]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_inode_item.c
Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_rw.h"
43 #include "xfs_error.h"
44 #include "xfs_trace.h"
45
46
47 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
48
49 /*
50 * This returns the number of iovecs needed to log the given inode item.
51 *
52 * We need one iovec for the inode log format structure, one for the
53 * inode core, and possibly one for the inode data/extents/b-tree root
54 * and one for the inode attribute data/extents/b-tree root.
55 */
56 STATIC uint
57 xfs_inode_item_size(
58 xfs_inode_log_item_t *iip)
59 {
60 uint nvecs;
61 xfs_inode_t *ip;
62
63 ip = iip->ili_inode;
64 nvecs = 2;
65
66 /*
67 * Only log the data/extents/b-tree root if there is something
68 * left to log.
69 */
70 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
71
72 switch (ip->i_d.di_format) {
73 case XFS_DINODE_FMT_EXTENTS:
74 iip->ili_format.ilf_fields &=
75 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
76 XFS_ILOG_DEV | XFS_ILOG_UUID);
77 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
78 (ip->i_d.di_nextents > 0) &&
79 (ip->i_df.if_bytes > 0)) {
80 ASSERT(ip->i_df.if_u1.if_extents != NULL);
81 nvecs++;
82 } else {
83 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
84 }
85 break;
86
87 case XFS_DINODE_FMT_BTREE:
88 ASSERT(ip->i_df.if_ext_max ==
89 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
90 iip->ili_format.ilf_fields &=
91 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
92 XFS_ILOG_DEV | XFS_ILOG_UUID);
93 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
94 (ip->i_df.if_broot_bytes > 0)) {
95 ASSERT(ip->i_df.if_broot != NULL);
96 nvecs++;
97 } else {
98 ASSERT(!(iip->ili_format.ilf_fields &
99 XFS_ILOG_DBROOT));
100 #ifdef XFS_TRANS_DEBUG
101 if (iip->ili_root_size > 0) {
102 ASSERT(iip->ili_root_size ==
103 ip->i_df.if_broot_bytes);
104 ASSERT(memcmp(iip->ili_orig_root,
105 ip->i_df.if_broot,
106 iip->ili_root_size) == 0);
107 } else {
108 ASSERT(ip->i_df.if_broot_bytes == 0);
109 }
110 #endif
111 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
112 }
113 break;
114
115 case XFS_DINODE_FMT_LOCAL:
116 iip->ili_format.ilf_fields &=
117 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
118 XFS_ILOG_DEV | XFS_ILOG_UUID);
119 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
120 (ip->i_df.if_bytes > 0)) {
121 ASSERT(ip->i_df.if_u1.if_data != NULL);
122 ASSERT(ip->i_d.di_size > 0);
123 nvecs++;
124 } else {
125 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
126 }
127 break;
128
129 case XFS_DINODE_FMT_DEV:
130 iip->ili_format.ilf_fields &=
131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 XFS_ILOG_DEXT | XFS_ILOG_UUID);
133 break;
134
135 case XFS_DINODE_FMT_UUID:
136 iip->ili_format.ilf_fields &=
137 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
138 XFS_ILOG_DEXT | XFS_ILOG_DEV);
139 break;
140
141 default:
142 ASSERT(0);
143 break;
144 }
145
146 /*
147 * If there are no attributes associated with this file,
148 * then there cannot be anything more to log.
149 * Clear all attribute-related log flags.
150 */
151 if (!XFS_IFORK_Q(ip)) {
152 iip->ili_format.ilf_fields &=
153 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
154 return nvecs;
155 }
156
157 /*
158 * Log any necessary attribute data.
