agino;
2223 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2224 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2225 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2226 int error;
2227
2228 ASSERT(VFS_I(ip)->i_nlink == 0);
2229 ASSERT(VFS_I(ip)->i_mode != 0);
2230 trace_xfs_iunlink(ip);
2231
2232 /* Get the agi buffer first. It ensures lock ordering on the list. */
2233 error = xfs_read_agi(mp, tp, agno, &agibp);
2234 if (error)
2235 return error;
2236 agi = agibp->b_addr;
2237
2238 /*
2239 * Get the index into the agi hash table for the list this inode will
2240 * go on. Make sure the pointer isn't garbage and that this inode
2241 * isn't already on the list.
2242 */
2243 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2244 if (next_agino == agino ||
2245 !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2246 xfs_buf_mark_corrupt(agibp);
2247 return -EFSCORRUPTED;
2248 }
2249
2250 if (next_agino != NULLAGINO) {
2251 struct xfs_perag *pag;
2252 xfs_agino_t old_agino;
2253
2254 /*
2255 * There is already another inode in the bucket, so point this
2256 * inode to the current head of the list.
2257 */
2258 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2259 &old_agino);
2260 if (error)
2261 return error;
2262 ASSERT(old_agino == NULLAGINO);
2263
2264 /*
2265 * agino has been unlinked, add a backref from the next inode
2266 * back to agino.
2267 */
2268 pag = xfs_perag_get(mp, agno);
2269 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2270 xfs_perag_put(pag);
2271 if (error)
2272 return error;
2273 }
2274
2275 /* Point the head of the list to point to this inode. */
2276 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2277 }
2278
2279 /* Return the imap, dinode pointer, and buffer for an inode. */
2280 STATIC int
2281 xfs_iunlink_map_ino(
2282 struct xfs_trans *tp,
2283 xfs_agnumber_t agno,
2284 xfs_agino_t agino,
2285 struct xfs_imap *imap,
2286 struct xfs_dinode **dipp,
2287 struct xfs_buf **bpp)
2288 {
2289 struct xfs_mount *mp = tp->t_mountp;
2290 int error;
2291
2292 imap->im_blkno = 0;
2293 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2294 if (error) {
2295 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2296 __func__, error);
2297 return error;
2298 }
2299
2300 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2301 if (error) {
2302 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2303 __func__, error);
2304 return error;
2305 }
2306
2307 return 0;
2308 }
2309
2310 /*
2311 * Walk the unlinked chain from @head_agino until we find the inode that
2312 * points to @target_agino. Return the inode number, map, dinode pointer,
2313 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2314 *
2315 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2316 * @agino, @imap, @dipp, and @bpp are all output parameters.
2317 *
2318 * Do not call this function if @target_agino is the head of the list.
2319 */
2320 STATIC int
2321 xfs_iunlink_map_prev(
2322 struct xfs_trans *tp,
2323 xfs_agnumber_t agno,
2324 xfs_agino_t head_agino,
2325 xfs_agino_t target_agino,
2326 xfs_agino_t *agino,
2327 struct xfs_imap *imap,
2328 struct xfs_dinode **dipp,
2329 struct xfs_buf **bpp,
2330 struct xfs_perag *pag)
2331 {
2332 struct xfs_mount *mp = tp->t_mountp;
2333 xfs_agino_t next_agino;
2334 int error;
2335
2336 ASSERT(head_agino != target_agino);
2337 *bpp = NULL;
2338
2339 /* See if our backref cache can find it faster. */
2340 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2341 if (*agino != NULLAGINO) {
2342 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2343 if (error)
2344 return error;
2345
2346 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2347 return 0;
2348
2349 /*
2350 * If we get here the cache contents were corrupt, so drop the
2351 * buffer and fall back to walking the bucket list.
2352 */
2353 xfs_trans_brelse(tp, *bpp);
2354 *bpp = NULL;
2355 WARN_ON_ONCE(1);
2356 }
2357
2358 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2359
2360 /* Otherwise, walk the entire bucket until we find it. */
2361 next_agino = head_agino;
2362 while (next_agino != target_agino) {
2363 xfs_agino_t unlinked_agino;
2364
2365 if (*bpp)
2366 xfs_trans_brelse(tp, *bpp);
2367
2368 *agino = next_agino;
2369 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2370 bpp);
2371 if (error)
2372 return error;
2373
2374 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2375 /*
2376 * Make sure this pointer is valid and isn't an obvious
2377 * infinite loop.
2378 */
2379 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2380 next_agino == unlinked_agino) {
2381 XFS_CORRUPTION_ERROR(__func__,
2382 XFS_ERRLEVEL_LOW, mp,
2383 *dipp, sizeof(**dipp));
2384 error = -EFSCORRUPTED;
2385 return error;
2386 }
2387 next_agino = unlinked_agino;
2388 }
2389
2390 return 0;
2391 }
2392
2393 /*
2394 * Pull the on-disk inode from the AGI unlinked list.
2395 */
2396 STATIC int
2397 xfs_iunlink_remove(
2398 struct xfs_trans *tp,
2399 struct xfs_inode *ip)
2400 {
2401 struct xfs_mount *mp = tp->t_mountp;
2402 struct xfs_agi *agi;
2403 struct xfs_buf *agibp;
2404 struct xfs_buf *last_ibp;
2405 struct xfs_dinode *last_dip = NULL;
2406 struct xfs_perag *pag = NULL;
2407 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2408 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2409 xfs_agino_t next_agino;
2410 xfs_agino_t head_agino;
2411 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2412 int error;
2413
2414 trace_xfs_iunlink_remove(ip);
2415
2416 /* Get the agi buffer first. It ensures lock ordering on the list. */
2417 error = xfs_read_agi(mp, tp, agno, &agibp);
2418 if (error)
2419 return error;
2420 agi = agibp->b_addr;
2421
2422 /*
2423 * Get the index into the agi hash table for the list this inode will
2424 * go on. Make sure the head pointer isn't garbage.
2425 */
2426 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2427 if (!xfs_verify_agino(mp, agno, head_agino)) {
2428 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2429 agi, sizeof(*agi));
2430 return -EFSCORRUPTED;
2431 }
2432
2433 /*
2434 * Set our inode's next_unlinked pointer to NULL and then return
2435 * the old pointer value so that we can update whatever was previous
2436 * to us in the list to point to whatever was next in the list.
