]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_log.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_log.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
37 #include "xfs_sb.h"
38
39 kmem_zone_t *xfs_log_ticket_zone;
40
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44 struct xlog *log,
45 struct xlog_ticket *ticket,
46 struct xlog_in_core **iclog,
47 xfs_lsn_t *commitlsnp);
48
49 STATIC struct xlog *
50 xlog_alloc_log(
51 struct xfs_mount *mp,
52 struct xfs_buftarg *log_target,
53 xfs_daddr_t blk_offset,
54 int num_bblks);
55 STATIC int
56 xlog_space_left(
57 struct xlog *log,
58 atomic64_t *head);
59 STATIC int
60 xlog_sync(
61 struct xlog *log,
62 struct xlog_in_core *iclog);
63 STATIC void
64 xlog_dealloc_log(
65 struct xlog *log);
66
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71 struct xlog *log,
72 int aborted,
73 struct xlog_in_core *iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76 struct xlog *log,
77 int len,
78 struct xlog_in_core **iclog,
79 struct xlog_ticket *ticket,
80 int *continued_write,
81 int *logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84 struct xlog *log,
85 struct xlog_in_core *iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88 struct xlog *log,
89 struct xlog_in_core *iclog,
90 int eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93 struct xlog *log,
94 struct xlog_in_core *iclog);
95
96 STATIC void
97 xlog_grant_push_ail(
98 struct xlog *log,
99 int need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102 struct xlog *log,
103 struct xlog_ticket *ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106 struct xlog *log,
107 struct xlog_ticket *ticket);
108
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112 struct xlog *log,
113 void *ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116 struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119 struct xlog *log,
120 struct xlog_in_core *iclog,
121 int count,
122 bool syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125 struct xlog *log,
126 struct xlog_in_core *iclog,
127 xfs_lsn_t tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134
135 STATIC int
136 xlog_iclogs_empty(
137 struct xlog *log);
138
139 static void
140 xlog_grant_sub_space(
141 struct xlog *log,
142 atomic64_t *head,
143 int bytes)
144 {
145 int64_t head_val = atomic64_read(head);
146 int64_t new, old;
147
148 do {
149 int cycle, space;
150
151 xlog_crack_grant_head_val(head_val, &cycle, &space);
152
153 space -= bytes;
154 if (space < 0) {
155 space += log->l_logsize;
156 cycle--;
157 }
158
159 old = head_val;
160 new = xlog_assign_grant_head_val(cycle, space);
161 head_val = atomic64_cmpxchg(head, old, new);
162 } while (head_val != old);
163 }
164
165 static void
166 xlog_grant_add_space(
167 struct xlog *log,
168 atomic64_t *head,
169 int bytes)
170 {
171 int64_t head_val = atomic64_read(head);
172 int64_t new, old;
173
174 do {
175 int tmp;
176 int cycle, space;
177
178 xlog_crack_grant_head_val(head_val, &cycle, &space);
179
180 tmp = log->l_logsize - space;
181 if (tmp > bytes)
182 space += bytes;
183 else {
184 space = bytes - tmp;
185 cycle++;
186 }
187
188 old = head_val;
189 new = xlog_assign_grant_head_val(cycle, space);
190 head_val = atomic64_cmpxchg(head, old, new);
191 } while (head_val != old);
192 }
193
194 STATIC void
195 xlog_grant_head_init(
196 struct xlog_grant_head *head)
197 {
198 xlog_assign_grant_head(&head->grant, 1, 0);
199 INIT_LIST_HEAD(&head->waiters);
200 spin_lock_init(&head->lock);
201 }
202
203 STATIC void
204 xlog_grant_head_wake_all(
205 struct xlog_grant_head *head)
206 {
207 struct xlog_ticket *tic;
208
209 spin_lock(&head->lock);
210 list_for_each_entry(tic, &head->waiters, t_queue)
211 wake_up_process(tic->t_task);
212 spin_unlock(&head->lock);
213 }
214
215 static inline int
216 xlog_ticket_reservation(
217 struct xlog *log,
218 struct xlog_grant_head *head,
219 struct xlog_ticket *tic)
220 {
221 if (head == &log->l_write_head) {
222 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 return tic->t_unit_res;
224 } else {
225 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226 return tic->t_unit_res * tic->t_cnt;
227 else
228 return tic->t_unit_res;
229 }
230 }
231
232 STATIC bool
233 xlog_grant_head_wake(
234 struct xlog *log,
235 struct xlog_grant_head *head,
236 int *free_bytes)
237 {
238 struct xlog_ticket *tic;
239 int need_bytes;
240
241 list_for_each_entry(tic, &head->waiters, t_queue) {
242 need_bytes = xlog_ticket_reservation(log, head, tic);
243 if (*free_bytes < need_bytes)
244 return false;
245
246 *free_bytes -= need_bytes;
247 trace_xfs_log_grant_wake_up(log, tic);
248 wake_up_process(tic->t_task);
249 }
250
251 return true;
252 }
253
254 STATIC int
255 xlog_grant_head_wait(
256 struct xlog *log,
257 struct xlog_grant_head *head,
258 struct xlog_ticket *tic,
259 int need_bytes) __releases(&head->lock)
260 __acquires(&head->lock)
261 {
262 list_add_tail(&tic->t_queue, &head->waiters);
263
264 do {
265 if (XLOG_FORCED_SHUTDOWN(log))
266 goto shutdown;
267 xlog_grant_push_ail(log, need_bytes);
268
269 __set_current_state(TASK_UNINTERRUPTIBLE);
270 spin_unlock(&head->lock);
271
272 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
273
274 trace_xfs_log_grant_sleep(log, tic);
275 schedule();
276 trace_xfs_log_grant_wake(log, tic);
277
278 spin_lock(&head->lock);
279 if (XLOG_FORCED_SHUTDOWN(log))
280 goto shutdown;
281 } while (xlog_space_left(log, &head->grant) < need_bytes);
282
283 list_del_init(&tic->t_queue);
284 return 0;
285 shutdown:
286 list_del_init(&tic->t_queue);
287 return -EIO;
288 }
289
290 /*
291 * Atomically get the log space required for a log ticket.
292 *
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
295 *
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
299 * every pass.
300 *
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
306 */
307 STATIC int
308 xlog_grant_head_check(
309 struct xlog *log,
310 struct xlog_grant_head *head,
311 struct xlog_ticket *tic,
312 int *need_bytes)
313 {
314 int free_bytes;
315 int error = 0;
316
317 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318
319 /*
320 * If there are other waiters on the queue then give them a chance at
321 * logspace before us. Wake up the first waiters, if we do not wake
322 * up all the waiters then go to sleep waiting for more free space,
323 * otherwise try to get some space for this transaction.
324 */
325 *need_bytes = xlog_ticket_reservation(log, head, tic);
326 free_bytes = xlog_space_left(log, &head->grant);
327 if (!list_empty_careful(&head->waiters)) {
328 spin_lock(&head->lock);
329 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 free_bytes < *need_bytes) {
331 error = xlog_grant_head_wait(log, head, tic,
332 *need_bytes);
333 }
334 spin_unlock(&head->lock);
335 } else if (free_bytes < *need_bytes) {
336 spin_lock(&head->lock);
337 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 spin_unlock(&head->lock);
339 }
340
341 return error;
342 }
343
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347 tic->t_res_num = 0;
348 tic->t_res_arr_sum = 0;
349 tic->t_res_num_ophdrs = 0;
350 }
351
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 /* add to overflow and start again */
357 tic->t_res_o_flow += tic->t_res_arr_sum;
358 tic->t_res_num = 0;
359 tic->t_res_arr_sum = 0;
360 }
361
362 tic->t_res_arr[tic->t_res_num].r_len = len;
363 tic->t_res_arr[tic->t_res_num].r_type = type;
364 tic->t_res_arr_sum += len;
365 tic->t_res_num++;
366 }
367
368 /*
369 * Replenish the byte reservation required by moving the grant write head.
370 */
371 int
372 xfs_log_regrant(
373 struct xfs_mount *mp,
374 struct xlog_ticket *tic)
375 {
376 struct xlog *log = mp->m_log;
377 int need_bytes;
378 int error = 0;
379
380 if (XLOG_FORCED_SHUTDOWN(log))
381 return -EIO;
382
383 XFS_STATS_INC(mp, xs_try_logspace);
384
385 /*
386 * This is a new transaction on the ticket, so we need to change the
387 * transaction ID so that the next transaction has a different TID in
388 * the log. Just add one to the existing tid so that we can see chains
389 * of rolling transactions in the log easily.
390 */
391 tic->t_tid++;
392
393 xlog_grant_push_ail(log, tic->t_unit_res);
394
395 tic->t_curr_res = tic->t_unit_res;
396 xlog_tic_reset_res(tic);
397
398 if (tic->t_cnt > 0)
399 return 0;
400
401 trace_xfs_log_regrant(log, tic);
402
403 error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 &need_bytes);
405 if (error)
406 goto out_error;
407
408 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 trace_xfs_log_regrant_exit(log, tic);
410 xlog_verify_grant_tail(log);
411 return 0;
412
413 out_error:
414 /*
415 * If we are failing, make sure the ticket doesn't have any current
416 * reservations. We don't want to add this back when the ticket/
417 * transaction gets cancelled.
418 */
419 tic->t_curr_res = 0;
420 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
421 return error;
422 }
423
424 /*
425 * Reserve log space and return a ticket corresponding the reservation.
426 *
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation. By wasting space in each
430 * reservation, we prevent over allocation problems.
431 */
432 int
433 xfs_log_reserve(
434 struct xfs_mount *mp,
435 int unit_bytes,
436 int cnt,
437 struct xlog_ticket **ticp,
438 uint8_t client,
439 bool permanent)
440 {
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
445
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return -EIO;
450
451 XFS_STATS_INC(mp, xs_try_logspace);
452
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return -ENOMEM;
458
459 *ticp = tic;
460
461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 : tic->t_unit_res);
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477 out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486 }
487
488
489 /*
490 * NOTES:
491 *
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
494 */
495
496 /*
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
509 */
510 xfs_lsn_t
511 xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
515 bool regrant)
516 {
517 struct xlog *log = mp->m_log;
518 xfs_lsn_t lsn = 0;
519
520 if (XLOG_FORCED_SHUTDOWN(log) ||
521 /*
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
524 */
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 lsn = (xfs_lsn_t) -1;
528 regrant = false;
529 }
530
531
532 if (!regrant) {
533 trace_xfs_log_done_nonperm(log, ticket);
534
535 /*
536 * Release ticket if not permanent reservation or a specific
537 * request has been made to release a permanent reservation.
538 */
539 xlog_ungrant_log_space(log, ticket);
540 } else {
541 trace_xfs_log_done_perm(log, ticket);
542
543 xlog_regrant_reserve_log_space(log, ticket);
544 /* If this ticket was a permanent reservation and we aren't
545 * trying to release it, reset the inited flags; so next time
546 * we write, a start record will be written out.
547 */
548 ticket->t_flags |= XLOG_TIC_INITED;
549 }
550
551 xfs_log_ticket_put(ticket);
552 return lsn;
553 }
554
555 /*
556 * Attaches a new iclog I/O completion callback routine during
557 * transaction commit. If the log is in error state, a non-zero
558 * return code is handed back and the caller is responsible for
559 * executing the callback at an appropriate time.
560 */
561 int
562 xfs_log_notify(
563 struct xfs_mount *mp,
564 struct xlog_in_core *iclog,
565 xfs_log_callback_t *cb)
566 {
567 int abortflg;
568
569 spin_lock(&iclog->ic_callback_lock);
570 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
571 if (!abortflg) {
572 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
573 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
574 cb->cb_next = NULL;
575 *(iclog->ic_callback_tail) = cb;
576 iclog->ic_callback_tail = &(cb->cb_next);
577 }
578 spin_unlock(&iclog->ic_callback_lock);
579 return abortflg;
580 }
581
582 int
583 xfs_log_release_iclog(
584 struct xfs_mount *mp,
585 struct xlog_in_core *iclog)
586 {
587 if (xlog_state_release_iclog(mp->m_log, iclog)) {
588 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
589 return -EIO;
590 }
591
592 return 0;
593 }
594
595 /*
596 * Mount a log filesystem
597 *
598 * mp - ubiquitous xfs mount point structure
599 * log_target - buftarg of on-disk log device
600 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
601 * num_bblocks - Number of BBSIZE blocks in on-disk log
602 *
603 * Return error or zero.
