]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_inode_item.c
Merge tag 'stable/for-linus-3.12-rc0-tag-three' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_dinode.h"
29 #include "xfs_inode.h"
30 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33
34
35 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
36
37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
38 {
39 return container_of(lip, struct xfs_inode_log_item, ili_item);
40 }
41
42
43 /*
44 * This returns the number of iovecs needed to log the given inode item.
45 *
46 * We need one iovec for the inode log format structure, one for the
47 * inode core, and possibly one for the inode data/extents/b-tree root
48 * and one for the inode attribute data/extents/b-tree root.
49 */
50 STATIC void
51 xfs_inode_item_size(
52 struct xfs_log_item *lip,
53 int *nvecs,
54 int *nbytes)
55 {
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58
59 *nvecs += 2;
60 *nbytes += sizeof(struct xfs_inode_log_format) +
61 xfs_icdinode_size(ip->i_d.di_version);
62
63 switch (ip->i_d.di_format) {
64 case XFS_DINODE_FMT_EXTENTS:
65 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
66 ip->i_d.di_nextents > 0 &&
67 ip->i_df.if_bytes > 0) {
68 /* worst case, doesn't subtract delalloc extents */
69 *nbytes += XFS_IFORK_DSIZE(ip);
70 *nvecs += 1;
71 }
72 break;
73
74 case XFS_DINODE_FMT_BTREE:
75 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
76 ip->i_df.if_broot_bytes > 0) {
77 *nbytes += ip->i_df.if_broot_bytes;
78 *nvecs += 1;
79 }
80 break;
81
82 case XFS_DINODE_FMT_LOCAL:
83 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
84 ip->i_df.if_bytes > 0) {
85 *nbytes += roundup(ip->i_df.if_bytes, 4);
86 *nvecs += 1;
87 }
88 break;
89
90 case XFS_DINODE_FMT_DEV:
91 case XFS_DINODE_FMT_UUID:
92 break;
93
94 default:
95 ASSERT(0);
96 break;
97 }
98
99 if (!XFS_IFORK_Q(ip))
100 return;
101
102
103 /*
104 * Log any necessary attribute data.
105 */
106 switch (ip->i_d.di_aformat) {
107 case XFS_DINODE_FMT_EXTENTS:
108 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
109 ip->i_d.di_anextents > 0 &&
110 ip->i_afp->if_bytes > 0) {
111 /* worst case, doesn't subtract unused space */
112 *nbytes += XFS_IFORK_ASIZE(ip);
113 *nvecs += 1;
114 }
115 break;
116
117 case XFS_DINODE_FMT_BTREE:
118 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
119 ip->i_afp->if_broot_bytes > 0) {
120 *nbytes += ip->i_afp->if_broot_bytes;
121 *nvecs += 1;
122 }
123 break;
124
125 case XFS_DINODE_FMT_LOCAL:
126 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
127 ip->i_afp->if_bytes > 0) {
128 *nbytes += roundup(ip->i_afp->if_bytes, 4);
129 *nvecs += 1;
130 }
131 break;
132
133 default:
134 ASSERT(0);
135 break;
136 }
137 }
138
139 /*
140 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
141 *
142 * For either the data or attr fork in extent format, we need to endian convert
143 * the in-core extent as we place them into the on-disk inode. In this case, we
144 * need to do this conversion before we write the extents into the log. Because
145 * we don't have the disk inode to write into here, we allocate a buffer and
146 * format the extents into it via xfs_iextents_copy(). We free the buffer in
147 * the unlock routine after the copy for the log has been made.
148 *
149 * In the case of the data fork, the in-core and on-disk fork sizes can be
150 * different due to delayed allocation extents. We only log on-disk extents
151 * here, so always use the physical fork size to determine the size of the
152 * buffer we need to allocate.
