]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_log.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
137
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
143 {
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
146
147 do {
148 int cycle, space;
149
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
156 }
157
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
169 {
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
172
173 do {
174 int tmp;
175 int cycle, space;
176
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
185 }
186
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
196 {
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
205 {
206 struct xlog_ticket *tic;
207
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
219 {
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
228 }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
236 {
237 struct xlog_ticket *tic;
238 int need_bytes;
239
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
244
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
248 }
249
250 return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
381
382 XFS_STATS_INC(mp, xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 uint8_t client,
438 bool permanent)
439 {
440 struct xlog *log = mp->m_log;
441 struct xlog_ticket *tic;
442 int need_bytes;
443 int error = 0;
444
445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447 if (XLOG_FORCED_SHUTDOWN(log))
448 return -EIO;
449
450 XFS_STATS_INC(mp, xs_try_logspace);
451
452 ASSERT(*ticp == NULL);
453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 KM_SLEEP | KM_MAYFAIL);
455 if (!tic)
456 return -ENOMEM;
457
458 *ticp = tic;
459
460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 : tic->t_unit_res);
462
463 trace_xfs_log_reserve(log, tic);
464
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
469
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
475
476 out_error:
477 /*
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
481 */
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
485 }
486
487
488 /*
489 * NOTES:
490 *
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
493 */
494
495 /*
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
508 */
509 xfs_lsn_t
510 xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 bool regrant)
515 {
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
518
519 if (XLOG_FORCED_SHUTDOWN(log) ||
520 /*
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
523 */
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 regrant = false;
528 }
529
530
531 if (!regrant) {
532 trace_xfs_log_done_nonperm(log, ticket);
533
534 /*
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
537 */
538 xlog_ungrant_log_space(log, ticket);
539 } else {
540 trace_xfs_log_done_perm(log, ticket);
541
542 xlog_regrant_reserve_log_space(log, ticket);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
546 */
547 ticket->t_flags |= XLOG_TIC_INITED;
548 }
549
550 xfs_log_ticket_put(ticket);
551 return lsn;
552 }
553
554 /*
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
559 */
560 int
561 xfs_log_notify(
562 struct xfs_mount *mp,
563 struct xlog_in_core *iclog,
564 xfs_log_callback_t *cb)
565 {
566 int abortflg;
567
568 spin_lock(&iclog->ic_callback_lock);
569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 if (!abortflg) {
571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 cb->cb_next = NULL;
574 *(iclog->ic_callback_tail) = cb;
575 iclog->ic_callback_tail = &(cb->cb_next);
576 }
577 spin_unlock(&iclog->ic_callback_lock);
578 return abortflg;
579 }
580
581 int
582 xfs_log_release_iclog(
583 struct xfs_mount *mp,
584 struct xlog_in_core *iclog)
585 {
586 if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 return -EIO;
589 }
590
591 return 0;
592 }
593
594 /*
595 * Mount a log filesystem
596 *
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
601 *
602 * Return error or zero.
603 */
604 int
605 xfs_log_mount(
606 xfs_mount_t *mp,
607 xfs_buftarg_t *log_target,
608 xfs_daddr_t blk_offset,
609 int num_bblks)
610 {
611 int error = 0;
612 int min_logfsbs;
613
614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 xfs_notice(mp, "Mounting V%d Filesystem",
616 XFS_SB_VERSION_NUM(&mp->m_sb));
617 } else {
618 xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 XFS_SB_VERSION_NUM(&mp->m_sb));
621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 }
623
624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 if (IS_ERR(mp->m_log)) {
626 error = PTR_ERR(mp->m_log);
627 goto out;
628 }
629
630 /*
631 * Validate the given log space and drop a critical message via syslog
632 * if the log size is too small that would lead to some unexpected
633 * situations in transaction log space reservation stage.
634 *
635 * Note: we can't just reject the mount if the validation fails. This
636 * would mean that people would have to downgrade their kernel just to
637 * remedy the situation as there is no way to grow the log (short of
638 * black magic surgery with xfs_db).
639 *
640 * We can, however, reject mounts for CRC format filesystems, as the
641 * mkfs binary being used to make the filesystem should never create a
642 * filesystem with a log that is too small.
643 */
644 min_logfsbs = xfs_log_calc_minimum_size(mp);
645
646 if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 xfs_warn(mp,
648 "Log size %d blocks too small, minimum size is %d blocks",
649 mp->m_sb.sb_logblocks, min_logfsbs);
650 error = -EINVAL;
651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 xfs_warn(mp,
653 "Log size %d blocks too large, maximum size is %lld blocks",
654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 error = -EINVAL;
656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 xfs_warn(mp,
658 "log size %lld bytes too large, maximum size is %lld bytes",
659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 XFS_MAX_LOG_BYTES);
661 error = -EINVAL;
662 }
663 if (error) {
664 if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 ASSERT(0);
667 goto out_free_log;
668 }
669 xfs_crit(mp, "Log size out of supported range.");
670 xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 }
673
674 /*
675 * Initialize the AIL now we have a log.
676 */
677 error = xfs_trans_ail_init(mp);
678 if (error) {
679 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 goto out_free_log;
681 }
682 mp->m_log->l_ailp = mp->m_ail;
683
684 /*
685 * skip log recovery on a norecovery mount. pretend it all
686 * just worked.
687 */
688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691 if (readonly)
692 mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694 error = xlog_recover(mp->m_log);
695
696 if (readonly)
697 mp->m_flags |= XFS_MOUNT_RDONLY;
698 if (error) {
699 xfs_warn(mp, "log mount/recovery failed: error %d",
700 error);
701 xlog_recover_cancel(mp->m_log);
702 goto out_destroy_ail;
703 }
704 }
705
706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 "log");
708 if (error)
709 goto out_destroy_ail;
710
711 /* Normal transactions can now occur */
712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714 /*
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
718 */
719 xlog_cil_init_post_recovery(mp->m_log);
720
721 return 0;
722
723 out_destroy_ail:
724 xfs_trans_ail_destroy(mp);
725 out_free_log:
726 xlog_dealloc_log(mp->m_log);
727 out:
728 return error;
729 }
730
731 /*
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735 * here.
736 *
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
739 * it.
740 */
741 int
742 xfs_log_mount_finish(
743 struct xfs_mount *mp)
744 {
745 int error = 0;
746
747 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749 return 0;
750 }
751
752 error = xlog_recover_finish(mp->m_log);
753 if (!error)
754 xfs_log_work_queue(mp);
755
756 return error;
757 }
758
759 /*
760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
761 * the log.
762 */
763 int
764 xfs_log_mount_cancel(
765 struct xfs_mount *mp)
766 {
767 int error;
768
769 error = xlog_recover_cancel(mp->m_log);
770 xfs_log_unmount(mp);
771
772 return error;
773 }
774
775 /*
776 * Final log writes as part of unmount.
777 *
778 * Mark the filesystem clean as unmount happens. Note that during relocation
779 * this routine needs to be executed as part of source-bag while the
780 * deallocation must not be done until source-end.
781 */
782
783 /*
784 * Unmount record used to have a string "Unmount filesystem--" in the
785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
786 * We just write the magic number now since that particular field isn't
787 * currently architecture converted and "Unmount" is a bit foo.
788 * As far as I know, there weren't any dependencies on the old behaviour.
789 */
790
791 static int
792 xfs_log_unmount_write(xfs_mount_t *mp)
793 {
794 struct xlog *log = mp->m_log;
795 xlog_in_core_t *iclog;
796 #ifdef DEBUG
797 xlog_in_core_t *first_iclog;
798 #endif
799 xlog_ticket_t *tic = NULL;
800 xfs_lsn_t lsn;
801 int error;
802
803 /*
804 * Don't write out unmount record on read-only mounts.
805 * Or, if we are doing a forced umount (typically because of IO errors).
806 */
807 if (mp->m_flags & XFS_MOUNT_RDONLY)
808 return 0;
809
810 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
811 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
812
813 #ifdef DEBUG
814 first_iclog = iclog = log->l_iclog;
815 do {
816 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
817 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
818 ASSERT(iclog->ic_offset == 0);
819 }
820 iclog = iclog->ic_next;
821 } while (iclog != first_iclog);
822 #endif
823 if (! (XLOG_FORCED_SHUTDOWN(log))) {
824 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
825 if (!error) {
826 /* the data section must be 32 bit size aligned */
827 struct {
828 uint16_t magic;
829 uint16_t pad1;
830 uint32_t pad2; /* may as well make it 64 bits */
831 } magic = {
832 .magic = XLOG_UNMOUNT_TYPE,
833 };
834 struct xfs_log_iovec reg = {
835 .i_addr = &magic,
836 .i_len = sizeof(magic),
837 .i_type = XLOG_REG_TYPE_UNMOUNT,
838 };
839 struct xfs_log_vec vec = {
840 .lv_niovecs = 1,
841 .lv_iovecp = &reg,
842 };
843
844 /* remove inited flag, and account for space used */
845 tic->t_flags = 0;
846 tic->t_curr_res -= sizeof(magic);
847 error = xlog_write(log, &vec, tic, &lsn,
848 NULL, XLOG_UNMOUNT_TRANS);
849 /*
850 * At this point, we're umounting anyway,
851 * so there's no point in transitioning log state
852 * to IOERROR. Just continue...
853 */
854 }
855
856 if (error)
857 xfs_alert(mp, "%s: unmount record failed", __func__);
858
859
860 spin_lock(&log->l_icloglock);
861 iclog = log->l_iclog;
862 atomic_inc(&iclog->ic_refcnt);
863 xlog_state_want_sync(log, iclog);
864 spin_unlock(&log->l_icloglock);
865 error = xlog_state_release_iclog(log, iclog);
866
867 spin_lock(&log->l_icloglock);
868 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
869 iclog->ic_state == XLOG_STATE_DIRTY)) {
870 if (!XLOG_FORCED_SHUTDOWN(log)) {
871 xlog_wait(&iclog->ic_force_wait,
872 &log->l_icloglock);
873 } else {
874 spin_unlock(&log->l_icloglock);
875 }
876 } else {
877 spin_unlock(&log->l_icloglock);
878 }
879 if (tic) {
880 trace_xfs_log_umount_write(log, tic);
881 xlog_ungrant_log_space(log, tic);
882 xfs_log_ticket_put(tic);
883 }
884 } else {
885 /*
886 * We're already in forced_shutdown mode, couldn't
887 * even attempt to write out the unmount transaction.
888 *
889 * Go through the motions of sync'ing and releasing
890 * the iclog, even though no I/O will actually happen,
891 * we need to wait for other log I/Os that may already
892 * be in progress. Do this as a separate section of
893 * code so we'll know if we ever get stuck here that
894 * we're in this odd situation of trying to unmount
895 * a file system that went into forced_shutdown as
896 * the result of an unmount..
897 */
898 spin_lock(&log->l_icloglock);
899 iclog = log->l_iclog;
900 atomic_inc(&iclog->ic_refcnt);
901
902 xlog_state_want_sync(log, iclog);
903 spin_unlock(&log->l_icloglock);
904 error = xlog_state_release_iclog(log, iclog);
905
906 spin_lock(&log->l_icloglock);
907
908 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
909 || iclog->ic_state == XLOG_STATE_DIRTY
910 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
911
912 xlog_wait(&iclog->ic_force_wait,
913 &log->l_icloglock);
914 } else {
915 spin_unlock(&log->l_icloglock);
916 }
917 }
918
919 return error;
920 } /* xfs_log_unmount_write */
921
922 /*
923 * Empty the log for unmount/freeze.
924 *
925 * To do this, we first need to shut down the background log work so it is not
926 * trying to cover the log as we clean up. We then need to unpin all objects in
927 * the log so we can then flush them out. Once they have completed their IO and
928 * run the callbacks removing themselves from the AIL, we can write the unmount
929 * record.
930 */
931 void
932 xfs_log_quiesce(
933 struct xfs_mount *mp)
934 {
935 cancel_delayed_work_sync(&mp->m_log->l_work);
936 xfs_log_force(mp, XFS_LOG_SYNC);
937
938 /*
939 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
940 * will push it, xfs_wait_buftarg() will not wait for it. Further,
941 * xfs_buf_iowait() cannot be used because it was pushed with the
942 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
943 * the IO to complete.
944 */
945 xfs_ail_push_all_sync(mp->m_ail);
946 xfs_wait_buftarg(mp->m_ddev_targp);
947 xfs_buf_lock(mp->m_sb_bp);
948 xfs_buf_unlock(mp->m_sb_bp);
949
950 xfs_log_unmount_write(mp);
951 }
952
953 /*
954 * Shut down and release the AIL and Log.
955 *
956 * During unmount, we need to ensure we flush all the dirty metadata objects
957 * from the AIL so that the log is empty before we write the unmount record to
958 * the log. Once this is done, we can tear down the AIL and the log.
959 */
960 void
961 xfs_log_unmount(
962 struct xfs_mount *mp)
963 {
964 xfs_log_quiesce(mp);
965
966 xfs_trans_ail_destroy(mp);
967
968 xfs_sysfs_del(&mp->m_log->l_kobj);
969
970 xlog_dealloc_log(mp->m_log);
971 }
972
973 void
974 xfs_log_item_init(
975 struct xfs_mount *mp,
976 struct xfs_log_item *item,
977 int type,
978 const struct xfs_item_ops *ops)
979 {
980 item->li_mountp = mp;
981 item->li_ailp = mp->m_ail;
982 item->li_type = type;
983 item->li_ops = ops;
984 item->li_lv = NULL;
985
986 INIT_LIST_HEAD(&item->li_ail);
987 INIT_LIST_HEAD(&item->li_cil);
988 }
989
990 /*
991 * Wake up processes waiting for log space after we have moved the log tail.
