]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_inode_item.c
Merge tag 'v3.15-rc1' into perf/urgent
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_dinode.h"
33 #include "xfs_log.h"
34
35
36 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
37
38 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
39 {
40 return container_of(lip, struct xfs_inode_log_item, ili_item);
41 }
42
43 STATIC void
44 xfs_inode_item_data_fork_size(
45 struct xfs_inode_log_item *iip,
46 int *nvecs,
47 int *nbytes)
48 {
49 struct xfs_inode *ip = iip->ili_inode;
50
51 switch (ip->i_d.di_format) {
52 case XFS_DINODE_FMT_EXTENTS:
53 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
54 ip->i_d.di_nextents > 0 &&
55 ip->i_df.if_bytes > 0) {
56 /* worst case, doesn't subtract delalloc extents */
57 *nbytes += XFS_IFORK_DSIZE(ip);
58 *nvecs += 1;
59 }
60 break;
61 case XFS_DINODE_FMT_BTREE:
62 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
63 ip->i_df.if_broot_bytes > 0) {
64 *nbytes += ip->i_df.if_broot_bytes;
65 *nvecs += 1;
66 }
67 break;
68 case XFS_DINODE_FMT_LOCAL:
69 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
70 ip->i_df.if_bytes > 0) {
71 *nbytes += roundup(ip->i_df.if_bytes, 4);
72 *nvecs += 1;
73 }
74 break;
75
76 case XFS_DINODE_FMT_DEV:
77 case XFS_DINODE_FMT_UUID:
78 break;
79 default:
80 ASSERT(0);
81 break;
82 }
83 }
84
85 STATIC void
86 xfs_inode_item_attr_fork_size(
87 struct xfs_inode_log_item *iip,
88 int *nvecs,
89 int *nbytes)
90 {
91 struct xfs_inode *ip = iip->ili_inode;
92
93 switch (ip->i_d.di_aformat) {
94 case XFS_DINODE_FMT_EXTENTS:
95 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
96 ip->i_d.di_anextents > 0 &&
97 ip->i_afp->if_bytes > 0) {
98 /* worst case, doesn't subtract unused space */
99 *nbytes += XFS_IFORK_ASIZE(ip);
100 *nvecs += 1;
101 }
102 break;
103 case XFS_DINODE_FMT_BTREE:
104 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
105 ip->i_afp->if_broot_bytes > 0) {
106 *nbytes += ip->i_afp->if_broot_bytes;
107 *nvecs += 1;
108 }
109 break;
110 case XFS_DINODE_FMT_LOCAL:
111 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
112 ip->i_afp->if_bytes > 0) {
113 *nbytes += roundup(ip->i_afp->if_bytes, 4);
114 *nvecs += 1;
115 }
116 break;
117 default:
118 ASSERT(0);
119 break;
120 }
121 }
122
123 /*
124 * This returns the number of iovecs needed to log the given inode item.
125 *
126 * We need one iovec for the inode log format structure, one for the
127 * inode core, and possibly one for the inode data/extents/b-tree root
128 * and one for the inode attribute data/extents/b-tree root.
129 */
130 STATIC void
131 xfs_inode_item_size(
132 struct xfs_log_item *lip,
133 int *nvecs,
134 int *nbytes)
135 {
136 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
137 struct xfs_inode *ip = iip->ili_inode;
138
139 *nvecs += 2;
140 *nbytes += sizeof(struct xfs_inode_log_format) +
141 xfs_icdinode_size(ip->i_d.di_version);
142
143 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
144 if (XFS_IFORK_Q(ip))
145 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
146 }
147
148 /*
149 * If this is a v1 format inode, then we need to log it as such. This means
150 * that we have to copy the link count from the new field to the old. We
151 * don't have to worry about the new fields, because nothing trusts them as
152 * long as the old inode version number is there.
153 */
154 STATIC void
155 xfs_inode_item_format_v1_inode(
156 struct xfs_inode *ip)
157 {
158 if (!xfs_sb_version_hasnlink(&ip->i_mount->m_sb)) {
159 /*
160 * Convert it back.
161 */
162 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
163 ip->i_d.di_onlink = ip->i_d.di_nlink;
164 } else {
165 /*
166 * The superblock version has already been bumped,
167 * so just make the conversion to the new inode
168 * format permanent.