153 */
154 STATIC void
155 xfs_inode_item_format_extents(
156 struct xfs_inode *ip,
157 struct xfs_log_iovec *vecp,
158 int whichfork,
159 int type)
160 {
161 xfs_bmbt_rec_t *ext_buffer;
162
163 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
164 if (whichfork == XFS_DATA_FORK)
165 ip->i_itemp->ili_extents_buf = ext_buffer;
166 else
167 ip->i_itemp->ili_aextents_buf = ext_buffer;
168
169 vecp->i_addr = ext_buffer;
170 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
171 vecp->i_type = type;
172 }
173
174 /*
175 * This is called to fill in the vector of log iovecs for the
176 * given inode log item. It fills the first item with an inode
177 * log format structure, the second with the on-disk inode structure,
178 * and a possible third and/or fourth with the inode data/extents/b-tree
179 * root and inode attributes data/extents/b-tree root.
180 */
181 STATIC void
182 xfs_inode_item_format(
183 struct xfs_log_item *lip,
184 struct xfs_log_iovec *vecp)
185 {
186 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
187 struct xfs_inode *ip = iip->ili_inode;
188 uint nvecs;
189 size_t data_bytes;
190 xfs_mount_t *mp;
191
192 vecp->i_addr = &iip->ili_format;
193 vecp->i_len = sizeof(xfs_inode_log_format_t);
194 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
195 vecp++;
196 nvecs = 1;
197
198 vecp->i_addr = &ip->i_d;
199 vecp->i_len = xfs_icdinode_size(ip->i_d.di_version);
200 vecp->i_type = XLOG_REG_TYPE_ICORE;
201 vecp++;
202 nvecs++;
203
204 /*
205 * If this is really an old format inode, then we need to
206 * log it as such. This means that we have to copy the link
207 * count from the new field to the old. We don't have to worry
208 * about the new fields, because nothing trusts them as long as
209 * the old inode version number is there. If the superblock already
210 * has a new version number, then we don't bother converting back.
211 */
212 mp = ip->i_mount;
213 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
214 if (ip->i_d.di_version == 1) {
215 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
216 /*
217 * Convert it back.
218 */
219 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
220 ip->i_d.di_onlink = ip->i_d.di_nlink;
221 } else {
222 /*
223 * The superblock version has already been bumped,
224 * so just make the conversion to the new inode
225 * format permanent.
226 */
227 ip->i_d.di_version = 2;
228 ip->i_d.di_onlink = 0;
229 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
230 }
231 }
232
233 switch (ip->i_d.di_format) {
234 case XFS_DINODE_FMT_EXTENTS:
235 iip->ili_fields &=
236 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
237 XFS_ILOG_DEV | XFS_ILOG_UUID);
238
239 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
240 ip->i_d.di_nextents > 0 &&
241 ip->i_df.if_bytes > 0) {
242 ASSERT(ip->i_df.if_u1.if_extents != NULL);
243 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
244 ASSERT(iip->ili_extents_buf == NULL);
245
246 #ifdef XFS_NATIVE_HOST
247 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
248 (uint)sizeof(xfs_bmbt_rec_t)) {
249 /*
250 * There are no delayed allocation
251 * extents, so just point to the
252 * real extents array.
253 */
254 vecp->i_addr = ip->i_df.if_u1.if_extents;
255 vecp->i_len = ip->i_df.if_bytes;
256 vecp->i_type = XLOG_REG_TYPE_IEXT;
257 } else
258 #endif
259 {
260 xfs_inode_item_format_extents(ip, vecp,
261 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
262 }
263 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
264 iip->ili_format.ilf_dsize = vecp->i_len;
265 vecp++;
266 nvecs++;
267 } else {
268 iip->ili_fields &= ~XFS_ILOG_DEXT;
269 }
270 break;
271
272 case XFS_DINODE_FMT_BTREE:
273 iip->ili_fields &=
274 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
275 XFS_ILOG_DEV | XFS_ILOG_UUID);
276
277 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
278 ip->i_df.if_broot_bytes > 0) {
279 ASSERT(ip->i_df.if_broot != NULL);
280 vecp->i_addr = ip->i_df.if_broot;
281 vecp->i_len = ip->i_df.if_broot_bytes;
282 vecp->i_type = XLOG_REG_TYPE_IBROOT;
283 vecp++;
284 nvecs++;
285 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
286 } else {
287 ASSERT(!(iip->ili_fields &
288 XFS_ILOG_DBROOT));
289 iip->ili_fields &= ~XFS_ILOG_DBROOT;
290 }
291 break;
292
293 case XFS_DINODE_FMT_LOCAL:
294 iip->ili_fields &=
295 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
296 XFS_ILOG_DEV | XFS_ILOG_UUID);
297 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
298 ip->i_df.if_bytes > 0) {
299 ASSERT(ip->i_df.if_u1.if_data != NULL);
300 ASSERT(ip->i_d.di_size > 0);
301
302 vecp->i_addr = ip->i_df.if_u1.if_data;
303 /*
304 * Round i_bytes up to a word boundary.