992 */
993 void
994 xfs_log_space_wake(
995 struct xfs_mount *mp)
996 {
997 struct xlog *log = mp->m_log;
998 int free_bytes;
999
1000 if (XLOG_FORCED_SHUTDOWN(log))
1001 return;
1002
1003 if (!list_empty_careful(&log->l_write_head.waiters)) {
1004 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1005
1006 spin_lock(&log->l_write_head.lock);
1007 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1008 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1009 spin_unlock(&log->l_write_head.lock);
1010 }
1011
1012 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1013 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1014
1015 spin_lock(&log->l_reserve_head.lock);
1016 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1017 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1018 spin_unlock(&log->l_reserve_head.lock);
1019 }
1020 }
1021
1022 /*
1023 * Determine if we have a transaction that has gone to disk that needs to be
1024 * covered. To begin the transition to the idle state firstly the log needs to
1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026 * we start attempting to cover the log.
1027 *
1028 * Only if we are then in a state where covering is needed, the caller is
1029 * informed that dummy transactions are required to move the log into the idle
1030 * state.
1031 *
1032 * If there are any items in the AIl or CIL, then we do not want to attempt to
1033 * cover the log as we may be in a situation where there isn't log space
1034 * available to run a dummy transaction and this can lead to deadlocks when the
1035 * tail of the log is pinned by an item that is modified in the CIL. Hence
1036 * there's no point in running a dummy transaction at this point because we
1037 * can't start trying to idle the log until both the CIL and AIL are empty.
1038 */
1039 static int
1040 xfs_log_need_covered(xfs_mount_t *mp)
1041 {
1042 struct xlog *log = mp->m_log;
1043 int needed = 0;
1044
1045 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1046 return 0;
1047
1048 if (!xlog_cil_empty(log))
1049 return 0;
1050
1051 spin_lock(&log->l_icloglock);
1052 switch (log->l_covered_state) {
1053 case XLOG_STATE_COVER_DONE:
1054 case XLOG_STATE_COVER_DONE2:
1055 case XLOG_STATE_COVER_IDLE:
1056 break;
1057 case XLOG_STATE_COVER_NEED:
1058 case XLOG_STATE_COVER_NEED2:
1059 if (xfs_ail_min_lsn(log->l_ailp))
1060 break;
1061 if (!xlog_iclogs_empty(log))
1062 break;
1063
1064 needed = 1;
1065 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1066 log->l_covered_state = XLOG_STATE_COVER_DONE;
1067 else
1068 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1069 break;
1070 default:
1071 needed = 1;
1072 break;
1073 }
1074 spin_unlock(&log->l_icloglock);
1075 return needed;
1076 }
1077
1078 /*
1079 * We may be holding the log iclog lock upon entering this routine.
1080 */
1081 xfs_lsn_t
1082 xlog_assign_tail_lsn_locked(
1083 struct xfs_mount *mp)
1084 {
1085 struct xlog *log = mp->m_log;
1086 struct xfs_log_item *lip;
1087 xfs_lsn_t tail_lsn;
1088
1089 assert_spin_locked(&mp->m_ail->xa_lock);
1090
1091 /*
1092 * To make sure we always have a valid LSN for the log tail we keep
1093 * track of the last LSN which was committed in log->l_last_sync_lsn,
1094 * and use that when the AIL was empty.
1095 */
1096 lip = xfs_ail_min(mp->m_ail);
1097 if (lip)
1098 tail_lsn = lip->li_lsn;
1099 else
1100 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1101 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1102 atomic64_set(&log->l_tail_lsn, tail_lsn);
1103 return tail_lsn;
1104 }
1105
1106 xfs_lsn_t
1107 xlog_assign_tail_lsn(
1108 struct xfs_mount *mp)
1109 {
1110 xfs_lsn_t tail_lsn;
1111
1112 spin_lock(&mp->m_ail->xa_lock);
1113 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1114 spin_unlock(&mp->m_ail->xa_lock);
1115
1116 return tail_lsn;
1117 }
1118
1119 /*
1120 * Return the space in the log between the tail and the head. The head
1121 * is passed in the cycle/bytes formal parms. In the special case where
1122 * the reserve head has wrapped passed the tail, this calculation is no
1123 * longer valid. In this case, just return 0 which means there is no space
1124 * in the log. This works for all places where this function is called
1125 * with the reserve head. Of course, if the write head were to ever
1126 * wrap the tail, we should blow up. Rather than catch this case here,
1127 * we depend on other ASSERTions in other parts of the code. XXXmiken
1128 *
1129 * This code also handles the case where the reservation head is behind
1130 * the tail. The details of this case are described below, but the end
1131 * result is that we return the size of the log as the amount of space left.
1132 */
1133 STATIC int
1134 xlog_space_left(
1135 struct xlog *log,
1136 atomic64_t *head)
1137 {
1138 int free_bytes;
1139 int tail_bytes;
1140 int tail_cycle;
1141 int head_cycle;
1142 int head_bytes;
1143
1144 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1145 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1146 tail_bytes = BBTOB(tail_bytes);
1147 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1148 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1149 else if (tail_cycle + 1 < head_cycle)
1150 return 0;
1151 else if (tail_cycle < head_cycle) {
1152 ASSERT(tail_cycle == (head_cycle - 1));
1153 free_bytes = tail_bytes - head_bytes;
1154 } else {
1155 /*
1156 * The reservation head is behind the tail.
1157 * In this case we just want to return the size of the
1158 * log as the amount of space left.
1159 */
1160 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1161 xfs_alert(log->l_mp,
1162 " tail_cycle = %d, tail_bytes = %d",
1163 tail_cycle, tail_bytes);
1164 xfs_alert(log->l_mp,
1165 " GH cycle = %d, GH bytes = %d",
1166 head_cycle, head_bytes);
1167 ASSERT(0);
1168 free_bytes = log->l_logsize;
1169 }
1170 return free_bytes;
1171 }
1172
1173
1174 /*
1175 * Log function which is called when an io completes.
1176 *
1177 * The log manager needs its own routine, in order to control what
1178 * happens with the buffer after the write completes.
1179 */
1180 static void
1181 xlog_iodone(xfs_buf_t *bp)
1182 {
1183 struct xlog_in_core *iclog = bp->b_fspriv;
1184 struct xlog *l = iclog->ic_log;
1185 int aborted = 0;
1186
1187 /*
1188 * Race to shutdown the filesystem if we see an error or the iclog is in
1189 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190 * CRC errors into log recovery.
1191 */
1192 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1193 iclog->ic_state & XLOG_STATE_IOABORT) {
1194 if (iclog->ic_state & XLOG_STATE_IOABORT)
1195 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1196
1197 xfs_buf_ioerror_alert(bp, __func__);
1198 xfs_buf_stale(bp);
1199 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1200 /*
1201 * This flag will be propagated to the trans-committed
1202 * callback routines to let them know that the log-commit
1203 * didn't succeed.
1204 */
1205 aborted = XFS_LI_ABORTED;
1206 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1207 aborted = XFS_LI_ABORTED;
1208 }
1209
1210 /* log I/O is always issued ASYNC */
1211 ASSERT(bp->b_flags & XBF_ASYNC);
1212 xlog_state_done_syncing(iclog, aborted);
1213
1214 /*
1215 * drop the buffer lock now that we are done. Nothing references
1216 * the buffer after this, so an unmount waiting on this lock can now
1217 * tear it down safely. As such, it is unsafe to reference the buffer
1218 * (bp) after the unlock as we could race with it being freed.
1219 */
1220 xfs_buf_unlock(bp);
1221 }
1222
1223 /*
1224 * Return size of each in-core log record buffer.
1225 *
1226 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1227 *
1228 * If the filesystem blocksize is too large, we may need to choose a
1229 * larger size since the directory code currently logs entire blocks.
1230 */
1231
1232 STATIC void
1233 xlog_get_iclog_buffer_size(
1234 struct xfs_mount *mp,
1235 struct xlog *log)
1236 {
1237 int size;
1238 int xhdrs;
1239
1240 if (mp->m_logbufs <= 0)
1241 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1242 else
1243 log->l_iclog_bufs = mp->m_logbufs;
1244
1245 /*
1246 * Buffer size passed in from mount system call.
1247 */
1248 if (mp->m_logbsize > 0) {
1249 size = log->l_iclog_size = mp->m_logbsize;
1250 log->l_iclog_size_log = 0;
1251 while (size != 1) {
1252 log->l_iclog_size_log++;
1253 size >>= 1;
1254 }
1255
1256 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1257 /* # headers = size / 32k
1258 * one header holds cycles from 32k of data
1259 */
1260
1261 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1262 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1263 xhdrs++;
1264 log->l_iclog_hsize = xhdrs << BBSHIFT;
1265 log->l_iclog_heads = xhdrs;
1266 } else {
1267 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1268 log->l_iclog_hsize = BBSIZE;
1269 log->l_iclog_heads = 1;
1270 }
1271 goto done;
1272 }
1273
1274 /* All machines use 32kB buffers by default. */
1275 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1276 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1277
1278 /* the default log size is 16k or 32k which is one header sector */
1279 log->l_iclog_hsize = BBSIZE;
1280 log->l_iclog_heads = 1;
1281
1282 done:
1283 /* are we being asked to make the sizes selected above visible? */
1284 if (mp->m_logbufs == 0)
1285 mp->m_logbufs = log->l_iclog_bufs;
1286 if (mp->m_logbsize == 0)
1287 mp->m_logbsize = log->l_iclog_size;
1288 } /* xlog_get_iclog_buffer_size */
1289
1290
1291 void
1292 xfs_log_work_queue(
1293 struct xfs_mount *mp)
1294 {
1295 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1296 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1297 }
1298
1299 /*
1300 * Every sync period we need to unpin all items in the AIL and push them to
1301 * disk. If there is nothing dirty, then we might need to cover the log to
1302 * indicate that the filesystem is idle.
1303 */
1304 static void
1305 xfs_log_worker(
1306 struct work_struct *work)
1307 {
1308 struct xlog *log = container_of(to_delayed_work(work),
1309 struct xlog, l_work);
1310 struct xfs_mount *mp = log->l_mp;
1311
1312 /* dgc: errors ignored - not fatal and nowhere to report them */
1313 if (xfs_log_need_covered(mp)) {
1314 /*
1315 * Dump a transaction into the log that contains no real change.
1316 * This is needed to stamp the current tail LSN into the log
1317 * during the covering operation.
1318 *
1319 * We cannot use an inode here for this - that will push dirty
1320 * state back up into the VFS and then periodic inode flushing
1321 * will prevent log covering from making progress. Hence we
1322 * synchronously log the superblock instead to ensure the
1323 * superblock is immediately unpinned and can be written back.
1324 */
1325 xfs_sync_sb(mp, true);
1326 } else
1327 xfs_log_force(mp, 0);
1328
1329 /* start pushing all the metadata that is currently dirty */
1330 xfs_ail_push_all(mp->m_ail);
1331
1332 /* queue us up again */
1333 xfs_log_work_queue(mp);
1334 }
1335
1336 /*
1337 * This routine initializes some of the log structure for a given mount point.
1338 * Its primary purpose is to fill in enough, so recovery can occur. However,
1339 * some other stuff may be filled in too.
1340 */
1341 STATIC struct xlog *
1342 xlog_alloc_log(
1343 struct xfs_mount *mp,
1344 struct xfs_buftarg *log_target,
1345 xfs_daddr_t blk_offset,
1346 int num_bblks)
1347 {
1348 struct xlog *log;
1349 xlog_rec_header_t *head;
1350 xlog_in_core_t **iclogp;
1351 xlog_in_core_t *iclog, *prev_iclog=NULL;
1352 xfs_buf_t *bp;
1353 int i;
1354 int error = -ENOMEM;
1355 uint log2_size = 0;
1356
1357 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1358 if (!log) {
1359 xfs_warn(mp, "Log allocation failed: No memory!");
1360 goto out;
1361 }
1362
1363 log->l_mp = mp;
1364 log->l_targ = log_target;
1365 log->l_logsize = BBTOB(num_bblks);
1366 log->l_logBBstart = blk_offset;
1367 log->l_logBBsize = num_bblks;
1368 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1369 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1370 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1371
1372 log->l_prev_block = -1;
1373 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1374 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1375 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1376 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1377
1378 xlog_grant_head_init(&log->l_reserve_head);
1379 xlog_grant_head_init(&log->l_write_head);
1380
1381 error = -EFSCORRUPTED;
1382 if (xfs_sb_version_hassector(&mp->m_sb)) {
1383 log2_size = mp->m_sb.sb_logsectlog;
1384 if (log2_size < BBSHIFT) {
1385 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1386 log2_size, BBSHIFT);
1387 goto out_free_log;
1388 }
1389
1390 log2_size -= BBSHIFT;
1391 if (log2_size > mp->m_sectbb_log) {
1392 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1393 log2_size, mp->m_sectbb_log);
1394 goto out_free_log;
1395 }
1396
1397 /* for larger sector sizes, must have v2 or external log */
1398 if (log2_size && log->l_logBBstart > 0 &&
1399 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1400 xfs_warn(mp,
1401 "log sector size (0x%x) invalid for configuration.",
1402 log2_size);
1403 goto out_free_log;
1404 }
1405 }
1406 log->l_sectBBsize = 1 << log2_size;
1407
1408 xlog_get_iclog_buffer_size(mp, log);
1409
1410 /*
1411 * Use a NULL block for the extra log buffer used during splits so that
1412 * it will trigger errors if we ever try to do IO on it without first
1413 * having set it up properly.
1414 */
1415 error = -ENOMEM;
1416 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1417 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1418 if (!bp)
1419 goto out_free_log;
1420
1421 /*
1422 * The iclogbuf buffer locks are held over IO but we are not going to do
1423 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1424 * when appropriately.
1425 */
1426 ASSERT(xfs_buf_islocked(bp));
1427 xfs_buf_unlock(bp);
1428
1429 /* use high priority wq for log I/O completion */
1430 bp->b_ioend_wq = mp->m_log_workqueue;
1431 bp->b_iodone = xlog_iodone;
1432 log->l_xbuf = bp;
1433
1434 spin_lock_init(&log->l_icloglock);
1435 init_waitqueue_head(&log->l_flush_wait);
1436
1437 iclogp = &log->l_iclog;
1438 /*
1439 * The amount of memory to allocate for the iclog structure is
1440 * rather funky due to the way the structure is defined. It is
1441 * done this way so that we can use different sizes for machines
1442 * with different amounts of memory. See the definition of
1443 * xlog_in_core_t in xfs_log_priv.h for details.