2437 */
2438 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2439 if (error)
2440 return error;
2441
2442 /*
2443 * If there was a backref pointing from the next inode back to this
2444 * one, remove it because we've removed this inode from the list.
2445 *
2446 * Later, if this inode was in the middle of the list we'll update
2447 * this inode's backref to point from the next inode.
2448 */
2449 if (next_agino != NULLAGINO) {
2450 pag = xfs_perag_get(mp, agno);
2451 error = xfs_iunlink_change_backref(pag, next_agino,
2452 NULLAGINO);
2453 if (error)
2454 goto out;
2455 }
2456
2457 if (head_agino == agino) {
2458 /* Point the head of the list to the next unlinked inode. */
2459 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2460 next_agino);
2461 if (error)
2462 goto out;
2463 } else {
2464 struct xfs_imap imap;
2465 xfs_agino_t prev_agino;
2466
2467 if (!pag)
2468 pag = xfs_perag_get(mp, agno);
2469
2470 /* We need to search the list for the inode being freed. */
2471 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2472 &prev_agino, &imap, &last_dip, &last_ibp,
2473 pag);
2474 if (error)
2475 goto out;
2476
2477 /* Point the previous inode on the list to the next inode. */
2478 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2479 last_dip, &imap, next_agino);
2480
2481 /*
2482 * Now we deal with the backref for this inode. If this inode
2483 * pointed at a real inode, change the backref that pointed to
2484 * us to point to our old next. If this inode was the end of
2485 * the list, delete the backref that pointed to us. Note that
2486 * change_backref takes care of deleting the backref if
2487 * next_agino is NULLAGINO.
2488 */
2489 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2490 if (error)
2491 goto out;
2492 }
2493
2494 out:
2495 if (pag)
2496 xfs_perag_put(pag);
2497 return error;
2498 }
2499
2500 /*
2501 * Look up the inode number specified and mark it stale if it is found. If it is
2502 * dirty, return the inode so it can be attached to the cluster buffer so it can
2503 * be processed appropriately when the cluster free transaction completes.
2504 */
2505 static struct xfs_inode *
2506 xfs_ifree_get_one_inode(
2507 struct xfs_perag *pag,
2508 struct xfs_inode *free_ip,
2509 xfs_ino_t inum)
2510 {
2511 struct xfs_mount *mp = pag->pag_mount;
2512 struct xfs_inode *ip;
2513
2514 retry:
2515 rcu_read_lock();
2516 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2517
2518 /* Inode not in memory, nothing to do */
2519 if (!ip)
2520 goto out_rcu_unlock;
2521
2522 /*
2523 * because this is an RCU protected lookup, we could find a recently
2524 * freed or even reallocated inode during the lookup. We need to check
2525 * under the i_flags_lock for a valid inode here. Skip it if it is not
2526 * valid, the wrong inode or stale.
2527 */
2528 spin_lock(&ip->i_flags_lock);
2529 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) {
2530 spin_unlock(&ip->i_flags_lock);
2531 goto out_rcu_unlock;
2532 }
2533 spin_unlock(&ip->i_flags_lock);
2534
2535 /*
2536 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2537 * other inodes that we did not find in the list attached to the buffer
2538 * and are not already marked stale. If we can't lock it, back off and
2539 * retry.
2540 */
2541 if (ip != free_ip) {
2542 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2543 rcu_read_unlock();
2544 delay(1);
2545 goto retry;
2546 }
2547
2548 /*
2549 * Check the inode number again in case we're racing with
2550 * freeing in xfs_reclaim_inode(). See the comments in that
2551 * function for more information as to why the initial check is
2552 * not sufficient.
2553 */
2554 if (ip->i_ino != inum) {
2555 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2556 goto out_rcu_unlock;
2557 }
2558 }
2559 rcu_read_unlock();
2560
2561 xfs_iflock(ip);
2562 xfs_iflags_set(ip, XFS_ISTALE);
2563
2564 /*
2565 * We don't need to attach clean inodes or those only with unlogged
2566 * changes (which we throw away, anyway).
2567 */
2568 if (!ip->i_itemp || xfs_inode_clean(ip)) {
2569 ASSERT(ip != free_ip);
2570 xfs_ifunlock(ip);
2571 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2572 goto out_no_inode;
2573 }
2574 return ip;
2575
2576 out_rcu_unlock:
2577 rcu_read_unlock();
2578 out_no_inode:
2579 return NULL;
2580 }
2581
2582 /*
2583 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2584 * inodes that are in memory - they all must be marked stale and attached to
2585 * the cluster buffer.
2586 */
2587 STATIC int
2588 xfs_ifree_cluster(
2589 xfs_inode_t *free_ip,
2590 xfs_trans_t *tp,
2591 struct xfs_icluster *xic)
2592 {
2593 xfs_mount_t *mp = free_ip->i_mount;
2594 int nbufs;
2595 int i, j;
2596 int ioffset;
2597 xfs_daddr_t blkno;
2598 xfs_buf_t *bp;
2599 xfs_inode_t *ip;
2600 struct xfs_inode_log_item *iip;
2601 struct xfs_log_item *lip;
2602 struct xfs_perag *pag;
2603 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2604 xfs_ino_t inum;
2605 int error;
2606
2607 inum = xic->first_ino;
2608 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2609 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2610
2611 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2612 /*
2613 * The allocation bitmap tells us which inodes of the chunk were
2614 * physically allocated. Skip the cluster if an inode falls into
2615 * a sparse region.
2616 */
2617 ioffset = inum - xic->first_ino;
2618 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2619 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2620 continue;
2621 }
2622
2623 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2624 XFS_INO_TO_AGBNO(mp, inum));
2625
2626 /*
2627 * We obtain and lock the backing buffer first in the process
2628 * here, as we have to ensure that any dirty inode that we
2629 * can't get the flush lock on is attached to the buffer.
2630 * If we scan the in-memory inodes first, then buffer IO can
2631 * complete before we get a lock on it, and hence we may fail
2632 * to mark all the active inodes on the buffer stale.