305 * The underlying memory is guaranteed to
306 * to be there by xfs_idata_realloc().
307 */
308 data_bytes = roundup(ip->i_df.if_bytes, 4);
309 ASSERT((ip->i_df.if_real_bytes == 0) ||
310 (ip->i_df.if_real_bytes == data_bytes));
311 vecp->i_len = (int)data_bytes;
312 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
313 vecp++;
314 nvecs++;
315 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
316 } else {
317 iip->ili_fields &= ~XFS_ILOG_DDATA;
318 }
319 break;
320
321 case XFS_DINODE_FMT_DEV:
322 iip->ili_fields &=
323 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
324 XFS_ILOG_DEXT | XFS_ILOG_UUID);
325 if (iip->ili_fields & XFS_ILOG_DEV) {
326 iip->ili_format.ilf_u.ilfu_rdev =
327 ip->i_df.if_u2.if_rdev;
328 }
329 break;
330
331 case XFS_DINODE_FMT_UUID:
332 iip->ili_fields &=
333 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
334 XFS_ILOG_DEXT | XFS_ILOG_DEV);
335 if (iip->ili_fields & XFS_ILOG_UUID) {
336 iip->ili_format.ilf_u.ilfu_uuid =
337 ip->i_df.if_u2.if_uuid;
338 }
339 break;
340
341 default:
342 ASSERT(0);
343 break;
344 }
345
346 /*
347 * If there are no attributes associated with the file, then we're done.
348 */
349 if (!XFS_IFORK_Q(ip)) {
350 iip->ili_fields &=
351 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
352 goto out;
353 }
354
355 switch (ip->i_d.di_aformat) {
356 case XFS_DINODE_FMT_EXTENTS:
357 iip->ili_fields &=
358 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
359
360 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
361 ip->i_d.di_anextents > 0 &&
362 ip->i_afp->if_bytes > 0) {
363 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
364 ip->i_d.di_anextents);
365 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
366 #ifdef XFS_NATIVE_HOST
367 /*
368 * There are not delayed allocation extents
369 * for attributes, so just point at the array.
370 */
371 vecp->i_addr = ip->i_afp->if_u1.if_extents;
372 vecp->i_len = ip->i_afp->if_bytes;
373 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
374 #else
375 ASSERT(iip->ili_aextents_buf == NULL);
376 xfs_inode_item_format_extents(ip, vecp,
377 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
378 #endif
379 iip->ili_format.ilf_asize = vecp->i_len;
380 vecp++;
381 nvecs++;
382 } else {
383 iip->ili_fields &= ~XFS_ILOG_AEXT;
384 }
385 break;
386
387 case XFS_DINODE_FMT_BTREE:
388 iip->ili_fields &=
389 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
390
391 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
392 ip->i_afp->if_broot_bytes > 0) {
393 ASSERT(ip->i_afp->if_broot != NULL);
394
395 vecp->i_addr = ip->i_afp->if_broot;
396 vecp->i_len = ip->i_afp->if_broot_bytes;
397 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
398 vecp++;
399 nvecs++;
400 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
401 } else {
402 iip->ili_fields &= ~XFS_ILOG_ABROOT;
403 }
404 break;
405
406 case XFS_DINODE_FMT_LOCAL:
407 iip->ili_fields &=
408 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
409
410 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
411 ip->i_afp->if_bytes > 0) {
412 ASSERT(ip->i_afp->if_u1.if_data != NULL);
413
414 vecp->i_addr = ip->i_afp->if_u1.if_data;
415 /*
416 * Round i_bytes up to a word boundary.