604 */
605 int
606 xfs_log_mount(
607 xfs_mount_t *mp,
608 xfs_buftarg_t *log_target,
609 xfs_daddr_t blk_offset,
610 int num_bblks)
611 {
612 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
613 int error = 0;
614 int min_logfsbs;
615
616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 xfs_notice(mp, "Mounting V%d Filesystem",
618 XFS_SB_VERSION_NUM(&mp->m_sb));
619 } else {
620 xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 XFS_SB_VERSION_NUM(&mp->m_sb));
623 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624 }
625
626 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 if (IS_ERR(mp->m_log)) {
628 error = PTR_ERR(mp->m_log);
629 goto out;
630 }
631
632 /*
633 * Validate the given log space and drop a critical message via syslog
634 * if the log size is too small that would lead to some unexpected
635 * situations in transaction log space reservation stage.
636 *
637 * Note: we can't just reject the mount if the validation fails. This
638 * would mean that people would have to downgrade their kernel just to
639 * remedy the situation as there is no way to grow the log (short of
640 * black magic surgery with xfs_db).
641 *
642 * We can, however, reject mounts for CRC format filesystems, as the
643 * mkfs binary being used to make the filesystem should never create a
644 * filesystem with a log that is too small.
645 */
646 min_logfsbs = xfs_log_calc_minimum_size(mp);
647
648 if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 xfs_warn(mp,
650 "Log size %d blocks too small, minimum size is %d blocks",
651 mp->m_sb.sb_logblocks, min_logfsbs);
652 error = -EINVAL;
653 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 xfs_warn(mp,
655 "Log size %d blocks too large, maximum size is %lld blocks",
656 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 error = -EINVAL;
658 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 xfs_warn(mp,
660 "log size %lld bytes too large, maximum size is %lld bytes",
661 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 XFS_MAX_LOG_BYTES);
663 error = -EINVAL;
664 } else if (mp->m_sb.sb_logsunit > 1 &&
665 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
666 xfs_warn(mp,
667 "log stripe unit %u bytes must be a multiple of block size",
668 mp->m_sb.sb_logsunit);
669 error = -EINVAL;
670 fatal = true;
671 }
672 if (error) {
673 /*
674 * Log check errors are always fatal on v5; or whenever bad
675 * metadata leads to a crash.
676 */
677 if (fatal) {
678 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
679 ASSERT(0);
680 goto out_free_log;
681 }
682 xfs_crit(mp, "Log size out of supported range.");
683 xfs_crit(mp,
684 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
685 }
686
687 /*
688 * Initialize the AIL now we have a log.
689 */
690 error = xfs_trans_ail_init(mp);
691 if (error) {
692 xfs_warn(mp, "AIL initialisation failed: error %d", error);
693 goto out_free_log;
694 }
695 mp->m_log->l_ailp = mp->m_ail;
696
697 /*
698 * skip log recovery on a norecovery mount. pretend it all
699 * just worked.
700 */
701 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
702 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
703
704 if (readonly)
705 mp->m_flags &= ~XFS_MOUNT_RDONLY;
706
707 error = xlog_recover(mp->m_log);
708
709 if (readonly)
710 mp->m_flags |= XFS_MOUNT_RDONLY;
711 if (error) {
712 xfs_warn(mp, "log mount/recovery failed: error %d",
713 error);
714 xlog_recover_cancel(mp->m_log);
715 goto out_destroy_ail;
716 }
717 }
718
719 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
720 "log");
721 if (error)
722 goto out_destroy_ail;
723
724 /* Normal transactions can now occur */
725 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
726
727 /*
728 * Now the log has been fully initialised and we know were our
729 * space grant counters are, we can initialise the permanent ticket
730 * needed for delayed logging to work.
731 */
732 xlog_cil_init_post_recovery(mp->m_log);
733
734 return 0;
735
736 out_destroy_ail:
737 xfs_trans_ail_destroy(mp);
738 out_free_log:
739 xlog_dealloc_log(mp->m_log);
740 out:
741 return error;
742 }
743
744 /*
745 * Finish the recovery of the file system. This is separate from the
746 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
747 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
748 * here.
749 *
750 * If we finish recovery successfully, start the background log work. If we are
751 * not doing recovery, then we have a RO filesystem and we don't need to start
752 * it.
753 */
754 int
755 xfs_log_mount_finish(
756 struct xfs_mount *mp)
757 {
758 int error = 0;
759 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
760 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
761
762 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
763 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
764 return 0;
765 } else if (readonly) {
766 /* Allow unlinked processing to proceed */
767 mp->m_flags &= ~XFS_MOUNT_RDONLY;
768 }
769
770 /*
771 * During the second phase of log recovery, we need iget and
772 * iput to behave like they do for an active filesystem.
773 * xfs_fs_drop_inode needs to be able to prevent the deletion
774 * of inodes before we're done replaying log items on those
775 * inodes. Turn it off immediately after recovery finishes
776 * so that we don't leak the quota inodes if subsequent mount
777 * activities fail.
778 *
779 * We let all inodes involved in redo item processing end up on
780 * the LRU instead of being evicted immediately so that if we do
781 * something to an unlinked inode, the irele won't cause
782 * premature truncation and freeing of the inode, which results
783 * in log recovery failure. We have to evict the unreferenced
784 * lru inodes after clearing MS_ACTIVE because we don't
785 * otherwise clean up the lru if there's a subsequent failure in
786 * xfs_mountfs, which leads to us leaking the inodes if nothing
787 * else (e.g. quotacheck) references the inodes before the
788 * mount failure occurs.
789 */
790 mp->m_super->s_flags |= MS_ACTIVE;
791 error = xlog_recover_finish(mp->m_log);
792 if (!error)
793 xfs_log_work_queue(mp);
794 mp->m_super->s_flags &= ~MS_ACTIVE;
795 evict_inodes(mp->m_super);
796
797 /*
798 * Drain the buffer LRU after log recovery. This is required for v4
799 * filesystems to avoid leaving around buffers with NULL verifier ops,
800 * but we do it unconditionally to make sure we're always in a clean
801 * cache state after mount.
802 *
803 * Don't push in the error case because the AIL may have pending intents
804 * that aren't removed until recovery is cancelled.
805 */
806 if (!error && recovered) {
807 xfs_log_force(mp, XFS_LOG_SYNC);
808 xfs_ail_push_all_sync(mp->m_ail);
809 }
810 xfs_wait_buftarg(mp->m_ddev_targp);
811
812 if (readonly)
813 mp->m_flags |= XFS_MOUNT_RDONLY;
814
815 return error;
816 }
817
818 /*
819 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
820 * the log.
821 */
822 int
823 xfs_log_mount_cancel(
824 struct xfs_mount *mp)
825 {
826 int error;
827
828 error = xlog_recover_cancel(mp->m_log);
829 xfs_log_unmount(mp);
830
831 return error;
832 }
833
834 /*
835 * Final log writes as part of unmount.
836 *
837 * Mark the filesystem clean as unmount happens. Note that during relocation
838 * this routine needs to be executed as part of source-bag while the
839 * deallocation must not be done until source-end.
840 */
841
842 /*
843 * Unmount record used to have a string "Unmount filesystem--" in the
844 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
845 * We just write the magic number now since that particular field isn't
846 * currently architecture converted and "Unmount" is a bit foo.
847 * As far as I know, there weren't any dependencies on the old behaviour.
848 */
849
850 static int
851 xfs_log_unmount_write(xfs_mount_t *mp)
852 {
853 struct xlog *log = mp->m_log;
854 xlog_in_core_t *iclog;
855 #ifdef DEBUG
856 xlog_in_core_t *first_iclog;
857 #endif
858 xlog_ticket_t *tic = NULL;
859 xfs_lsn_t lsn;
860 int error;
861
862 /*
863 * Don't write out unmount record on norecovery mounts or ro devices.
864 * Or, if we are doing a forced umount (typically because of IO errors).
865 */
866 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
867 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
868 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
869 return 0;
870 }
871
872 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
873 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
874
875 #ifdef DEBUG
876 first_iclog = iclog = log->l_iclog;
877 do {
878 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
879 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
880 ASSERT(iclog->ic_offset == 0);
881 }
882 iclog = iclog->ic_next;
883 } while (iclog != first_iclog);
884 #endif
885 if (! (XLOG_FORCED_SHUTDOWN(log))) {
886 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
887 if (!error) {
888 /* the data section must be 32 bit size aligned */
889 struct {
890 uint16_t magic;
891 uint16_t pad1;
892 uint32_t pad2; /* may as well make it 64 bits */
893 } magic = {
894 .magic = XLOG_UNMOUNT_TYPE,
895 };
896 struct xfs_log_iovec reg = {
897 .i_addr = &magic,
898 .i_len = sizeof(magic),
899 .i_type = XLOG_REG_TYPE_UNMOUNT,
900 };
901 struct xfs_log_vec vec = {
902 .lv_niovecs = 1,
903 .lv_iovecp = &reg,
904 };
905
906 /* remove inited flag, and account for space used */
907 tic->t_flags = 0;
908 tic->t_curr_res -= sizeof(magic);
909 error = xlog_write(log, &vec, tic, &lsn,
910 NULL, XLOG_UNMOUNT_TRANS);
911 /*
912 * At this point, we're umounting anyway,
913 * so there's no point in transitioning log state
914 * to IOERROR. Just continue...
915 */
916 }
917
918 if (error)
919 xfs_alert(mp, "%s: unmount record failed", __func__);
920
921
922 spin_lock(&log->l_icloglock);
923 iclog = log->l_iclog;
924 atomic_inc(&iclog->ic_refcnt);
925 xlog_state_want_sync(log, iclog);
926 spin_unlock(&log->l_icloglock);
927 error = xlog_state_release_iclog(log, iclog);
928
929 spin_lock(&log->l_icloglock);
930 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
931 iclog->ic_state == XLOG_STATE_DIRTY)) {
932 if (!XLOG_FORCED_SHUTDOWN(log)) {
933 xlog_wait(&iclog->ic_force_wait,
934 &log->l_icloglock);
935 } else {
936 spin_unlock(&log->l_icloglock);
937 }
938 } else {
939 spin_unlock(&log->l_icloglock);
940 }
941 if (tic) {
942 trace_xfs_log_umount_write(log, tic);
943 xlog_ungrant_log_space(log, tic);
944 xfs_log_ticket_put(tic);
945 }
946 } else {
947 /*
948 * We're already in forced_shutdown mode, couldn't
949 * even attempt to write out the unmount transaction.
950 *
951 * Go through the motions of sync'ing and releasing
952 * the iclog, even though no I/O will actually happen,
953 * we need to wait for other log I/Os that may already
954 * be in progress. Do this as a separate section of
955 * code so we'll know if we ever get stuck here that
956 * we're in this odd situation of trying to unmount
957 * a file system that went into forced_shutdown as
958 * the result of an unmount..
959 */
960 spin_lock(&log->l_icloglock);
961 iclog = log->l_iclog;
962 atomic_inc(&iclog->ic_refcnt);
963
964 xlog_state_want_sync(log, iclog);
965 spin_unlock(&log->l_icloglock);
966 error = xlog_state_release_iclog(log, iclog);
967
968 spin_lock(&log->l_icloglock);
969
970 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
971 || iclog->ic_state == XLOG_STATE_DIRTY
972 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
973
974 xlog_wait(&iclog->ic_force_wait,
975 &log->l_icloglock);
976 } else {
977 spin_unlock(&log->l_icloglock);
978 }
979 }
980
981 return error;
982 } /* xfs_log_unmount_write */
983
984 /*
985 * Empty the log for unmount/freeze.
986 *
987 * To do this, we first need to shut down the background log work so it is not
988 * trying to cover the log as we clean up. We then need to unpin all objects in
989 * the log so we can then flush them out. Once they have completed their IO and
990 * run the callbacks removing themselves from the AIL, we can write the unmount
991 * record.
992 */
993 void
994 xfs_log_quiesce(
995 struct xfs_mount *mp)
996 {
997 cancel_delayed_work_sync(&mp->m_log->l_work);
998 xfs_log_force(mp, XFS_LOG_SYNC);
999
1000 /*
1001 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1002 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1003 * xfs_buf_iowait() cannot be used because it was pushed with the
1004 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1005 * the IO to complete.
1006 */
1007 xfs_ail_push_all_sync(mp->m_ail);
1008 xfs_wait_buftarg(mp->m_ddev_targp);
1009 xfs_buf_lock(mp->m_sb_bp);
1010 xfs_buf_unlock(mp->m_sb_bp);
1011
1012 xfs_log_unmount_write(mp);
1013 }
1014
1015 /*
1016 * Shut down and release the AIL and Log.
1017 *
1018 * During unmount, we need to ensure we flush all the dirty metadata objects
1019 * from the AIL so that the log is empty before we write the unmount record to
1020 * the log. Once this is done, we can tear down the AIL and the log.