169 */
170 ip->i_d.di_version = 2;
171 ip->i_d.di_onlink = 0;
172 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
173 }
174 }
175
176 STATIC void
177 xfs_inode_item_format_data_fork(
178 struct xfs_inode_log_item *iip,
179 struct xfs_inode_log_format *ilf,
180 struct xfs_log_vec *lv,
181 struct xfs_log_iovec **vecp)
182 {
183 struct xfs_inode *ip = iip->ili_inode;
184 size_t data_bytes;
185
186 switch (ip->i_d.di_format) {
187 case XFS_DINODE_FMT_EXTENTS:
188 iip->ili_fields &=
189 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
190 XFS_ILOG_DEV | XFS_ILOG_UUID);
191
192 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
193 ip->i_d.di_nextents > 0 &&
194 ip->i_df.if_bytes > 0) {
195 struct xfs_bmbt_rec *p;
196
197 ASSERT(ip->i_df.if_u1.if_extents != NULL);
198 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
199
200 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
201 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
202 xlog_finish_iovec(lv, *vecp, data_bytes);
203
204 ASSERT(data_bytes <= ip->i_df.if_bytes);
205
206 ilf->ilf_dsize = data_bytes;
207 ilf->ilf_size++;
208 } else {
209 iip->ili_fields &= ~XFS_ILOG_DEXT;
210 }
211 break;
212 case XFS_DINODE_FMT_BTREE:
213 iip->ili_fields &=
214 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
215 XFS_ILOG_DEV | XFS_ILOG_UUID);
216
217 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
218 ip->i_df.if_broot_bytes > 0) {
219 ASSERT(ip->i_df.if_broot != NULL);
220 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
221 ip->i_df.if_broot,
222 ip->i_df.if_broot_bytes);
223 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
224 ilf->ilf_size++;
225 } else {
226 ASSERT(!(iip->ili_fields &
227 XFS_ILOG_DBROOT));
228 iip->ili_fields &= ~XFS_ILOG_DBROOT;
229 }
230 break;
231 case XFS_DINODE_FMT_LOCAL:
232 iip->ili_fields &=
233 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
234 XFS_ILOG_DEV | XFS_ILOG_UUID);
235 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
236 ip->i_df.if_bytes > 0) {
237 /*
238 * Round i_bytes up to a word boundary.
239 * The underlying memory is guaranteed to
240 * to be there by xfs_idata_realloc().
241 */
242 data_bytes = roundup(ip->i_df.if_bytes, 4);
243 ASSERT(ip->i_df.if_real_bytes == 0 ||
244 ip->i_df.if_real_bytes == data_bytes);
245 ASSERT(ip->i_df.if_u1.if_data != NULL);
246 ASSERT(ip->i_d.di_size > 0);
247 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
248 ip->i_df.if_u1.if_data, data_bytes);
249 ilf->ilf_dsize = (unsigned)data_bytes;
250 ilf->ilf_size++;
251 } else {
252 iip->ili_fields &= ~XFS_ILOG_DDATA;
253 }
254 break;
255 case XFS_DINODE_FMT_DEV:
256 iip->ili_fields &=
257 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
258 XFS_ILOG_DEXT | XFS_ILOG_UUID);
259 if (iip->ili_fields & XFS_ILOG_DEV)
260 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
261 break;
262 case XFS_DINODE_FMT_UUID:
263 iip->ili_fields &=
264 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
265 XFS_ILOG_DEXT | XFS_ILOG_DEV);
266 if (iip->ili_fields & XFS_ILOG_UUID)
267 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
268 break;
269 default:
270 ASSERT(0);
271 break;
272 }
273 }
274
275 STATIC void
276 xfs_inode_item_format_attr_fork(
277 struct xfs_inode_log_item *iip,
278 struct xfs_inode_log_format *ilf,
279 struct xfs_log_vec *lv,
280 struct xfs_log_iovec **vecp)
281 {
282 struct xfs_inode *ip = iip->ili_inode;
283 size_t data_bytes;
284
285 switch (ip->i_d.di_aformat) {
286 case XFS_DINODE_FMT_EXTENTS:
287 iip->ili_fields &=
288 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
289
290 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
291 ip->i_d.di_anextents > 0 &&
292 ip->i_afp->if_bytes > 0) {
293 struct xfs_bmbt_rec *p;
294
295 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
296 ip->i_d.di_anextents);
297 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
298
299 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
300 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
301 xlog_finish_iovec(lv, *vecp, data_bytes);
302
303 ilf->ilf_asize = data_bytes;
304 ilf->ilf_size++;
305 } else {
306 iip->ili_fields &= ~XFS_ILOG_AEXT;
307 }
308 break;
309 case XFS_DINODE_FMT_BTREE:
310 iip->ili_fields &=
311 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
312
313 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
314 ip->i_afp->if_broot_bytes > 0) {
315 ASSERT(ip->i_afp->if_broot != NULL);
316
317 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
318 ip->i_afp->if_broot,
319 ip->i_afp->if_broot_bytes);
320 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
321 ilf->ilf_size++;
322 } else {
323 iip->ili_fields &= ~XFS_ILOG_ABROOT;
324 }
325 break;
326 case XFS_DINODE_FMT_LOCAL:
327 iip->ili_fields &=
328 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
329
330 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
331 ip->i_afp->if_bytes > 0) {
332 /*
333 * Round i_bytes up to a word boundary.