2633 */
2634 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2635 mp->m_bsize * igeo->blocks_per_cluster,
2636 XBF_UNMAPPED, &bp);
2637 if (error) {
2638 xfs_perag_put(pag);
2639 return error;
2640 }
2641
2642 /*
2643 * This buffer may not have been correctly initialised as we
2644 * didn't read it from disk. That's not important because we are
2645 * only using to mark the buffer as stale in the log, and to
2646 * attach stale cached inodes on it. That means it will never be
2647 * dispatched for IO. If it is, we want to know about it, and we
2648 * want it to fail. We can acheive this by adding a write
2649 * verifier to the buffer.
2650 */
2651 bp->b_ops = &xfs_inode_buf_ops;
2652
2653 /*
2654 * Walk the inodes already attached to the buffer and mark them
2655 * stale. These will all have the flush locks held, so an
2656 * in-memory inode walk can't lock them. By marking them all
2657 * stale first, we will not attempt to lock them in the loop
2658 * below as the XFS_ISTALE flag will be set.
2659 */
2660 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2661 if (lip->li_type == XFS_LI_INODE) {
2662 iip = (struct xfs_inode_log_item *)lip;
2663 ASSERT(iip->ili_logged == 1);
2664 lip->li_cb = xfs_istale_done;
2665 xfs_trans_ail_copy_lsn(mp->m_ail,
2666 &iip->ili_flush_lsn,
2667 &iip->ili_item.li_lsn);
2668 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2669 }
2670 }
2671
2672
2673 /*
2674 * For each inode in memory attempt to add it to the inode
2675 * buffer and set it up for being staled on buffer IO
2676 * completion. This is safe as we've locked out tail pushing
2677 * and flushing by locking the buffer.
2678 *
2679 * We have already marked every inode that was part of a
2680 * transaction stale above, which means there is no point in
2681 * even trying to lock them.
2682 */
2683 for (i = 0; i < igeo->inodes_per_cluster; i++) {
2684 ip = xfs_ifree_get_one_inode(pag, free_ip, inum + i);
2685 if (!ip)
2686 continue;
2687
2688 iip = ip->i_itemp;
2689 iip->ili_last_fields = iip->ili_fields;
2690 iip->ili_fields = 0;
2691 iip->ili_fsync_fields = 0;
2692 iip->ili_logged = 1;
2693 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2694 &iip->ili_item.li_lsn);
2695
2696 xfs_buf_attach_iodone(bp, xfs_istale_done,
2697 &iip->ili_item);
2698
2699 if (ip != free_ip)
2700 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2701 }
2702
2703 xfs_trans_stale_inode_buf(tp, bp);
2704 xfs_trans_binval(tp, bp);
2705 }
2706
2707 xfs_perag_put(pag);
2708 return 0;
2709 }
2710
2711 /*
2712 * This is called to return an inode to the inode free list.
2713 * The inode should already be truncated to 0 length and have
2714 * no pages associated with it. This routine also assumes that
2715 * the inode is already a part of the transaction.
2716 *
2717 * The on-disk copy of the inode will have been added to the list
2718 * of unlinked inodes in the AGI. We need to remove the inode from
2719 * that list atomically with respect to freeing it here.
2720 */
2721 int
2722 xfs_ifree(
2723 struct xfs_trans *tp,
2724 struct xfs_inode *ip)
2725 {
2726 int error;
2727 struct xfs_icluster xic = { 0 };
2728
2729 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2730 ASSERT(VFS_I(ip)->i_nlink == 0);
2731 ASSERT(ip->i_df.if_nextents == 0);
2732 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2733 ASSERT(ip->i_d.di_nblocks == 0);
2734
2735 /*
2736 * Pull the on-disk inode from the AGI unlinked list.
2737 */
2738 error = xfs_iunlink_remove(tp, ip);
2739 if (error)
2740 return error;
2741
2742 error = xfs_difree(tp, ip->i_ino, &xic);
2743 if (error)
2744 return error;
2745
2746 /*
2747 * Free any local-format data sitting around before we reset the
2748 * data fork to extents format. Note that the attr fork data has
2749 * already been freed by xfs_attr_inactive.
2750 */
2751 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2752 kmem_free(ip->i_df.if_u1.if_data);
2753 ip->i_df.if_u1.if_data = NULL;
2754 ip->i_df.if_bytes = 0;
2755 }
2756
2757 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2758 ip->i_d.di_flags = 0;
2759 ip->i_d.di_flags2 = 0;
2760 ip->i_d.di_dmevmask = 0;
2761 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2762 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2763
2764 /* Don't attempt to replay owner changes for a deleted inode */
2765 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2766
2767 /*
2768 * Bump the generation count so no one will be confused
2769 * by reincarnations of this inode.
2770 */
2771 VFS_I(ip)->i_generation++;
2772 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2773
2774 if (xic.deleted)
2775 error = xfs_ifree_cluster(ip, tp, &xic);
2776
2777 return error;
2778 }
2779
2780 /*
2781 * This is called to unpin an inode. The caller must have the inode locked
2782 * in at least shared mode so that the buffer cannot be subsequently pinned
2783 * once someone is waiting for it to be unpinned.
2784 */
2785 static void
2786 xfs_iunpin(
2787 struct xfs_inode *ip)
2788 {
2789 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2790
2791 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2792
2793 /* Give the log a push to start the unpinning I/O */
2794 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2795
2796 }
2797
2798 static void
2799 __xfs_iunpin_wait(
2800 struct xfs_inode *ip)
2801 {
2802 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2803 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2804
2805 xfs_iunpin(ip);
2806
2807 do {
2808 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2809 if (xfs_ipincount(ip))
2810 io_schedule();
2811 } while (xfs_ipincount(ip));
2812 finish_wait(wq, &wait.wq_entry);
2813 }
2814
2815 void
2816 xfs_iunpin_wait(
2817 struct xfs_inode *ip)
2818 {
2819 if (xfs_ipincount(ip))
2820 __xfs_iunpin_wait(ip);
2821 }
2822
2823 /*
2824 * Removing an inode from the namespace involves removing the directory entry
2825 * and dropping the link count on the inode. Removing the directory entry can
2826 * result in locking an AGF (directory blocks were freed) and removing a link
2827 * count can result in placing the inode on an unlinked list which results in
2828 * locking an AGI.
2829 *
2830 * The big problem here is that we have an ordering constraint on AGF and AGI
2831 * locking - inode allocation locks the AGI, then can allocate a new extent for
2832 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2833 * removes the inode from the unlinked list, requiring that we lock the AGI
2834 * first, and then freeing the inode can result in an inode chunk being freed
2835 * and hence freeing disk space requiring that we lock an AGF.