1021 */
1022 void
1023 xfs_log_unmount(
1024 struct xfs_mount *mp)
1025 {
1026 xfs_log_quiesce(mp);
1027
1028 xfs_trans_ail_destroy(mp);
1029
1030 xfs_sysfs_del(&mp->m_log->l_kobj);
1031
1032 xlog_dealloc_log(mp->m_log);
1033 }
1034
1035 void
1036 xfs_log_item_init(
1037 struct xfs_mount *mp,
1038 struct xfs_log_item *item,
1039 int type,
1040 const struct xfs_item_ops *ops)
1041 {
1042 item->li_mountp = mp;
1043 item->li_ailp = mp->m_ail;
1044 item->li_type = type;
1045 item->li_ops = ops;
1046 item->li_lv = NULL;
1047
1048 INIT_LIST_HEAD(&item->li_ail);
1049 INIT_LIST_HEAD(&item->li_cil);
1050 }
1051
1052 /*
1053 * Wake up processes waiting for log space after we have moved the log tail.
1054 */
1055 void
1056 xfs_log_space_wake(
1057 struct xfs_mount *mp)
1058 {
1059 struct xlog *log = mp->m_log;
1060 int free_bytes;
1061
1062 if (XLOG_FORCED_SHUTDOWN(log))
1063 return;
1064
1065 if (!list_empty_careful(&log->l_write_head.waiters)) {
1066 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1067
1068 spin_lock(&log->l_write_head.lock);
1069 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1070 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1071 spin_unlock(&log->l_write_head.lock);
1072 }
1073
1074 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1075 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1076
1077 spin_lock(&log->l_reserve_head.lock);
1078 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1079 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1080 spin_unlock(&log->l_reserve_head.lock);
1081 }
1082 }
1083
1084 /*
1085 * Determine if we have a transaction that has gone to disk that needs to be
1086 * covered. To begin the transition to the idle state firstly the log needs to
1087 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1088 * we start attempting to cover the log.
1089 *
1090 * Only if we are then in a state where covering is needed, the caller is
1091 * informed that dummy transactions are required to move the log into the idle
1092 * state.
1093 *
1094 * If there are any items in the AIl or CIL, then we do not want to attempt to
1095 * cover the log as we may be in a situation where there isn't log space
1096 * available to run a dummy transaction and this can lead to deadlocks when the
1097 * tail of the log is pinned by an item that is modified in the CIL. Hence
1098 * there's no point in running a dummy transaction at this point because we
1099 * can't start trying to idle the log until both the CIL and AIL are empty.
1100 */
1101 static int
1102 xfs_log_need_covered(xfs_mount_t *mp)
1103 {
1104 struct xlog *log = mp->m_log;
1105 int needed = 0;
1106
1107 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1108 return 0;
1109
1110 if (!xlog_cil_empty(log))
1111 return 0;
1112
1113 spin_lock(&log->l_icloglock);
1114 switch (log->l_covered_state) {
1115 case XLOG_STATE_COVER_DONE:
1116 case XLOG_STATE_COVER_DONE2:
1117 case XLOG_STATE_COVER_IDLE:
1118 break;
1119 case XLOG_STATE_COVER_NEED:
1120 case XLOG_STATE_COVER_NEED2:
1121 if (xfs_ail_min_lsn(log->l_ailp))
1122 break;
1123 if (!xlog_iclogs_empty(log))
1124 break;
1125
1126 needed = 1;
1127 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1128 log->l_covered_state = XLOG_STATE_COVER_DONE;
1129 else
1130 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1131 break;
1132 default:
1133 needed = 1;
1134 break;
1135 }
1136 spin_unlock(&log->l_icloglock);
1137 return needed;
1138 }
1139
1140 /*
1141 * We may be holding the log iclog lock upon entering this routine.
1142 */
1143 xfs_lsn_t
1144 xlog_assign_tail_lsn_locked(
1145 struct xfs_mount *mp)
1146 {
1147 struct xlog *log = mp->m_log;
1148 struct xfs_log_item *lip;
1149 xfs_lsn_t tail_lsn;
1150
1151 assert_spin_locked(&mp->m_ail->xa_lock);
1152
1153 /*
1154 * To make sure we always have a valid LSN for the log tail we keep
1155 * track of the last LSN which was committed in log->l_last_sync_lsn,
1156 * and use that when the AIL was empty.
1157 */
1158 lip = xfs_ail_min(mp->m_ail);
1159 if (lip)
1160 tail_lsn = lip->li_lsn;
1161 else
1162 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1163 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1164 atomic64_set(&log->l_tail_lsn, tail_lsn);
1165 return tail_lsn;
1166 }
1167
1168 xfs_lsn_t
1169 xlog_assign_tail_lsn(
1170 struct xfs_mount *mp)
1171 {
1172 xfs_lsn_t tail_lsn;
1173
1174 spin_lock(&mp->m_ail->xa_lock);
1175 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1176 spin_unlock(&mp->m_ail->xa_lock);
1177
1178 return tail_lsn;
1179 }
1180
1181 /*
1182 * Return the space in the log between the tail and the head. The head
1183 * is passed in the cycle/bytes formal parms. In the special case where
1184 * the reserve head has wrapped passed the tail, this calculation is no
1185 * longer valid. In this case, just return 0 which means there is no space
1186 * in the log. This works for all places where this function is called
1187 * with the reserve head. Of course, if the write head were to ever
1188 * wrap the tail, we should blow up. Rather than catch this case here,
1189 * we depend on other ASSERTions in other parts of the code. XXXmiken
1190 *
1191 * This code also handles the case where the reservation head is behind
1192 * the tail. The details of this case are described below, but the end
1193 * result is that we return the size of the log as the amount of space left.
1194 */
1195 STATIC int
1196 xlog_space_left(
1197 struct xlog *log,
1198 atomic64_t *head)
1199 {
1200 int free_bytes;
1201 int tail_bytes;
1202 int tail_cycle;
1203 int head_cycle;
1204 int head_bytes;
1205
1206 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1207 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1208 tail_bytes = BBTOB(tail_bytes);
1209 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1210 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1211 else if (tail_cycle + 1 < head_cycle)
1212 return 0;
1213 else if (tail_cycle < head_cycle) {
1214 ASSERT(tail_cycle == (head_cycle - 1));
1215 free_bytes = tail_bytes - head_bytes;
1216 } else {
1217 /*
1218 * The reservation head is behind the tail.
1219 * In this case we just want to return the size of the
1220 * log as the amount of space left.
1221 */
1222 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1223 xfs_alert(log->l_mp,
1224 " tail_cycle = %d, tail_bytes = %d",
1225 tail_cycle, tail_bytes);
1226 xfs_alert(log->l_mp,
1227 " GH cycle = %d, GH bytes = %d",
1228 head_cycle, head_bytes);
1229 ASSERT(0);
1230 free_bytes = log->l_logsize;
1231 }
1232 return free_bytes;
1233 }
1234
1235
1236 /*
1237 * Log function which is called when an io completes.
1238 *
1239 * The log manager needs its own routine, in order to control what
1240 * happens with the buffer after the write completes.
1241 */
1242 static void
1243 xlog_iodone(xfs_buf_t *bp)
1244 {
1245 struct xlog_in_core *iclog = bp->b_fspriv;
1246 struct xlog *l = iclog->ic_log;
1247 int aborted = 0;
1248
1249 /*
1250 * Race to shutdown the filesystem if we see an error or the iclog is in
1251 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1252 * CRC errors into log recovery.
1253 */
1254 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1255 iclog->ic_state & XLOG_STATE_IOABORT) {
1256 if (iclog->ic_state & XLOG_STATE_IOABORT)
1257 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1258
1259 xfs_buf_ioerror_alert(bp, __func__);
1260 xfs_buf_stale(bp);
1261 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1262 /*
1263 * This flag will be propagated to the trans-committed
1264 * callback routines to let them know that the log-commit
1265 * didn't succeed.
1266 */
1267 aborted = XFS_LI_ABORTED;
1268 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1269 aborted = XFS_LI_ABORTED;
1270 }
1271
1272 /* log I/O is always issued ASYNC */
1273 ASSERT(bp->b_flags & XBF_ASYNC);
1274 xlog_state_done_syncing(iclog, aborted);
1275
1276 /*
1277 * drop the buffer lock now that we are done. Nothing references
1278 * the buffer after this, so an unmount waiting on this lock can now
1279 * tear it down safely. As such, it is unsafe to reference the buffer
1280 * (bp) after the unlock as we could race with it being freed.
1281 */
1282 xfs_buf_unlock(bp);
1283 }
1284
1285 /*
1286 * Return size of each in-core log record buffer.
1287 *
1288 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1289 *
1290 * If the filesystem blocksize is too large, we may need to choose a
1291 * larger size since the directory code currently logs entire blocks.
1292 */
1293
1294 STATIC void
1295 xlog_get_iclog_buffer_size(
1296 struct xfs_mount *mp,
1297 struct xlog *log)
1298 {
1299 int size;
1300 int xhdrs;
1301
1302 if (mp->m_logbufs <= 0)
1303 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1304 else
1305 log->l_iclog_bufs = mp->m_logbufs;
1306
1307 /*
1308 * Buffer size passed in from mount system call.
1309 */
1310 if (mp->m_logbsize > 0) {
1311 size = log->l_iclog_size = mp->m_logbsize;
1312 log->l_iclog_size_log = 0;
1313 while (size != 1) {
1314 log->l_iclog_size_log++;
1315 size >>= 1;
1316 }
1317
1318 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1319 /* # headers = size / 32k
1320 * one header holds cycles from 32k of data
1321 */
1322
1323 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1324 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1325 xhdrs++;
1326 log->l_iclog_hsize = xhdrs << BBSHIFT;
1327 log->l_iclog_heads = xhdrs;
1328 } else {
1329 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1330 log->l_iclog_hsize = BBSIZE;
1331 log->l_iclog_heads = 1;
1332 }
1333 goto done;
1334 }
1335
1336 /* All machines use 32kB buffers by default. */
1337 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1338 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1339
1340 /* the default log size is 16k or 32k which is one header sector */
1341 log->l_iclog_hsize = BBSIZE;
1342 log->l_iclog_heads = 1;
1343
1344 done:
1345 /* are we being asked to make the sizes selected above visible? */
1346 if (mp->m_logbufs == 0)
1347 mp->m_logbufs = log->l_iclog_bufs;
1348 if (mp->m_logbsize == 0)
1349 mp->m_logbsize = log->l_iclog_size;
1350 } /* xlog_get_iclog_buffer_size */
1351
1352
1353 void
1354 xfs_log_work_queue(
1355 struct xfs_mount *mp)
1356 {
1357 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1358 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1359 }
1360
1361 /*
1362 * Every sync period we need to unpin all items in the AIL and push them to
1363 * disk. If there is nothing dirty, then we might need to cover the log to
1364 * indicate that the filesystem is idle.
1365 */
1366 static void
1367 xfs_log_worker(
1368 struct work_struct *work)
1369 {
1370 struct xlog *log = container_of(to_delayed_work(work),
1371 struct xlog, l_work);
1372 struct xfs_mount *mp = log->l_mp;
1373
1374 /* dgc: errors ignored - not fatal and nowhere to report them */
1375 if (xfs_log_need_covered(mp)) {
1376 /*
1377 * Dump a transaction into the log that contains no real change.
1378 * This is needed to stamp the current tail LSN into the log
1379 * during the covering operation.
1380 *
1381 * We cannot use an inode here for this - that will push dirty
1382 * state back up into the VFS and then periodic inode flushing
1383 * will prevent log covering from making progress. Hence we
1384 * synchronously log the superblock instead to ensure the
1385 * superblock is immediately unpinned and can be written back.
1386 */
1387 xfs_sync_sb(mp, true);
1388 } else
1389 xfs_log_force(mp, 0);
1390
1391 /* start pushing all the metadata that is currently dirty */
1392 xfs_ail_push_all(mp->m_ail);
1393
1394 /* queue us up again */
1395 xfs_log_work_queue(mp);
1396 }
1397
1398 /*
1399 * This routine initializes some of the log structure for a given mount point.
1400 * Its primary purpose is to fill in enough, so recovery can occur. However,
1401 * some other stuff may be filled in too.