159 */
160 switch (ip->i_d.di_aformat) {
161 case XFS_DINODE_FMT_EXTENTS:
162 iip->ili_format.ilf_fields &=
163 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
164 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
165 (ip->i_d.di_anextents > 0) &&
166 (ip->i_afp->if_bytes > 0)) {
167 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
168 nvecs++;
169 } else {
170 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
171 }
172 break;
173
174 case XFS_DINODE_FMT_BTREE:
175 iip->ili_format.ilf_fields &=
176 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
177 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
178 (ip->i_afp->if_broot_bytes > 0)) {
179 ASSERT(ip->i_afp->if_broot != NULL);
180 nvecs++;
181 } else {
182 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
183 }
184 break;
185
186 case XFS_DINODE_FMT_LOCAL:
187 iip->ili_format.ilf_fields &=
188 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
189 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
190 (ip->i_afp->if_bytes > 0)) {
191 ASSERT(ip->i_afp->if_u1.if_data != NULL);
192 nvecs++;
193 } else {
194 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
195 }
196 break;
197
198 default:
199 ASSERT(0);
200 break;
201 }
202
203 return nvecs;
204 }
205
206 /*
207 * This is called to fill in the vector of log iovecs for the
208 * given inode log item. It fills the first item with an inode
209 * log format structure, the second with the on-disk inode structure,
210 * and a possible third and/or fourth with the inode data/extents/b-tree
211 * root and inode attributes data/extents/b-tree root.
212 */
213 STATIC void
214 xfs_inode_item_format(
215 xfs_inode_log_item_t *iip,
216 xfs_log_iovec_t *log_vector)
217 {
218 uint nvecs;
219 xfs_log_iovec_t *vecp;
220 xfs_inode_t *ip;
221 size_t data_bytes;
222 xfs_bmbt_rec_t *ext_buffer;
223 int nrecs;
224 xfs_mount_t *mp;
225
226 ip = iip->ili_inode;
227 vecp = log_vector;
228
229 vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
230 vecp->i_len = sizeof(xfs_inode_log_format_t);
231 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
232 vecp++;
233 nvecs = 1;
234
235 /*
236 * Make sure the linux inode is dirty. We do this before
237 * clearing i_update_core as the VFS will call back into
238 * XFS here and set i_update_core, so we need to dirty the
239 * inode first so that the ordering of i_update_core and
240 * unlogged modifications still works as described below.
241 */
242 xfs_mark_inode_dirty_sync(ip);
243
244 /*
245 * Clear i_update_core if the timestamps (or any other
246 * non-transactional modification) need flushing/logging
247 * and we're about to log them with the rest of the core.
248 *
249 * This is the same logic as xfs_iflush() but this code can't
250 * run at the same time as xfs_iflush because we're in commit
251 * processing here and so we have the inode lock held in
252 * exclusive mode. Although it doesn't really matter
253 * for the timestamps if both routines were to grab the
254 * timestamps or not. That would be ok.
255 *
256 * We clear i_update_core before copying out the data.
257 * This is for coordination with our timestamp updates
258 * that don't hold the inode lock. They will always
259 * update the timestamps BEFORE setting i_update_core,
260 * so if we clear i_update_core after they set it we
261 * are guaranteed to see their updates to the timestamps
262 * either here. Likewise, if they set it after we clear it
263 * here, we'll see it either on the next commit of this
264 * inode or the next time the inode gets flushed via
265 * xfs_iflush(). This depends on strongly ordered memory
266 * semantics, but we have that. We use the SYNCHRONIZE
267 * macro to make sure that the compiler does not reorder
268 * the i_update_core access below the data copy below.
269 */
270 if (ip->i_update_core) {
271 ip->i_update_core = 0;
272 SYNCHRONIZE();
273 }
274
275 /*
276 * Make sure to get the latest timestamps from the Linux inode.
277 */
278 xfs_synchronize_times(ip);
279
280 vecp->i_addr = (xfs_caddr_t)&ip->i_d;
281 vecp->i_len = sizeof(struct xfs_icdinode);
282 vecp->i_type = XLOG_REG_TYPE_ICORE;
283 vecp++;
284 nvecs++;
285 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
286
287 /*
288 * If this is really an old format inode, then we need to
289 * log it as such. This means that we have to copy the link
290 * count from the new field to the old. We don't have to worry
291 * about the new fields, because nothing trusts them as long as
292 * the old inode version number is there. If the superblock already
293 * has a new version number, then we don't bother converting back.