417 * The underlying memory is guaranteed to
418 * to be there by xfs_idata_realloc().
419 */
420 data_bytes = roundup(ip->i_afp->if_bytes, 4);
421 ASSERT((ip->i_afp->if_real_bytes == 0) ||
422 (ip->i_afp->if_real_bytes == data_bytes));
423 vecp->i_len = (int)data_bytes;
424 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
425 vecp++;
426 nvecs++;
427 iip->ili_format.ilf_asize = (unsigned)data_bytes;
428 } else {
429 iip->ili_fields &= ~XFS_ILOG_ADATA;
430 }
431 break;
432
433 default:
434 ASSERT(0);
435 break;
436 }
437
438 out:
439 /*
440 * Now update the log format that goes out to disk from the in-core
441 * values. We always write the inode core to make the arithmetic
442 * games in recovery easier, which isn't a big deal as just about any
443 * transaction would dirty it anyway.
444 */
445 iip->ili_format.ilf_fields = XFS_ILOG_CORE |
446 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
447 iip->ili_format.ilf_size = nvecs;
448 }
449
450
451 /*
452 * This is called to pin the inode associated with the inode log
453 * item in memory so it cannot be written out.
454 */
455 STATIC void
456 xfs_inode_item_pin(
457 struct xfs_log_item *lip)
458 {
459 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
460
461 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
462
463 trace_xfs_inode_pin(ip, _RET_IP_);
464 atomic_inc(&ip->i_pincount);
465 }
466
467
468 /*
469 * This is called to unpin the inode associated with the inode log
470 * item which was previously pinned with a call to xfs_inode_item_pin().
471 *
472 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
473 */
474 STATIC void
475 xfs_inode_item_unpin(
476 struct xfs_log_item *lip,
477 int remove)
478 {
479 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
480
481 trace_xfs_inode_unpin(ip, _RET_IP_);
482 ASSERT(atomic_read(&ip->i_pincount) > 0);
483 if (atomic_dec_and_test(&ip->i_pincount))
484 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
485 }
486
487 STATIC uint
488 xfs_inode_item_push(
489 struct xfs_log_item *lip,
490 struct list_head *buffer_list)
491 {
492 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
493 struct xfs_inode *ip = iip->ili_inode;
494 struct xfs_buf *bp = NULL;
495 uint rval = XFS_ITEM_SUCCESS;
496 int error;
497
498 if (xfs_ipincount(ip) > 0)
499 return XFS_ITEM_PINNED;
500
501 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
502 return XFS_ITEM_LOCKED;
503
504 /*
505 * Re-check the pincount now that we stabilized the value by
506 * taking the ilock.
507 */
508 if (xfs_ipincount(ip) > 0) {
509 rval = XFS_ITEM_PINNED;
510 goto out_unlock;
511 }
512
513 /*
514 * Stale inode items should force out the iclog.
515 */
516 if (ip->i_flags & XFS_ISTALE) {
517 rval = XFS_ITEM_PINNED;
518 goto out_unlock;
519 }
520
521 /*
522 * Someone else is already flushing the inode. Nothing we can do
523 * here but wait for the flush to finish and remove the item from
524 * the AIL.
525 */
526 if (!xfs_iflock_nowait(ip)) {
527 rval = XFS_ITEM_FLUSHING;
528 goto out_unlock;
529 }
530
531 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
532 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
533
534 spin_unlock(&lip->li_ailp->xa_lock);
535
536 error = xfs_iflush(ip, &bp);
537 if (!error) {
538 if (!xfs_buf_delwri_queue(bp, buffer_list))
539 rval = XFS_ITEM_FLUSHING;
540 xfs_buf_relse(bp);
541 }
542
543 spin_lock(&lip->li_ailp->xa_lock);
544 out_unlock:
545 xfs_iunlock(ip, XFS_ILOCK_SHARED);
546 return rval;
547 }
548
549 /*
550 * Unlock the inode associated with the inode log item.
