]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/xfs/xfs_inode_buf.c
xfs: create a shared header file for format-related information
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_inode_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_shared.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_ialloc_btree.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_error.h"
32 #include "xfs_cksum.h"
33 #include "xfs_icache.h"
34 #include "xfs_ialloc.h"
35
36 /*
37 * Check that none of the inode's in the buffer have a next
38 * unlinked field of 0.
39 */
40 #if defined(DEBUG)
41 void
42 xfs_inobp_check(
43 xfs_mount_t *mp,
44 xfs_buf_t *bp)
45 {
46 int i;
47 int j;
48 xfs_dinode_t *dip;
49
50 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
51
52 for (i = 0; i < j; i++) {
53 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
54 i * mp->m_sb.sb_inodesize);
55 if (!dip->di_next_unlinked) {
56 xfs_alert(mp,
57 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
58 i, (long long)bp->b_bn);
59 }
60 }
61 }
62 #endif
63
64 /*
65 * If we are doing readahead on an inode buffer, we might be in log recovery
66 * reading an inode allocation buffer that hasn't yet been replayed, and hence
67 * has not had the inode cores stamped into it. Hence for readahead, the buffer
68 * may be potentially invalid.
69 *
70 * If the readahead buffer is invalid, we don't want to mark it with an error,
71 * but we do want to clear the DONE status of the buffer so that a followup read
72 * will re-read it from disk. This will ensure that we don't get an unnecessary
73 * warnings during log recovery and we don't get unnecssary panics on debug
74 * kernels.
75 */
76 static void
77 xfs_inode_buf_verify(
78 struct xfs_buf *bp,
79 bool readahead)
80 {
81 struct xfs_mount *mp = bp->b_target->bt_mount;
82 int i;
83 int ni;
84
85 /*
86 * Validate the magic number and version of every inode in the buffer
87 */
88 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
89 for (i = 0; i < ni; i++) {
90 int di_ok;
91 xfs_dinode_t *dip;
92
93 dip = (struct xfs_dinode *)xfs_buf_offset(bp,
94 (i << mp->m_sb.sb_inodelog));
95 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
96 XFS_DINODE_GOOD_VERSION(dip->di_version);
97 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
98 XFS_ERRTAG_ITOBP_INOTOBP,
99 XFS_RANDOM_ITOBP_INOTOBP))) {
100 if (readahead) {
101 bp->b_flags &= ~XBF_DONE;
102 return;
103 }
104
105 xfs_buf_ioerror(bp, EFSCORRUPTED);
106 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
107 mp, dip);
108 #ifdef DEBUG
109 xfs_alert(mp,
110 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
111 (unsigned long long)bp->b_bn, i,
112 be16_to_cpu(dip->di_magic));
113 #endif
114 }
115 }
116 xfs_inobp_check(mp, bp);
117 }
118
119
120 static void
121 xfs_inode_buf_read_verify(
122 struct xfs_buf *bp)
123 {
124 xfs_inode_buf_verify(bp, false);
125 }
126
127 static void
128 xfs_inode_buf_readahead_verify(
129 struct xfs_buf *bp)
130 {
131 xfs_inode_buf_verify(bp, true);
132 }
133
134 static void
135 xfs_inode_buf_write_verify(
136 struct xfs_buf *bp)
137 {
138 xfs_inode_buf_verify(bp, false);
139 }
140
141 const struct xfs_buf_ops xfs_inode_buf_ops = {
142 .verify_read = xfs_inode_buf_read_verify,
143 .verify_write = xfs_inode_buf_write_verify,
144 };
145
146 const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
147 .verify_read = xfs_inode_buf_readahead_verify,
148 .verify_write = xfs_inode_buf_write_verify,
149 };
150
151
152 /*
153 * This routine is called to map an inode to the buffer containing the on-disk
154 * version of the inode. It returns a pointer to the buffer containing the
155 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
156 * pointer to the on-disk inode within that buffer.
157 *
158 * If a non-zero error is returned, then the contents of bpp and dipp are
159 * undefined.