1402 */
1403 STATIC struct xlog *
1404 xlog_alloc_log(
1405 struct xfs_mount *mp,
1406 struct xfs_buftarg *log_target,
1407 xfs_daddr_t blk_offset,
1408 int num_bblks)
1409 {
1410 struct xlog *log;
1411 xlog_rec_header_t *head;
1412 xlog_in_core_t **iclogp;
1413 xlog_in_core_t *iclog, *prev_iclog=NULL;
1414 xfs_buf_t *bp;
1415 int i;
1416 int error = -ENOMEM;
1417 uint log2_size = 0;
1418
1419 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1420 if (!log) {
1421 xfs_warn(mp, "Log allocation failed: No memory!");
1422 goto out;
1423 }
1424
1425 log->l_mp = mp;
1426 log->l_targ = log_target;
1427 log->l_logsize = BBTOB(num_bblks);
1428 log->l_logBBstart = blk_offset;
1429 log->l_logBBsize = num_bblks;
1430 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1431 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1432 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1433
1434 log->l_prev_block = -1;
1435 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1437 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1438 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1439
1440 xlog_grant_head_init(&log->l_reserve_head);
1441 xlog_grant_head_init(&log->l_write_head);
1442
1443 error = -EFSCORRUPTED;
1444 if (xfs_sb_version_hassector(&mp->m_sb)) {
1445 log2_size = mp->m_sb.sb_logsectlog;
1446 if (log2_size < BBSHIFT) {
1447 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1448 log2_size, BBSHIFT);
1449 goto out_free_log;
1450 }
1451
1452 log2_size -= BBSHIFT;
1453 if (log2_size > mp->m_sectbb_log) {
1454 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1455 log2_size, mp->m_sectbb_log);
1456 goto out_free_log;
1457 }
1458
1459 /* for larger sector sizes, must have v2 or external log */
1460 if (log2_size && log->l_logBBstart > 0 &&
1461 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1462 xfs_warn(mp,
1463 "log sector size (0x%x) invalid for configuration.",
1464 log2_size);
1465 goto out_free_log;
1466 }
1467 }
1468 log->l_sectBBsize = 1 << log2_size;
1469
1470 xlog_get_iclog_buffer_size(mp, log);
1471
1472 /*
1473 * Use a NULL block for the extra log buffer used during splits so that
1474 * it will trigger errors if we ever try to do IO on it without first
1475 * having set it up properly.
1476 */
1477 error = -ENOMEM;
1478 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1479 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1480 if (!bp)
1481 goto out_free_log;
1482
1483 /*
1484 * The iclogbuf buffer locks are held over IO but we are not going to do
1485 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1486 * when appropriately.
1487 */
1488 ASSERT(xfs_buf_islocked(bp));
1489 xfs_buf_unlock(bp);
1490
1491 /* use high priority wq for log I/O completion */
1492 bp->b_ioend_wq = mp->m_log_workqueue;
1493 bp->b_iodone = xlog_iodone;
1494 log->l_xbuf = bp;
1495
1496 spin_lock_init(&log->l_icloglock);
1497 init_waitqueue_head(&log->l_flush_wait);
1498
1499 iclogp = &log->l_iclog;
1500 /*
1501 * The amount of memory to allocate for the iclog structure is
1502 * rather funky due to the way the structure is defined. It is
1503 * done this way so that we can use different sizes for machines
1504 * with different amounts of memory. See the definition of
1505 * xlog_in_core_t in xfs_log_priv.h for details.
1506 */
1507 ASSERT(log->l_iclog_size >= 4096);
1508 for (i=0; i < log->l_iclog_bufs; i++) {
1509 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1510 if (!*iclogp)
1511 goto out_free_iclog;
1512
1513 iclog = *iclogp;
1514 iclog->ic_prev = prev_iclog;
1515 prev_iclog = iclog;
1516
1517 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1518 BTOBB(log->l_iclog_size),
1519 XBF_NO_IOACCT);
1520 if (!bp)
1521 goto out_free_iclog;
1522
1523 ASSERT(xfs_buf_islocked(bp));
1524 xfs_buf_unlock(bp);
1525
1526 /* use high priority wq for log I/O completion */
1527 bp->b_ioend_wq = mp->m_log_workqueue;
1528 bp->b_iodone = xlog_iodone;
1529 iclog->ic_bp = bp;
1530 iclog->ic_data = bp->b_addr;
1531 #ifdef DEBUG
1532 log->l_iclog_bak[i] = &iclog->ic_header;
1533 #endif
1534 head = &iclog->ic_header;
1535 memset(head, 0, sizeof(xlog_rec_header_t));
1536 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1537 head->h_version = cpu_to_be32(
1538 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1539 head->h_size = cpu_to_be32(log->l_iclog_size);
1540 /* new fields */
1541 head->h_fmt = cpu_to_be32(XLOG_FMT);
1542 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1543
1544 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1545 iclog->ic_state = XLOG_STATE_ACTIVE;
1546 iclog->ic_log = log;
1547 atomic_set(&iclog->ic_refcnt, 0);
1548 spin_lock_init(&iclog->ic_callback_lock);
1549 iclog->ic_callback_tail = &(iclog->ic_callback);
1550 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1551
1552 init_waitqueue_head(&iclog->ic_force_wait);
1553 init_waitqueue_head(&iclog->ic_write_wait);
1554
1555 iclogp = &iclog->ic_next;
1556 }
1557 *iclogp = log->l_iclog; /* complete ring */
1558 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1559
1560 error = xlog_cil_init(log);
1561 if (error)
1562 goto out_free_iclog;
1563 return log;
1564
1565 out_free_iclog:
1566 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1567 prev_iclog = iclog->ic_next;
1568 if (iclog->ic_bp)
1569 xfs_buf_free(iclog->ic_bp);
1570 kmem_free(iclog);
1571 }
1572 spinlock_destroy(&log->l_icloglock);
1573 xfs_buf_free(log->l_xbuf);
1574 out_free_log:
1575 kmem_free(log);
1576 out:
1577 return ERR_PTR(error);
1578 } /* xlog_alloc_log */
1579
1580
1581 /*
1582 * Write out the commit record of a transaction associated with the given
1583 * ticket. Return the lsn of the commit record.
1584 */
1585 STATIC int
1586 xlog_commit_record(
1587 struct xlog *log,
1588 struct xlog_ticket *ticket,
1589 struct xlog_in_core **iclog,
1590 xfs_lsn_t *commitlsnp)
1591 {
1592 struct xfs_mount *mp = log->l_mp;
1593 int error;
1594 struct xfs_log_iovec reg = {
1595 .i_addr = NULL,
1596 .i_len = 0,
1597 .i_type = XLOG_REG_TYPE_COMMIT,
1598 };
1599 struct xfs_log_vec vec = {
1600 .lv_niovecs = 1,
1601 .lv_iovecp = &reg,
1602 };
1603
1604 ASSERT_ALWAYS(iclog);
1605 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1606 XLOG_COMMIT_TRANS);
1607 if (error)
1608 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1609 return error;
1610 }
1611
1612 /*
1613 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1614 * log space. This code pushes on the lsn which would supposedly free up
1615 * the 25% which we want to leave free. We may need to adopt a policy which
1616 * pushes on an lsn which is further along in the log once we reach the high
1617 * water mark. In this manner, we would be creating a low water mark.
1618 */
1619 STATIC void
1620 xlog_grant_push_ail(
1621 struct xlog *log,
1622 int need_bytes)
1623 {
1624 xfs_lsn_t threshold_lsn = 0;
1625 xfs_lsn_t last_sync_lsn;
1626 int free_blocks;
1627 int free_bytes;
1628 int threshold_block;
1629 int threshold_cycle;
1630 int free_threshold;
1631
1632 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1633
1634 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1635 free_blocks = BTOBBT(free_bytes);
1636
1637 /*
1638 * Set the threshold for the minimum number of free blocks in the
1639 * log to the maximum of what the caller needs, one quarter of the
1640 * log, and 256 blocks.
1641 */
1642 free_threshold = BTOBB(need_bytes);
1643 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1644 free_threshold = MAX(free_threshold, 256);
1645 if (free_blocks >= free_threshold)
1646 return;
1647
1648 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1649 &threshold_block);
1650 threshold_block += free_threshold;
1651 if (threshold_block >= log->l_logBBsize) {
1652 threshold_block -= log->l_logBBsize;
1653 threshold_cycle += 1;
1654 }
1655 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1656 threshold_block);
1657 /*
1658 * Don't pass in an lsn greater than the lsn of the last
1659 * log record known to be on disk. Use a snapshot of the last sync lsn
1660 * so that it doesn't change between the compare and the set.
1661 */
1662 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1663 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1664 threshold_lsn = last_sync_lsn;
1665
1666 /*
1667 * Get the transaction layer to kick the dirty buffers out to
1668 * disk asynchronously. No point in trying to do this if
1669 * the filesystem is shutting down.
1670 */
1671 if (!XLOG_FORCED_SHUTDOWN(log))
1672 xfs_ail_push(log->l_ailp, threshold_lsn);
1673 }
1674
1675 /*
1676 * Stamp cycle number in every block
1677 */
1678 STATIC void
1679 xlog_pack_data(
1680 struct xlog *log,
1681 struct xlog_in_core *iclog,
1682 int roundoff)
1683 {
1684 int i, j, k;
1685 int size = iclog->ic_offset + roundoff;
1686 __be32 cycle_lsn;
1687 char *dp;
1688
1689 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1690
1691 dp = iclog->ic_datap;
1692 for (i = 0; i < BTOBB(size); i++) {
1693 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1694 break;
1695 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1696 *(__be32 *)dp = cycle_lsn;
1697 dp += BBSIZE;
1698 }
1699
1700 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1701 xlog_in_core_2_t *xhdr = iclog->ic_data;
1702
1703 for ( ; i < BTOBB(size); i++) {
1704 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1705 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1707 *(__be32 *)dp = cycle_lsn;
1708 dp += BBSIZE;
1709 }
1710
1711 for (i = 1; i < log->l_iclog_heads; i++)
1712 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1713 }
1714 }
1715
1716 /*
1717 * Calculate the checksum for a log buffer.
1718 *
1719 * This is a little more complicated than it should be because the various
1720 * headers and the actual data are non-contiguous.
1721 */
1722 __le32
1723 xlog_cksum(
1724 struct xlog *log,
1725 struct xlog_rec_header *rhead,
1726 char *dp,
1727 int size)
1728 {
1729 uint32_t crc;
1730
1731 /* first generate the crc for the record header ... */
1732 crc = xfs_start_cksum_update((char *)rhead,
1733 sizeof(struct xlog_rec_header),
1734 offsetof(struct xlog_rec_header, h_crc));
1735
1736 /* ... then for additional cycle data for v2 logs ... */
1737 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1738 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1739 int i;
1740 int xheads;
1741
1742 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1743 if (size % XLOG_HEADER_CYCLE_SIZE)
1744 xheads++;
1745
1746 for (i = 1; i < xheads; i++) {
1747 crc = crc32c(crc, &xhdr[i].hic_xheader,
1748 sizeof(struct xlog_rec_ext_header));
1749 }
1750 }
1751
1752 /* ... and finally for the payload */
1753 crc = crc32c(crc, dp, size);
1754
1755 return xfs_end_cksum(crc);
1756 }
1757
1758 /*
1759 * The bdstrat callback function for log bufs. This gives us a central
1760 * place to trap bufs in case we get hit by a log I/O error and need to
1761 * shutdown. Actually, in practice, even when we didn't get a log error,
1762 * we transition the iclogs to IOERROR state *after* flushing all existing
1763 * iclogs to disk. This is because we don't want anymore new transactions to be
1764 * started or completed afterwards.
1765 *
1766 * We lock the iclogbufs here so that we can serialise against IO completion
1767 * during unmount. We might be processing a shutdown triggered during unmount,
1768 * and that can occur asynchronously to the unmount thread, and hence we need to
1769 * ensure that completes before tearing down the iclogbufs. Hence we need to
1770 * hold the buffer lock across the log IO to acheive that.
1771 */
1772 STATIC int
1773 xlog_bdstrat(
1774 struct xfs_buf *bp)
1775 {
1776 struct xlog_in_core *iclog = bp->b_fspriv;
1777
1778 xfs_buf_lock(bp);
1779 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1780 xfs_buf_ioerror(bp, -EIO);
1781 xfs_buf_stale(bp);
1782 xfs_buf_ioend(bp);
1783 /*
1784 * It would seem logical to return EIO here, but we rely on
1785 * the log state machine to propagate I/O errors instead of
1786 * doing it here. Similarly, IO completion will unlock the
1787 * buffer, so we don't do it here.
1788 */
1789 return 0;
1790 }
1791
1792 xfs_buf_submit(bp);
1793 return 0;
1794 }
1795
1796 /*
1797 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1798 * fashion. Previously, we should have moved the current iclog
1799 * ptr in the log to point to the next available iclog. This allows further
1800 * write to continue while this code syncs out an iclog ready to go.
1801 * Before an in-core log can be written out, the data section must be scanned
1802 * to save away the 1st word of each BBSIZE block into the header. We replace
1803 * it with the current cycle count. Each BBSIZE block is tagged with the
1804 * cycle count because there in an implicit assumption that drives will
1805 * guarantee that entire 512 byte blocks get written at once. In other words,
1806 * we can't have part of a 512 byte block written and part not written. By
1807 * tagging each block, we will know which blocks are valid when recovering
1808 * after an unclean shutdown.