1444 */
1445 ASSERT(log->l_iclog_size >= 4096);
1446 for (i=0; i < log->l_iclog_bufs; i++) {
1447 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1448 if (!*iclogp)
1449 goto out_free_iclog;
1450
1451 iclog = *iclogp;
1452 iclog->ic_prev = prev_iclog;
1453 prev_iclog = iclog;
1454
1455 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1456 BTOBB(log->l_iclog_size),
1457 XBF_NO_IOACCT);
1458 if (!bp)
1459 goto out_free_iclog;
1460
1461 ASSERT(xfs_buf_islocked(bp));
1462 xfs_buf_unlock(bp);
1463
1464 /* use high priority wq for log I/O completion */
1465 bp->b_ioend_wq = mp->m_log_workqueue;
1466 bp->b_iodone = xlog_iodone;
1467 iclog->ic_bp = bp;
1468 iclog->ic_data = bp->b_addr;
1469 #ifdef DEBUG
1470 log->l_iclog_bak[i] = &iclog->ic_header;
1471 #endif
1472 head = &iclog->ic_header;
1473 memset(head, 0, sizeof(xlog_rec_header_t));
1474 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1475 head->h_version = cpu_to_be32(
1476 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1477 head->h_size = cpu_to_be32(log->l_iclog_size);
1478 /* new fields */
1479 head->h_fmt = cpu_to_be32(XLOG_FMT);
1480 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1481
1482 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1483 iclog->ic_state = XLOG_STATE_ACTIVE;
1484 iclog->ic_log = log;
1485 atomic_set(&iclog->ic_refcnt, 0);
1486 spin_lock_init(&iclog->ic_callback_lock);
1487 iclog->ic_callback_tail = &(iclog->ic_callback);
1488 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1489
1490 init_waitqueue_head(&iclog->ic_force_wait);
1491 init_waitqueue_head(&iclog->ic_write_wait);
1492
1493 iclogp = &iclog->ic_next;
1494 }
1495 *iclogp = log->l_iclog; /* complete ring */
1496 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1497
1498 error = xlog_cil_init(log);
1499 if (error)
1500 goto out_free_iclog;
1501 return log;
1502
1503 out_free_iclog:
1504 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1505 prev_iclog = iclog->ic_next;
1506 if (iclog->ic_bp)
1507 xfs_buf_free(iclog->ic_bp);
1508 kmem_free(iclog);
1509 }
1510 spinlock_destroy(&log->l_icloglock);
1511 xfs_buf_free(log->l_xbuf);
1512 out_free_log:
1513 kmem_free(log);
1514 out:
1515 return ERR_PTR(error);
1516 } /* xlog_alloc_log */
1517
1518
1519 /*
1520 * Write out the commit record of a transaction associated with the given
1521 * ticket. Return the lsn of the commit record.
1522 */
1523 STATIC int
1524 xlog_commit_record(
1525 struct xlog *log,
1526 struct xlog_ticket *ticket,
1527 struct xlog_in_core **iclog,
1528 xfs_lsn_t *commitlsnp)
1529 {
1530 struct xfs_mount *mp = log->l_mp;
1531 int error;
1532 struct xfs_log_iovec reg = {
1533 .i_addr = NULL,
1534 .i_len = 0,
1535 .i_type = XLOG_REG_TYPE_COMMIT,
1536 };
1537 struct xfs_log_vec vec = {
1538 .lv_niovecs = 1,
1539 .lv_iovecp = &reg,
1540 };
1541
1542 ASSERT_ALWAYS(iclog);
1543 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1544 XLOG_COMMIT_TRANS);
1545 if (error)
1546 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1547 return error;
1548 }
1549
1550 /*
1551 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1552 * log space. This code pushes on the lsn which would supposedly free up
1553 * the 25% which we want to leave free. We may need to adopt a policy which
1554 * pushes on an lsn which is further along in the log once we reach the high
1555 * water mark. In this manner, we would be creating a low water mark.
1556 */
1557 STATIC void
1558 xlog_grant_push_ail(
1559 struct xlog *log,
1560 int need_bytes)
1561 {
1562 xfs_lsn_t threshold_lsn = 0;
1563 xfs_lsn_t last_sync_lsn;
1564 int free_blocks;
1565 int free_bytes;
1566 int threshold_block;
1567 int threshold_cycle;
1568 int free_threshold;
1569
1570 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1571
1572 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1573 free_blocks = BTOBBT(free_bytes);
1574
1575 /*
1576 * Set the threshold for the minimum number of free blocks in the
1577 * log to the maximum of what the caller needs, one quarter of the
1578 * log, and 256 blocks.
1579 */
1580 free_threshold = BTOBB(need_bytes);
1581 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1582 free_threshold = MAX(free_threshold, 256);
1583 if (free_blocks >= free_threshold)
1584 return;
1585
1586 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1587 &threshold_block);
1588 threshold_block += free_threshold;
1589 if (threshold_block >= log->l_logBBsize) {
1590 threshold_block -= log->l_logBBsize;
1591 threshold_cycle += 1;
1592 }
1593 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1594 threshold_block);
1595 /*
1596 * Don't pass in an lsn greater than the lsn of the last
1597 * log record known to be on disk. Use a snapshot of the last sync lsn
1598 * so that it doesn't change between the compare and the set.
1599 */
1600 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1601 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1602 threshold_lsn = last_sync_lsn;
1603
1604 /*
1605 * Get the transaction layer to kick the dirty buffers out to
1606 * disk asynchronously. No point in trying to do this if
1607 * the filesystem is shutting down.
1608 */
1609 if (!XLOG_FORCED_SHUTDOWN(log))
1610 xfs_ail_push(log->l_ailp, threshold_lsn);
1611 }
1612
1613 /*
1614 * Stamp cycle number in every block
1615 */
1616 STATIC void
1617 xlog_pack_data(
1618 struct xlog *log,
1619 struct xlog_in_core *iclog,
1620 int roundoff)
1621 {
1622 int i, j, k;
1623 int size = iclog->ic_offset + roundoff;
1624 __be32 cycle_lsn;
1625 char *dp;
1626
1627 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1628
1629 dp = iclog->ic_datap;
1630 for (i = 0; i < BTOBB(size); i++) {
1631 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1632 break;
1633 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1634 *(__be32 *)dp = cycle_lsn;
1635 dp += BBSIZE;
1636 }
1637
1638 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1639 xlog_in_core_2_t *xhdr = iclog->ic_data;
1640
1641 for ( ; i < BTOBB(size); i++) {
1642 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1643 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1645 *(__be32 *)dp = cycle_lsn;
1646 dp += BBSIZE;
1647 }
1648
1649 for (i = 1; i < log->l_iclog_heads; i++)
1650 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1651 }
1652 }
1653
1654 /*
1655 * Calculate the checksum for a log buffer.
1656 *
1657 * This is a little more complicated than it should be because the various
1658 * headers and the actual data are non-contiguous.
1659 */
1660 __le32
1661 xlog_cksum(
1662 struct xlog *log,
1663 struct xlog_rec_header *rhead,
1664 char *dp,
1665 int size)
1666 {
1667 uint32_t crc;
1668
1669 /* first generate the crc for the record header ... */
1670 crc = xfs_start_cksum_update((char *)rhead,
1671 sizeof(struct xlog_rec_header),
1672 offsetof(struct xlog_rec_header, h_crc));
1673
1674 /* ... then for additional cycle data for v2 logs ... */
1675 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1676 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1677 int i;
1678 int xheads;
1679
1680 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1681 if (size % XLOG_HEADER_CYCLE_SIZE)
1682 xheads++;
1683
1684 for (i = 1; i < xheads; i++) {
1685 crc = crc32c(crc, &xhdr[i].hic_xheader,
1686 sizeof(struct xlog_rec_ext_header));
1687 }
1688 }
1689
1690 /* ... and finally for the payload */
1691 crc = crc32c(crc, dp, size);
1692
1693 return xfs_end_cksum(crc);
1694 }
1695
1696 /*
1697 * The bdstrat callback function for log bufs. This gives us a central
1698 * place to trap bufs in case we get hit by a log I/O error and need to
1699 * shutdown. Actually, in practice, even when we didn't get a log error,
1700 * we transition the iclogs to IOERROR state *after* flushing all existing
1701 * iclogs to disk. This is because we don't want anymore new transactions to be
1702 * started or completed afterwards.
1703 *
1704 * We lock the iclogbufs here so that we can serialise against IO completion
1705 * during unmount. We might be processing a shutdown triggered during unmount,
1706 * and that can occur asynchronously to the unmount thread, and hence we need to
1707 * ensure that completes before tearing down the iclogbufs. Hence we need to
1708 * hold the buffer lock across the log IO to acheive that.
1709 */
1710 STATIC int
1711 xlog_bdstrat(
1712 struct xfs_buf *bp)
1713 {
1714 struct xlog_in_core *iclog = bp->b_fspriv;
1715
1716 xfs_buf_lock(bp);
1717 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1718 xfs_buf_ioerror(bp, -EIO);
1719 xfs_buf_stale(bp);
1720 xfs_buf_ioend(bp);
1721 /*
1722 * It would seem logical to return EIO here, but we rely on
1723 * the log state machine to propagate I/O errors instead of
1724 * doing it here. Similarly, IO completion will unlock the
1725 * buffer, so we don't do it here.
1726 */
1727 return 0;
1728 }
1729
1730 xfs_buf_submit(bp);
1731 return 0;
1732 }
1733
1734 /*
1735 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1736 * fashion. Previously, we should have moved the current iclog
1737 * ptr in the log to point to the next available iclog. This allows further
1738 * write to continue while this code syncs out an iclog ready to go.
1739 * Before an in-core log can be written out, the data section must be scanned
1740 * to save away the 1st word of each BBSIZE block into the header. We replace
1741 * it with the current cycle count. Each BBSIZE block is tagged with the
1742 * cycle count because there in an implicit assumption that drives will
1743 * guarantee that entire 512 byte blocks get written at once. In other words,
1744 * we can't have part of a 512 byte block written and part not written. By
1745 * tagging each block, we will know which blocks are valid when recovering
1746 * after an unclean shutdown.
1747 *
1748 * This routine is single threaded on the iclog. No other thread can be in
1749 * this routine with the same iclog. Changing contents of iclog can there-
1750 * fore be done without grabbing the state machine lock. Updating the global
1751 * log will require grabbing the lock though.
1752 *
1753 * The entire log manager uses a logical block numbering scheme. Only
1754 * log_sync (and then only bwrite()) know about the fact that the log may
1755 * not start with block zero on a given device. The log block start offset
1756 * is added immediately before calling bwrite().
1757 */
1758
1759 STATIC int
1760 xlog_sync(
1761 struct xlog *log,
1762 struct xlog_in_core *iclog)
1763 {
1764 xfs_buf_t *bp;
1765 int i;
1766 uint count; /* byte count of bwrite */
1767 uint count_init; /* initial count before roundup */
1768 int roundoff; /* roundoff to BB or stripe */
1769 int split = 0; /* split write into two regions */
1770 int error;
1771 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1772 int size;
1773
1774 XFS_STATS_INC(log->l_mp, xs_log_writes);
1775 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1776
1777 /* Add for LR header */
1778 count_init = log->l_iclog_hsize + iclog->ic_offset;
1779
1780 /* Round out the log write size */
1781 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1782 /* we have a v2 stripe unit to use */
1783 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1784 } else {
1785 count = BBTOB(BTOBB(count_init));
1786 }
1787 roundoff = count - count_init;
1788 ASSERT(roundoff >= 0);
1789 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1790 roundoff < log->l_mp->m_sb.sb_logsunit)
1791 ||
1792 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1793 roundoff < BBTOB(1)));
1794
1795 /* move grant heads by roundoff in sync */
1796 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1797 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1798
1799 /* put cycle number in every block */
1800 xlog_pack_data(log, iclog, roundoff);
1801
1802 /* real byte length */
1803 size = iclog->ic_offset;
1804 if (v2)
1805 size += roundoff;
1806 iclog->ic_header.h_len = cpu_to_be32(size);
1807
1808 bp = iclog->ic_bp;
1809 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1810
1811 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1812
1813 /* Do we need to split this write into 2 parts? */
1814 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1815 char *dptr;
1816
1817 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1818 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1819 iclog->ic_bwritecnt = 2;
1820
1821 /*
1822 * Bump the cycle numbers at the start of each block in the
1823 * part of the iclog that ends up in the buffer that gets
1824 * written to the start of the log.
1825 *
1826 * Watch out for the header magic number case, though.
1827 */
1828 dptr = (char *)&iclog->ic_header + count;
1829 for (i = 0; i < split; i += BBSIZE) {
1830 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1831 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1832 cycle++;
1833 *(__be32 *)dptr = cpu_to_be32(cycle);
1834
1835 dptr += BBSIZE;
1836 }
1837 } else {
1838 iclog->ic_bwritecnt = 1;
1839 }
1840
1841 /* calculcate the checksum */
1842 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1843 iclog->ic_datap, size);
1844 /*
1845 * Intentionally corrupt the log record CRC based on the error injection
1846 * frequency, if defined. This facilitates testing log recovery in the
1847 * event of torn writes. Hence, set the IOABORT state to abort the log
1848 * write on I/O completion and shutdown the fs. The subsequent mount
1849 * detects the bad CRC and attempts to recover.
1850 */
1851 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1852 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1853 iclog->ic_state |= XLOG_STATE_IOABORT;
1854 xfs_warn(log->l_mp,
1855 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1856 be64_to_cpu(iclog->ic_header.h_lsn));
1857 }
1858
1859 bp->b_io_length = BTOBB(count);
1860 bp->b_fspriv = iclog;
1861 bp->b_flags &= ~XBF_FLUSH;
1862 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1863
1864 /*
1865 * Flush the data device before flushing the log to make sure all meta
1866 * data written back from the AIL actually made it to disk before
1867 * stamping the new log tail LSN into the log buffer. For an external
1868 * log we need to issue the flush explicitly, and unfortunately
1869 * synchronously here; for an internal log we can simply use the block
1870 * layer state machine for preflushes.