334 * The underlying memory is guaranteed to
335 * to be there by xfs_idata_realloc().
336 */
337 data_bytes = roundup(ip->i_afp->if_bytes, 4);
338 ASSERT(ip->i_afp->if_real_bytes == 0 ||
339 ip->i_afp->if_real_bytes == data_bytes);
340 ASSERT(ip->i_afp->if_u1.if_data != NULL);
341 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
342 ip->i_afp->if_u1.if_data,
343 data_bytes);
344 ilf->ilf_asize = (unsigned)data_bytes;
345 ilf->ilf_size++;
346 } else {
347 iip->ili_fields &= ~XFS_ILOG_ADATA;
348 }
349 break;
350 default:
351 ASSERT(0);
352 break;
353 }
354 }
355
356 /*
357 * This is called to fill in the vector of log iovecs for the given inode
358 * log item. It fills the first item with an inode log format structure,
359 * the second with the on-disk inode structure, and a possible third and/or
360 * fourth with the inode data/extents/b-tree root and inode attributes
361 * data/extents/b-tree root.
362 */
363 STATIC void
364 xfs_inode_item_format(
365 struct xfs_log_item *lip,
366 struct xfs_log_vec *lv)
367 {
368 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
369 struct xfs_inode *ip = iip->ili_inode;
370 struct xfs_inode_log_format *ilf;
371 struct xfs_log_iovec *vecp = NULL;
372
373 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
374 ilf->ilf_type = XFS_LI_INODE;
375 ilf->ilf_ino = ip->i_ino;
376 ilf->ilf_blkno = ip->i_imap.im_blkno;
377 ilf->ilf_len = ip->i_imap.im_len;
378 ilf->ilf_boffset = ip->i_imap.im_boffset;
379 ilf->ilf_fields = XFS_ILOG_CORE;
380 ilf->ilf_size = 2; /* format + core */
381 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
382
383 if (ip->i_d.di_version == 1)
384 xfs_inode_item_format_v1_inode(ip);
385 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE,
386 &ip->i_d,
387 xfs_icdinode_size(ip->i_d.di_version));
388
389 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
390 if (XFS_IFORK_Q(ip)) {
391 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
392 } else {
393 iip->ili_fields &=
394 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
395 }
396
397 /* update the format with the exact fields we actually logged */
398 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
399 }
400
401 /*
402 * This is called to pin the inode associated with the inode log
403 * item in memory so it cannot be written out.
404 */
405 STATIC void
406 xfs_inode_item_pin(
407 struct xfs_log_item *lip)
408 {
409 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
410
411 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
412
413 trace_xfs_inode_pin(ip, _RET_IP_);
414 atomic_inc(&ip->i_pincount);
415 }
416
417
418 /*
419 * This is called to unpin the inode associated with the inode log
420 * item which was previously pinned with a call to xfs_inode_item_pin().