294 */
295 mp = ip->i_mount;
296 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
297 if (ip->i_d.di_version == 1) {
298 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
299 /*
300 * Convert it back.
301 */
302 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
303 ip->i_d.di_onlink = ip->i_d.di_nlink;
304 } else {
305 /*
306 * The superblock version has already been bumped,
307 * so just make the conversion to the new inode
308 * format permanent.
309 */
310 ip->i_d.di_version = 2;
311 ip->i_d.di_onlink = 0;
312 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
313 }
314 }
315
316 switch (ip->i_d.di_format) {
317 case XFS_DINODE_FMT_EXTENTS:
318 ASSERT(!(iip->ili_format.ilf_fields &
319 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
320 XFS_ILOG_DEV | XFS_ILOG_UUID)));
321 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
322 ASSERT(ip->i_df.if_bytes > 0);
323 ASSERT(ip->i_df.if_u1.if_extents != NULL);
324 ASSERT(ip->i_d.di_nextents > 0);
325 ASSERT(iip->ili_extents_buf == NULL);
326 nrecs = ip->i_df.if_bytes /
327 (uint)sizeof(xfs_bmbt_rec_t);
328 ASSERT(nrecs > 0);
329 #ifdef XFS_NATIVE_HOST
330 if (nrecs == ip->i_d.di_nextents) {
331 /*
332 * There are no delayed allocation
333 * extents, so just point to the
334 * real extents array.
335 */
336 vecp->i_addr =
337 (char *)(ip->i_df.if_u1.if_extents);
338 vecp->i_len = ip->i_df.if_bytes;
339 vecp->i_type = XLOG_REG_TYPE_IEXT;
340 } else
341 #endif
342 {
343 /*
344 * There are delayed allocation extents
345 * in the inode, or we need to convert
346 * the extents to on disk format.
347 * Use xfs_iextents_copy()
348 * to copy only the real extents into
349 * a separate buffer. We'll free the
350 * buffer in the unlock routine.
351 */
352 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
353 KM_SLEEP);
354 iip->ili_extents_buf = ext_buffer;
355 vecp->i_addr = (xfs_caddr_t)ext_buffer;
356 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
357 XFS_DATA_FORK);
358 vecp->i_type = XLOG_REG_TYPE_IEXT;
359 }
360 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
361 iip->ili_format.ilf_dsize = vecp->i_len;
362 vecp++;
363 nvecs++;
364 }
365 break;
366
367 case XFS_DINODE_FMT_BTREE:
368 ASSERT(!(iip->ili_format.ilf_fields &
369 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
370 XFS_ILOG_DEV | XFS_ILOG_UUID)));
371 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
372 ASSERT(ip->i_df.if_broot_bytes > 0);
373 ASSERT(ip->i_df.if_broot != NULL);
374 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
375 vecp->i_len = ip->i_df.if_broot_bytes;
376 vecp->i_type = XLOG_REG_TYPE_IBROOT;
377 vecp++;
378 nvecs++;
379 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
380 }
381 break;
382
383 case XFS_DINODE_FMT_LOCAL:
384 ASSERT(!(iip->ili_format.ilf_fields &
385 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
386 XFS_ILOG_DEV | XFS_ILOG_UUID)));
387 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
388 ASSERT(ip->i_df.if_bytes > 0);
389 ASSERT(ip->i_df.if_u1.if_data != NULL);
390 ASSERT(ip->i_d.di_size > 0);
391
392 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
393 /*
394 * Round i_bytes up to a word boundary.
395 * The underlying memory is guaranteed to
396 * to be there by xfs_idata_realloc().