1871 */
1872 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1873 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1874 else
1875 bp->b_flags |= XBF_FLUSH;
1876
1877 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1878 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1879
1880 xlog_verify_iclog(log, iclog, count, true);
1881
1882 /* account for log which doesn't start at block #0 */
1883 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1884
1885 /*
1886 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1887 * is shutting down.
1888 */
1889 error = xlog_bdstrat(bp);
1890 if (error) {
1891 xfs_buf_ioerror_alert(bp, "xlog_sync");
1892 return error;
1893 }
1894 if (split) {
1895 bp = iclog->ic_log->l_xbuf;
1896 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1897 xfs_buf_associate_memory(bp,
1898 (char *)&iclog->ic_header + count, split);
1899 bp->b_fspriv = iclog;
1900 bp->b_flags &= ~XBF_FLUSH;
1901 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1902
1903 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1904 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1905
1906 /* account for internal log which doesn't start at block #0 */
1907 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1908 error = xlog_bdstrat(bp);
1909 if (error) {
1910 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1911 return error;
1912 }
1913 }
1914 return 0;
1915 } /* xlog_sync */
1916
1917 /*
1918 * Deallocate a log structure
1919 */
1920 STATIC void
1921 xlog_dealloc_log(
1922 struct xlog *log)
1923 {
1924 xlog_in_core_t *iclog, *next_iclog;
1925 int i;
1926
1927 xlog_cil_destroy(log);
1928
1929 /*
1930 * Cycle all the iclogbuf locks to make sure all log IO completion
1931 * is done before we tear down these buffers.
1932 */
1933 iclog = log->l_iclog;
1934 for (i = 0; i < log->l_iclog_bufs; i++) {
1935 xfs_buf_lock(iclog->ic_bp);
1936 xfs_buf_unlock(iclog->ic_bp);
1937 iclog = iclog->ic_next;
1938 }
1939
1940 /*
1941 * Always need to ensure that the extra buffer does not point to memory
1942 * owned by another log buffer before we free it. Also, cycle the lock
1943 * first to ensure we've completed IO on it.
1944 */
1945 xfs_buf_lock(log->l_xbuf);
1946 xfs_buf_unlock(log->l_xbuf);
1947 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1948 xfs_buf_free(log->l_xbuf);
1949
1950 iclog = log->l_iclog;
1951 for (i = 0; i < log->l_iclog_bufs; i++) {
1952 xfs_buf_free(iclog->ic_bp);
1953 next_iclog = iclog->ic_next;
1954 kmem_free(iclog);
1955 iclog = next_iclog;
1956 }
1957 spinlock_destroy(&log->l_icloglock);
1958
1959 log->l_mp->m_log = NULL;
1960 kmem_free(log);
1961 } /* xlog_dealloc_log */
1962
1963 /*
1964 * Update counters atomically now that memcpy is done.
1965 */
1966 /* ARGSUSED */
1967 static inline void
1968 xlog_state_finish_copy(
1969 struct xlog *log,
1970 struct xlog_in_core *iclog,
1971 int record_cnt,
1972 int copy_bytes)
1973 {
1974 spin_lock(&log->l_icloglock);
1975
1976 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1977 iclog->ic_offset += copy_bytes;
1978
1979 spin_unlock(&log->l_icloglock);
1980 } /* xlog_state_finish_copy */
1981
1982
1983
1984
1985 /*
1986 * print out info relating to regions written which consume
1987 * the reservation
1988 */
1989 void
1990 xlog_print_tic_res(
1991 struct xfs_mount *mp,
1992 struct xlog_ticket *ticket)
1993 {
1994 uint i;
1995 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1996
1997 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1998 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1999 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2000 REG_TYPE_STR(BFORMAT, "bformat"),
2001 REG_TYPE_STR(BCHUNK, "bchunk"),
2002 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2003 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2004 REG_TYPE_STR(IFORMAT, "iformat"),
2005 REG_TYPE_STR(ICORE, "icore"),
2006 REG_TYPE_STR(IEXT, "iext"),
2007 REG_TYPE_STR(IBROOT, "ibroot"),
2008 REG_TYPE_STR(ILOCAL, "ilocal"),
2009 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2010 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2011 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2012 REG_TYPE_STR(QFORMAT, "qformat"),
2013 REG_TYPE_STR(DQUOT, "dquot"),
2014 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2015 REG_TYPE_STR(LRHEADER, "LR header"),
2016 REG_TYPE_STR(UNMOUNT, "unmount"),
2017 REG_TYPE_STR(COMMIT, "commit"),
2018 REG_TYPE_STR(TRANSHDR, "trans header"),
2019 REG_TYPE_STR(ICREATE, "inode create")
2020 };
2021 #undef REG_TYPE_STR
2022
2023 xfs_warn(mp, "ticket reservation summary:");
2024 xfs_warn(mp, " unit res = %d bytes",
2025 ticket->t_unit_res);
2026 xfs_warn(mp, " current res = %d bytes",
2027 ticket->t_curr_res);
2028 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2029 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2030 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2031 ticket->t_res_num_ophdrs, ophdr_spc);
2032 xfs_warn(mp, " ophdr + reg = %u bytes",
2033 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2034 xfs_warn(mp, " num regions = %u",
2035 ticket->t_res_num);
2036
2037 for (i = 0; i < ticket->t_res_num; i++) {
2038 uint r_type = ticket->t_res_arr[i].r_type;
2039 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2040 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2041 "bad-rtype" : res_type_str[r_type]),
2042 ticket->t_res_arr[i].r_len);
2043 }
2044 }
2045
2046 /*
2047 * Print a summary of the transaction.
2048 */
2049 void
2050 xlog_print_trans(
2051 struct xfs_trans *tp)
2052 {
2053 struct xfs_mount *mp = tp->t_mountp;
2054 struct xfs_log_item_desc *lidp;
2055
2056 /* dump core transaction and ticket info */
2057 xfs_warn(mp, "transaction summary:");
2058 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2059
2060 xlog_print_tic_res(mp, tp->t_ticket);
2061
2062 /* dump each log item */
2063 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2064 struct xfs_log_item *lip = lidp->lid_item;
2065 struct xfs_log_vec *lv = lip->li_lv;
2066 struct xfs_log_iovec *vec;
2067 int i;
2068
2069 xfs_warn(mp, "log item: ");
2070 xfs_warn(mp, " type = 0x%x", lip->li_type);
2071 xfs_warn(mp, " flags = 0x%x", lip->li_flags);
2072 if (!lv)
2073 continue;
2074 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2075 xfs_warn(mp, " size = %d", lv->lv_size);
2076 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2077 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2078
2079 /* dump each iovec for the log item */
2080 vec = lv->lv_iovecp;
2081 for (i = 0; i < lv->lv_niovecs; i++) {
2082 int dumplen = min(vec->i_len, 32);
2083
2084 xfs_warn(mp, " iovec[%d]", i);
2085 xfs_warn(mp, " type = 0x%x", vec->i_type);
2086 xfs_warn(mp, " len = %d", vec->i_len);
2087 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2088 xfs_hex_dump(vec->i_addr, dumplen);
2089
2090 vec++;
2091 }
2092 }
2093 }
2094
2095 /*
2096 * Calculate the potential space needed by the log vector. Each region gets
2097 * its own xlog_op_header_t and may need to be double word aligned.
2098 */
2099 static int
2100 xlog_write_calc_vec_length(
2101 struct xlog_ticket *ticket,
2102 struct xfs_log_vec *log_vector)
2103 {
2104 struct xfs_log_vec *lv;
2105 int headers = 0;
2106 int len = 0;
2107 int i;
2108
2109 /* acct for start rec of xact */
2110 if (ticket->t_flags & XLOG_TIC_INITED)
2111 headers++;
2112
2113 for (lv = log_vector; lv; lv = lv->lv_next) {
2114 /* we don't write ordered log vectors */
2115 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2116 continue;
2117
2118 headers += lv->lv_niovecs;
2119
2120 for (i = 0; i < lv->lv_niovecs; i++) {
2121 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2122
2123 len += vecp->i_len;
2124 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2125 }
2126 }
2127
2128 ticket->t_res_num_ophdrs += headers;
2129 len += headers * sizeof(struct xlog_op_header);
2130
2131 return len;
2132 }
2133
2134 /*
2135 * If first write for transaction, insert start record We can't be trying to
2136 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2137 */
2138 static int
2139 xlog_write_start_rec(
2140 struct xlog_op_header *ophdr,
2141 struct xlog_ticket *ticket)
2142 {
2143 if (!(ticket->t_flags & XLOG_TIC_INITED))
2144 return 0;
2145
2146 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2147 ophdr->oh_clientid = ticket->t_clientid;
2148 ophdr->oh_len = 0;
2149 ophdr->oh_flags = XLOG_START_TRANS;
2150 ophdr->oh_res2 = 0;
2151
2152 ticket->t_flags &= ~XLOG_TIC_INITED;
2153
2154 return sizeof(struct xlog_op_header);
2155 }
2156
2157 static xlog_op_header_t *
2158 xlog_write_setup_ophdr(
2159 struct xlog *log,
2160 struct xlog_op_header *ophdr,
2161 struct xlog_ticket *ticket,
2162 uint flags)
2163 {
2164 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2165 ophdr->oh_clientid = ticket->t_clientid;
2166 ophdr->oh_res2 = 0;
2167
2168 /* are we copying a commit or unmount record? */
2169 ophdr->oh_flags = flags;
2170
2171 /*
2172 * We've seen logs corrupted with bad transaction client ids. This
2173 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2174 * and shut down the filesystem.
2175 */
2176 switch (ophdr->oh_clientid) {
2177 case XFS_TRANSACTION:
2178 case XFS_VOLUME:
2179 case XFS_LOG:
2180 break;
2181 default:
2182 xfs_warn(log->l_mp,
2183 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2184 ophdr->oh_clientid, ticket);
2185 return NULL;
2186 }
2187
2188 return ophdr;
2189 }
2190
2191 /*
2192 * Set up the parameters of the region copy into the log. This has
2193 * to handle region write split across multiple log buffers - this
2194 * state is kept external to this function so that this code can
2195 * be written in an obvious, self documenting manner.
2196 */
2197 static int
2198 xlog_write_setup_copy(
2199 struct xlog_ticket *ticket,
2200 struct xlog_op_header *ophdr,
2201 int space_available,
2202 int space_required,
2203 int *copy_off,
2204 int *copy_len,
2205 int *last_was_partial_copy,
2206 int *bytes_consumed)
2207 {
2208 int still_to_copy;
2209
2210 still_to_copy = space_required - *bytes_consumed;
2211 *copy_off = *bytes_consumed;
2212
2213 if (still_to_copy <= space_available) {
2214 /* write of region completes here */
2215 *copy_len = still_to_copy;
2216 ophdr->oh_len = cpu_to_be32(*copy_len);
2217 if (*last_was_partial_copy)
2218 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2219 *last_was_partial_copy = 0;
2220 *bytes_consumed = 0;
2221 return 0;
2222 }
2223
2224 /* partial write of region, needs extra log op header reservation */
2225 *copy_len = space_available;
2226 ophdr->oh_len = cpu_to_be32(*copy_len);
2227 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2228 if (*last_was_partial_copy)
2229 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2230 *bytes_consumed += *copy_len;
2231 (*last_was_partial_copy)++;
2232
2233 /* account for new log op header */
2234 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2235 ticket->t_res_num_ophdrs++;
2236
2237 return sizeof(struct xlog_op_header);
2238 }
2239
2240 static int
2241 xlog_write_copy_finish(
2242 struct xlog *log,
2243 struct xlog_in_core *iclog,
2244 uint flags,
2245 int *record_cnt,
2246 int *data_cnt,
2247 int *partial_copy,
2248 int *partial_copy_len,
2249 int log_offset,
2250 struct xlog_in_core **commit_iclog)
2251 {
2252 if (*partial_copy) {
2253 /*
2254 * This iclog has already been marked WANT_SYNC by
2255 * xlog_state_get_iclog_space.
2256 */
2257 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2258 *record_cnt = 0;
2259 *data_cnt = 0;
2260 return xlog_state_release_iclog(log, iclog);
2261 }
2262
2263 *partial_copy = 0;
2264 *partial_copy_len = 0;
2265
2266 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2267 /* no more space in this iclog - push it. */
2268 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2269 *record_cnt = 0;
2270 *data_cnt = 0;
2271
2272 spin_lock(&log->l_icloglock);
2273 xlog_state_want_sync(log, iclog);
2274 spin_unlock(&log->l_icloglock);
2275
2276 if (!commit_iclog)
2277 return xlog_state_release_iclog(log, iclog);
2278 ASSERT(flags & XLOG_COMMIT_TRANS);
2279 *commit_iclog = iclog;
2280 }
2281
2282 return 0;
2283 }
2284
2285 /*
2286 * Write some region out to in-core log
2287 *
2288 * This will be called when writing externally provided regions or when
2289 * writing out a commit record for a given transaction.
2290 *
2291 * General algorithm:
2292 * 1. Find total length of this write. This may include adding to the
2293 * lengths passed in.
2294 * 2. Check whether we violate the tickets reservation.
2295 * 3. While writing to this iclog
2296 * A. Reserve as much space in this iclog as can get
2297 * B. If this is first write, save away start lsn
2298 * C. While writing this region:
2299 * 1. If first write of transaction, write start record
2300 * 2. Write log operation header (header per region)
2301 * 3. Find out if we can fit entire region into this iclog
2302 * 4. Potentially, verify destination memcpy ptr
2303 * 5. Memcpy (partial) region
2304 * 6. If partial copy, release iclog; otherwise, continue
2305 * copying more regions into current iclog
2306 * 4. Mark want sync bit (in simulation mode)
2307 * 5. Release iclog for potential flush to on-disk log.
2308 *
2309 * ERRORS:
2310 * 1. Panic if reservation is overrun. This should never happen since
2311 * reservation amounts are generated internal to the filesystem.