2836 *
2837 * Hence the ordering that is imposed by other parts of the code is AGI before
2838 * AGF. This means we cannot remove the directory entry before we drop the inode
2839 * reference count and put it on the unlinked list as this results in a lock
2840 * order of AGF then AGI, and this can deadlock against inode allocation and
2841 * freeing. Therefore we must drop the link counts before we remove the
2842 * directory entry.
2843 *
2844 * This is still safe from a transactional point of view - it is not until we
2845 * get to xfs_defer_finish() that we have the possibility of multiple
2846 * transactions in this operation. Hence as long as we remove the directory
2847 * entry and drop the link count in the first transaction of the remove
2848 * operation, there are no transactional constraints on the ordering here.
2849 */
2850 int
2851 xfs_remove(
2852 xfs_inode_t *dp,
2853 struct xfs_name *name,
2854 xfs_inode_t *ip)
2855 {
2856 xfs_mount_t *mp = dp->i_mount;
2857 xfs_trans_t *tp = NULL;
2858 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2859 int error = 0;
2860 uint resblks;
2861
2862 trace_xfs_remove(dp, name);
2863
2864 if (XFS_FORCED_SHUTDOWN(mp))
2865 return -EIO;
2866
2867 error = xfs_qm_dqattach(dp);
2868 if (error)
2869 goto std_return;
2870
2871 error = xfs_qm_dqattach(ip);
2872 if (error)
2873 goto std_return;
2874
2875 /*
2876 * We try to get the real space reservation first,
2877 * allowing for directory btree deletion(s) implying
2878 * possible bmap insert(s). If we can't get the space
2879 * reservation then we use 0 instead, and avoid the bmap
2880 * btree insert(s) in the directory code by, if the bmap
2881 * insert tries to happen, instead trimming the LAST
2882 * block from the directory.
2883 */
2884 resblks = XFS_REMOVE_SPACE_RES(mp);
2885 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2886 if (error == -ENOSPC) {
2887 resblks = 0;
2888 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2889 &tp);
2890 }
2891 if (error) {
2892 ASSERT(error != -ENOSPC);
2893 goto std_return;
2894 }
2895
2896 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2897
2898 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2899 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2900
2901 /*
2902 * If we're removing a directory perform some additional validation.
2903 */
2904 if (is_dir) {
2905 ASSERT(VFS_I(ip)->i_nlink >= 2);
2906 if (VFS_I(ip)->i_nlink != 2) {
2907 error = -ENOTEMPTY;
2908 goto out_trans_cancel;
2909 }
2910 if (!xfs_dir_isempty(ip)) {
2911 error = -ENOTEMPTY;
2912 goto out_trans_cancel;
2913 }
2914
2915 /* Drop the link from ip's "..". */
2916 error = xfs_droplink(tp, dp);
2917 if (error)
2918 goto out_trans_cancel;
2919
2920 /* Drop the "." link from ip to self. */
2921 error = xfs_droplink(tp, ip);
2922 if (error)
2923 goto out_trans_cancel;
2924 } else {
2925 /*
2926 * When removing a non-directory we need to log the parent
2927 * inode here. For a directory this is done implicitly
2928 * by the xfs_droplink call for the ".." entry.
2929 */
2930 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2931 }
2932 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2933
2934 /* Drop the link from dp to ip. */
2935 error = xfs_droplink(tp, ip);
2936 if (error)
2937 goto out_trans_cancel;
2938
2939 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2940 if (error) {
2941 ASSERT(error != -ENOENT);
2942 goto out_trans_cancel;
2943 }
2944
2945 /*
2946 * If this is a synchronous mount, make sure that the
2947 * remove transaction goes to disk before returning to
2948 * the user.
2949 */
2950 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2951 xfs_trans_set_sync(tp);
2952
2953 error = xfs_trans_commit(tp);
2954 if (error)
2955 goto std_return;
2956
2957 if (is_dir && xfs_inode_is_filestream(ip))
2958 xfs_filestream_deassociate(ip);
2959
2960 return 0;
2961
2962 out_trans_cancel:
2963 xfs_trans_cancel(tp);
2964 std_return:
2965 return error;
2966 }
2967
2968 /*
2969 * Enter all inodes for a rename transaction into a sorted array.
2970 */
2971 #define __XFS_SORT_INODES 5
2972 STATIC void
2973 xfs_sort_for_rename(
2974 struct xfs_inode *dp1, /* in: old (source) directory inode */
2975 struct xfs_inode *dp2, /* in: new (target) directory inode */
2976 struct xfs_inode *ip1, /* in: inode of old entry */
2977 struct xfs_inode *ip2, /* in: inode of new entry */
2978 struct xfs_inode *wip, /* in: whiteout inode */
2979 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2980 int *num_inodes) /* in/out: inodes in array */
2981 {
2982 int i, j;
2983
2984 ASSERT(*num_inodes == __XFS_SORT_INODES);
2985 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2986
2987 /*
2988 * i_tab contains a list of pointers to inodes. We initialize
2989 * the table here & we'll sort it. We will then use it to
2990 * order the acquisition of the inode locks.
2991 *
2992 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2993 */
2994 i = 0;
2995 i_tab[i++] = dp1;
2996 i_tab[i++] = dp2;
2997 i_tab[i++] = ip1;
2998 if (ip2)
2999 i_tab[i++] = ip2;
3000 if (wip)
3001 i_tab[i++] = wip;
3002 *num_inodes = i;
3003
3004 /*
3005 * Sort the elements via bubble sort. (Remember, there are at
3006 * most 5 elements to sort, so this is adequate.)
3007 */
3008 for (i = 0; i < *num_inodes; i++) {
3009 for (j = 1; j < *num_inodes; j++) {
3010 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3011 struct xfs_inode *temp = i_tab[j];
3012 i_tab[j] = i_tab[j-1];
3013 i_tab[j-1] = temp;
3014 }
3015 }
3016 }
3017 }
3018
3019 static int
3020 xfs_finish_rename(
3021 struct xfs_trans *tp)
3022 {
3023 /*
3024 * If this is a synchronous mount, make sure that the rename transaction
3025 * goes to disk before returning to the user.