397 */
398 data_bytes = roundup(ip->i_df.if_bytes, 4);
399 ASSERT((ip->i_df.if_real_bytes == 0) ||
400 (ip->i_df.if_real_bytes == data_bytes));
401 vecp->i_len = (int)data_bytes;
402 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
403 vecp++;
404 nvecs++;
405 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
406 }
407 break;
408
409 case XFS_DINODE_FMT_DEV:
410 ASSERT(!(iip->ili_format.ilf_fields &
411 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
412 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
413 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
414 iip->ili_format.ilf_u.ilfu_rdev =
415 ip->i_df.if_u2.if_rdev;
416 }
417 break;
418
419 case XFS_DINODE_FMT_UUID:
420 ASSERT(!(iip->ili_format.ilf_fields &
421 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
422 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
423 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
424 iip->ili_format.ilf_u.ilfu_uuid =
425 ip->i_df.if_u2.if_uuid;
426 }
427 break;
428
429 default:
430 ASSERT(0);
431 break;
432 }
433
434 /*
435 * If there are no attributes associated with the file,
436 * then we're done.
437 * Assert that no attribute-related log flags are set.
438 */
439 if (!XFS_IFORK_Q(ip)) {
440 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
441 iip->ili_format.ilf_size = nvecs;
442 ASSERT(!(iip->ili_format.ilf_fields &
443 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
444 return;
445 }
446
447 switch (ip->i_d.di_aformat) {
448 case XFS_DINODE_FMT_EXTENTS:
449 ASSERT(!(iip->ili_format.ilf_fields &
450 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
451 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
452 ASSERT(ip->i_afp->if_bytes > 0);
453 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
454 ASSERT(ip->i_d.di_anextents > 0);
455 #ifdef DEBUG
456 nrecs = ip->i_afp->if_bytes /
457 (uint)sizeof(xfs_bmbt_rec_t);
458 #endif
459 ASSERT(nrecs > 0);
460 ASSERT(nrecs == ip->i_d.di_anextents);
461 #ifdef XFS_NATIVE_HOST
462 /*
463 * There are not delayed allocation extents
464 * for attributes, so just point at the array.
465 */
466 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
467 vecp->i_len = ip->i_afp->if_bytes;
468 #else
469 ASSERT(iip->ili_aextents_buf == NULL);
470 /*
471 * Need to endian flip before logging
472 */
473 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
474 KM_SLEEP);
475 iip->ili_aextents_buf = ext_buffer;
476 vecp->i_addr = (xfs_caddr_t)ext_buffer;
477 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
478 XFS_ATTR_FORK);
479 #endif
480 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
481 iip->ili_format.ilf_asize = vecp->i_len;
482 vecp++;
483 nvecs++;
484 }
485 break;
486
487 case XFS_DINODE_FMT_BTREE:
488 ASSERT(!(iip->ili_format.ilf_fields &
489 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
490 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
491 ASSERT(ip->i_afp->if_broot_bytes > 0);
492 ASSERT(ip->i_afp->if_broot != NULL);
493 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
494 vecp->i_len = ip->i_afp->if_broot_bytes;
495 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
496 vecp++;
497 nvecs++;
498 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
499 }
500 break;
501
502 case XFS_DINODE_FMT_LOCAL:
503 ASSERT(!(iip->ili_format.ilf_fields &
504 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
505 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
506 ASSERT(ip->i_afp->if_bytes > 0);
507 ASSERT(ip->i_afp->if_u1.if_data != NULL);
508
509 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
510 /*
511 * Round i_bytes up to a word boundary.
512 * The underlying memory is guaranteed to
513 * to be there by xfs_idata_realloc().
514 */
515 data_bytes = roundup(ip->i_afp->if_bytes, 4);
516 ASSERT((ip->i_afp->if_real_bytes == 0) ||
517 (ip->i_afp->if_real_bytes == data_bytes));
518 vecp->i_len = (int)data_bytes;
519 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
520 vecp++;
521 nvecs++;
522 iip->ili_format.ilf_asize = (unsigned)data_bytes;
523 }
524 break;
525
526 default:
527 ASSERT(0);
528 break;
529 }
530
531 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
532 iip->ili_format.ilf_size = nvecs;
533 }
534
535
536 /*
537 * This is called to pin the inode associated with the inode log
538 * item in memory so it cannot be written out.