2312 * NOTES:
2313 * 1. Tickets are single threaded data structures.
2314 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2315 * syncing routine. When a single log_write region needs to span
2316 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2317 * on all log operation writes which don't contain the end of the
2318 * region. The XLOG_END_TRANS bit is used for the in-core log
2319 * operation which contains the end of the continued log_write region.
2320 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2321 * we don't really know exactly how much space will be used. As a result,
2322 * we don't update ic_offset until the end when we know exactly how many
2323 * bytes have been written out.
2324 */
2325 int
2326 xlog_write(
2327 struct xlog *log,
2328 struct xfs_log_vec *log_vector,
2329 struct xlog_ticket *ticket,
2330 xfs_lsn_t *start_lsn,
2331 struct xlog_in_core **commit_iclog,
2332 uint flags)
2333 {
2334 struct xlog_in_core *iclog = NULL;
2335 struct xfs_log_iovec *vecp;
2336 struct xfs_log_vec *lv;
2337 int len;
2338 int index;
2339 int partial_copy = 0;
2340 int partial_copy_len = 0;
2341 int contwr = 0;
2342 int record_cnt = 0;
2343 int data_cnt = 0;
2344 int error;
2345
2346 *start_lsn = 0;
2347
2348 len = xlog_write_calc_vec_length(ticket, log_vector);
2349
2350 /*
2351 * Region headers and bytes are already accounted for.
2352 * We only need to take into account start records and
2353 * split regions in this function.
2354 */
2355 if (ticket->t_flags & XLOG_TIC_INITED)
2356 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2357
2358 /*
2359 * Commit record headers need to be accounted for. These
2360 * come in as separate writes so are easy to detect.
2361 */
2362 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2363 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2364
2365 if (ticket->t_curr_res < 0) {
2366 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2367 "ctx ticket reservation ran out. Need to up reservation");
2368 xlog_print_tic_res(log->l_mp, ticket);
2369 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2370 }
2371
2372 index = 0;
2373 lv = log_vector;
2374 vecp = lv->lv_iovecp;
2375 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2376 void *ptr;
2377 int log_offset;
2378
2379 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2380 &contwr, &log_offset);
2381 if (error)
2382 return error;
2383
2384 ASSERT(log_offset <= iclog->ic_size - 1);
2385 ptr = iclog->ic_datap + log_offset;
2386
2387 /* start_lsn is the first lsn written to. That's all we need. */
2388 if (!*start_lsn)
2389 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2390
2391 /*
2392 * This loop writes out as many regions as can fit in the amount
2393 * of space which was allocated by xlog_state_get_iclog_space().
2394 */
2395 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2396 struct xfs_log_iovec *reg;
2397 struct xlog_op_header *ophdr;
2398 int start_rec_copy;
2399 int copy_len;
2400 int copy_off;
2401 bool ordered = false;
2402
2403 /* ordered log vectors have no regions to write */
2404 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2405 ASSERT(lv->lv_niovecs == 0);
2406 ordered = true;
2407 goto next_lv;
2408 }
2409
2410 reg = &vecp[index];
2411 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2412 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2413
2414 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2415 if (start_rec_copy) {
2416 record_cnt++;
2417 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2418 start_rec_copy);
2419 }
2420
2421 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2422 if (!ophdr)
2423 return -EIO;
2424
2425 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2426 sizeof(struct xlog_op_header));
2427
2428 len += xlog_write_setup_copy(ticket, ophdr,
2429 iclog->ic_size-log_offset,
2430 reg->i_len,
2431 &copy_off, &copy_len,
2432 &partial_copy,
2433 &partial_copy_len);
2434 xlog_verify_dest_ptr(log, ptr);
2435
2436 /*
2437 * Copy region.
2438 *
2439 * Unmount records just log an opheader, so can have
2440 * empty payloads with no data region to copy. Hence we
2441 * only copy the payload if the vector says it has data
2442 * to copy.
2443 */
2444 ASSERT(copy_len >= 0);
2445 if (copy_len > 0) {
2446 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2447 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2448 copy_len);
2449 }
2450 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2451 record_cnt++;
2452 data_cnt += contwr ? copy_len : 0;
2453
2454 error = xlog_write_copy_finish(log, iclog, flags,
2455 &record_cnt, &data_cnt,
2456 &partial_copy,
2457 &partial_copy_len,
2458 log_offset,
2459 commit_iclog);
2460 if (error)
2461 return error;
2462
2463 /*
2464 * if we had a partial copy, we need to get more iclog
2465 * space but we don't want to increment the region
2466 * index because there is still more is this region to
2467 * write.
2468 *
2469 * If we completed writing this region, and we flushed
2470 * the iclog (indicated by resetting of the record
2471 * count), then we also need to get more log space. If
2472 * this was the last record, though, we are done and
2473 * can just return.
2474 */
2475 if (partial_copy)
2476 break;
2477
2478 if (++index == lv->lv_niovecs) {
2479 next_lv:
2480 lv = lv->lv_next;
2481 index = 0;
2482 if (lv)
2483 vecp = lv->lv_iovecp;
2484 }
2485 if (record_cnt == 0 && ordered == false) {
2486 if (!lv)
2487 return 0;
2488 break;
2489 }
2490 }
2491 }
2492
2493 ASSERT(len == 0);
2494
2495 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2496 if (!commit_iclog)
2497 return xlog_state_release_iclog(log, iclog);
2498
2499 ASSERT(flags & XLOG_COMMIT_TRANS);
2500 *commit_iclog = iclog;
2501 return 0;
2502 }
2503
2504
2505 /*****************************************************************************
2506 *
2507 * State Machine functions
2508 *
2509 *****************************************************************************
2510 */
2511
2512 /* Clean iclogs starting from the head. This ordering must be
2513 * maintained, so an iclog doesn't become ACTIVE beyond one that
2514 * is SYNCING. This is also required to maintain the notion that we use
2515 * a ordered wait queue to hold off would be writers to the log when every
2516 * iclog is trying to sync to disk.
2517 *
2518 * State Change: DIRTY -> ACTIVE
2519 */
2520 STATIC void
2521 xlog_state_clean_log(
2522 struct xlog *log)
2523 {
2524 xlog_in_core_t *iclog;
2525 int changed = 0;
2526
2527 iclog = log->l_iclog;
2528 do {
2529 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2530 iclog->ic_state = XLOG_STATE_ACTIVE;
2531 iclog->ic_offset = 0;
2532 ASSERT(iclog->ic_callback == NULL);
2533 /*
2534 * If the number of ops in this iclog indicate it just
2535 * contains the dummy transaction, we can
2536 * change state into IDLE (the second time around).
2537 * Otherwise we should change the state into
2538 * NEED a dummy.
2539 * We don't need to cover the dummy.
2540 */
2541 if (!changed &&
2542 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2543 XLOG_COVER_OPS)) {
2544 changed = 1;
2545 } else {
2546 /*
2547 * We have two dirty iclogs so start over
2548 * This could also be num of ops indicates
2549 * this is not the dummy going out.
2550 */
2551 changed = 2;
2552 }
2553 iclog->ic_header.h_num_logops = 0;
2554 memset(iclog->ic_header.h_cycle_data, 0,
2555 sizeof(iclog->ic_header.h_cycle_data));
2556 iclog->ic_header.h_lsn = 0;
2557 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2558 /* do nothing */;
2559 else
2560 break; /* stop cleaning */
2561 iclog = iclog->ic_next;
2562 } while (iclog != log->l_iclog);
2563
2564 /* log is locked when we are called */
2565 /*
2566 * Change state for the dummy log recording.
2567 * We usually go to NEED. But we go to NEED2 if the changed indicates
2568 * we are done writing the dummy record.
2569 * If we are done with the second dummy recored (DONE2), then
2570 * we go to IDLE.
2571 */
2572 if (changed) {
2573 switch (log->l_covered_state) {
2574 case XLOG_STATE_COVER_IDLE:
2575 case XLOG_STATE_COVER_NEED:
2576 case XLOG_STATE_COVER_NEED2:
2577 log->l_covered_state = XLOG_STATE_COVER_NEED;
2578 break;
2579
2580 case XLOG_STATE_COVER_DONE:
2581 if (changed == 1)
2582 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2583 else
2584 log->l_covered_state = XLOG_STATE_COVER_NEED;
2585 break;
2586
2587 case XLOG_STATE_COVER_DONE2:
2588 if (changed == 1)
2589 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2590 else
2591 log->l_covered_state = XLOG_STATE_COVER_NEED;
2592 break;
2593
2594 default:
2595 ASSERT(0);
2596 }
2597 }
2598 } /* xlog_state_clean_log */
2599
2600 STATIC xfs_lsn_t
2601 xlog_get_lowest_lsn(
2602 struct xlog *log)
2603 {
2604 xlog_in_core_t *lsn_log;
2605 xfs_lsn_t lowest_lsn, lsn;
2606
2607 lsn_log = log->l_iclog;
2608 lowest_lsn = 0;
2609 do {
2610 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2611 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2612 if ((lsn && !lowest_lsn) ||
2613 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2614 lowest_lsn = lsn;
2615 }
2616 }
2617 lsn_log = lsn_log->ic_next;
2618 } while (lsn_log != log->l_iclog);
2619 return lowest_lsn;
2620 }
2621
2622
2623 STATIC void
2624 xlog_state_do_callback(
2625 struct xlog *log,
2626 int aborted,
2627 struct xlog_in_core *ciclog)
2628 {
2629 xlog_in_core_t *iclog;
2630 xlog_in_core_t *first_iclog; /* used to know when we've
2631 * processed all iclogs once */
2632 xfs_log_callback_t *cb, *cb_next;
2633 int flushcnt = 0;
2634 xfs_lsn_t lowest_lsn;
2635 int ioerrors; /* counter: iclogs with errors */
2636 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2637 int funcdidcallbacks; /* flag: function did callbacks */
2638 int repeats; /* for issuing console warnings if
2639 * looping too many times */
2640 int wake = 0;
2641
2642 spin_lock(&log->l_icloglock);
2643 first_iclog = iclog = log->l_iclog;
2644 ioerrors = 0;
2645 funcdidcallbacks = 0;
2646 repeats = 0;
2647
2648 do {
2649 /*
2650 * Scan all iclogs starting with the one pointed to by the
2651 * log. Reset this starting point each time the log is
2652 * unlocked (during callbacks).
2653 *
2654 * Keep looping through iclogs until one full pass is made
2655 * without running any callbacks.
2656 */
2657 first_iclog = log->l_iclog;
2658 iclog = log->l_iclog;
2659 loopdidcallbacks = 0;
2660 repeats++;
2661
2662 do {
2663
2664 /* skip all iclogs in the ACTIVE & DIRTY states */
2665 if (iclog->ic_state &
2666 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2667 iclog = iclog->ic_next;
2668 continue;
2669 }
2670
2671 /*
2672 * Between marking a filesystem SHUTDOWN and stopping
2673 * the log, we do flush all iclogs to disk (if there
2674 * wasn't a log I/O error). So, we do want things to
2675 * go smoothly in case of just a SHUTDOWN w/o a
2676 * LOG_IO_ERROR.
2677 */
2678 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2679 /*
2680 * Can only perform callbacks in order. Since
2681 * this iclog is not in the DONE_SYNC/
2682 * DO_CALLBACK state, we skip the rest and
2683 * just try to clean up. If we set our iclog
2684 * to DO_CALLBACK, we will not process it when
2685 * we retry since a previous iclog is in the
2686 * CALLBACK and the state cannot change since
2687 * we are holding the l_icloglock.
2688 */
2689 if (!(iclog->ic_state &
2690 (XLOG_STATE_DONE_SYNC |
2691 XLOG_STATE_DO_CALLBACK))) {
2692 if (ciclog && (ciclog->ic_state ==
2693 XLOG_STATE_DONE_SYNC)) {
2694 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2695 }
2696 break;
2697 }
2698 /*
2699 * We now have an iclog that is in either the
2700 * DO_CALLBACK or DONE_SYNC states. The other
2701 * states (WANT_SYNC, SYNCING, or CALLBACK were
2702 * caught by the above if and are going to
2703 * clean (i.e. we aren't doing their callbacks)
2704 * see the above if.
2705 */
2706
2707 /*
2708 * We will do one more check here to see if we
2709 * have chased our tail around.
2710 */
2711
2712 lowest_lsn = xlog_get_lowest_lsn(log);
2713 if (lowest_lsn &&
2714 XFS_LSN_CMP(lowest_lsn,
2715 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2716 iclog = iclog->ic_next;
2717 continue; /* Leave this iclog for
2718 * another thread */
2719 }
2720
2721 iclog->ic_state = XLOG_STATE_CALLBACK;
2722
2723
2724 /*
2725 * Completion of a iclog IO does not imply that
2726 * a transaction has completed, as transactions
2727 * can be large enough to span many iclogs. We
2728 * cannot change the tail of the log half way
2729 * through a transaction as this may be the only
2730 * transaction in the log and moving th etail to
2731 * point to the middle of it will prevent
2732 * recovery from finding the start of the
2733 * transaction. Hence we should only update the
2734 * last_sync_lsn if this iclog contains
2735 * transaction completion callbacks on it.
2736 *
2737 * We have to do this before we drop the
2738 * icloglock to ensure we are the only one that
2739 * can update it.
2740 */
2741 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2742 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2743 if (iclog->ic_callback)
2744 atomic64_set(&log->l_last_sync_lsn,
2745 be64_to_cpu(iclog->ic_header.h_lsn));
2746
2747 } else
2748 ioerrors++;
2749
2750 spin_unlock(&log->l_icloglock);
2751
2752 /*
2753 * Keep processing entries in the callback list until
2754 * we come around and it is empty. We need to
2755 * atomically see that the list is empty and change the
2756 * state to DIRTY so that we don't miss any more
2757 * callbacks being added.