3026 */
3027 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3028 xfs_trans_set_sync(tp);
3029
3030 return xfs_trans_commit(tp);
3031 }
3032
3033 /*
3034 * xfs_cross_rename()
3035 *
3036 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3037 */
3038 STATIC int
3039 xfs_cross_rename(
3040 struct xfs_trans *tp,
3041 struct xfs_inode *dp1,
3042 struct xfs_name *name1,
3043 struct xfs_inode *ip1,
3044 struct xfs_inode *dp2,
3045 struct xfs_name *name2,
3046 struct xfs_inode *ip2,
3047 int spaceres)
3048 {
3049 int error = 0;
3050 int ip1_flags = 0;
3051 int ip2_flags = 0;
3052 int dp2_flags = 0;
3053
3054 /* Swap inode number for dirent in first parent */
3055 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3056 if (error)
3057 goto out_trans_abort;
3058
3059 /* Swap inode number for dirent in second parent */
3060 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3061 if (error)
3062 goto out_trans_abort;
3063
3064 /*
3065 * If we're renaming one or more directories across different parents,
3066 * update the respective ".." entries (and link counts) to match the new
3067 * parents.
3068 */
3069 if (dp1 != dp2) {
3070 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3071
3072 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3073 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3074 dp1->i_ino, spaceres);
3075 if (error)
3076 goto out_trans_abort;
3077
3078 /* transfer ip2 ".." reference to dp1 */
3079 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3080 error = xfs_droplink(tp, dp2);
3081 if (error)
3082 goto out_trans_abort;
3083 xfs_bumplink(tp, dp1);
3084 }
3085
3086 /*
3087 * Although ip1 isn't changed here, userspace needs
3088 * to be warned about the change, so that applications
3089 * relying on it (like backup ones), will properly
3090 * notify the change
3091 */
3092 ip1_flags |= XFS_ICHGTIME_CHG;
3093 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3094 }
3095
3096 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3097 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3098 dp2->i_ino, spaceres);
3099 if (error)
3100 goto out_trans_abort;
3101
3102 /* transfer ip1 ".." reference to dp2 */
3103 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3104 error = xfs_droplink(tp, dp1);
3105 if (error)
3106 goto out_trans_abort;
3107 xfs_bumplink(tp, dp2);
3108 }
3109
3110 /*
3111 * Although ip2 isn't changed here, userspace needs
3112 * to be warned about the change, so that applications
3113 * relying on it (like backup ones), will properly
3114 * notify the change
3115 */
3116 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3117 ip2_flags |= XFS_ICHGTIME_CHG;
3118 }
3119 }
3120
3121 if (ip1_flags) {
3122 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3123 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3124 }
3125 if (ip2_flags) {
3126 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3127 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3128 }
3129 if (dp2_flags) {
3130 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3131 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3132 }
3133 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3134 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3135 return xfs_finish_rename(tp);
3136
3137 out_trans_abort:
3138 xfs_trans_cancel(tp);
3139 return error;
3140 }
3141
3142 /*
3143 * xfs_rename_alloc_whiteout()
3144 *
3145 * Return a referenced, unlinked, unlocked inode that that can be used as a
3146 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3147 * crash between allocating the inode and linking it into the rename transaction
3148 * recovery will free the inode and we won't leak it.
3149 */
3150 static int
3151 xfs_rename_alloc_whiteout(
3152 struct xfs_inode *dp,
3153 struct xfs_inode **wip)
3154 {
3155 struct xfs_inode *tmpfile;
3156 int error;
3157
3158 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3159 if (error)
3160 return error;
3161
3162 /*
3163 * Prepare the tmpfile inode as if it were created through the VFS.
3164 * Complete the inode setup and flag it as linkable. nlink is already
3165 * zero, so we can skip the drop_nlink.
3166 */
3167 xfs_setup_iops(tmpfile);
3168 xfs_finish_inode_setup(tmpfile);
3169 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3170
3171 *wip = tmpfile;
3172 return 0;
3173 }
3174
3175 /*
3176 * xfs_rename
3177 */
3178 int
3179 xfs_rename(
3180 struct xfs_inode *src_dp,
3181 struct xfs_name *src_name,
3182 struct xfs_inode *src_ip,
3183 struct xfs_inode *target_dp,
3184 struct xfs_name *target_name,
3185 struct xfs_inode *target_ip,
3186 unsigned int flags)
3187 {
3188 struct xfs_mount *mp = src_dp->i_mount;
3189 struct xfs_trans *tp;
3190 struct xfs_inode *wip = NULL; /* whiteout inode */
3191 struct xfs_inode *inodes[__XFS_SORT_INODES];
3192 struct xfs_buf *agibp;
3193 int num_inodes = __XFS_SORT_INODES;
3194 bool new_parent = (src_dp != target_dp);
3195 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3196 int spaceres;
3197 int error;
3198
3199 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3200
3201 if ((flags & RENAME_EXCHANGE) && !target_ip)
3202 return -EINVAL;
3203
3204 /*
3205 * If we are doing a whiteout operation, allocate the whiteout inode
3206 * we will be placing at the target and ensure the type is set
3207 * appropriately.
3208 */
3209 if (flags & RENAME_WHITEOUT) {
3210 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3211 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3212 if (error)
3213 return error;
3214
3215 /* setup target dirent info as whiteout */
3216 src_name->type = XFS_DIR3_FT_CHRDEV;
3217 }
3218
3219 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3220 inodes, &num_inodes);
3221
3222 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3223 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3224 if (error == -ENOSPC) {
3225 spaceres = 0;
3226 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3227 &tp);
3228 }
3229 if (error)
3230 goto out_release_wip;
3231
3232 /*
3233 * Attach the dquots to the inodes
3234 */
3235 error = xfs_qm_vop_rename_dqattach(inodes);
3236 if (error)
3237 goto out_trans_cancel;
3238
3239 /*
3240 * Lock all the participating inodes. Depending upon whether
3241 * the target_name exists in the target directory, and
3242 * whether the target directory is the same as the source
3243 * directory, we can lock from 2 to 4 inodes.
3244 */
3245 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3246
3247 /*
3248 * Join all the inodes to the transaction. From this point on,
3249 * we can rely on either trans_commit or trans_cancel to unlock
3250 * them.