539 */
540 STATIC void
541 xfs_inode_item_pin(
542 xfs_inode_log_item_t *iip)
543 {
544 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
545
546 trace_xfs_inode_pin(iip->ili_inode, _RET_IP_);
547 atomic_inc(&iip->ili_inode->i_pincount);
548 }
549
550
551 /*
552 * This is called to unpin the inode associated with the inode log
553 * item which was previously pinned with a call to xfs_inode_item_pin().
554 *
555 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
556 */
557 /* ARGSUSED */
558 STATIC void
559 xfs_inode_item_unpin(
560 xfs_inode_log_item_t *iip)
561 {
562 struct xfs_inode *ip = iip->ili_inode;
563
564 trace_xfs_inode_unpin(ip, _RET_IP_);
565 ASSERT(atomic_read(&ip->i_pincount) > 0);
566 if (atomic_dec_and_test(&ip->i_pincount))
567 wake_up(&ip->i_ipin_wait);
568 }
569
570 /* ARGSUSED */
571 STATIC void
572 xfs_inode_item_unpin_remove(
573 xfs_inode_log_item_t *iip,
574 xfs_trans_t *tp)
575 {
576 xfs_inode_item_unpin(iip);
577 }
578
579 /*
580 * This is called to attempt to lock the inode associated with this
581 * inode log item, in preparation for the push routine which does the actual
582 * iflush. Don't sleep on the inode lock or the flush lock.
583 *
584 * If the flush lock is already held, indicating that the inode has
585 * been or is in the process of being flushed, then (ideally) we'd like to
586 * see if the inode's buffer is still incore, and if so give it a nudge.
587 * We delay doing so until the pushbuf routine, though, to avoid holding
588 * the AIL lock across a call to the blackhole which is the buffer cache.
589 * Also we don't want to sleep in any device strategy routines, which can happen
590 * if we do the subsequent bawrite in here.
591 */
592 STATIC uint
593 xfs_inode_item_trylock(
594 xfs_inode_log_item_t *iip)
595 {
596 register xfs_inode_t *ip;
597
598 ip = iip->ili_inode;
599
600 if (xfs_ipincount(ip) > 0) {
601 return XFS_ITEM_PINNED;
602 }
603
604 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
605 return XFS_ITEM_LOCKED;
606 }
607
608 if (!xfs_iflock_nowait(ip)) {
609 /*
610 * inode has already been flushed to the backing buffer,
611 * leave it locked in shared mode, pushbuf routine will
612 * unlock it.
613 */
614 return XFS_ITEM_PUSHBUF;
615 }
616
617 /* Stale items should force out the iclog */
618 if (ip->i_flags & XFS_ISTALE) {
619 xfs_ifunlock(ip);
620 /*
621 * we hold the AIL lock - notify the unlock routine of this
622 * so it doesn't try to get the lock again.
623 */
624 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
625 return XFS_ITEM_PINNED;
626 }
627
628 #ifdef DEBUG
629 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
630 ASSERT(iip->ili_format.ilf_fields != 0);
631 ASSERT(iip->ili_logged == 0);
632 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
633 }
634 #endif
635 return XFS_ITEM_SUCCESS;
636 }
637
638 /*
639 * Unlock the inode associated with the inode log item.
640 * Clear the fields of the inode and inode log item that
641 * are specific to the current transaction. If the
642 * hold flags is set, do not unlock the inode.
643 */
644 STATIC void
645 xfs_inode_item_unlock(
646 xfs_inode_log_item_t *iip)
647 {
648 uint hold;
649 uint iolocked;
650 uint lock_flags;
651 xfs_inode_t *ip;
652
653 ASSERT(iip != NULL);
654 ASSERT(iip->ili_inode->i_itemp != NULL);
655 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
656 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
657 XFS_ILI_IOLOCKED_EXCL)) ||
658 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL));
659 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
660 XFS_ILI_IOLOCKED_SHARED)) ||
661 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED));
662 /*
663 * Clear the transaction pointer in the inode.
664 */
665 ip = iip->ili_inode;
666 ip->i_transp = NULL;
667
668 /*
669 * If the inode needed a separate buffer with which to log
670 * its extents, then free it now.