2758 */
2759 spin_lock(&iclog->ic_callback_lock);
2760 cb = iclog->ic_callback;
2761 while (cb) {
2762 iclog->ic_callback_tail = &(iclog->ic_callback);
2763 iclog->ic_callback = NULL;
2764 spin_unlock(&iclog->ic_callback_lock);
2765
2766 /* perform callbacks in the order given */
2767 for (; cb; cb = cb_next) {
2768 cb_next = cb->cb_next;
2769 cb->cb_func(cb->cb_arg, aborted);
2770 }
2771 spin_lock(&iclog->ic_callback_lock);
2772 cb = iclog->ic_callback;
2773 }
2774
2775 loopdidcallbacks++;
2776 funcdidcallbacks++;
2777
2778 spin_lock(&log->l_icloglock);
2779 ASSERT(iclog->ic_callback == NULL);
2780 spin_unlock(&iclog->ic_callback_lock);
2781 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2782 iclog->ic_state = XLOG_STATE_DIRTY;
2783
2784 /*
2785 * Transition from DIRTY to ACTIVE if applicable.
2786 * NOP if STATE_IOERROR.
2787 */
2788 xlog_state_clean_log(log);
2789
2790 /* wake up threads waiting in xfs_log_force() */
2791 wake_up_all(&iclog->ic_force_wait);
2792
2793 iclog = iclog->ic_next;
2794 } while (first_iclog != iclog);
2795
2796 if (repeats > 5000) {
2797 flushcnt += repeats;
2798 repeats = 0;
2799 xfs_warn(log->l_mp,
2800 "%s: possible infinite loop (%d iterations)",
2801 __func__, flushcnt);
2802 }
2803 } while (!ioerrors && loopdidcallbacks);
2804
2805 #ifdef DEBUG
2806 /*
2807 * Make one last gasp attempt to see if iclogs are being left in limbo.
2808 * If the above loop finds an iclog earlier than the current iclog and
2809 * in one of the syncing states, the current iclog is put into
2810 * DO_CALLBACK and the callbacks are deferred to the completion of the
2811 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2812 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2813 * states.
2814 *
2815 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2816 * for ic_state == SYNCING.
2817 */
2818 if (funcdidcallbacks) {
2819 first_iclog = iclog = log->l_iclog;
2820 do {
2821 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2822 /*
2823 * Terminate the loop if iclogs are found in states
2824 * which will cause other threads to clean up iclogs.
2825 *
2826 * SYNCING - i/o completion will go through logs
2827 * DONE_SYNC - interrupt thread should be waiting for
2828 * l_icloglock
2829 * IOERROR - give up hope all ye who enter here
2830 */
2831 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2832 iclog->ic_state & XLOG_STATE_SYNCING ||
2833 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2834 iclog->ic_state == XLOG_STATE_IOERROR )
2835 break;
2836 iclog = iclog->ic_next;
2837 } while (first_iclog != iclog);
2838 }
2839 #endif
2840
2841 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2842 wake = 1;
2843 spin_unlock(&log->l_icloglock);
2844
2845 if (wake)
2846 wake_up_all(&log->l_flush_wait);
2847 }
2848
2849
2850 /*
2851 * Finish transitioning this iclog to the dirty state.
2852 *
2853 * Make sure that we completely execute this routine only when this is
2854 * the last call to the iclog. There is a good chance that iclog flushes,
2855 * when we reach the end of the physical log, get turned into 2 separate
2856 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2857 * routine. By using the reference count bwritecnt, we guarantee that only
2858 * the second completion goes through.
2859 *
2860 * Callbacks could take time, so they are done outside the scope of the
2861 * global state machine log lock.
2862 */
2863 STATIC void
2864 xlog_state_done_syncing(
2865 xlog_in_core_t *iclog,
2866 int aborted)
2867 {
2868 struct xlog *log = iclog->ic_log;
2869
2870 spin_lock(&log->l_icloglock);
2871
2872 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2873 iclog->ic_state == XLOG_STATE_IOERROR);
2874 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2875 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2876
2877
2878 /*
2879 * If we got an error, either on the first buffer, or in the case of
2880 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2881 * and none should ever be attempted to be written to disk
2882 * again.
2883 */
2884 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2885 if (--iclog->ic_bwritecnt == 1) {
2886 spin_unlock(&log->l_icloglock);
2887 return;
2888 }
2889 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2890 }
2891
2892 /*
2893 * Someone could be sleeping prior to writing out the next
2894 * iclog buffer, we wake them all, one will get to do the
2895 * I/O, the others get to wait for the result.
2896 */
2897 wake_up_all(&iclog->ic_write_wait);
2898 spin_unlock(&log->l_icloglock);
2899 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2900 } /* xlog_state_done_syncing */
2901
2902
2903 /*
2904 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2905 * sleep. We wait on the flush queue on the head iclog as that should be
2906 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2907 * we will wait here and all new writes will sleep until a sync completes.
2908 *
2909 * The in-core logs are used in a circular fashion. They are not used
2910 * out-of-order even when an iclog past the head is free.
2911 *
2912 * return:
2913 * * log_offset where xlog_write() can start writing into the in-core
2914 * log's data space.
2915 * * in-core log pointer to which xlog_write() should write.
2916 * * boolean indicating this is a continued write to an in-core log.
2917 * If this is the last write, then the in-core log's offset field
2918 * needs to be incremented, depending on the amount of data which
2919 * is copied.
2920 */
2921 STATIC int
2922 xlog_state_get_iclog_space(
2923 struct xlog *log,
2924 int len,
2925 struct xlog_in_core **iclogp,
2926 struct xlog_ticket *ticket,
2927 int *continued_write,
2928 int *logoffsetp)
2929 {
2930 int log_offset;
2931 xlog_rec_header_t *head;
2932 xlog_in_core_t *iclog;
2933 int error;
2934
2935 restart:
2936 spin_lock(&log->l_icloglock);
2937 if (XLOG_FORCED_SHUTDOWN(log)) {
2938 spin_unlock(&log->l_icloglock);
2939 return -EIO;
2940 }
2941
2942 iclog = log->l_iclog;
2943 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2944 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2945
2946 /* Wait for log writes to have flushed */
2947 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2948 goto restart;
2949 }
2950
2951 head = &iclog->ic_header;
2952
2953 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2954 log_offset = iclog->ic_offset;
2955
2956 /* On the 1st write to an iclog, figure out lsn. This works
2957 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2958 * committing to. If the offset is set, that's how many blocks
2959 * must be written.
2960 */
2961 if (log_offset == 0) {
2962 ticket->t_curr_res -= log->l_iclog_hsize;
2963 xlog_tic_add_region(ticket,
2964 log->l_iclog_hsize,
2965 XLOG_REG_TYPE_LRHEADER);
2966 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2967 head->h_lsn = cpu_to_be64(
2968 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2969 ASSERT(log->l_curr_block >= 0);
2970 }
2971
2972 /* If there is enough room to write everything, then do it. Otherwise,
2973 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2974 * bit is on, so this will get flushed out. Don't update ic_offset
2975 * until you know exactly how many bytes get copied. Therefore, wait
2976 * until later to update ic_offset.
2977 *
2978 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2979 * can fit into remaining data section.
2980 */
2981 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2982 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2983
2984 /*
2985 * If I'm the only one writing to this iclog, sync it to disk.
2986 * We need to do an atomic compare and decrement here to avoid
2987 * racing with concurrent atomic_dec_and_lock() calls in
2988 * xlog_state_release_iclog() when there is more than one
2989 * reference to the iclog.
2990 */
2991 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2992 /* we are the only one */
2993 spin_unlock(&log->l_icloglock);
2994 error = xlog_state_release_iclog(log, iclog);
2995 if (error)
2996 return error;
2997 } else {
2998 spin_unlock(&log->l_icloglock);
2999 }
3000 goto restart;
3001 }
3002
3003 /* Do we have enough room to write the full amount in the remainder
3004 * of this iclog? Or must we continue a write on the next iclog and
3005 * mark this iclog as completely taken? In the case where we switch
3006 * iclogs (to mark it taken), this particular iclog will release/sync
3007 * to disk in xlog_write().
3008 */
3009 if (len <= iclog->ic_size - iclog->ic_offset) {
3010 *continued_write = 0;
3011 iclog->ic_offset += len;
3012 } else {
3013 *continued_write = 1;
3014 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3015 }
3016 *iclogp = iclog;
3017
3018 ASSERT(iclog->ic_offset <= iclog->ic_size);
3019 spin_unlock(&log->l_icloglock);
3020
3021 *logoffsetp = log_offset;
3022 return 0;
3023 } /* xlog_state_get_iclog_space */
3024
3025 /* The first cnt-1 times through here we don't need to
3026 * move the grant write head because the permanent
3027 * reservation has reserved cnt times the unit amount.
3028 * Release part of current permanent unit reservation and
3029 * reset current reservation to be one units worth. Also
3030 * move grant reservation head forward.
3031 */
3032 STATIC void
3033 xlog_regrant_reserve_log_space(
3034 struct xlog *log,
3035 struct xlog_ticket *ticket)
3036 {
3037 trace_xfs_log_regrant_reserve_enter(log, ticket);
3038
3039 if (ticket->t_cnt > 0)
3040 ticket->t_cnt--;
3041
3042 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3043 ticket->t_curr_res);
3044 xlog_grant_sub_space(log, &log->l_write_head.grant,
3045 ticket->t_curr_res);
3046 ticket->t_curr_res = ticket->t_unit_res;
3047 xlog_tic_reset_res(ticket);
3048
3049 trace_xfs_log_regrant_reserve_sub(log, ticket);
3050
3051 /* just return if we still have some of the pre-reserved space */
3052 if (ticket->t_cnt > 0)
3053 return;
3054
3055 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3056 ticket->t_unit_res);
3057
3058 trace_xfs_log_regrant_reserve_exit(log, ticket);
3059
3060 ticket->t_curr_res = ticket->t_unit_res;
3061 xlog_tic_reset_res(ticket);
3062 } /* xlog_regrant_reserve_log_space */
3063
3064
3065 /*
3066 * Give back the space left from a reservation.
3067 *
3068 * All the information we need to make a correct determination of space left
3069 * is present. For non-permanent reservations, things are quite easy. The
3070 * count should have been decremented to zero. We only need to deal with the
3071 * space remaining in the current reservation part of the ticket. If the
3072 * ticket contains a permanent reservation, there may be left over space which
3073 * needs to be released. A count of N means that N-1 refills of the current
3074 * reservation can be done before we need to ask for more space. The first
3075 * one goes to fill up the first current reservation. Once we run out of
3076 * space, the count will stay at zero and the only space remaining will be
3077 * in the current reservation field.
3078 */
3079 STATIC void
3080 xlog_ungrant_log_space(
3081 struct xlog *log,
3082 struct xlog_ticket *ticket)
3083 {
3084 int bytes;
3085
3086 if (ticket->t_cnt > 0)
3087 ticket->t_cnt--;
3088
3089 trace_xfs_log_ungrant_enter(log, ticket);
3090 trace_xfs_log_ungrant_sub(log, ticket);
3091
3092 /*
3093 * If this is a permanent reservation ticket, we may be able to free
3094 * up more space based on the remaining count.
3095 */
3096 bytes = ticket->t_curr_res;
3097 if (ticket->t_cnt > 0) {
3098 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3099 bytes += ticket->t_unit_res*ticket->t_cnt;
3100 }
3101
3102 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3103 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3104
3105 trace_xfs_log_ungrant_exit(log, ticket);
3106
3107 xfs_log_space_wake(log->l_mp);
3108 }
3109
3110 /*
3111 * Flush iclog to disk if this is the last reference to the given iclog and
3112 * the WANT_SYNC bit is set.
3113 *
3114 * When this function is entered, the iclog is not necessarily in the
3115 * WANT_SYNC state. It may be sitting around waiting to get filled.
3116 *
3117 *
3118 */
3119 STATIC int
3120 xlog_state_release_iclog(
3121 struct xlog *log,
3122 struct xlog_in_core *iclog)
3123 {
3124 int sync = 0; /* do we sync? */
3125
3126 if (iclog->ic_state & XLOG_STATE_IOERROR)
3127 return -EIO;
3128
3129 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3130 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3131 return 0;
3132
3133 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3134 spin_unlock(&log->l_icloglock);
3135 return -EIO;
3136 }
3137 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3138 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3139
3140 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3141 /* update tail before writing to iclog */
3142 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3143 sync++;
3144 iclog->ic_state = XLOG_STATE_SYNCING;
3145 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3146 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3147 /* cycle incremented when incrementing curr_block */
3148 }
3149 spin_unlock(&log->l_icloglock);
3150
3151 /*
3152 * We let the log lock go, so it's possible that we hit a log I/O
3153 * error or some other SHUTDOWN condition that marks the iclog
3154 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3155 * this iclog has consistent data, so we ignore IOERROR
3156 * flags after this point.
3157 */
3158 if (sync)
3159 return xlog_sync(log, iclog);
3160 return 0;
3161 } /* xlog_state_release_iclog */
3162
3163
3164 /*
3165 * This routine will mark the current iclog in the ring as WANT_SYNC
3166 * and move the current iclog pointer to the next iclog in the ring.
3167 * When this routine is called from xlog_state_get_iclog_space(), the
3168 * exact size of the iclog has not yet been determined. All we know is
3169 * that every data block. We have run out of space in this log record.
3170 */
3171 STATIC void
3172 xlog_state_switch_iclogs(
3173 struct xlog *log,
3174 struct xlog_in_core *iclog,
3175 int eventual_size)
3176 {
3177 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3178 if (!eventual_size)
3179 eventual_size = iclog->ic_offset;
3180 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3181 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3182 log->l_prev_block = log->l_curr_block;
3183 log->l_prev_cycle = log->l_curr_cycle;
3184
3185 /* roll log?: ic_offset changed later */
3186 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3187
3188 /* Round up to next log-sunit */
3189 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3190 log->l_mp->m_sb.sb_logsunit > 1) {
3191 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3192 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3193 }
3194
3195 if (log->l_curr_block >= log->l_logBBsize) {
3196 /*
3197 * Rewind the current block before the cycle is bumped to make
3198 * sure that the combined LSN never transiently moves forward
3199 * when the log wraps to the next cycle. This is to support the
3200 * unlocked sample of these fields from xlog_valid_lsn(). Most
3201 * other cases should acquire l_icloglock.