551 * Clear the fields of the inode and inode log item that
552 * are specific to the current transaction. If the
553 * hold flags is set, do not unlock the inode.
554 */
555 STATIC void
556 xfs_inode_item_unlock(
557 struct xfs_log_item *lip)
558 {
559 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
560 struct xfs_inode *ip = iip->ili_inode;
561 unsigned short lock_flags;
562
563 ASSERT(ip->i_itemp != NULL);
564 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
565
566 /*
567 * If the inode needed a separate buffer with which to log
568 * its extents, then free it now.
569 */
570 if (iip->ili_extents_buf != NULL) {
571 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
572 ASSERT(ip->i_d.di_nextents > 0);
573 ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
574 ASSERT(ip->i_df.if_bytes > 0);
575 kmem_free(iip->ili_extents_buf);
576 iip->ili_extents_buf = NULL;
577 }
578 if (iip->ili_aextents_buf != NULL) {
579 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
580 ASSERT(ip->i_d.di_anextents > 0);
581 ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
582 ASSERT(ip->i_afp->if_bytes > 0);
583 kmem_free(iip->ili_aextents_buf);
584 iip->ili_aextents_buf = NULL;
585 }
586
587 lock_flags = iip->ili_lock_flags;
588 iip->ili_lock_flags = 0;
589 if (lock_flags)
590 xfs_iunlock(ip, lock_flags);
591 }
592
593 /*
594 * This is called to find out where the oldest active copy of the inode log
595 * item in the on disk log resides now that the last log write of it completed
596 * at the given lsn. Since we always re-log all dirty data in an inode, the
597 * latest copy in the on disk log is the only one that matters. Therefore,
598 * simply return the given lsn.
599 *
600 * If the inode has been marked stale because the cluster is being freed, we
601 * don't want to (re-)insert this inode into the AIL. There is a race condition
602 * where the cluster buffer may be unpinned before the inode is inserted into
603 * the AIL during transaction committed processing. If the buffer is unpinned
604 * before the inode item has been committed and inserted, then it is possible
605 * for the buffer to be written and IO completes before the inode is inserted
606 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
607 * AIL which will never get removed. It will, however, get reclaimed which
608 * triggers an assert in xfs_inode_free() complaining about freein an inode
609 * still in the AIL.
610 *
611 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
612 * transaction committed code knows that it does not need to do any further
613 * processing on the item.
614 */
615 STATIC xfs_lsn_t
616 xfs_inode_item_committed(
617 struct xfs_log_item *lip,
618 xfs_lsn_t lsn)
619 {
620 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
621 struct xfs_inode *ip = iip->ili_inode;
622
623 if (xfs_iflags_test(ip, XFS_ISTALE)) {
624 xfs_inode_item_unpin(lip, 0);
625 return -1;
626 }
627 return lsn;
628 }
629
630 /*
631 * XXX rcc - this one really has to do something. Probably needs
632 * to stamp in a new field in the incore inode.
633 */
634 STATIC void
635 xfs_inode_item_committing(
636 struct xfs_log_item *lip,
637 xfs_lsn_t lsn)
638 {
639 INODE_ITEM(lip)->ili_last_lsn = lsn;
640 }
641
642 /*
643 * This is the ops vector shared by all buf log items.
644 */
645 static const struct xfs_item_ops xfs_inode_item_ops = {
646 .iop_size = xfs_inode_item_size,
647 .iop_format = xfs_inode_item_format,
648 .iop_pin = xfs_inode_item_pin,
649 .iop_unpin = xfs_inode_item_unpin,
650 .iop_unlock = xfs_inode_item_unlock,
651 .iop_committed = xfs_inode_item_committed,
652 .iop_push = xfs_inode_item_push,
653 .iop_committing = xfs_inode_item_committing
654 };
655
656
657 /*
658 * Initialize the inode log item for a newly allocated (in-core) inode.