1809 *
1810 * This routine is single threaded on the iclog. No other thread can be in
1811 * this routine with the same iclog. Changing contents of iclog can there-
1812 * fore be done without grabbing the state machine lock. Updating the global
1813 * log will require grabbing the lock though.
1814 *
1815 * The entire log manager uses a logical block numbering scheme. Only
1816 * log_sync (and then only bwrite()) know about the fact that the log may
1817 * not start with block zero on a given device. The log block start offset
1818 * is added immediately before calling bwrite().
1819 */
1820
1821 STATIC int
1822 xlog_sync(
1823 struct xlog *log,
1824 struct xlog_in_core *iclog)
1825 {
1826 xfs_buf_t *bp;
1827 int i;
1828 uint count; /* byte count of bwrite */
1829 uint count_init; /* initial count before roundup */
1830 int roundoff; /* roundoff to BB or stripe */
1831 int split = 0; /* split write into two regions */
1832 int error;
1833 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1834 int size;
1835
1836 XFS_STATS_INC(log->l_mp, xs_log_writes);
1837 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1838
1839 /* Add for LR header */
1840 count_init = log->l_iclog_hsize + iclog->ic_offset;
1841
1842 /* Round out the log write size */
1843 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1844 /* we have a v2 stripe unit to use */
1845 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1846 } else {
1847 count = BBTOB(BTOBB(count_init));
1848 }
1849 roundoff = count - count_init;
1850 ASSERT(roundoff >= 0);
1851 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1852 roundoff < log->l_mp->m_sb.sb_logsunit)
1853 ||
1854 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1855 roundoff < BBTOB(1)));
1856
1857 /* move grant heads by roundoff in sync */
1858 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860
1861 /* put cycle number in every block */
1862 xlog_pack_data(log, iclog, roundoff);
1863
1864 /* real byte length */
1865 size = iclog->ic_offset;
1866 if (v2)
1867 size += roundoff;
1868 iclog->ic_header.h_len = cpu_to_be32(size);
1869
1870 bp = iclog->ic_bp;
1871 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1872
1873 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1874
1875 /* Do we need to split this write into 2 parts? */
1876 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1877 char *dptr;
1878
1879 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1880 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1881 iclog->ic_bwritecnt = 2;
1882
1883 /*
1884 * Bump the cycle numbers at the start of each block in the
1885 * part of the iclog that ends up in the buffer that gets
1886 * written to the start of the log.
1887 *
1888 * Watch out for the header magic number case, though.
1889 */
1890 dptr = (char *)&iclog->ic_header + count;
1891 for (i = 0; i < split; i += BBSIZE) {
1892 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1893 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1894 cycle++;
1895 *(__be32 *)dptr = cpu_to_be32(cycle);
1896
1897 dptr += BBSIZE;
1898 }
1899 } else {
1900 iclog->ic_bwritecnt = 1;
1901 }
1902
1903 /* calculcate the checksum */
1904 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1905 iclog->ic_datap, size);
1906 /*
1907 * Intentionally corrupt the log record CRC based on the error injection
1908 * frequency, if defined. This facilitates testing log recovery in the
1909 * event of torn writes. Hence, set the IOABORT state to abort the log
1910 * write on I/O completion and shutdown the fs. The subsequent mount
1911 * detects the bad CRC and attempts to recover.
1912 */
1913 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1914 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1915 iclog->ic_state |= XLOG_STATE_IOABORT;
1916 xfs_warn(log->l_mp,
1917 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1918 be64_to_cpu(iclog->ic_header.h_lsn));
1919 }
1920
1921 bp->b_io_length = BTOBB(count);
1922 bp->b_fspriv = iclog;
1923 bp->b_flags &= ~XBF_FLUSH;
1924 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1925
1926 /*
1927 * Flush the data device before flushing the log to make sure all meta
1928 * data written back from the AIL actually made it to disk before
1929 * stamping the new log tail LSN into the log buffer. For an external
1930 * log we need to issue the flush explicitly, and unfortunately
1931 * synchronously here; for an internal log we can simply use the block
1932 * layer state machine for preflushes.
1933 */
1934 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1935 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1936 else
1937 bp->b_flags |= XBF_FLUSH;
1938
1939 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1940 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1941
1942 xlog_verify_iclog(log, iclog, count, true);
1943
1944 /* account for log which doesn't start at block #0 */
1945 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1946
1947 /*
1948 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1949 * is shutting down.
1950 */
1951 error = xlog_bdstrat(bp);
1952 if (error) {
1953 xfs_buf_ioerror_alert(bp, "xlog_sync");
1954 return error;
1955 }
1956 if (split) {
1957 bp = iclog->ic_log->l_xbuf;
1958 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1959 xfs_buf_associate_memory(bp,
1960 (char *)&iclog->ic_header + count, split);
1961 bp->b_fspriv = iclog;
1962 bp->b_flags &= ~XBF_FLUSH;
1963 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1964
1965 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1966 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1967
1968 /* account for internal log which doesn't start at block #0 */
1969 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1970 error = xlog_bdstrat(bp);
1971 if (error) {
1972 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1973 return error;
1974 }
1975 }
1976 return 0;
1977 } /* xlog_sync */
1978
1979 /*
1980 * Deallocate a log structure
1981 */
1982 STATIC void
1983 xlog_dealloc_log(
1984 struct xlog *log)
1985 {
1986 xlog_in_core_t *iclog, *next_iclog;
1987 int i;
1988
1989 xlog_cil_destroy(log);
1990
1991 /*
1992 * Cycle all the iclogbuf locks to make sure all log IO completion
1993 * is done before we tear down these buffers.
1994 */
1995 iclog = log->l_iclog;
1996 for (i = 0; i < log->l_iclog_bufs; i++) {
1997 xfs_buf_lock(iclog->ic_bp);
1998 xfs_buf_unlock(iclog->ic_bp);
1999 iclog = iclog->ic_next;
2000 }
2001
2002 /*
2003 * Always need to ensure that the extra buffer does not point to memory
2004 * owned by another log buffer before we free it. Also, cycle the lock
2005 * first to ensure we've completed IO on it.
2006 */
2007 xfs_buf_lock(log->l_xbuf);
2008 xfs_buf_unlock(log->l_xbuf);
2009 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2010 xfs_buf_free(log->l_xbuf);
2011
2012 iclog = log->l_iclog;
2013 for (i = 0; i < log->l_iclog_bufs; i++) {
2014 xfs_buf_free(iclog->ic_bp);
2015 next_iclog = iclog->ic_next;
2016 kmem_free(iclog);
2017 iclog = next_iclog;
2018 }
2019 spinlock_destroy(&log->l_icloglock);
2020
2021 log->l_mp->m_log = NULL;
2022 kmem_free(log);
2023 } /* xlog_dealloc_log */
2024
2025 /*
2026 * Update counters atomically now that memcpy is done.
2027 */
2028 /* ARGSUSED */
2029 static inline void
2030 xlog_state_finish_copy(
2031 struct xlog *log,
2032 struct xlog_in_core *iclog,
2033 int record_cnt,
2034 int copy_bytes)
2035 {
2036 spin_lock(&log->l_icloglock);
2037
2038 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2039 iclog->ic_offset += copy_bytes;
2040
2041 spin_unlock(&log->l_icloglock);
2042 } /* xlog_state_finish_copy */
2043
2044
2045
2046
2047 /*
2048 * print out info relating to regions written which consume
2049 * the reservation
2050 */
2051 void
2052 xlog_print_tic_res(
2053 struct xfs_mount *mp,
2054 struct xlog_ticket *ticket)
2055 {
2056 uint i;
2057 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2058
2059 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2060 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2061 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2062 REG_TYPE_STR(BFORMAT, "bformat"),
2063 REG_TYPE_STR(BCHUNK, "bchunk"),
2064 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2065 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2066 REG_TYPE_STR(IFORMAT, "iformat"),
2067 REG_TYPE_STR(ICORE, "icore"),
2068 REG_TYPE_STR(IEXT, "iext"),
2069 REG_TYPE_STR(IBROOT, "ibroot"),
2070 REG_TYPE_STR(ILOCAL, "ilocal"),
2071 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2072 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2073 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2074 REG_TYPE_STR(QFORMAT, "qformat"),
2075 REG_TYPE_STR(DQUOT, "dquot"),
2076 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2077 REG_TYPE_STR(LRHEADER, "LR header"),
2078 REG_TYPE_STR(UNMOUNT, "unmount"),
2079 REG_TYPE_STR(COMMIT, "commit"),
2080 REG_TYPE_STR(TRANSHDR, "trans header"),
2081 REG_TYPE_STR(ICREATE, "inode create")
2082 };
2083 #undef REG_TYPE_STR
2084
2085 xfs_warn(mp, "ticket reservation summary:");
2086 xfs_warn(mp, " unit res = %d bytes",
2087 ticket->t_unit_res);
2088 xfs_warn(mp, " current res = %d bytes",
2089 ticket->t_curr_res);
2090 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2091 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2092 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2093 ticket->t_res_num_ophdrs, ophdr_spc);
2094 xfs_warn(mp, " ophdr + reg = %u bytes",
2095 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2096 xfs_warn(mp, " num regions = %u",
2097 ticket->t_res_num);
2098
2099 for (i = 0; i < ticket->t_res_num; i++) {
2100 uint r_type = ticket->t_res_arr[i].r_type;
2101 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2102 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2103 "bad-rtype" : res_type_str[r_type]),
2104 ticket->t_res_arr[i].r_len);
2105 }
2106 }
2107
2108 /*
2109 * Print a summary of the transaction.
2110 */
2111 void
2112 xlog_print_trans(
2113 struct xfs_trans *tp)
2114 {
2115 struct xfs_mount *mp = tp->t_mountp;
2116 struct xfs_log_item_desc *lidp;
2117
2118 /* dump core transaction and ticket info */
2119 xfs_warn(mp, "transaction summary:");
2120 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2121
2122 xlog_print_tic_res(mp, tp->t_ticket);
2123
2124 /* dump each log item */
2125 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2126 struct xfs_log_item *lip = lidp->lid_item;
2127 struct xfs_log_vec *lv = lip->li_lv;
2128 struct xfs_log_iovec *vec;
2129 int i;
2130
2131 xfs_warn(mp, "log item: ");
2132 xfs_warn(mp, " type = 0x%x", lip->li_type);
2133 xfs_warn(mp, " flags = 0x%x", lip->li_flags);
2134 if (!lv)
2135 continue;
2136 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2137 xfs_warn(mp, " size = %d", lv->lv_size);
2138 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2139 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2140
2141 /* dump each iovec for the log item */
2142 vec = lv->lv_iovecp;
2143 for (i = 0; i < lv->lv_niovecs; i++) {
2144 int dumplen = min(vec->i_len, 32);
2145
2146 xfs_warn(mp, " iovec[%d]", i);
2147 xfs_warn(mp, " type = 0x%x", vec->i_type);
2148 xfs_warn(mp, " len = %d", vec->i_len);
2149 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2150 xfs_hex_dump(vec->i_addr, dumplen);
2151
2152 vec++;
2153 }
2154 }
2155 }
2156
2157 /*
2158 * Calculate the potential space needed by the log vector. Each region gets
2159 * its own xlog_op_header_t and may need to be double word aligned.
2160 */
2161 static int
2162 xlog_write_calc_vec_length(
2163 struct xlog_ticket *ticket,
2164 struct xfs_log_vec *log_vector)
2165 {
2166 struct xfs_log_vec *lv;
2167 int headers = 0;
2168 int len = 0;
2169 int i;
2170
2171 /* acct for start rec of xact */
2172 if (ticket->t_flags & XLOG_TIC_INITED)
2173 headers++;
2174
2175 for (lv = log_vector; lv; lv = lv->lv_next) {
2176 /* we don't write ordered log vectors */
2177 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2178 continue;
2179
2180 headers += lv->lv_niovecs;
2181
2182 for (i = 0; i < lv->lv_niovecs; i++) {
2183 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2184
2185 len += vecp->i_len;
2186 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2187 }
2188 }
2189
2190 ticket->t_res_num_ophdrs += headers;
2191 len += headers * sizeof(struct xlog_op_header);
2192
2193 return len;
2194 }
2195
2196 /*
2197 * If first write for transaction, insert start record We can't be trying to
2198 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2199 */
2200 static int
2201 xlog_write_start_rec(
2202 struct xlog_op_header *ophdr,
2203 struct xlog_ticket *ticket)
2204 {
2205 if (!(ticket->t_flags & XLOG_TIC_INITED))
2206 return 0;
2207
2208 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2209 ophdr->oh_clientid = ticket->t_clientid;
2210 ophdr->oh_len = 0;
2211 ophdr->oh_flags = XLOG_START_TRANS;
2212 ophdr->oh_res2 = 0;
2213
2214 ticket->t_flags &= ~XLOG_TIC_INITED;
2215
2216 return sizeof(struct xlog_op_header);
2217 }
2218
2219 static xlog_op_header_t *
2220 xlog_write_setup_ophdr(
2221 struct xlog *log,
2222 struct xlog_op_header *ophdr,
2223 struct xlog_ticket *ticket,
2224 uint flags)
2225 {
2226 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2227 ophdr->oh_clientid = ticket->t_clientid;
2228 ophdr->oh_res2 = 0;
2229
2230 /* are we copying a commit or unmount record? */
2231 ophdr->oh_flags = flags;
2232
2233 /*
2234 * We've seen logs corrupted with bad transaction client ids. This
2235 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2236 * and shut down the filesystem.