3202 */
3203 log->l_curr_block -= log->l_logBBsize;
3204 ASSERT(log->l_curr_block >= 0);
3205 smp_wmb();
3206 log->l_curr_cycle++;
3207 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3208 log->l_curr_cycle++;
3209 }
3210 ASSERT(iclog == log->l_iclog);
3211 log->l_iclog = iclog->ic_next;
3212 } /* xlog_state_switch_iclogs */
3213
3214 /*
3215 * Write out all data in the in-core log as of this exact moment in time.
3216 *
3217 * Data may be written to the in-core log during this call. However,
3218 * we don't guarantee this data will be written out. A change from past
3219 * implementation means this routine will *not* write out zero length LRs.
3220 *
3221 * Basically, we try and perform an intelligent scan of the in-core logs.
3222 * If we determine there is no flushable data, we just return. There is no
3223 * flushable data if:
3224 *
3225 * 1. the current iclog is active and has no data; the previous iclog
3226 * is in the active or dirty state.
3227 * 2. the current iclog is drity, and the previous iclog is in the
3228 * active or dirty state.
3229 *
3230 * We may sleep if:
3231 *
3232 * 1. the current iclog is not in the active nor dirty state.
3233 * 2. the current iclog dirty, and the previous iclog is not in the
3234 * active nor dirty state.
3235 * 3. the current iclog is active, and there is another thread writing
3236 * to this particular iclog.
3237 * 4. a) the current iclog is active and has no other writers
3238 * b) when we return from flushing out this iclog, it is still
3239 * not in the active nor dirty state.
3240 */
3241 int
3242 _xfs_log_force(
3243 struct xfs_mount *mp,
3244 uint flags,
3245 int *log_flushed)
3246 {
3247 struct xlog *log = mp->m_log;
3248 struct xlog_in_core *iclog;
3249 xfs_lsn_t lsn;
3250
3251 XFS_STATS_INC(mp, xs_log_force);
3252
3253 xlog_cil_force(log);
3254
3255 spin_lock(&log->l_icloglock);
3256
3257 iclog = log->l_iclog;
3258 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3259 spin_unlock(&log->l_icloglock);
3260 return -EIO;
3261 }
3262
3263 /* If the head iclog is not active nor dirty, we just attach
3264 * ourselves to the head and go to sleep.
3265 */
3266 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3267 iclog->ic_state == XLOG_STATE_DIRTY) {
3268 /*
3269 * If the head is dirty or (active and empty), then
3270 * we need to look at the previous iclog. If the previous
3271 * iclog is active or dirty we are done. There is nothing
3272 * to sync out. Otherwise, we attach ourselves to the
3273 * previous iclog and go to sleep.
3274 */
3275 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3276 (atomic_read(&iclog->ic_refcnt) == 0
3277 && iclog->ic_offset == 0)) {
3278 iclog = iclog->ic_prev;
3279 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3280 iclog->ic_state == XLOG_STATE_DIRTY)
3281 goto no_sleep;
3282 else
3283 goto maybe_sleep;
3284 } else {
3285 if (atomic_read(&iclog->ic_refcnt) == 0) {
3286 /* We are the only one with access to this
3287 * iclog. Flush it out now. There should
3288 * be a roundoff of zero to show that someone
3289 * has already taken care of the roundoff from
3290 * the previous sync.
3291 */
3292 atomic_inc(&iclog->ic_refcnt);
3293 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3294 xlog_state_switch_iclogs(log, iclog, 0);
3295 spin_unlock(&log->l_icloglock);
3296
3297 if (xlog_state_release_iclog(log, iclog))
3298 return -EIO;
3299
3300 if (log_flushed)
3301 *log_flushed = 1;
3302 spin_lock(&log->l_icloglock);
3303 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3304 iclog->ic_state != XLOG_STATE_DIRTY)
3305 goto maybe_sleep;
3306 else
3307 goto no_sleep;
3308 } else {
3309 /* Someone else is writing to this iclog.
3310 * Use its call to flush out the data. However,
3311 * the other thread may not force out this LR,
3312 * so we mark it WANT_SYNC.
3313 */
3314 xlog_state_switch_iclogs(log, iclog, 0);
3315 goto maybe_sleep;
3316 }
3317 }
3318 }
3319
3320 /* By the time we come around again, the iclog could've been filled
3321 * which would give it another lsn. If we have a new lsn, just
3322 * return because the relevant data has been flushed.
3323 */
3324 maybe_sleep:
3325 if (flags & XFS_LOG_SYNC) {
3326 /*
3327 * We must check if we're shutting down here, before
3328 * we wait, while we're holding the l_icloglock.
3329 * Then we check again after waking up, in case our
3330 * sleep was disturbed by a bad news.
3331 */
3332 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3333 spin_unlock(&log->l_icloglock);
3334 return -EIO;
3335 }
3336 XFS_STATS_INC(mp, xs_log_force_sleep);
3337 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3338 /*
3339 * No need to grab the log lock here since we're
3340 * only deciding whether or not to return EIO
3341 * and the memory read should be atomic.
3342 */
3343 if (iclog->ic_state & XLOG_STATE_IOERROR)
3344 return -EIO;
3345 if (log_flushed)
3346 *log_flushed = 1;
3347 } else {
3348
3349 no_sleep:
3350 spin_unlock(&log->l_icloglock);
3351 }
3352 return 0;
3353 }
3354
3355 /*
3356 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3357 * about errors or whether the log was flushed or not. This is the normal
3358 * interface to use when trying to unpin items or move the log forward.
3359 */
3360 void
3361 xfs_log_force(
3362 xfs_mount_t *mp,
3363 uint flags)
3364 {
3365 trace_xfs_log_force(mp, 0, _RET_IP_);
3366 _xfs_log_force(mp, flags, NULL);
3367 }
3368
3369 /*
3370 * Force the in-core log to disk for a specific LSN.
3371 *
3372 * Find in-core log with lsn.
3373 * If it is in the DIRTY state, just return.
3374 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3375 * state and go to sleep or return.
3376 * If it is in any other state, go to sleep or return.
3377 *
3378 * Synchronous forces are implemented with a signal variable. All callers
3379 * to force a given lsn to disk will wait on a the sv attached to the
3380 * specific in-core log. When given in-core log finally completes its
3381 * write to disk, that thread will wake up all threads waiting on the
3382 * sv.
3383 */
3384 int
3385 _xfs_log_force_lsn(
3386 struct xfs_mount *mp,
3387 xfs_lsn_t lsn,
3388 uint flags,
3389 int *log_flushed)
3390 {
3391 struct xlog *log = mp->m_log;
3392 struct xlog_in_core *iclog;
3393 int already_slept = 0;
3394
3395 ASSERT(lsn != 0);
3396
3397 XFS_STATS_INC(mp, xs_log_force);
3398
3399 lsn = xlog_cil_force_lsn(log, lsn);
3400 if (lsn == NULLCOMMITLSN)
3401 return 0;
3402
3403 try_again:
3404 spin_lock(&log->l_icloglock);
3405 iclog = log->l_iclog;
3406 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3407 spin_unlock(&log->l_icloglock);
3408 return -EIO;
3409 }
3410
3411 do {
3412 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3413 iclog = iclog->ic_next;
3414 continue;
3415 }
3416
3417 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3418 spin_unlock(&log->l_icloglock);
3419 return 0;
3420 }
3421
3422 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3423 /*
3424 * We sleep here if we haven't already slept (e.g.
3425 * this is the first time we've looked at the correct
3426 * iclog buf) and the buffer before us is going to
3427 * be sync'ed. The reason for this is that if we
3428 * are doing sync transactions here, by waiting for
3429 * the previous I/O to complete, we can allow a few
3430 * more transactions into this iclog before we close
3431 * it down.
3432 *
3433 * Otherwise, we mark the buffer WANT_SYNC, and bump
3434 * up the refcnt so we can release the log (which
3435 * drops the ref count). The state switch keeps new
3436 * transaction commits from using this buffer. When
3437 * the current commits finish writing into the buffer,
3438 * the refcount will drop to zero and the buffer will
3439 * go out then.
3440 */
3441 if (!already_slept &&
3442 (iclog->ic_prev->ic_state &
3443 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3444 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3445
3446 XFS_STATS_INC(mp, xs_log_force_sleep);
3447
3448 xlog_wait(&iclog->ic_prev->ic_write_wait,
3449 &log->l_icloglock);
3450 if (log_flushed)
3451 *log_flushed = 1;
3452 already_slept = 1;
3453 goto try_again;
3454 }
3455 atomic_inc(&iclog->ic_refcnt);
3456 xlog_state_switch_iclogs(log, iclog, 0);
3457 spin_unlock(&log->l_icloglock);
3458 if (xlog_state_release_iclog(log, iclog))
3459 return -EIO;
3460 if (log_flushed)
3461 *log_flushed = 1;
3462 spin_lock(&log->l_icloglock);
3463 }
3464
3465 if ((flags & XFS_LOG_SYNC) && /* sleep */
3466 !(iclog->ic_state &
3467 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3468 /*
3469 * Don't wait on completion if we know that we've
3470 * gotten a log write error.
3471 */
3472 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3473 spin_unlock(&log->l_icloglock);
3474 return -EIO;
3475 }
3476 XFS_STATS_INC(mp, xs_log_force_sleep);
3477 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3478 /*
3479 * No need to grab the log lock here since we're
3480 * only deciding whether or not to return EIO
3481 * and the memory read should be atomic.
3482 */
3483 if (iclog->ic_state & XLOG_STATE_IOERROR)
3484 return -EIO;
3485
3486 if (log_flushed)
3487 *log_flushed = 1;
3488 } else { /* just return */
3489 spin_unlock(&log->l_icloglock);
3490 }
3491
3492 return 0;
3493 } while (iclog != log->l_iclog);
3494
3495 spin_unlock(&log->l_icloglock);
3496 return 0;
3497 }
3498
3499 /*
3500 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3501 * about errors or whether the log was flushed or not. This is the normal
3502 * interface to use when trying to unpin items or move the log forward.
3503 */
3504 void
3505 xfs_log_force_lsn(
3506 xfs_mount_t *mp,
3507 xfs_lsn_t lsn,
3508 uint flags)
3509 {
3510 trace_xfs_log_force(mp, lsn, _RET_IP_);
3511 _xfs_log_force_lsn(mp, lsn, flags, NULL);
3512 }
3513
3514 /*
3515 * Called when we want to mark the current iclog as being ready to sync to
3516 * disk.
3517 */
3518 STATIC void
3519 xlog_state_want_sync(
3520 struct xlog *log,
3521 struct xlog_in_core *iclog)
3522 {
3523 assert_spin_locked(&log->l_icloglock);
3524
3525 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3526 xlog_state_switch_iclogs(log, iclog, 0);
3527 } else {
3528 ASSERT(iclog->ic_state &
3529 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3530 }
3531 }
3532
3533
3534 /*****************************************************************************
3535 *
3536 * TICKET functions
3537 *
3538 *****************************************************************************
3539 */
3540
3541 /*
3542 * Free a used ticket when its refcount falls to zero.
3543 */
3544 void
3545 xfs_log_ticket_put(
3546 xlog_ticket_t *ticket)
3547 {
3548 ASSERT(atomic_read(&ticket->t_ref) > 0);
3549 if (atomic_dec_and_test(&ticket->t_ref))
3550 kmem_zone_free(xfs_log_ticket_zone, ticket);
3551 }
3552
3553 xlog_ticket_t *
3554 xfs_log_ticket_get(
3555 xlog_ticket_t *ticket)
3556 {
3557 ASSERT(atomic_read(&ticket->t_ref) > 0);
3558 atomic_inc(&ticket->t_ref);
3559 return ticket;
3560 }
3561
3562 /*
3563 * Figure out the total log space unit (in bytes) that would be
3564 * required for a log ticket.
3565 */
3566 int
3567 xfs_log_calc_unit_res(
3568 struct xfs_mount *mp,
3569 int unit_bytes)
3570 {
3571 struct xlog *log = mp->m_log;
3572 int iclog_space;
3573 uint num_headers;
3574
3575 /*
3576 * Permanent reservations have up to 'cnt'-1 active log operations
3577 * in the log. A unit in this case is the amount of space for one
3578 * of these log operations. Normal reservations have a cnt of 1
3579 * and their unit amount is the total amount of space required.
3580 *
3581 * The following lines of code account for non-transaction data
3582 * which occupy space in the on-disk log.
3583 *
3584 * Normal form of a transaction is:
3585 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3586 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3587 *
3588 * We need to account for all the leadup data and trailer data
3589 * around the transaction data.
3590 * And then we need to account for the worst case in terms of using
3591 * more space.
3592 * The worst case will happen if:
3593 * - the placement of the transaction happens to be such that the
3594 * roundoff is at its maximum
3595 * - the transaction data is synced before the commit record is synced
3596 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3597 * Therefore the commit record is in its own Log Record.
3598 * This can happen as the commit record is called with its
3599 * own region to xlog_write().
3600 * This then means that in the worst case, roundoff can happen for
3601 * the commit-rec as well.
3602 * The commit-rec is smaller than padding in this scenario and so it is
3603 * not added separately.
3604 */
3605
3606 /* for trans header */
3607 unit_bytes += sizeof(xlog_op_header_t);
3608 unit_bytes += sizeof(xfs_trans_header_t);
3609
3610 /* for start-rec */
3611 unit_bytes += sizeof(xlog_op_header_t);
3612
3613 /*
3614 * for LR headers - the space for data in an iclog is the size minus
3615 * the space used for the headers. If we use the iclog size, then we
3616 * undercalculate the number of headers required.
3617 *
3618 * Furthermore - the addition of op headers for split-recs might
3619 * increase the space required enough to require more log and op
3620 * headers, so take that into account too.
3621 *
3622 * IMPORTANT: This reservation makes the assumption that if this
3623 * transaction is the first in an iclog and hence has the LR headers
3624 * accounted to it, then the remaining space in the iclog is
3625 * exclusively for this transaction. i.e. if the transaction is larger
3626 * than the iclog, it will be the only thing in that iclog.