3251 */
3252 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3253 if (new_parent)
3254 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3255 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3256 if (target_ip)
3257 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3258 if (wip)
3259 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3260
3261 /*
3262 * If we are using project inheritance, we only allow renames
3263 * into our tree when the project IDs are the same; else the
3264 * tree quota mechanism would be circumvented.
3265 */
3266 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3267 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3268 error = -EXDEV;
3269 goto out_trans_cancel;
3270 }
3271
3272 /* RENAME_EXCHANGE is unique from here on. */
3273 if (flags & RENAME_EXCHANGE)
3274 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3275 target_dp, target_name, target_ip,
3276 spaceres);
3277
3278 /*
3279 * Check for expected errors before we dirty the transaction
3280 * so we can return an error without a transaction abort.
3281 */
3282 if (target_ip == NULL) {
3283 /*
3284 * If there's no space reservation, check the entry will
3285 * fit before actually inserting it.
3286 */
3287 if (!spaceres) {
3288 error = xfs_dir_canenter(tp, target_dp, target_name);
3289 if (error)
3290 goto out_trans_cancel;
3291 }
3292 } else {
3293 /*
3294 * If target exists and it's a directory, check that whether
3295 * it can be destroyed.
3296 */
3297 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3298 (!xfs_dir_isempty(target_ip) ||
3299 (VFS_I(target_ip)->i_nlink > 2))) {
3300 error = -EEXIST;
3301 goto out_trans_cancel;
3302 }
3303 }
3304
3305 /*
3306 * Directory entry creation below may acquire the AGF. Remove
3307 * the whiteout from the unlinked list first to preserve correct
3308 * AGI/AGF locking order. This dirties the transaction so failures
3309 * after this point will abort and log recovery will clean up the
3310 * mess.
3311 *
3312 * For whiteouts, we need to bump the link count on the whiteout
3313 * inode. After this point, we have a real link, clear the tmpfile
3314 * state flag from the inode so it doesn't accidentally get misused
3315 * in future.
3316 */
3317 if (wip) {
3318 ASSERT(VFS_I(wip)->i_nlink == 0);
3319 error = xfs_iunlink_remove(tp, wip);
3320 if (error)
3321 goto out_trans_cancel;
3322
3323 xfs_bumplink(tp, wip);
3324 VFS_I(wip)->i_state &= ~I_LINKABLE;
3325 }
3326
3327 /*
3328 * Set up the target.
3329 */
3330 if (target_ip == NULL) {
3331 /*
3332 * If target does not exist and the rename crosses
3333 * directories, adjust the target directory link count
3334 * to account for the ".." reference from the new entry.
3335 */
3336 error = xfs_dir_createname(tp, target_dp, target_name,
3337 src_ip->i_ino, spaceres);
3338 if (error)
3339 goto out_trans_cancel;
3340
3341 xfs_trans_ichgtime(tp, target_dp,
3342 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3343
3344 if (new_parent && src_is_directory) {
3345 xfs_bumplink(tp, target_dp);
3346 }
3347 } else { /* target_ip != NULL */
3348 /*
3349 * Link the source inode under the target name.
3350 * If the source inode is a directory and we are moving
3351 * it across directories, its ".." entry will be
3352 * inconsistent until we replace that down below.
3353 *
3354 * In case there is already an entry with the same
3355 * name at the destination directory, remove it first.
3356 */
3357
3358 /*
3359 * Check whether the replace operation will need to allocate
3360 * blocks. This happens when the shortform directory lacks
3361 * space and we have to convert it to a block format directory.
3362 * When more blocks are necessary, we must lock the AGI first
3363 * to preserve locking order (AGI -> AGF).
3364 */
3365 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3366 error = xfs_read_agi(mp, tp,
3367 XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3368 &agibp);
3369 if (error)
3370 goto out_trans_cancel;
3371 }
3372
3373 error = xfs_dir_replace(tp, target_dp, target_name,
3374 src_ip->i_ino, spaceres);
3375 if (error)
3376 goto out_trans_cancel;
3377
3378 xfs_trans_ichgtime(tp, target_dp,
3379 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3380
3381 /*
3382 * Decrement the link count on the target since the target
3383 * dir no longer points to it.
3384 */
3385 error = xfs_droplink(tp, target_ip);
3386 if (error)
3387 goto out_trans_cancel;
3388
3389 if (src_is_directory) {
3390 /*
3391 * Drop the link from the old "." entry.
3392 */
3393 error = xfs_droplink(tp, target_ip);
3394 if (error)
3395 goto out_trans_cancel;
3396 }
3397 } /* target_ip != NULL */
3398
3399 /*
3400 * Remove the source.
3401 */
3402 if (new_parent && src_is_directory) {
3403 /*
3404 * Rewrite the ".." entry to point to the new
3405 * directory.
3406 */
3407 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3408 target_dp->i_ino, spaceres);
3409 ASSERT(error != -EEXIST);
3410 if (error)
3411 goto out_trans_cancel;
3412 }
3413
3414 /*
3415 * We always want to hit the ctime on the source inode.
3416 *
3417 * This isn't strictly required by the standards since the source
3418 * inode isn't really being changed, but old unix file systems did
3419 * it and some incremental backup programs won't work without it.
3420 */
3421 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3422 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3423
3424 /*
3425 * Adjust the link count on src_dp. This is necessary when
3426 * renaming a directory, either within one parent when
3427 * the target existed, or across two parent directories.
3428 */
3429 if (src_is_directory && (new_parent || target_ip != NULL)) {
3430
3431 /*
3432 * Decrement link count on src_directory since the
3433 * entry that's moved no longer points to it.
3434 */
3435 error = xfs_droplink(tp, src_dp);
3436 if (error)
3437 goto out_trans_cancel;
3438 }
3439
3440 /*
3441 * For whiteouts, we only need to update the source dirent with the
3442 * inode number of the whiteout inode rather than removing it
3443 * altogether.