2237 */
2238 switch (ophdr->oh_clientid) {
2239 case XFS_TRANSACTION:
2240 case XFS_VOLUME:
2241 case XFS_LOG:
2242 break;
2243 default:
2244 xfs_warn(log->l_mp,
2245 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2246 ophdr->oh_clientid, ticket);
2247 return NULL;
2248 }
2249
2250 return ophdr;
2251 }
2252
2253 /*
2254 * Set up the parameters of the region copy into the log. This has
2255 * to handle region write split across multiple log buffers - this
2256 * state is kept external to this function so that this code can
2257 * be written in an obvious, self documenting manner.
2258 */
2259 static int
2260 xlog_write_setup_copy(
2261 struct xlog_ticket *ticket,
2262 struct xlog_op_header *ophdr,
2263 int space_available,
2264 int space_required,
2265 int *copy_off,
2266 int *copy_len,
2267 int *last_was_partial_copy,
2268 int *bytes_consumed)
2269 {
2270 int still_to_copy;
2271
2272 still_to_copy = space_required - *bytes_consumed;
2273 *copy_off = *bytes_consumed;
2274
2275 if (still_to_copy <= space_available) {
2276 /* write of region completes here */
2277 *copy_len = still_to_copy;
2278 ophdr->oh_len = cpu_to_be32(*copy_len);
2279 if (*last_was_partial_copy)
2280 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2281 *last_was_partial_copy = 0;
2282 *bytes_consumed = 0;
2283 return 0;
2284 }
2285
2286 /* partial write of region, needs extra log op header reservation */
2287 *copy_len = space_available;
2288 ophdr->oh_len = cpu_to_be32(*copy_len);
2289 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2290 if (*last_was_partial_copy)
2291 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2292 *bytes_consumed += *copy_len;
2293 (*last_was_partial_copy)++;
2294
2295 /* account for new log op header */
2296 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2297 ticket->t_res_num_ophdrs++;
2298
2299 return sizeof(struct xlog_op_header);
2300 }
2301
2302 static int
2303 xlog_write_copy_finish(
2304 struct xlog *log,
2305 struct xlog_in_core *iclog,
2306 uint flags,
2307 int *record_cnt,
2308 int *data_cnt,
2309 int *partial_copy,
2310 int *partial_copy_len,
2311 int log_offset,
2312 struct xlog_in_core **commit_iclog)
2313 {
2314 if (*partial_copy) {
2315 /*
2316 * This iclog has already been marked WANT_SYNC by
2317 * xlog_state_get_iclog_space.
2318 */
2319 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2320 *record_cnt = 0;
2321 *data_cnt = 0;
2322 return xlog_state_release_iclog(log, iclog);
2323 }
2324
2325 *partial_copy = 0;
2326 *partial_copy_len = 0;
2327
2328 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2329 /* no more space in this iclog - push it. */
2330 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2331 *record_cnt = 0;
2332 *data_cnt = 0;
2333
2334 spin_lock(&log->l_icloglock);
2335 xlog_state_want_sync(log, iclog);
2336 spin_unlock(&log->l_icloglock);
2337
2338 if (!commit_iclog)
2339 return xlog_state_release_iclog(log, iclog);
2340 ASSERT(flags & XLOG_COMMIT_TRANS);
2341 *commit_iclog = iclog;
2342 }
2343
2344 return 0;
2345 }
2346
2347 /*
2348 * Write some region out to in-core log
2349 *
2350 * This will be called when writing externally provided regions or when
2351 * writing out a commit record for a given transaction.
2352 *
2353 * General algorithm:
2354 * 1. Find total length of this write. This may include adding to the
2355 * lengths passed in.
2356 * 2. Check whether we violate the tickets reservation.
2357 * 3. While writing to this iclog
2358 * A. Reserve as much space in this iclog as can get
2359 * B. If this is first write, save away start lsn
2360 * C. While writing this region:
2361 * 1. If first write of transaction, write start record
2362 * 2. Write log operation header (header per region)
2363 * 3. Find out if we can fit entire region into this iclog
2364 * 4. Potentially, verify destination memcpy ptr
2365 * 5. Memcpy (partial) region
2366 * 6. If partial copy, release iclog; otherwise, continue
2367 * copying more regions into current iclog
2368 * 4. Mark want sync bit (in simulation mode)
2369 * 5. Release iclog for potential flush to on-disk log.
2370 *
2371 * ERRORS:
2372 * 1. Panic if reservation is overrun. This should never happen since
2373 * reservation amounts are generated internal to the filesystem.
2374 * NOTES:
2375 * 1. Tickets are single threaded data structures.
2376 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2377 * syncing routine. When a single log_write region needs to span
2378 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2379 * on all log operation writes which don't contain the end of the
2380 * region. The XLOG_END_TRANS bit is used for the in-core log
2381 * operation which contains the end of the continued log_write region.
2382 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2383 * we don't really know exactly how much space will be used. As a result,
2384 * we don't update ic_offset until the end when we know exactly how many
2385 * bytes have been written out.
2386 */
2387 int
2388 xlog_write(
2389 struct xlog *log,
2390 struct xfs_log_vec *log_vector,
2391 struct xlog_ticket *ticket,
2392 xfs_lsn_t *start_lsn,
2393 struct xlog_in_core **commit_iclog,
2394 uint flags)
2395 {
2396 struct xlog_in_core *iclog = NULL;
2397 struct xfs_log_iovec *vecp;
2398 struct xfs_log_vec *lv;
2399 int len;
2400 int index;
2401 int partial_copy = 0;
2402 int partial_copy_len = 0;
2403 int contwr = 0;
2404 int record_cnt = 0;
2405 int data_cnt = 0;
2406 int error;
2407
2408 *start_lsn = 0;
2409
2410 len = xlog_write_calc_vec_length(ticket, log_vector);
2411
2412 /*
2413 * Region headers and bytes are already accounted for.
2414 * We only need to take into account start records and
2415 * split regions in this function.
2416 */
2417 if (ticket->t_flags & XLOG_TIC_INITED)
2418 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2419
2420 /*
2421 * Commit record headers need to be accounted for. These
2422 * come in as separate writes so are easy to detect.
2423 */
2424 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2425 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2426
2427 if (ticket->t_curr_res < 0) {
2428 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2429 "ctx ticket reservation ran out. Need to up reservation");
2430 xlog_print_tic_res(log->l_mp, ticket);
2431 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2432 }
2433
2434 index = 0;
2435 lv = log_vector;
2436 vecp = lv->lv_iovecp;
2437 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2438 void *ptr;
2439 int log_offset;
2440
2441 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2442 &contwr, &log_offset);
2443 if (error)
2444 return error;
2445
2446 ASSERT(log_offset <= iclog->ic_size - 1);
2447 ptr = iclog->ic_datap + log_offset;
2448
2449 /* start_lsn is the first lsn written to. That's all we need. */
2450 if (!*start_lsn)
2451 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2452
2453 /*
2454 * This loop writes out as many regions as can fit in the amount
2455 * of space which was allocated by xlog_state_get_iclog_space().
2456 */
2457 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2458 struct xfs_log_iovec *reg;
2459 struct xlog_op_header *ophdr;
2460 int start_rec_copy;
2461 int copy_len;
2462 int copy_off;
2463 bool ordered = false;
2464
2465 /* ordered log vectors have no regions to write */
2466 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2467 ASSERT(lv->lv_niovecs == 0);
2468 ordered = true;
2469 goto next_lv;
2470 }
2471
2472 reg = &vecp[index];
2473 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2474 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2475
2476 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2477 if (start_rec_copy) {
2478 record_cnt++;
2479 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2480 start_rec_copy);
2481 }
2482
2483 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2484 if (!ophdr)
2485 return -EIO;
2486
2487 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488 sizeof(struct xlog_op_header));
2489
2490 len += xlog_write_setup_copy(ticket, ophdr,
2491 iclog->ic_size-log_offset,
2492 reg->i_len,
2493 &copy_off, &copy_len,
2494 &partial_copy,
2495 &partial_copy_len);
2496 xlog_verify_dest_ptr(log, ptr);
2497
2498 /*
2499 * Copy region.
2500 *
2501 * Unmount records just log an opheader, so can have
2502 * empty payloads with no data region to copy. Hence we
2503 * only copy the payload if the vector says it has data
2504 * to copy.
2505 */
2506 ASSERT(copy_len >= 0);
2507 if (copy_len > 0) {
2508 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2509 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2510 copy_len);
2511 }
2512 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2513 record_cnt++;
2514 data_cnt += contwr ? copy_len : 0;
2515
2516 error = xlog_write_copy_finish(log, iclog, flags,
2517 &record_cnt, &data_cnt,
2518 &partial_copy,
2519 &partial_copy_len,
2520 log_offset,
2521 commit_iclog);
2522 if (error)
2523 return error;
2524
2525 /*
2526 * if we had a partial copy, we need to get more iclog
2527 * space but we don't want to increment the region
2528 * index because there is still more is this region to
2529 * write.
2530 *
2531 * If we completed writing this region, and we flushed
2532 * the iclog (indicated by resetting of the record
2533 * count), then we also need to get more log space. If
2534 * this was the last record, though, we are done and
2535 * can just return.
2536 */
2537 if (partial_copy)
2538 break;
2539
2540 if (++index == lv->lv_niovecs) {
2541 next_lv:
2542 lv = lv->lv_next;
2543 index = 0;
2544 if (lv)
2545 vecp = lv->lv_iovecp;
2546 }
2547 if (record_cnt == 0 && !ordered) {
2548 if (!lv)
2549 return 0;
2550 break;
2551 }
2552 }
2553 }
2554
2555 ASSERT(len == 0);
2556
2557 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2558 if (!commit_iclog)
2559 return xlog_state_release_iclog(log, iclog);
2560
2561 ASSERT(flags & XLOG_COMMIT_TRANS);
2562 *commit_iclog = iclog;
2563 return 0;
2564 }
2565
2566
2567 /*****************************************************************************
2568 *
2569 * State Machine functions
2570 *
2571 *****************************************************************************
2572 */
2573
2574 /* Clean iclogs starting from the head. This ordering must be
2575 * maintained, so an iclog doesn't become ACTIVE beyond one that
2576 * is SYNCING. This is also required to maintain the notion that we use
2577 * a ordered wait queue to hold off would be writers to the log when every
2578 * iclog is trying to sync to disk.
2579 *
2580 * State Change: DIRTY -> ACTIVE
2581 */
2582 STATIC void
2583 xlog_state_clean_log(
2584 struct xlog *log)
2585 {
2586 xlog_in_core_t *iclog;
2587 int changed = 0;
2588
2589 iclog = log->l_iclog;
2590 do {
2591 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2592 iclog->ic_state = XLOG_STATE_ACTIVE;
2593 iclog->ic_offset = 0;
2594 ASSERT(iclog->ic_callback == NULL);
2595 /*
2596 * If the number of ops in this iclog indicate it just
2597 * contains the dummy transaction, we can
2598 * change state into IDLE (the second time around).
2599 * Otherwise we should change the state into
2600 * NEED a dummy.
2601 * We don't need to cover the dummy.
2602 */
2603 if (!changed &&
2604 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2605 XLOG_COVER_OPS)) {
2606 changed = 1;
2607 } else {
2608 /*
2609 * We have two dirty iclogs so start over
2610 * This could also be num of ops indicates
2611 * this is not the dummy going out.
2612 */
2613 changed = 2;
2614 }
2615 iclog->ic_header.h_num_logops = 0;
2616 memset(iclog->ic_header.h_cycle_data, 0,
2617 sizeof(iclog->ic_header.h_cycle_data));
2618 iclog->ic_header.h_lsn = 0;
2619 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2620 /* do nothing */;
2621 else
2622 break; /* stop cleaning */
2623 iclog = iclog->ic_next;
2624 } while (iclog != log->l_iclog);
2625
2626 /* log is locked when we are called */
2627 /*
2628 * Change state for the dummy log recording.