421 *
422 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
423 */
424 STATIC void
425 xfs_inode_item_unpin(
426 struct xfs_log_item *lip,
427 int remove)
428 {
429 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
430
431 trace_xfs_inode_unpin(ip, _RET_IP_);
432 ASSERT(atomic_read(&ip->i_pincount) > 0);
433 if (atomic_dec_and_test(&ip->i_pincount))
434 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
435 }
436
437 STATIC uint
438 xfs_inode_item_push(
439 struct xfs_log_item *lip,
440 struct list_head *buffer_list)
441 {
442 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
443 struct xfs_inode *ip = iip->ili_inode;
444 struct xfs_buf *bp = NULL;
445 uint rval = XFS_ITEM_SUCCESS;
446 int error;
447
448 if (xfs_ipincount(ip) > 0)
449 return XFS_ITEM_PINNED;
450
451 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
452 return XFS_ITEM_LOCKED;
453
454 /*
455 * Re-check the pincount now that we stabilized the value by
456 * taking the ilock.
457 */
458 if (xfs_ipincount(ip) > 0) {
459 rval = XFS_ITEM_PINNED;
460 goto out_unlock;
461 }
462
463 /*
464 * Stale inode items should force out the iclog.
465 */
466 if (ip->i_flags & XFS_ISTALE) {
467 rval = XFS_ITEM_PINNED;
468 goto out_unlock;
469 }
470
471 /*
472 * Someone else is already flushing the inode. Nothing we can do
473 * here but wait for the flush to finish and remove the item from
474 * the AIL.
475 */
476 if (!xfs_iflock_nowait(ip)) {
477 rval = XFS_ITEM_FLUSHING;
478 goto out_unlock;
479 }
480
481 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
482 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
483
484 spin_unlock(&lip->li_ailp->xa_lock);
485
486 error = xfs_iflush(ip, &bp);
487 if (!error) {
488 if (!xfs_buf_delwri_queue(bp, buffer_list))
489 rval = XFS_ITEM_FLUSHING;
490 xfs_buf_relse(bp);
491 }
492
493 spin_lock(&lip->li_ailp->xa_lock);
494 out_unlock:
495 xfs_iunlock(ip, XFS_ILOCK_SHARED);
496 return rval;
497 }
498
499 /*
500 * Unlock the inode associated with the inode log item.
501 * Clear the fields of the inode and inode log item that
502 * are specific to the current transaction. If the
503 * hold flags is set, do not unlock the inode.
504 */
505 STATIC void
506 xfs_inode_item_unlock(
507 struct xfs_log_item *lip)
508 {
509 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
510 struct xfs_inode *ip = iip->ili_inode;
511 unsigned short lock_flags;
512
513 ASSERT(ip->i_itemp != NULL);
514 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
515
516 lock_flags = iip->ili_lock_flags;
517 iip->ili_lock_flags = 0;
518 if (lock_flags)
519 xfs_iunlock(ip, lock_flags);
520 }
521
522 /*
523 * This is called to find out where the oldest active copy of the inode log
524 * item in the on disk log resides now that the last log write of it completed
525 * at the given lsn. Since we always re-log all dirty data in an inode, the
526 * latest copy in the on disk log is the only one that matters. Therefore,
527 * simply return the given lsn.
528 *
529 * If the inode has been marked stale because the cluster is being freed, we
530 * don't want to (re-)insert this inode into the AIL. There is a race condition
531 * where the cluster buffer may be unpinned before the inode is inserted into
532 * the AIL during transaction committed processing. If the buffer is unpinned
533 * before the inode item has been committed and inserted, then it is possible
534 * for the buffer to be written and IO completes before the inode is inserted
535 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
536 * AIL which will never get removed. It will, however, get reclaimed which
537 * triggers an assert in xfs_inode_free() complaining about freein an inode
538 * still in the AIL.
539 *
540 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
541 * transaction committed code knows that it does not need to do any further
542 * processing on the item.
543 */
544 STATIC xfs_lsn_t
545 xfs_inode_item_committed(
546 struct xfs_log_item *lip,
547 xfs_lsn_t lsn)
548 {
549 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
550 struct xfs_inode *ip = iip->ili_inode;
551
552 if (xfs_iflags_test(ip, XFS_ISTALE)) {
553 xfs_inode_item_unpin(lip, 0);
554 return -1;
555 }
556 return lsn;
557 }
558
559 /*
560 * XXX rcc - this one really has to do something. Probably needs
561 * to stamp in a new field in the incore inode.