160 */
161 int
162 xfs_imap_to_bp(
163 struct xfs_mount *mp,
164 struct xfs_trans *tp,
165 struct xfs_imap *imap,
166 struct xfs_dinode **dipp,
167 struct xfs_buf **bpp,
168 uint buf_flags,
169 uint iget_flags)
170 {
171 struct xfs_buf *bp;
172 int error;
173
174 buf_flags |= XBF_UNMAPPED;
175 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
176 (int)imap->im_len, buf_flags, &bp,
177 &xfs_inode_buf_ops);
178 if (error) {
179 if (error == EAGAIN) {
180 ASSERT(buf_flags & XBF_TRYLOCK);
181 return error;
182 }
183
184 if (error == EFSCORRUPTED &&
185 (iget_flags & XFS_IGET_UNTRUSTED))
186 return XFS_ERROR(EINVAL);
187
188 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
189 __func__, error);
190 return error;
191 }
192
193 *bpp = bp;
194 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
195 return 0;
196 }
197
198 void
199 xfs_dinode_from_disk(
200 xfs_icdinode_t *to,
201 xfs_dinode_t *from)
202 {
203 to->di_magic = be16_to_cpu(from->di_magic);
204 to->di_mode = be16_to_cpu(from->di_mode);
205 to->di_version = from ->di_version;
206 to->di_format = from->di_format;
207 to->di_onlink = be16_to_cpu(from->di_onlink);
208 to->di_uid = be32_to_cpu(from->di_uid);
209 to->di_gid = be32_to_cpu(from->di_gid);
210 to->di_nlink = be32_to_cpu(from->di_nlink);
211 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
212 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
213 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
214 to->di_flushiter = be16_to_cpu(from->di_flushiter);
215 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
216 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
217 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
218 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
219 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
220 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
221 to->di_size = be64_to_cpu(from->di_size);
222 to->di_nblocks = be64_to_cpu(from->di_nblocks);
223 to->di_extsize = be32_to_cpu(from->di_extsize);
224 to->di_nextents = be32_to_cpu(from->di_nextents);
225 to->di_anextents = be16_to_cpu(from->di_anextents);
226 to->di_forkoff = from->di_forkoff;
227 to->di_aformat = from->di_aformat;
228 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
229 to->di_dmstate = be16_to_cpu(from->di_dmstate);
230 to->di_flags = be16_to_cpu(from->di_flags);
231 to->di_gen = be32_to_cpu(from->di_gen);
232
233 if (to->di_version == 3) {
234 to->di_changecount = be64_to_cpu(from->di_changecount);
235 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
236 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
237 to->di_flags2 = be64_to_cpu(from->di_flags2);
238 to->di_ino = be64_to_cpu(from->di_ino);
239 to->di_lsn = be64_to_cpu(from->di_lsn);
240 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
241 uuid_copy(&to->di_uuid, &from->di_uuid);
242 }
243 }
244
245 void
246 xfs_dinode_to_disk(
247 xfs_dinode_t *to,
248 xfs_icdinode_t *from)
249 {
250 to->di_magic = cpu_to_be16(from->di_magic);
251 to->di_mode = cpu_to_be16(from->di_mode);
252 to->di_version = from ->di_version;
253 to->di_format = from->di_format;
254 to->di_onlink = cpu_to_be16(from->di_onlink);
255 to->di_uid = cpu_to_be32(from->di_uid);
256 to->di_gid = cpu_to_be32(from->di_gid);
257 to->di_nlink = cpu_to_be32(from->di_nlink);
258 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
259 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
260 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
261 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
262 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
263 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
264 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
265 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
266 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
267 to->di_size = cpu_to_be64(from->di_size);
268 to->di_nblocks = cpu_to_be64(from->di_nblocks);
269 to->di_extsize = cpu_to_be32(from->di_extsize);
270 to->di_nextents = cpu_to_be32(from->di_nextents);
271 to->di_anextents = cpu_to_be16(from->di_anextents);
272 to->di_forkoff = from->di_forkoff;
273 to->di_aformat = from->di_aformat;
274 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
275 to->di_dmstate = cpu_to_be16(from->di_dmstate);
276 to->di_flags = cpu_to_be16(from->di_flags);
277 to->di_gen = cpu_to_be32(from->di_gen);
278
279 if (from->di_version == 3) {
280 to->di_changecount = cpu_to_be64(from->di_changecount);
281 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
282 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
283 to->di_flags2 = cpu_to_be64(from->di_flags2);
284 to->di_ino = cpu_to_be64(from->di_ino);
285 to->di_lsn = cpu_to_be64(from->di_lsn);
286 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
287 uuid_copy(&to->di_uuid, &from->di_uuid);
288 to->di_flushiter = 0;
289 } else {
290 to->di_flushiter = cpu_to_be16(from->di_flushiter);
291 }
292 }
293
294 static bool
295 xfs_dinode_verify(
296 struct xfs_mount *mp,
297 struct xfs_inode *ip,
298 struct xfs_dinode *dip)
299 {
300 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
301 return false;
302
303 /* only version 3 or greater inodes are extensively verified here */
304 if (dip->di_version < 3)
305 return true;
306
307 if (!xfs_sb_version_hascrc(&mp->m_sb))
308 return false;
309 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
310 offsetof(struct xfs_dinode, di_crc)))
311 return false;
312 if (be64_to_cpu(dip->di_ino) != ip->i_ino)
313 return false;
314 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
315 return false;
316 return true;
317 }
318
319 void
320 xfs_dinode_calc_crc(
321 struct xfs_mount *mp,
322 struct xfs_dinode *dip)
323 {
324 __uint32_t crc;
325
326 if (dip->di_version < 3)
327 return;
328
329 ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
330 crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
331 offsetof(struct xfs_dinode, di_crc));
332 dip->di_crc = xfs_end_cksum(crc);
333 }
334
335 /*
336 * Read the disk inode attributes into the in-core inode structure.