2629 * We usually go to NEED. But we go to NEED2 if the changed indicates
2630 * we are done writing the dummy record.
2631 * If we are done with the second dummy recored (DONE2), then
2632 * we go to IDLE.
2633 */
2634 if (changed) {
2635 switch (log->l_covered_state) {
2636 case XLOG_STATE_COVER_IDLE:
2637 case XLOG_STATE_COVER_NEED:
2638 case XLOG_STATE_COVER_NEED2:
2639 log->l_covered_state = XLOG_STATE_COVER_NEED;
2640 break;
2641
2642 case XLOG_STATE_COVER_DONE:
2643 if (changed == 1)
2644 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2645 else
2646 log->l_covered_state = XLOG_STATE_COVER_NEED;
2647 break;
2648
2649 case XLOG_STATE_COVER_DONE2:
2650 if (changed == 1)
2651 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2652 else
2653 log->l_covered_state = XLOG_STATE_COVER_NEED;
2654 break;
2655
2656 default:
2657 ASSERT(0);
2658 }
2659 }
2660 } /* xlog_state_clean_log */
2661
2662 STATIC xfs_lsn_t
2663 xlog_get_lowest_lsn(
2664 struct xlog *log)
2665 {
2666 xlog_in_core_t *lsn_log;
2667 xfs_lsn_t lowest_lsn, lsn;
2668
2669 lsn_log = log->l_iclog;
2670 lowest_lsn = 0;
2671 do {
2672 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2673 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2674 if ((lsn && !lowest_lsn) ||
2675 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2676 lowest_lsn = lsn;
2677 }
2678 }
2679 lsn_log = lsn_log->ic_next;
2680 } while (lsn_log != log->l_iclog);
2681 return lowest_lsn;
2682 }
2683
2684
2685 STATIC void
2686 xlog_state_do_callback(
2687 struct xlog *log,
2688 int aborted,
2689 struct xlog_in_core *ciclog)
2690 {
2691 xlog_in_core_t *iclog;
2692 xlog_in_core_t *first_iclog; /* used to know when we've
2693 * processed all iclogs once */
2694 xfs_log_callback_t *cb, *cb_next;
2695 int flushcnt = 0;
2696 xfs_lsn_t lowest_lsn;
2697 int ioerrors; /* counter: iclogs with errors */
2698 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2699 int funcdidcallbacks; /* flag: function did callbacks */
2700 int repeats; /* for issuing console warnings if
2701 * looping too many times */
2702 int wake = 0;
2703
2704 spin_lock(&log->l_icloglock);
2705 first_iclog = iclog = log->l_iclog;
2706 ioerrors = 0;
2707 funcdidcallbacks = 0;
2708 repeats = 0;
2709
2710 do {
2711 /*
2712 * Scan all iclogs starting with the one pointed to by the
2713 * log. Reset this starting point each time the log is
2714 * unlocked (during callbacks).
2715 *
2716 * Keep looping through iclogs until one full pass is made
2717 * without running any callbacks.
2718 */
2719 first_iclog = log->l_iclog;
2720 iclog = log->l_iclog;
2721 loopdidcallbacks = 0;
2722 repeats++;
2723
2724 do {
2725
2726 /* skip all iclogs in the ACTIVE & DIRTY states */
2727 if (iclog->ic_state &
2728 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2729 iclog = iclog->ic_next;
2730 continue;
2731 }
2732
2733 /*
2734 * Between marking a filesystem SHUTDOWN and stopping
2735 * the log, we do flush all iclogs to disk (if there
2736 * wasn't a log I/O error). So, we do want things to
2737 * go smoothly in case of just a SHUTDOWN w/o a
2738 * LOG_IO_ERROR.
2739 */
2740 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2741 /*
2742 * Can only perform callbacks in order. Since
2743 * this iclog is not in the DONE_SYNC/
2744 * DO_CALLBACK state, we skip the rest and
2745 * just try to clean up. If we set our iclog
2746 * to DO_CALLBACK, we will not process it when
2747 * we retry since a previous iclog is in the
2748 * CALLBACK and the state cannot change since
2749 * we are holding the l_icloglock.
2750 */
2751 if (!(iclog->ic_state &
2752 (XLOG_STATE_DONE_SYNC |
2753 XLOG_STATE_DO_CALLBACK))) {
2754 if (ciclog && (ciclog->ic_state ==
2755 XLOG_STATE_DONE_SYNC)) {
2756 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2757 }
2758 break;
2759 }
2760 /*
2761 * We now have an iclog that is in either the
2762 * DO_CALLBACK or DONE_SYNC states. The other
2763 * states (WANT_SYNC, SYNCING, or CALLBACK were
2764 * caught by the above if and are going to
2765 * clean (i.e. we aren't doing their callbacks)
2766 * see the above if.
2767 */
2768
2769 /*
2770 * We will do one more check here to see if we
2771 * have chased our tail around.
2772 */
2773
2774 lowest_lsn = xlog_get_lowest_lsn(log);
2775 if (lowest_lsn &&
2776 XFS_LSN_CMP(lowest_lsn,
2777 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2778 iclog = iclog->ic_next;
2779 continue; /* Leave this iclog for
2780 * another thread */
2781 }
2782
2783 iclog->ic_state = XLOG_STATE_CALLBACK;
2784
2785
2786 /*
2787 * Completion of a iclog IO does not imply that
2788 * a transaction has completed, as transactions
2789 * can be large enough to span many iclogs. We
2790 * cannot change the tail of the log half way
2791 * through a transaction as this may be the only
2792 * transaction in the log and moving th etail to
2793 * point to the middle of it will prevent
2794 * recovery from finding the start of the
2795 * transaction. Hence we should only update the
2796 * last_sync_lsn if this iclog contains
2797 * transaction completion callbacks on it.
2798 *
2799 * We have to do this before we drop the
2800 * icloglock to ensure we are the only one that
2801 * can update it.
2802 */
2803 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2804 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2805 if (iclog->ic_callback)
2806 atomic64_set(&log->l_last_sync_lsn,
2807 be64_to_cpu(iclog->ic_header.h_lsn));
2808
2809 } else
2810 ioerrors++;
2811
2812 spin_unlock(&log->l_icloglock);
2813
2814 /*
2815 * Keep processing entries in the callback list until
2816 * we come around and it is empty. We need to
2817 * atomically see that the list is empty and change the
2818 * state to DIRTY so that we don't miss any more
2819 * callbacks being added.
2820 */
2821 spin_lock(&iclog->ic_callback_lock);
2822 cb = iclog->ic_callback;
2823 while (cb) {
2824 iclog->ic_callback_tail = &(iclog->ic_callback);
2825 iclog->ic_callback = NULL;
2826 spin_unlock(&iclog->ic_callback_lock);
2827
2828 /* perform callbacks in the order given */
2829 for (; cb; cb = cb_next) {
2830 cb_next = cb->cb_next;
2831 cb->cb_func(cb->cb_arg, aborted);
2832 }
2833 spin_lock(&iclog->ic_callback_lock);
2834 cb = iclog->ic_callback;
2835 }
2836
2837 loopdidcallbacks++;
2838 funcdidcallbacks++;
2839
2840 spin_lock(&log->l_icloglock);
2841 ASSERT(iclog->ic_callback == NULL);
2842 spin_unlock(&iclog->ic_callback_lock);
2843 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2844 iclog->ic_state = XLOG_STATE_DIRTY;
2845
2846 /*
2847 * Transition from DIRTY to ACTIVE if applicable.
2848 * NOP if STATE_IOERROR.
2849 */
2850 xlog_state_clean_log(log);
2851
2852 /* wake up threads waiting in xfs_log_force() */
2853 wake_up_all(&iclog->ic_force_wait);
2854
2855 iclog = iclog->ic_next;
2856 } while (first_iclog != iclog);
2857
2858 if (repeats > 5000) {
2859 flushcnt += repeats;
2860 repeats = 0;
2861 xfs_warn(log->l_mp,
2862 "%s: possible infinite loop (%d iterations)",
2863 __func__, flushcnt);
2864 }
2865 } while (!ioerrors && loopdidcallbacks);
2866
2867 #ifdef DEBUG
2868 /*
2869 * Make one last gasp attempt to see if iclogs are being left in limbo.
2870 * If the above loop finds an iclog earlier than the current iclog and
2871 * in one of the syncing states, the current iclog is put into
2872 * DO_CALLBACK and the callbacks are deferred to the completion of the
2873 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2874 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2875 * states.
2876 *
2877 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2878 * for ic_state == SYNCING.
2879 */
2880 if (funcdidcallbacks) {
2881 first_iclog = iclog = log->l_iclog;
2882 do {
2883 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2884 /*
2885 * Terminate the loop if iclogs are found in states
2886 * which will cause other threads to clean up iclogs.
2887 *
2888 * SYNCING - i/o completion will go through logs
2889 * DONE_SYNC - interrupt thread should be waiting for
2890 * l_icloglock
2891 * IOERROR - give up hope all ye who enter here
2892 */
2893 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2894 iclog->ic_state & XLOG_STATE_SYNCING ||
2895 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2896 iclog->ic_state == XLOG_STATE_IOERROR )
2897 break;
2898 iclog = iclog->ic_next;
2899 } while (first_iclog != iclog);
2900 }
2901 #endif
2902
2903 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2904 wake = 1;
2905 spin_unlock(&log->l_icloglock);
2906
2907 if (wake)
2908 wake_up_all(&log->l_flush_wait);
2909 }
2910
2911
2912 /*
2913 * Finish transitioning this iclog to the dirty state.
2914 *
2915 * Make sure that we completely execute this routine only when this is
2916 * the last call to the iclog. There is a good chance that iclog flushes,
2917 * when we reach the end of the physical log, get turned into 2 separate
2918 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2919 * routine. By using the reference count bwritecnt, we guarantee that only
2920 * the second completion goes through.
2921 *
2922 * Callbacks could take time, so they are done outside the scope of the
2923 * global state machine log lock.
2924 */
2925 STATIC void
2926 xlog_state_done_syncing(
2927 xlog_in_core_t *iclog,
2928 int aborted)
2929 {
2930 struct xlog *log = iclog->ic_log;
2931
2932 spin_lock(&log->l_icloglock);
2933
2934 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2935 iclog->ic_state == XLOG_STATE_IOERROR);
2936 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2937 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2938
2939
2940 /*
2941 * If we got an error, either on the first buffer, or in the case of
2942 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2943 * and none should ever be attempted to be written to disk
2944 * again.
2945 */
2946 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2947 if (--iclog->ic_bwritecnt == 1) {
2948 spin_unlock(&log->l_icloglock);
2949 return;
2950 }
2951 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2952 }
2953
2954 /*
2955 * Someone could be sleeping prior to writing out the next
2956 * iclog buffer, we wake them all, one will get to do the
2957 * I/O, the others get to wait for the result.
2958 */
2959 wake_up_all(&iclog->ic_write_wait);
2960 spin_unlock(&log->l_icloglock);
2961 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2962 } /* xlog_state_done_syncing */
2963
2964
2965 /*
2966 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2967 * sleep. We wait on the flush queue on the head iclog as that should be
2968 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2969 * we will wait here and all new writes will sleep until a sync completes.
2970 *
2971 * The in-core logs are used in a circular fashion. They are not used
2972 * out-of-order even when an iclog past the head is free.
2973 *
2974 * return:
2975 * * log_offset where xlog_write() can start writing into the in-core
2976 * log's data space.
2977 * * in-core log pointer to which xlog_write() should write.
2978 * * boolean indicating this is a continued write to an in-core log.
2979 * If this is the last write, then the in-core log's offset field
2980 * needs to be incremented, depending on the amount of data which
2981 * is copied.
2982 */
2983 STATIC int
2984 xlog_state_get_iclog_space(
2985 struct xlog *log,
2986 int len,
2987 struct xlog_in_core **iclogp,
2988 struct xlog_ticket *ticket,
2989 int *continued_write,
2990 int *logoffsetp)
2991 {
2992 int log_offset;
2993 xlog_rec_header_t *head;
2994 xlog_in_core_t *iclog;
2995 int error;
2996
2997 restart:
2998 spin_lock(&log->l_icloglock);
2999 if (XLOG_FORCED_SHUTDOWN(log)) {
3000 spin_unlock(&log->l_icloglock);
3001 return -EIO;
3002 }
3003
3004 iclog = log->l_iclog;
3005 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3006 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3007
3008 /* Wait for log writes to have flushed */
3009 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3010 goto restart;
3011 }
3012
3013 head = &iclog->ic_header;
3014
3015 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
3016 log_offset = iclog->ic_offset;
3017
3018 /* On the 1st write to an iclog, figure out lsn. This works
3019 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3020 * committing to. If the offset is set, that's how many blocks
3021 * must be written.