562 */
563 STATIC void
564 xfs_inode_item_committing(
565 struct xfs_log_item *lip,
566 xfs_lsn_t lsn)
567 {
568 INODE_ITEM(lip)->ili_last_lsn = lsn;
569 }
570
571 /*
572 * This is the ops vector shared by all buf log items.
573 */
574 static const struct xfs_item_ops xfs_inode_item_ops = {
575 .iop_size = xfs_inode_item_size,
576 .iop_format = xfs_inode_item_format,
577 .iop_pin = xfs_inode_item_pin,
578 .iop_unpin = xfs_inode_item_unpin,
579 .iop_unlock = xfs_inode_item_unlock,
580 .iop_committed = xfs_inode_item_committed,
581 .iop_push = xfs_inode_item_push,
582 .iop_committing = xfs_inode_item_committing
583 };
584
585
586 /*
587 * Initialize the inode log item for a newly allocated (in-core) inode.
588 */
589 void
590 xfs_inode_item_init(
591 struct xfs_inode *ip,
592 struct xfs_mount *mp)
593 {
594 struct xfs_inode_log_item *iip;
595
596 ASSERT(ip->i_itemp == NULL);
597 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
598
599 iip->ili_inode = ip;
600 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
601 &xfs_inode_item_ops);
602 }
603
604 /*
605 * Free the inode log item and any memory hanging off of it.
606 */
607 void
608 xfs_inode_item_destroy(
609 xfs_inode_t *ip)
610 {
611 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
612 }
613
614
615 /*
616 * This is the inode flushing I/O completion routine. It is called
617 * from interrupt level when the buffer containing the inode is
618 * flushed to disk. It is responsible for removing the inode item
619 * from the AIL if it has not been re-logged, and unlocking the inode's
620 * flush lock.
621 *
622 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
623 * list for other inodes that will run this function. We remove them from the
624 * buffer list so we can process all the inode IO completions in one AIL lock
625 * traversal.
626 */
627 void
628 xfs_iflush_done(
629 struct xfs_buf *bp,
630 struct xfs_log_item *lip)
631 {
632 struct xfs_inode_log_item *iip;
633 struct xfs_log_item *blip;
634 struct xfs_log_item *next;
635 struct xfs_log_item *prev;
636 struct xfs_ail *ailp = lip->li_ailp;
637 int need_ail = 0;
638
639 /*
640 * Scan the buffer IO completions for other inodes being completed and
641 * attach them to the current inode log item.
642 */
643 blip = bp->b_fspriv;
644 prev = NULL;
645 while (blip != NULL) {
646 if (lip->li_cb != xfs_iflush_done) {
647 prev = blip;
648 blip = blip->li_bio_list;
649 continue;
650 }
651
652 /* remove from list */
653 next = blip->li_bio_list;
654 if (!prev) {
655 bp->b_fspriv = next;
656 } else {
657 prev->li_bio_list = next;
658 }
659
660 /* add to current list */
661 blip->li_bio_list = lip->li_bio_list;
662 lip->li_bio_list = blip;
663
664 /*
665 * while we have the item, do the unlocked check for needing
666 * the AIL lock.
667 */
668 iip = INODE_ITEM(blip);
669 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
670 need_ail++;
671
672 blip = next;
673 }
674
675 /* make sure we capture the state of the initial inode. */
676 iip = INODE_ITEM(lip);
677 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
678 need_ail++;
679
680 /*
681 * We only want to pull the item from the AIL if it is
682 * actually there and its location in the log has not
683 * changed since we started the flush. Thus, we only bother
684 * if the ili_logged flag is set and the inode's lsn has not
685 * changed. First we check the lsn outside
686 * the lock since it's cheaper, and then we recheck while
687 * holding the lock before removing the inode from the AIL.
688 */
689 if (need_ail) {
690 struct xfs_log_item *log_items[need_ail];
691 int i = 0;
692 spin_lock(&ailp->xa_lock);
693 for (blip = lip; blip; blip = blip->li_bio_list) {
694 iip = INODE_ITEM(blip);
695 if (iip->ili_logged &&
696 blip->li_lsn == iip->ili_flush_lsn) {
697 log_items[i++] = blip;
698 }
699 ASSERT(i <= need_ail);
700 }
701 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
702 xfs_trans_ail_delete_bulk(ailp, log_items, i,
703 SHUTDOWN_CORRUPT_INCORE);
704 }
705
706
707 /*
708 * clean up and unlock the flush lock now we are done. We can clear the
709 * ili_last_fields bits now that we know that the data corresponding to
710 * them is safely on disk.