659 */
660 void
661 xfs_inode_item_init(
662 struct xfs_inode *ip,
663 struct xfs_mount *mp)
664 {
665 struct xfs_inode_log_item *iip;
666
667 ASSERT(ip->i_itemp == NULL);
668 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
669
670 iip->ili_inode = ip;
671 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
672 &xfs_inode_item_ops);
673 iip->ili_format.ilf_type = XFS_LI_INODE;
674 iip->ili_format.ilf_ino = ip->i_ino;
675 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
676 iip->ili_format.ilf_len = ip->i_imap.im_len;
677 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
678 }
679
680 /*
681 * Free the inode log item and any memory hanging off of it.
682 */
683 void
684 xfs_inode_item_destroy(
685 xfs_inode_t *ip)
686 {
687 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
688 }
689
690
691 /*
692 * This is the inode flushing I/O completion routine. It is called
693 * from interrupt level when the buffer containing the inode is
694 * flushed to disk. It is responsible for removing the inode item
695 * from the AIL if it has not been re-logged, and unlocking the inode's
696 * flush lock.
697 *
698 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
699 * list for other inodes that will run this function. We remove them from the
700 * buffer list so we can process all the inode IO completions in one AIL lock
701 * traversal.
702 */
703 void
704 xfs_iflush_done(
705 struct xfs_buf *bp,
706 struct xfs_log_item *lip)
707 {
708 struct xfs_inode_log_item *iip;
709 struct xfs_log_item *blip;
710 struct xfs_log_item *next;
711 struct xfs_log_item *prev;
712 struct xfs_ail *ailp = lip->li_ailp;
713 int need_ail = 0;
714
715 /*
716 * Scan the buffer IO completions for other inodes being completed and
717 * attach them to the current inode log item.
718 */
719 blip = bp->b_fspriv;
720 prev = NULL;
721 while (blip != NULL) {
722 if (lip->li_cb != xfs_iflush_done) {
723 prev = blip;
724 blip = blip->li_bio_list;
725 continue;
726 }
727
728 /* remove from list */
729 next = blip->li_bio_list;
730 if (!prev) {
731 bp->b_fspriv = next;
732 } else {
733 prev->li_bio_list = next;
734 }
735
736 /* add to current list */
737 blip->li_bio_list = lip->li_bio_list;
738 lip->li_bio_list = blip;
739
740 /*
741 * while we have the item, do the unlocked check for needing
742 * the AIL lock.
743 */
744 iip = INODE_ITEM(blip);
745 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
746 need_ail++;
747
748 blip = next;
749 }
750
751 /* make sure we capture the state of the initial inode. */
752 iip = INODE_ITEM(lip);
753 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
754 need_ail++;
755
756 /*
757 * We only want to pull the item from the AIL if it is
758 * actually there and its location in the log has not
759 * changed since we started the flush. Thus, we only bother
760 * if the ili_logged flag is set and the inode's lsn has not
761 * changed. First we check the lsn outside
762 * the lock since it's cheaper, and then we recheck while
763 * holding the lock before removing the inode from the AIL.
764 */
765 if (need_ail) {
766 struct xfs_log_item *log_items[need_ail];
767 int i = 0;
768 spin_lock(&ailp->xa_lock);
769 for (blip = lip; blip; blip = blip->li_bio_list) {
770 iip = INODE_ITEM(blip);
771 if (iip->ili_logged &&
772 blip->li_lsn == iip->ili_flush_lsn) {
773 log_items[i++] = blip;
774 }
775 ASSERT(i <= need_ail);
776 }
777 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
778 xfs_trans_ail_delete_bulk(ailp, log_items, i,
779 SHUTDOWN_CORRUPT_INCORE);
780 }
781
782
783 /*
784 * clean up and unlock the flush lock now we are done. We can clear the
785 * ili_last_fields bits now that we know that the data corresponding to
786 * them is safely on disk.