337 *
338 * For version 5 superblocks, if we are initialising a new inode and we are not
339 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
340 * inode core with a random generation number. If we are keeping inodes around,
341 * we need to read the inode cluster to get the existing generation number off
342 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
343 * format) then log recovery is dependent on the di_flushiter field being
344 * initialised from the current on-disk value and hence we must also read the
345 * inode off disk.
346 */
347 int
348 xfs_iread(
349 xfs_mount_t *mp,
350 xfs_trans_t *tp,
351 xfs_inode_t *ip,
352 uint iget_flags)
353 {
354 xfs_buf_t *bp;
355 xfs_dinode_t *dip;
356 int error;
357
358 /*
359 * Fill in the location information in the in-core inode.
360 */
361 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
362 if (error)
363 return error;
364
365 /* shortcut IO on inode allocation if possible */
366 if ((iget_flags & XFS_IGET_CREATE) &&
367 xfs_sb_version_hascrc(&mp->m_sb) &&
368 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
369 /* initialise the on-disk inode core */
370 memset(&ip->i_d, 0, sizeof(ip->i_d));
371 ip->i_d.di_magic = XFS_DINODE_MAGIC;
372 ip->i_d.di_gen = prandom_u32();
373 if (xfs_sb_version_hascrc(&mp->m_sb)) {
374 ip->i_d.di_version = 3;
375 ip->i_d.di_ino = ip->i_ino;
376 uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid);
377 } else
378 ip->i_d.di_version = 2;
379 return 0;
380 }
381
382 /*
383 * Get pointers to the on-disk inode and the buffer containing it.
384 */
385 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
386 if (error)
387 return error;
388
389 /* even unallocated inodes are verified */
390 if (!xfs_dinode_verify(mp, ip, dip)) {
391 xfs_alert(mp, "%s: validation failed for inode %lld failed",
392 __func__, ip->i_ino);
393
394 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
395 error = XFS_ERROR(EFSCORRUPTED);
396 goto out_brelse;
397 }
398
399 /*
400 * If the on-disk inode is already linked to a directory
401 * entry, copy all of the inode into the in-core inode.
402 * xfs_iformat_fork() handles copying in the inode format
403 * specific information.
404 * Otherwise, just get the truly permanent information.
405 */
406 if (dip->di_mode) {
407 xfs_dinode_from_disk(&ip->i_d, dip);
408 error = xfs_iformat_fork(ip, dip);
409 if (error) {
410 #ifdef DEBUG
411 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
412 __func__, error);
413 #endif /* DEBUG */
414 goto out_brelse;
415 }
416 } else {
417 /*
418 * Partial initialisation of the in-core inode. Just the bits
419 * that xfs_ialloc won't overwrite or relies on being correct.
420 */
421 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
422 ip->i_d.di_version = dip->di_version;
423 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
424 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
425
426 if (dip->di_version == 3) {
427 ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
428 uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
429 }
430
431 /*
432 * Make sure to pull in the mode here as well in
433 * case the inode is released without being used.
434 * This ensures that xfs_inactive() will see that
435 * the inode is already free and not try to mess
436 * with the uninitialized part of it.
437 */
438 ip->i_d.di_mode = 0;
439 }
440
441 /*
442 * The inode format changed when we moved the link count and
443 * made it 32 bits long. If this is an old format inode,
444 * convert it in memory to look like a new one. If it gets
445 * flushed to disk we will convert back before flushing or
446 * logging it. We zero out the new projid field and the old link
447 * count field. We'll handle clearing the pad field (the remains
448 * of the old uuid field) when we actually convert the inode to
449 * the new format. We don't change the version number so that we
450 * can distinguish this from a real new format inode.
451 */
452 if (ip->i_d.di_version == 1) {
453 ip->i_d.di_nlink = ip->i_d.di_onlink;
454 ip->i_d.di_onlink = 0;
455 xfs_set_projid(ip, 0);
456 }
457
458 ip->i_delayed_blks = 0;
459
460 /*
461 * Mark the buffer containing the inode as something to keep
462 * around for a while. This helps to keep recently accessed
463 * meta-data in-core longer.
464 */
465 xfs_buf_set_ref(bp, XFS_INO_REF);
466
467 /*
468 * Use xfs_trans_brelse() to release the buffer containing the on-disk
469 * inode, because it was acquired with xfs_trans_read_buf() in
470 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
471 * brelse(). If we're within a transaction, then xfs_trans_brelse()
472 * will only release the buffer if it is not dirty within the
473 * transaction. It will be OK to release the buffer in this case,
474 * because inodes on disk are never destroyed and we will be locking the
475 * new in-core inode before putting it in the cache where other
476 * processes can find it. Thus we don't have to worry about the inode
477 * being changed just because we released the buffer.
478 */
479 out_brelse:
480 xfs_trans_brelse(tp, bp);
481 return error;
482 }