671 */
672 if (iip->ili_extents_buf != NULL) {
673 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
674 ASSERT(ip->i_d.di_nextents > 0);
675 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
676 ASSERT(ip->i_df.if_bytes > 0);
677 kmem_free(iip->ili_extents_buf);
678 iip->ili_extents_buf = NULL;
679 }
680 if (iip->ili_aextents_buf != NULL) {
681 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
682 ASSERT(ip->i_d.di_anextents > 0);
683 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
684 ASSERT(ip->i_afp->if_bytes > 0);
685 kmem_free(iip->ili_aextents_buf);
686 iip->ili_aextents_buf = NULL;
687 }
688
689 /*
690 * Figure out if we should unlock the inode or not.
691 */
692 hold = iip->ili_flags & XFS_ILI_HOLD;
693
694 /*
695 * Before clearing out the flags, remember whether we
696 * are holding the inode's IO lock.
697 */
698 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
699
700 /*
701 * Clear out the fields of the inode log item particular
702 * to the current transaction.
703 */
704 iip->ili_flags = 0;
705
706 /*
707 * Unlock the inode if XFS_ILI_HOLD was not set.
708 */
709 if (!hold) {
710 lock_flags = XFS_ILOCK_EXCL;
711 if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
712 lock_flags |= XFS_IOLOCK_EXCL;
713 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
714 lock_flags |= XFS_IOLOCK_SHARED;
715 }
716 xfs_iput(iip->ili_inode, lock_flags);
717 }
718 }
719
720 /*
721 * This is called to find out where the oldest active copy of the
722 * inode log item in the on disk log resides now that the last log
723 * write of it completed at the given lsn. Since we always re-log
724 * all dirty data in an inode, the latest copy in the on disk log
725 * is the only one that matters. Therefore, simply return the
726 * given lsn.
727 */
728 /*ARGSUSED*/
729 STATIC xfs_lsn_t
730 xfs_inode_item_committed(
731 xfs_inode_log_item_t *iip,
732 xfs_lsn_t lsn)
733 {
734 return (lsn);
735 }
736
737 /*
738 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
739 * failed to get the inode flush lock but did get the inode locked SHARED.
740 * Here we're trying to see if the inode buffer is incore, and if so whether it's
741 * marked delayed write. If that's the case, we'll promote it and that will
742 * allow the caller to write the buffer by triggering the xfsbufd to run.
743 */
744 STATIC void
745 xfs_inode_item_pushbuf(
746 xfs_inode_log_item_t *iip)
747 {
748 xfs_inode_t *ip;
749 xfs_mount_t *mp;
750 xfs_buf_t *bp;
751
752 ip = iip->ili_inode;
753 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
754
755 /*
756 * If a flush is not in progress anymore, chances are that the
757 * inode was taken off the AIL. So, just get out.
758 */
759 if (completion_done(&ip->i_flush) ||
760 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
761 xfs_iunlock(ip, XFS_ILOCK_SHARED);
762 return;
763 }
764
765 mp = ip->i_mount;
766 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
767 iip->ili_format.ilf_len, XBF_TRYLOCK);
768
769 xfs_iunlock(ip, XFS_ILOCK_SHARED);
770 if (!bp)
771 return;
772 if (XFS_BUF_ISDELAYWRITE(bp))
773 xfs_buf_delwri_promote(bp);
774 xfs_buf_relse(bp);
775 return;
776 }
777
778
779 /*
780 * This is called to asynchronously write the inode associated with this
781 * inode log item out to disk. The inode will already have been locked by
782 * a successful call to xfs_inode_item_trylock().
783 */
784 STATIC void
785 xfs_inode_item_push(
786 xfs_inode_log_item_t *iip)
787 {
788 xfs_inode_t *ip;
789
790 ip = iip->ili_inode;
791
792 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
793 ASSERT(!completion_done(&ip->i_flush));
794 /*
795 * Since we were able to lock the inode's flush lock and
796 * we found it on the AIL, the inode must be dirty. This
797 * is because the inode is removed from the AIL while still
798 * holding the flush lock in xfs_iflush_done(). Thus, if
799 * we found it in the AIL and were able to obtain the flush
800 * lock without sleeping, then there must not have been
801 * anyone in the process of flushing the inode.