787 */
788 for (blip = lip; blip; blip = next) {
789 next = blip->li_bio_list;
790 blip->li_bio_list = NULL;
791
792 iip = INODE_ITEM(blip);
793 iip->ili_logged = 0;
794 iip->ili_last_fields = 0;
795 xfs_ifunlock(iip->ili_inode);
796 }
797 }
798
799 /*
800 * This is the inode flushing abort routine. It is called from xfs_iflush when
801 * the filesystem is shutting down to clean up the inode state. It is
802 * responsible for removing the inode item from the AIL if it has not been
803 * re-logged, and unlocking the inode's flush lock.
804 */
805 void
806 xfs_iflush_abort(
807 xfs_inode_t *ip,
808 bool stale)
809 {
810 xfs_inode_log_item_t *iip = ip->i_itemp;
811
812 if (iip) {
813 struct xfs_ail *ailp = iip->ili_item.li_ailp;
814 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
815 spin_lock(&ailp->xa_lock);
816 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
817 /* xfs_trans_ail_delete() drops the AIL lock. */
818 xfs_trans_ail_delete(ailp, &iip->ili_item,
819 stale ?
820 SHUTDOWN_LOG_IO_ERROR :
821 SHUTDOWN_CORRUPT_INCORE);
822 } else
823 spin_unlock(&ailp->xa_lock);
824 }
825 iip->ili_logged = 0;
826 /*
827 * Clear the ili_last_fields bits now that we know that the
828 * data corresponding to them is safely on disk.
829 */
830 iip->ili_last_fields = 0;
831 /*
832 * Clear the inode logging fields so no more flushes are
833 * attempted.
834 */
835 iip->ili_fields = 0;
836 }
837 /*
838 * Release the inode's flush lock since we're done with it.
839 */
840 xfs_ifunlock(ip);
841 }
842
843 void
844 xfs_istale_done(
845 struct xfs_buf *bp,
846 struct xfs_log_item *lip)
847 {
848 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
849 }
850
851 /*
852 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
853 * (which can have different field alignments) to the native version
854 */
855 int
856 xfs_inode_item_format_convert(
857 xfs_log_iovec_t *buf,
858 xfs_inode_log_format_t *in_f)
859 {
860 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
861 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
862
863 in_f->ilf_type = in_f32->ilf_type;
864 in_f->ilf_size = in_f32->ilf_size;
865 in_f->ilf_fields = in_f32->ilf_fields;
866 in_f->ilf_asize = in_f32->ilf_asize;
867 in_f->ilf_dsize = in_f32->ilf_dsize;
868 in_f->ilf_ino = in_f32->ilf_ino;
869 /* copy biggest field of ilf_u */
870 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
871 in_f32->ilf_u.ilfu_uuid.__u_bits,
872 sizeof(uuid_t));
873 in_f->ilf_blkno = in_f32->ilf_blkno;
874 in_f->ilf_len = in_f32->ilf_len;
875 in_f->ilf_boffset = in_f32->ilf_boffset;
876 return 0;
877 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
878 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
879
880 in_f->ilf_type = in_f64->ilf_type;
881 in_f->ilf_size = in_f64->ilf_size;
882 in_f->ilf_fields = in_f64->ilf_fields;
883 in_f->ilf_asize = in_f64->ilf_asize;
884 in_f->ilf_dsize = in_f64->ilf_dsize;
885 in_f->ilf_ino = in_f64->ilf_ino;
886 /* copy biggest field of ilf_u */
887 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
888 in_f64->ilf_u.ilfu_uuid.__u_bits,
889 sizeof(uuid_t));
890 in_f->ilf_blkno = in_f64->ilf_blkno;
891 in_f->ilf_len = in_f64->ilf_len;
892 in_f->ilf_boffset = in_f64->ilf_boffset;
893 return 0;
894 }
895 return EFSCORRUPTED;
896 }