3444 */
3445 if (wip) {
3446 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3447 spaceres);
3448 } else
3449 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3450 spaceres);
3451 if (error)
3452 goto out_trans_cancel;
3453
3454 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3455 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3456 if (new_parent)
3457 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3458
3459 error = xfs_finish_rename(tp);
3460 if (wip)
3461 xfs_irele(wip);
3462 return error;
3463
3464 out_trans_cancel:
3465 xfs_trans_cancel(tp);
3466 out_release_wip:
3467 if (wip)
3468 xfs_irele(wip);
3469 return error;
3470 }
3471
3472 STATIC int
3473 xfs_iflush_cluster(
3474 struct xfs_inode *ip,
3475 struct xfs_buf *bp)
3476 {
3477 struct xfs_mount *mp = ip->i_mount;
3478 struct xfs_perag *pag;
3479 unsigned long first_index, mask;
3480 int cilist_size;
3481 struct xfs_inode **cilist;
3482 struct xfs_inode *cip;
3483 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3484 int error = 0;
3485 int nr_found;
3486 int clcount = 0;
3487 int i;
3488
3489 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3490
3491 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3492 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3493 if (!cilist)
3494 goto out_put;
3495
3496 mask = ~(igeo->inodes_per_cluster - 1);
3497 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3498 rcu_read_lock();
3499 /* really need a gang lookup range call here */
3500 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3501 first_index, igeo->inodes_per_cluster);
3502 if (nr_found == 0)
3503 goto out_free;
3504
3505 for (i = 0; i < nr_found; i++) {
3506 cip = cilist[i];
3507 if (cip == ip)
3508 continue;
3509
3510 /*
3511 * because this is an RCU protected lookup, we could find a
3512 * recently freed or even reallocated inode during the lookup.
3513 * We need to check under the i_flags_lock for a valid inode
3514 * here. Skip it if it is not valid or the wrong inode.
3515 */
3516 spin_lock(&cip->i_flags_lock);
3517 if (!cip->i_ino ||
3518 __xfs_iflags_test(cip, XFS_ISTALE)) {
3519 spin_unlock(&cip->i_flags_lock);
3520 continue;
3521 }
3522
3523 /*
3524 * Once we fall off the end of the cluster, no point checking
3525 * any more inodes in the list because they will also all be
3526 * outside the cluster.
3527 */
3528 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3529 spin_unlock(&cip->i_flags_lock);
3530 break;
3531 }
3532 spin_unlock(&cip->i_flags_lock);
3533
3534 /*
3535 * Do an un-protected check to see if the inode is dirty and
3536 * is a candidate for flushing. These checks will be repeated
3537 * later after the appropriate locks are acquired.
3538 */
3539 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3540 continue;
3541
3542 /*
3543 * Try to get locks. If any are unavailable or it is pinned,
3544 * then this inode cannot be flushed and is skipped.
3545 */
3546
3547 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3548 continue;
3549 if (!xfs_iflock_nowait(cip)) {
3550 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3551 continue;
3552 }
3553 if (xfs_ipincount(cip)) {
3554 xfs_ifunlock(cip);
3555 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3556 continue;
3557 }
3558
3559
3560 /*
3561 * Check the inode number again, just to be certain we are not
3562 * racing with freeing in xfs_reclaim_inode(). See the comments
3563 * in that function for more information as to why the initial
3564 * check is not sufficient.
3565 */
3566 if (!cip->i_ino) {
3567 xfs_ifunlock(cip);
3568 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3569 continue;
3570 }
3571
3572 /*
3573 * arriving here means that this inode can be flushed. First
3574 * re-check that it's dirty before flushing.
3575 */
3576 if (!xfs_inode_clean(cip)) {
3577 error = xfs_iflush_int(cip, bp);
3578 if (error) {
3579 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3580 goto out_free;
3581 }
3582 clcount++;
3583 } else {
3584 xfs_ifunlock(cip);
3585 }
3586 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3587 }
3588
3589 if (clcount) {
3590 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3591 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3592 }
3593
3594 out_free:
3595 rcu_read_unlock();
3596 kmem_free(cilist);
3597 out_put:
3598 xfs_perag_put(pag);
3599 return error;
3600 }
3601
3602 /*
3603 * Flush dirty inode metadata into the backing buffer.
3604 *
3605 * The caller must have the inode lock and the inode flush lock held. The
3606 * inode lock will still be held upon return to the caller, and the inode
3607 * flush lock will be released after the inode has reached the disk.
3608 *
3609 * The caller must write out the buffer returned in *bpp and release it.
3610 */
3611 int
3612 xfs_iflush(
3613 struct xfs_inode *ip,
3614 struct xfs_buf **bpp)
3615 {
3616 struct xfs_mount *mp = ip->i_mount;
3617 struct xfs_buf *bp = NULL;
3618 struct xfs_dinode *dip;
3619 int error;
3620
3621 XFS_STATS_INC(mp, xs_iflush_count);
3622
3623 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3624 ASSERT(xfs_isiflocked(ip));
3625 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3626 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3627
3628 *bpp = NULL;
3629
3630 xfs_iunpin_wait(ip);
3631
3632 /*
3633 * For stale inodes we cannot rely on the backing buffer remaining
3634 * stale in cache for the remaining life of the stale inode and so
3635 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3636 * inodes below. We have to check this after ensuring the inode is
3637 * unpinned so that it is safe to reclaim the stale inode after the
3638 * flush call.
3639 */
3640 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3641 xfs_ifunlock(ip);
3642 return 0;
3643 }
3644
3645 /*
3646 * Get the buffer containing the on-disk inode. We are doing a try-lock
3647 * operation here, so we may get an EAGAIN error. In that case, return
3648 * leaving the inode dirty.
3649 *
3650 * If we get any other error, we effectively have a corruption situation
3651 * and we cannot flush the inode. Abort the flush and shut down.
3652 */
3653 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK);
3654 if (error == -EAGAIN) {
3655 xfs_ifunlock(ip);
3656 return error;
3657 }
3658 if (error)
3659 goto abort;
3660
3661 /*
3662 * If the buffer is pinned then push on the log now so we won't
3663 * get stuck waiting in the write for too long.
3664 */
3665 if (xfs_buf_ispinned(bp))
3666 xfs_log_force(mp, 0);
3667
3668 /*
3669 * Flush the provided inode then attempt to gather others from the
3670 * cluster into the write.
3671 *
3672 * Note: Once we attempt to flush an inode, we must run buffer
3673 * completion callbacks on any failure. If this fails, simulate an I/O
3674 * failure on the buffer and shut down.