802 */
803 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
804 iip->ili_format.ilf_fields != 0);
805
806 /*
807 * Push the inode to it's backing buffer. This will not remove the
808 * inode from the AIL - a further push will be required to trigger a
809 * buffer push. However, this allows all the dirty inodes to be pushed
810 * to the buffer before it is pushed to disk. THe buffer IO completion
811 * will pull th einode from the AIL, mark it clean and unlock the flush
812 * lock.
813 */
814 (void) xfs_iflush(ip, 0);
815 xfs_iunlock(ip, XFS_ILOCK_SHARED);
816
817 return;
818 }
819
820 /*
821 * XXX rcc - this one really has to do something. Probably needs
822 * to stamp in a new field in the incore inode.
823 */
824 /* ARGSUSED */
825 STATIC void
826 xfs_inode_item_committing(
827 xfs_inode_log_item_t *iip,
828 xfs_lsn_t lsn)
829 {
830 iip->ili_last_lsn = lsn;
831 return;
832 }
833
834 /*
835 * This is the ops vector shared by all buf log items.
836 */
837 static struct xfs_item_ops xfs_inode_item_ops = {
838 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
839 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
840 xfs_inode_item_format,
841 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
842 .iop_unpin = (void(*)(xfs_log_item_t*))xfs_inode_item_unpin,
843 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
844 xfs_inode_item_unpin_remove,
845 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
846 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
847 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
848 xfs_inode_item_committed,
849 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
850 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
851 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
852 xfs_inode_item_committing
853 };
854
855
856 /*
857 * Initialize the inode log item for a newly allocated (in-core) inode.
858 */
859 void
860 xfs_inode_item_init(
861 xfs_inode_t *ip,
862 xfs_mount_t *mp)
863 {
864 xfs_inode_log_item_t *iip;
865
866 ASSERT(ip->i_itemp == NULL);
867 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
868
869 iip->ili_inode = ip;
870 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
871 &xfs_inode_item_ops);
872 iip->ili_format.ilf_type = XFS_LI_INODE;
873 iip->ili_format.ilf_ino = ip->i_ino;
874 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
875 iip->ili_format.ilf_len = ip->i_imap.im_len;
876 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
877 }
878
879 /*
880 * Free the inode log item and any memory hanging off of it.
881 */
882 void
883 xfs_inode_item_destroy(
884 xfs_inode_t *ip)
885 {
886 #ifdef XFS_TRANS_DEBUG
887 if (ip->i_itemp->ili_root_size != 0) {
888 kmem_free(ip->i_itemp->ili_orig_root);
889 }
890 #endif
891 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
892 }
893
894
895 /*
896 * This is the inode flushing I/O completion routine. It is called
897 * from interrupt level when the buffer containing the inode is
898 * flushed to disk. It is responsible for removing the inode item
899 * from the AIL if it has not been re-logged, and unlocking the inode's
900 * flush lock.
901 */
902 /*ARGSUSED*/
903 void
904 xfs_iflush_done(
905 xfs_buf_t *bp,
906 xfs_inode_log_item_t *iip)
907 {
908 xfs_inode_t *ip = iip->ili_inode;
909 struct xfs_ail *ailp = iip->ili_item.li_ailp;
910
911 /*
912 * We only want to pull the item from the AIL if it is
913 * actually there and its location in the log has not
914 * changed since we started the flush. Thus, we only bother
915 * if the ili_logged flag is set and the inode's lsn has not
916 * changed. First we check the lsn outside
917 * the lock since it's cheaper, and then we recheck while
918 * holding the lock before removing the inode from the AIL.
919 */
920 if (iip->ili_logged &&
921 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
922 spin_lock(&ailp->xa_lock);
923 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
924 /* xfs_trans_ail_delete() drops the AIL lock. */
925 xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip);
926 } else {
927 spin_unlock(&ailp->xa_lock);
928 }
929 }
930
931 iip->ili_logged = 0;
932
933 /*
934 * Clear the ili_last_fields bits now that we know that the
935 * data corresponding to them is safely on disk.