3627 * Fundamentally, this means we must pass the entire log vector to
3628 * xlog_write to guarantee this.
3629 */
3630 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3631 num_headers = howmany(unit_bytes, iclog_space);
3632
3633 /* for split-recs - ophdrs added when data split over LRs */
3634 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3635
3636 /* add extra header reservations if we overrun */
3637 while (!num_headers ||
3638 howmany(unit_bytes, iclog_space) > num_headers) {
3639 unit_bytes += sizeof(xlog_op_header_t);
3640 num_headers++;
3641 }
3642 unit_bytes += log->l_iclog_hsize * num_headers;
3643
3644 /* for commit-rec LR header - note: padding will subsume the ophdr */
3645 unit_bytes += log->l_iclog_hsize;
3646
3647 /* for roundoff padding for transaction data and one for commit record */
3648 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3649 /* log su roundoff */
3650 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3651 } else {
3652 /* BB roundoff */
3653 unit_bytes += 2 * BBSIZE;
3654 }
3655
3656 return unit_bytes;
3657 }
3658
3659 /*
3660 * Allocate and initialise a new log ticket.
3661 */
3662 struct xlog_ticket *
3663 xlog_ticket_alloc(
3664 struct xlog *log,
3665 int unit_bytes,
3666 int cnt,
3667 char client,
3668 bool permanent,
3669 xfs_km_flags_t alloc_flags)
3670 {
3671 struct xlog_ticket *tic;
3672 int unit_res;
3673
3674 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3675 if (!tic)
3676 return NULL;
3677
3678 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3679
3680 atomic_set(&tic->t_ref, 1);
3681 tic->t_task = current;
3682 INIT_LIST_HEAD(&tic->t_queue);
3683 tic->t_unit_res = unit_res;
3684 tic->t_curr_res = unit_res;
3685 tic->t_cnt = cnt;
3686 tic->t_ocnt = cnt;
3687 tic->t_tid = prandom_u32();
3688 tic->t_clientid = client;
3689 tic->t_flags = XLOG_TIC_INITED;
3690 if (permanent)
3691 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3692
3693 xlog_tic_reset_res(tic);
3694
3695 return tic;
3696 }
3697
3698
3699 /******************************************************************************
3700 *
3701 * Log debug routines
3702 *
3703 ******************************************************************************
3704 */
3705 #if defined(DEBUG)
3706 /*
3707 * Make sure that the destination ptr is within the valid data region of
3708 * one of the iclogs. This uses backup pointers stored in a different
3709 * part of the log in case we trash the log structure.
3710 */
3711 void
3712 xlog_verify_dest_ptr(
3713 struct xlog *log,
3714 void *ptr)
3715 {
3716 int i;
3717 int good_ptr = 0;
3718
3719 for (i = 0; i < log->l_iclog_bufs; i++) {
3720 if (ptr >= log->l_iclog_bak[i] &&
3721 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3722 good_ptr++;
3723 }
3724
3725 if (!good_ptr)
3726 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3727 }
3728
3729 /*
3730 * Check to make sure the grant write head didn't just over lap the tail. If
3731 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3732 * the cycles differ by exactly one and check the byte count.
3733 *
3734 * This check is run unlocked, so can give false positives. Rather than assert
3735 * on failures, use a warn-once flag and a panic tag to allow the admin to
3736 * determine if they want to panic the machine when such an error occurs. For
3737 * debug kernels this will have the same effect as using an assert but, unlinke
3738 * an assert, it can be turned off at runtime.
3739 */
3740 STATIC void
3741 xlog_verify_grant_tail(
3742 struct xlog *log)
3743 {
3744 int tail_cycle, tail_blocks;
3745 int cycle, space;
3746
3747 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3748 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3749 if (tail_cycle != cycle) {
3750 if (cycle - 1 != tail_cycle &&
3751 !(log->l_flags & XLOG_TAIL_WARN)) {
3752 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3753 "%s: cycle - 1 != tail_cycle", __func__);
3754 log->l_flags |= XLOG_TAIL_WARN;
3755 }
3756
3757 if (space > BBTOB(tail_blocks) &&
3758 !(log->l_flags & XLOG_TAIL_WARN)) {
3759 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3760 "%s: space > BBTOB(tail_blocks)", __func__);
3761 log->l_flags |= XLOG_TAIL_WARN;
3762 }
3763 }
3764 }
3765
3766 /* check if it will fit */
3767 STATIC void
3768 xlog_verify_tail_lsn(
3769 struct xlog *log,
3770 struct xlog_in_core *iclog,
3771 xfs_lsn_t tail_lsn)
3772 {
3773 int blocks;
3774
3775 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3776 blocks =
3777 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3778 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3779 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3780 } else {
3781 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3782
3783 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3784 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3785
3786 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3787 if (blocks < BTOBB(iclog->ic_offset) + 1)
3788 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3789 }
3790 } /* xlog_verify_tail_lsn */
3791
3792 /*
3793 * Perform a number of checks on the iclog before writing to disk.
3794 *
3795 * 1. Make sure the iclogs are still circular
3796 * 2. Make sure we have a good magic number
3797 * 3. Make sure we don't have magic numbers in the data
3798 * 4. Check fields of each log operation header for:
3799 * A. Valid client identifier
3800 * B. tid ptr value falls in valid ptr space (user space code)
3801 * C. Length in log record header is correct according to the
3802 * individual operation headers within record.
3803 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3804 * log, check the preceding blocks of the physical log to make sure all
3805 * the cycle numbers agree with the current cycle number.
3806 */
3807 STATIC void
3808 xlog_verify_iclog(
3809 struct xlog *log,
3810 struct xlog_in_core *iclog,
3811 int count,
3812 bool syncing)
3813 {
3814 xlog_op_header_t *ophead;
3815 xlog_in_core_t *icptr;
3816 xlog_in_core_2_t *xhdr;
3817 void *base_ptr, *ptr, *p;
3818 ptrdiff_t field_offset;
3819 uint8_t clientid;
3820 int len, i, j, k, op_len;
3821 int idx;
3822
3823 /* check validity of iclog pointers */
3824 spin_lock(&log->l_icloglock);
3825 icptr = log->l_iclog;
3826 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3827 ASSERT(icptr);
3828
3829 if (icptr != log->l_iclog)
3830 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3831 spin_unlock(&log->l_icloglock);
3832
3833 /* check log magic numbers */
3834 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3835 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3836
3837 base_ptr = ptr = &iclog->ic_header;
3838 p = &iclog->ic_header;
3839 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3840 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3841 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3842 __func__);
3843 }
3844
3845 /* check fields */
3846 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3847 base_ptr = ptr = iclog->ic_datap;
3848 ophead = ptr;
3849 xhdr = iclog->ic_data;
3850 for (i = 0; i < len; i++) {
3851 ophead = ptr;
3852
3853 /* clientid is only 1 byte */
3854 p = &ophead->oh_clientid;
3855 field_offset = p - base_ptr;
3856 if (!syncing || (field_offset & 0x1ff)) {
3857 clientid = ophead->oh_clientid;
3858 } else {
3859 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3860 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3861 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3862 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3863 clientid = xlog_get_client_id(
3864 xhdr[j].hic_xheader.xh_cycle_data[k]);
3865 } else {
3866 clientid = xlog_get_client_id(
3867 iclog->ic_header.h_cycle_data[idx]);
3868 }
3869 }
3870 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3871 xfs_warn(log->l_mp,
3872 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3873 __func__, clientid, ophead,
3874 (unsigned long)field_offset);
3875
3876 /* check length */
3877 p = &ophead->oh_len;
3878 field_offset = p - base_ptr;
3879 if (!syncing || (field_offset & 0x1ff)) {
3880 op_len = be32_to_cpu(ophead->oh_len);
3881 } else {
3882 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3883 (uintptr_t)iclog->ic_datap);
3884 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3885 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3886 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3887 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3888 } else {
3889 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3890 }
3891 }
3892 ptr += sizeof(xlog_op_header_t) + op_len;
3893 }
3894 } /* xlog_verify_iclog */
3895 #endif
3896
3897 /*
3898 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3899 */
3900 STATIC int
3901 xlog_state_ioerror(
3902 struct xlog *log)
3903 {
3904 xlog_in_core_t *iclog, *ic;
3905
3906 iclog = log->l_iclog;
3907 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3908 /*
3909 * Mark all the incore logs IOERROR.
3910 * From now on, no log flushes will result.
3911 */
3912 ic = iclog;
3913 do {
3914 ic->ic_state = XLOG_STATE_IOERROR;
3915 ic = ic->ic_next;
3916 } while (ic != iclog);
3917 return 0;
3918 }
3919 /*
3920 * Return non-zero, if state transition has already happened.
3921 */
3922 return 1;
3923 }
3924
3925 /*
3926 * This is called from xfs_force_shutdown, when we're forcibly
3927 * shutting down the filesystem, typically because of an IO error.
3928 * Our main objectives here are to make sure that:
3929 * a. if !logerror, flush the logs to disk. Anything modified
3930 * after this is ignored.
3931 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3932 * parties to find out, 'atomically'.
3933 * c. those who're sleeping on log reservations, pinned objects and
3934 * other resources get woken up, and be told the bad news.
3935 * d. nothing new gets queued up after (b) and (c) are done.
3936 *
3937 * Note: for the !logerror case we need to flush the regions held in memory out
3938 * to disk first. This needs to be done before the log is marked as shutdown,
3939 * otherwise the iclog writes will fail.
3940 */
3941 int
3942 xfs_log_force_umount(
3943 struct xfs_mount *mp,
3944 int logerror)
3945 {
3946 struct xlog *log;
3947 int retval;
3948
3949 log = mp->m_log;
3950
3951 /*
3952 * If this happens during log recovery, don't worry about
3953 * locking; the log isn't open for business yet.
3954 */
3955 if (!log ||
3956 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3957 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3958 if (mp->m_sb_bp)
3959 mp->m_sb_bp->b_flags |= XBF_DONE;
3960 return 0;
3961 }
3962
3963 /*
3964 * Somebody could've already done the hard work for us.
3965 * No need to get locks for this.
3966 */
3967 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3968 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3969 return 1;
3970 }
3971
3972 /*
3973 * Flush all the completed transactions to disk before marking the log
3974 * being shut down. We need to do it in this order to ensure that
3975 * completed operations are safely on disk before we shut down, and that
3976 * we don't have to issue any buffer IO after the shutdown flags are set
3977 * to guarantee this.
3978 */
3979 if (!logerror)
3980 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3981
3982 /*
3983 * mark the filesystem and the as in a shutdown state and wake
3984 * everybody up to tell them the bad news.
3985 */
3986 spin_lock(&log->l_icloglock);
3987 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3988 if (mp->m_sb_bp)
3989 mp->m_sb_bp->b_flags |= XBF_DONE;
3990
3991 /*
3992 * Mark the log and the iclogs with IO error flags to prevent any
3993 * further log IO from being issued or completed.
3994 */
3995 log->l_flags |= XLOG_IO_ERROR;
3996 retval = xlog_state_ioerror(log);
3997 spin_unlock(&log->l_icloglock);
3998
3999 /*
4000 * We don't want anybody waiting for log reservations after this. That
4001 * means we have to wake up everybody queued up on reserveq as well as
4002 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4003 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4004 * action is protected by the grant locks.
4005 */
4006 xlog_grant_head_wake_all(&log->l_reserve_head);
4007 xlog_grant_head_wake_all(&log->l_write_head);
4008
4009 /*
4010 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4011 * as if the log writes were completed. The abort handling in the log
4012 * item committed callback functions will do this again under lock to
4013 * avoid races.
4014 */
4015 wake_up_all(&log->l_cilp->xc_commit_wait);
4016 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4017
4018 #ifdef XFSERRORDEBUG
4019 {
4020 xlog_in_core_t *iclog;
4021
4022 spin_lock(&log->l_icloglock);
4023 iclog = log->l_iclog;
4024 do {
4025 ASSERT(iclog->ic_callback == 0);
4026 iclog = iclog->ic_next;
4027 } while (iclog != log->l_iclog);
4028 spin_unlock(&log->l_icloglock);
4029 }
4030 #endif
4031 /* return non-zero if log IOERROR transition had already happened */
4032 return retval;
4033 }
4034
4035 STATIC int
4036 xlog_iclogs_empty(
4037 struct xlog *log)
4038 {
4039 xlog_in_core_t *iclog;
4040
4041 iclog = log->l_iclog;
4042 do {
4043 /* endianness does not matter here, zero is zero in
4044 * any language.
4045 */
4046 if (iclog->ic_header.h_num_logops)
4047 return 0;
4048 iclog = iclog->ic_next;
4049 } while (iclog != log->l_iclog);
4050 return 1;
4051 }
4052
4053 /*
4054 * Verify that an LSN stamped into a piece of metadata is valid. This is
4055 * intended for use in read verifiers on v5 superblocks.
4056 */
4057 bool
4058 xfs_log_check_lsn(
4059 struct xfs_mount *mp,
4060 xfs_lsn_t lsn)
4061 {
4062 struct xlog *log = mp->m_log;
4063 bool valid;
4064
4065 /*
4066 * norecovery mode skips mount-time log processing and unconditionally
4067 * resets the in-core LSN. We can't validate in this mode, but
4068 * modifications are not allowed anyways so just return true.
4069 */
4070 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4071 return true;
4072
4073 /*
4074 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4075 * handled by recovery and thus safe to ignore here.
4076 */
4077 if (lsn == NULLCOMMITLSN)
4078 return true;
4079
4080 valid = xlog_valid_lsn(mp->m_log, lsn);
4081
4082 /* warn the user about what's gone wrong before verifier failure */
4083 if (!valid) {
4084 spin_lock(&log->l_icloglock);
4085 xfs_warn(mp,
4086 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4087 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4088 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4089 log->l_curr_cycle, log->l_curr_block);
4090 spin_unlock(&log->l_icloglock);
4091 }
4092
4093 return valid;
4094 }