3675 */
3676 error = xfs_iflush_int(ip, bp);
3677 if (!error)
3678 error = xfs_iflush_cluster(ip, bp);
3679 if (error) {
3680 bp->b_flags |= XBF_ASYNC;
3681 xfs_buf_ioend_fail(bp);
3682 goto shutdown;
3683 }
3684
3685 *bpp = bp;
3686 return 0;
3687
3688 abort:
3689 xfs_iflush_abort(ip);
3690 shutdown:
3691 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3692 return error;
3693 }
3694
3695 STATIC int
3696 xfs_iflush_int(
3697 struct xfs_inode *ip,
3698 struct xfs_buf *bp)
3699 {
3700 struct xfs_inode_log_item *iip = ip->i_itemp;
3701 struct xfs_dinode *dip;
3702 struct xfs_mount *mp = ip->i_mount;
3703 int error;
3704
3705 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3706 ASSERT(xfs_isiflocked(ip));
3707 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3708 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3709 ASSERT(iip != NULL && iip->ili_fields != 0);
3710
3711 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3712
3713 /*
3714 * We don't flush the inode if any of the following checks fail, but we
3715 * do still update the log item and attach to the backing buffer as if
3716 * the flush happened. This is a formality to facilitate predictable
3717 * error handling as the caller will shutdown and fail the buffer.
3718 */
3719 error = -EFSCORRUPTED;
3720 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3721 mp, XFS_ERRTAG_IFLUSH_1)) {
3722 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3723 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3724 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3725 goto flush_out;
3726 }
3727 if (S_ISREG(VFS_I(ip)->i_mode)) {
3728 if (XFS_TEST_ERROR(
3729 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3730 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3731 mp, XFS_ERRTAG_IFLUSH_3)) {
3732 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3733 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3734 __func__, ip->i_ino, ip);
3735 goto flush_out;
3736 }
3737 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3738 if (XFS_TEST_ERROR(
3739 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3740 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3741 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3742 mp, XFS_ERRTAG_IFLUSH_4)) {
3743 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3744 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3745 __func__, ip->i_ino, ip);
3746 goto flush_out;
3747 }
3748 }
3749 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3750 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3751 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3752 "%s: detected corrupt incore inode %Lu, "
3753 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3754 __func__, ip->i_ino,
3755 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3756 ip->i_d.di_nblocks, ip);
3757 goto flush_out;
3758 }
3759 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3760 mp, XFS_ERRTAG_IFLUSH_6)) {
3761 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3762 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3763 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3764 goto flush_out;
3765 }
3766
3767 /*
3768 * Inode item log recovery for v2 inodes are dependent on the
3769 * di_flushiter count for correct sequencing. We bump the flush
3770 * iteration count so we can detect flushes which postdate a log record
3771 * during recovery. This is redundant as we now log every change and
3772 * hence this can't happen but we need to still do it to ensure
3773 * backwards compatibility with old kernels that predate logging all
3774 * inode changes.
3775 */
3776 if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3777 ip->i_d.di_flushiter++;
3778
3779 /*
3780 * If there are inline format data / attr forks attached to this inode,
3781 * make sure they are not corrupt.
3782 */
3783 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3784 xfs_ifork_verify_local_data(ip))
3785 goto flush_out;
3786 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3787 xfs_ifork_verify_local_attr(ip))
3788 goto flush_out;
3789
3790 /*
3791 * Copy the dirty parts of the inode into the on-disk inode. We always
3792 * copy out the core of the inode, because if the inode is dirty at all
3793 * the core must be.
3794 */
3795 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3796
3797 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3798 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3799 ip->i_d.di_flushiter = 0;
3800
3801 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3802 if (XFS_IFORK_Q(ip))
3803 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3804 xfs_inobp_check(mp, bp);
3805
3806 /*
3807 * We've recorded everything logged in the inode, so we'd like to clear
3808 * the ili_fields bits so we don't log and flush things unnecessarily.
3809 * However, we can't stop logging all this information until the data
3810 * we've copied into the disk buffer is written to disk. If we did we
3811 * might overwrite the copy of the inode in the log with all the data
3812 * after re-logging only part of it, and in the face of a crash we
3813 * wouldn't have all the data we need to recover.
3814 *
3815 * What we do is move the bits to the ili_last_fields field. When
3816 * logging the inode, these bits are moved back to the ili_fields field.
3817 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3818 * know that the information those bits represent is permanently on
3819 * disk. As long as the flush completes before the inode is logged
3820 * again, then both ili_fields and ili_last_fields will be cleared.
3821 *
3822 * We can play with the ili_fields bits here, because the inode lock
3823 * must be held exclusively in order to set bits there and the flush
3824 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3825 * done routine can tell whether or not to look in the AIL. Also, store
3826 * the current LSN of the inode so that we can tell whether the item has
3827 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3828 * need the AIL lock, because it is a 64 bit value that cannot be read
3829 * atomically.
3830 */
3831 error = 0;
3832 flush_out:
3833 iip->ili_last_fields = iip->ili_fields;
3834 iip->ili_fields = 0;
3835 iip->ili_fsync_fields = 0;
3836 iip->ili_logged = 1;
3837
3838 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3839 &iip->ili_item.li_lsn);
3840
3841 /*
3842 * Attach the inode item callback to the buffer whether the flush
3843 * succeeded or not. If not, the caller will shut down and fail I/O
3844 * completion on the buffer to remove the inode from the AIL and release
3845 * the flush lock.
3846 */
3847 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3848
3849 /* generate the checksum. */
3850 xfs_dinode_calc_crc(mp, dip);
3851
3852 ASSERT(!list_empty(&bp->b_li_list));
3853 ASSERT(bp->b_iodone != NULL);
3854 return error;
3855 }
3856
3857 /* Release an inode. */
3858 void
3859 xfs_irele(
3860 struct xfs_inode *ip)
3861 {
3862 trace_xfs_irele(ip, _RET_IP_);
3863 iput(VFS_I(ip));
3864 }
3865
3866 /*
3867 * Ensure all commited transactions touching the inode are written to the log.
3868 */
3869 int
3870 xfs_log_force_inode(
3871 struct xfs_inode *ip)
3872 {
3873 xfs_lsn_t lsn = 0;
3874
3875 xfs_ilock(ip, XFS_ILOCK_SHARED);
3876 if (xfs_ipincount(ip))
3877 lsn = ip->i_itemp->ili_last_lsn;
3878 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3879
3880 if (!lsn)
3881 return 0;
3882 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3883 }