936 */
937 iip->ili_last_fields = 0;
938
939 /*
940 * Release the inode's flush lock since we're done with it.
941 */
942 xfs_ifunlock(ip);
943
944 return;
945 }
946
947 /*
948 * This is the inode flushing abort routine. It is called
949 * from xfs_iflush when the filesystem is shutting down to clean
950 * up the inode state.
951 * It is responsible for removing the inode item
952 * from the AIL if it has not been re-logged, and unlocking the inode's
953 * flush lock.
954 */
955 void
956 xfs_iflush_abort(
957 xfs_inode_t *ip)
958 {
959 xfs_inode_log_item_t *iip = ip->i_itemp;
960 xfs_mount_t *mp;
961
962 iip = ip->i_itemp;
963 mp = ip->i_mount;
964 if (iip) {
965 struct xfs_ail *ailp = iip->ili_item.li_ailp;
966 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
967 spin_lock(&ailp->xa_lock);
968 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
969 /* xfs_trans_ail_delete() drops the AIL lock. */
970 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
971 } else
972 spin_unlock(&ailp->xa_lock);
973 }
974 iip->ili_logged = 0;
975 /*
976 * Clear the ili_last_fields bits now that we know that the
977 * data corresponding to them is safely on disk.
978 */
979 iip->ili_last_fields = 0;
980 /*
981 * Clear the inode logging fields so no more flushes are
982 * attempted.
983 */
984 iip->ili_format.ilf_fields = 0;
985 }
986 /*
987 * Release the inode's flush lock since we're done with it.
988 */
989 xfs_ifunlock(ip);
990 }
991
992 void
993 xfs_istale_done(
994 xfs_buf_t *bp,
995 xfs_inode_log_item_t *iip)
996 {
997 xfs_iflush_abort(iip->ili_inode);
998 }
999
1000 /*
1001 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1002 * (which can have different field alignments) to the native version
1003 */
1004 int
1005 xfs_inode_item_format_convert(
1006 xfs_log_iovec_t *buf,
1007 xfs_inode_log_format_t *in_f)
1008 {
1009 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1010 xfs_inode_log_format_32_t *in_f32;
1011
1012 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1013 in_f->ilf_type = in_f32->ilf_type;
1014 in_f->ilf_size = in_f32->ilf_size;
1015 in_f->ilf_fields = in_f32->ilf_fields;
1016 in_f->ilf_asize = in_f32->ilf_asize;
1017 in_f->ilf_dsize = in_f32->ilf_dsize;
1018 in_f->ilf_ino = in_f32->ilf_ino;
1019 /* copy biggest field of ilf_u */
1020 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1021 in_f32->ilf_u.ilfu_uuid.__u_bits,
1022 sizeof(uuid_t));
1023 in_f->ilf_blkno = in_f32->ilf_blkno;
1024 in_f->ilf_len = in_f32->ilf_len;
1025 in_f->ilf_boffset = in_f32->ilf_boffset;
1026 return 0;
1027 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1028 xfs_inode_log_format_64_t *in_f64;
1029
1030 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1031 in_f->ilf_type = in_f64->ilf_type;
1032 in_f->ilf_size = in_f64->ilf_size;
1033 in_f->ilf_fields = in_f64->ilf_fields;
1034 in_f->ilf_asize = in_f64->ilf_asize;
1035 in_f->ilf_dsize = in_f64->ilf_dsize;
1036 in_f->ilf_ino = in_f64->ilf_ino;
1037 /* copy biggest field of ilf_u */
1038 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1039 in_f64->ilf_u.ilfu_uuid.__u_bits,
1040 sizeof(uuid_t));
1041 in_f->ilf_blkno = in_f64->ilf_blkno;
1042 in_f->ilf_len = in_f64->ilf_len;
1043 in_f->ilf_boffset = in_f64->ilf_boffset;
1044 return 0;
1045 }
1046 return EFSCORRUPTED;
1047 }