711 */
712 for (blip = lip; blip; blip = next) {
713 next = blip->li_bio_list;
714 blip->li_bio_list = NULL;
715
716 iip = INODE_ITEM(blip);
717 iip->ili_logged = 0;
718 iip->ili_last_fields = 0;
719 xfs_ifunlock(iip->ili_inode);
720 }
721 }
722
723 /*
724 * This is the inode flushing abort routine. It is called from xfs_iflush when
725 * the filesystem is shutting down to clean up the inode state. It is
726 * responsible for removing the inode item from the AIL if it has not been
727 * re-logged, and unlocking the inode's flush lock.
728 */
729 void
730 xfs_iflush_abort(
731 xfs_inode_t *ip,
732 bool stale)
733 {
734 xfs_inode_log_item_t *iip = ip->i_itemp;
735
736 if (iip) {
737 struct xfs_ail *ailp = iip->ili_item.li_ailp;
738 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
739 spin_lock(&ailp->xa_lock);
740 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
741 /* xfs_trans_ail_delete() drops the AIL lock. */
742 xfs_trans_ail_delete(ailp, &iip->ili_item,
743 stale ?
744 SHUTDOWN_LOG_IO_ERROR :
745 SHUTDOWN_CORRUPT_INCORE);
746 } else
747 spin_unlock(&ailp->xa_lock);
748 }
749 iip->ili_logged = 0;
750 /*
751 * Clear the ili_last_fields bits now that we know that the
752 * data corresponding to them is safely on disk.
753 */
754 iip->ili_last_fields = 0;
755 /*
756 * Clear the inode logging fields so no more flushes are
757 * attempted.
758 */
759 iip->ili_fields = 0;
760 }
761 /*
762 * Release the inode's flush lock since we're done with it.
763 */
764 xfs_ifunlock(ip);
765 }
766
767 void
768 xfs_istale_done(
769 struct xfs_buf *bp,
770 struct xfs_log_item *lip)
771 {
772 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
773 }
774
775 /*
776 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
777 * (which can have different field alignments) to the native version
778 */
779 int
780 xfs_inode_item_format_convert(
781 xfs_log_iovec_t *buf,
782 xfs_inode_log_format_t *in_f)
783 {
784 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
785 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
786
787 in_f->ilf_type = in_f32->ilf_type;
788 in_f->ilf_size = in_f32->ilf_size;
789 in_f->ilf_fields = in_f32->ilf_fields;
790 in_f->ilf_asize = in_f32->ilf_asize;
791 in_f->ilf_dsize = in_f32->ilf_dsize;
792 in_f->ilf_ino = in_f32->ilf_ino;
793 /* copy biggest field of ilf_u */
794 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
795 in_f32->ilf_u.ilfu_uuid.__u_bits,
796 sizeof(uuid_t));
797 in_f->ilf_blkno = in_f32->ilf_blkno;
798 in_f->ilf_len = in_f32->ilf_len;
799 in_f->ilf_boffset = in_f32->ilf_boffset;
800 return 0;
801 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
802 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
803
804 in_f->ilf_type = in_f64->ilf_type;
805 in_f->ilf_size = in_f64->ilf_size;
806 in_f->ilf_fields = in_f64->ilf_fields;
807 in_f->ilf_asize = in_f64->ilf_asize;
808 in_f->ilf_dsize = in_f64->ilf_dsize;
809 in_f->ilf_ino = in_f64->ilf_ino;
810 /* copy biggest field of ilf_u */
811 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
812 in_f64->ilf_u.ilfu_uuid.__u_bits,
813 sizeof(uuid_t));
814 in_f->ilf_blkno = in_f64->ilf_blkno;
815 in_f->ilf_len = in_f64->ilf_len;
816 in_f->ilf_boffset = in_f64->ilf_boffset;
817 return 0;
818 }
819 return EFSCORRUPTED;
820 }