3022 */
3023 if (log_offset == 0) {
3024 ticket->t_curr_res -= log->l_iclog_hsize;
3025 xlog_tic_add_region(ticket,
3026 log->l_iclog_hsize,
3027 XLOG_REG_TYPE_LRHEADER);
3028 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3029 head->h_lsn = cpu_to_be64(
3030 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3031 ASSERT(log->l_curr_block >= 0);
3032 }
3033
3034 /* If there is enough room to write everything, then do it. Otherwise,
3035 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3036 * bit is on, so this will get flushed out. Don't update ic_offset
3037 * until you know exactly how many bytes get copied. Therefore, wait
3038 * until later to update ic_offset.
3039 *
3040 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3041 * can fit into remaining data section.
3042 */
3043 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3044 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3045
3046 /*
3047 * If I'm the only one writing to this iclog, sync it to disk.
3048 * We need to do an atomic compare and decrement here to avoid
3049 * racing with concurrent atomic_dec_and_lock() calls in
3050 * xlog_state_release_iclog() when there is more than one
3051 * reference to the iclog.
3052 */
3053 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3054 /* we are the only one */
3055 spin_unlock(&log->l_icloglock);
3056 error = xlog_state_release_iclog(log, iclog);
3057 if (error)
3058 return error;
3059 } else {
3060 spin_unlock(&log->l_icloglock);
3061 }
3062 goto restart;
3063 }
3064
3065 /* Do we have enough room to write the full amount in the remainder
3066 * of this iclog? Or must we continue a write on the next iclog and
3067 * mark this iclog as completely taken? In the case where we switch
3068 * iclogs (to mark it taken), this particular iclog will release/sync
3069 * to disk in xlog_write().
3070 */
3071 if (len <= iclog->ic_size - iclog->ic_offset) {
3072 *continued_write = 0;
3073 iclog->ic_offset += len;
3074 } else {
3075 *continued_write = 1;
3076 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3077 }
3078 *iclogp = iclog;
3079
3080 ASSERT(iclog->ic_offset <= iclog->ic_size);
3081 spin_unlock(&log->l_icloglock);
3082
3083 *logoffsetp = log_offset;
3084 return 0;
3085 } /* xlog_state_get_iclog_space */
3086
3087 /* The first cnt-1 times through here we don't need to
3088 * move the grant write head because the permanent
3089 * reservation has reserved cnt times the unit amount.
3090 * Release part of current permanent unit reservation and
3091 * reset current reservation to be one units worth. Also
3092 * move grant reservation head forward.
3093 */
3094 STATIC void
3095 xlog_regrant_reserve_log_space(
3096 struct xlog *log,
3097 struct xlog_ticket *ticket)
3098 {
3099 trace_xfs_log_regrant_reserve_enter(log, ticket);
3100
3101 if (ticket->t_cnt > 0)
3102 ticket->t_cnt--;
3103
3104 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3105 ticket->t_curr_res);
3106 xlog_grant_sub_space(log, &log->l_write_head.grant,
3107 ticket->t_curr_res);
3108 ticket->t_curr_res = ticket->t_unit_res;
3109 xlog_tic_reset_res(ticket);
3110
3111 trace_xfs_log_regrant_reserve_sub(log, ticket);
3112
3113 /* just return if we still have some of the pre-reserved space */
3114 if (ticket->t_cnt > 0)
3115 return;
3116
3117 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3118 ticket->t_unit_res);
3119
3120 trace_xfs_log_regrant_reserve_exit(log, ticket);
3121
3122 ticket->t_curr_res = ticket->t_unit_res;
3123 xlog_tic_reset_res(ticket);
3124 } /* xlog_regrant_reserve_log_space */
3125
3126
3127 /*
3128 * Give back the space left from a reservation.
3129 *
3130 * All the information we need to make a correct determination of space left
3131 * is present. For non-permanent reservations, things are quite easy. The
3132 * count should have been decremented to zero. We only need to deal with the
3133 * space remaining in the current reservation part of the ticket. If the
3134 * ticket contains a permanent reservation, there may be left over space which
3135 * needs to be released. A count of N means that N-1 refills of the current
3136 * reservation can be done before we need to ask for more space. The first
3137 * one goes to fill up the first current reservation. Once we run out of
3138 * space, the count will stay at zero and the only space remaining will be
3139 * in the current reservation field.
3140 */
3141 STATIC void
3142 xlog_ungrant_log_space(
3143 struct xlog *log,
3144 struct xlog_ticket *ticket)
3145 {
3146 int bytes;
3147
3148 if (ticket->t_cnt > 0)
3149 ticket->t_cnt--;
3150
3151 trace_xfs_log_ungrant_enter(log, ticket);
3152 trace_xfs_log_ungrant_sub(log, ticket);
3153
3154 /*
3155 * If this is a permanent reservation ticket, we may be able to free
3156 * up more space based on the remaining count.
3157 */
3158 bytes = ticket->t_curr_res;
3159 if (ticket->t_cnt > 0) {
3160 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3161 bytes += ticket->t_unit_res*ticket->t_cnt;
3162 }
3163
3164 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3165 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3166
3167 trace_xfs_log_ungrant_exit(log, ticket);
3168
3169 xfs_log_space_wake(log->l_mp);
3170 }
3171
3172 /*
3173 * Flush iclog to disk if this is the last reference to the given iclog and
3174 * the WANT_SYNC bit is set.
3175 *
3176 * When this function is entered, the iclog is not necessarily in the
3177 * WANT_SYNC state. It may be sitting around waiting to get filled.
3178 *
3179 *
3180 */
3181 STATIC int
3182 xlog_state_release_iclog(
3183 struct xlog *log,
3184 struct xlog_in_core *iclog)
3185 {
3186 int sync = 0; /* do we sync? */
3187
3188 if (iclog->ic_state & XLOG_STATE_IOERROR)
3189 return -EIO;
3190
3191 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3192 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3193 return 0;
3194
3195 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3196 spin_unlock(&log->l_icloglock);
3197 return -EIO;
3198 }
3199 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3200 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3201
3202 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3203 /* update tail before writing to iclog */
3204 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3205 sync++;
3206 iclog->ic_state = XLOG_STATE_SYNCING;
3207 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3208 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3209 /* cycle incremented when incrementing curr_block */
3210 }
3211 spin_unlock(&log->l_icloglock);
3212
3213 /*
3214 * We let the log lock go, so it's possible that we hit a log I/O
3215 * error or some other SHUTDOWN condition that marks the iclog
3216 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3217 * this iclog has consistent data, so we ignore IOERROR
3218 * flags after this point.
3219 */
3220 if (sync)
3221 return xlog_sync(log, iclog);
3222 return 0;
3223 } /* xlog_state_release_iclog */
3224
3225
3226 /*
3227 * This routine will mark the current iclog in the ring as WANT_SYNC
3228 * and move the current iclog pointer to the next iclog in the ring.
3229 * When this routine is called from xlog_state_get_iclog_space(), the
3230 * exact size of the iclog has not yet been determined. All we know is
3231 * that every data block. We have run out of space in this log record.
3232 */
3233 STATIC void
3234 xlog_state_switch_iclogs(
3235 struct xlog *log,
3236 struct xlog_in_core *iclog,
3237 int eventual_size)
3238 {
3239 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3240 if (!eventual_size)
3241 eventual_size = iclog->ic_offset;
3242 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3243 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3244 log->l_prev_block = log->l_curr_block;
3245 log->l_prev_cycle = log->l_curr_cycle;
3246
3247 /* roll log?: ic_offset changed later */
3248 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3249
3250 /* Round up to next log-sunit */
3251 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3252 log->l_mp->m_sb.sb_logsunit > 1) {
3253 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3254 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3255 }
3256
3257 if (log->l_curr_block >= log->l_logBBsize) {
3258 /*
3259 * Rewind the current block before the cycle is bumped to make
3260 * sure that the combined LSN never transiently moves forward
3261 * when the log wraps to the next cycle. This is to support the
3262 * unlocked sample of these fields from xlog_valid_lsn(). Most
3263 * other cases should acquire l_icloglock.
3264 */
3265 log->l_curr_block -= log->l_logBBsize;
3266 ASSERT(log->l_curr_block >= 0);
3267 smp_wmb();
3268 log->l_curr_cycle++;
3269 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3270 log->l_curr_cycle++;
3271 }
3272 ASSERT(iclog == log->l_iclog);
3273 log->l_iclog = iclog->ic_next;
3274 } /* xlog_state_switch_iclogs */
3275
3276 /*
3277 * Write out all data in the in-core log as of this exact moment in time.
3278 *
3279 * Data may be written to the in-core log during this call. However,
3280 * we don't guarantee this data will be written out. A change from past
3281 * implementation means this routine will *not* write out zero length LRs.
3282 *
3283 * Basically, we try and perform an intelligent scan of the in-core logs.
3284 * If we determine there is no flushable data, we just return. There is no
3285 * flushable data if:
3286 *
3287 * 1. the current iclog is active and has no data; the previous iclog
3288 * is in the active or dirty state.
3289 * 2. the current iclog is drity, and the previous iclog is in the
3290 * active or dirty state.
3291 *
3292 * We may sleep if:
3293 *
3294 * 1. the current iclog is not in the active nor dirty state.
3295 * 2. the current iclog dirty, and the previous iclog is not in the
3296 * active nor dirty state.
3297 * 3. the current iclog is active, and there is another thread writing
3298 * to this particular iclog.
3299 * 4. a) the current iclog is active and has no other writers
3300 * b) when we return from flushing out this iclog, it is still
3301 * not in the active nor dirty state.
3302 */
3303 int
3304 _xfs_log_force(
3305 struct xfs_mount *mp,
3306 uint flags,
3307 int *log_flushed)
3308 {
3309 struct xlog *log = mp->m_log;
3310 struct xlog_in_core *iclog;
3311 xfs_lsn_t lsn;
3312
3313 XFS_STATS_INC(mp, xs_log_force);
3314
3315 xlog_cil_force(log);
3316
3317 spin_lock(&log->l_icloglock);
3318
3319 iclog = log->l_iclog;
3320 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3321 spin_unlock(&log->l_icloglock);
3322 return -EIO;
3323 }
3324
3325 /* If the head iclog is not active nor dirty, we just attach
3326 * ourselves to the head and go to sleep.
3327 */
3328 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3329 iclog->ic_state == XLOG_STATE_DIRTY) {
3330 /*
3331 * If the head is dirty or (active and empty), then
3332 * we need to look at the previous iclog. If the previous
3333 * iclog is active or dirty we are done. There is nothing
3334 * to sync out. Otherwise, we attach ourselves to the
3335 * previous iclog and go to sleep.
3336 */
3337 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3338 (atomic_read(&iclog->ic_refcnt) == 0
3339 && iclog->ic_offset == 0)) {
3340 iclog = iclog->ic_prev;
3341 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3342 iclog->ic_state == XLOG_STATE_DIRTY)
3343 goto no_sleep;
3344 else
3345 goto maybe_sleep;
3346 } else {
3347 if (atomic_read(&iclog->ic_refcnt) == 0) {
3348 /* We are the only one with access to this
3349 * iclog. Flush it out now. There should
3350 * be a roundoff of zero to show that someone
3351 * has already taken care of the roundoff from
3352 * the previous sync.
3353 */
3354 atomic_inc(&iclog->ic_refcnt);
3355 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3356 xlog_state_switch_iclogs(log, iclog, 0);
3357 spin_unlock(&log->l_icloglock);
3358
3359 if (xlog_state_release_iclog(log, iclog))
3360 return -EIO;
3361
3362 if (log_flushed)
3363 *log_flushed = 1;
3364 spin_lock(&log->l_icloglock);
3365 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3366 iclog->ic_state != XLOG_STATE_DIRTY)
3367 goto maybe_sleep;
3368 else
3369 goto no_sleep;
3370 } else {
3371 /* Someone else is writing to this iclog.
3372 * Use its call to flush out the data. However,
3373 * the other thread may not force out this LR,
3374 * so we mark it WANT_SYNC.
3375 */
3376 xlog_state_switch_iclogs(log, iclog, 0);
3377 goto maybe_sleep;
3378 }
3379 }
3380 }
3381
3382 /* By the time we come around again, the iclog could've been filled
3383 * which would give it another lsn. If we have a new lsn, just
3384 * return because the relevant data has been flushed.
3385 */
3386 maybe_sleep:
3387 if (flags & XFS_LOG_SYNC) {
3388 /*
3389 * We must check if we're shutting down here, before
3390 * we wait, while we're holding the l_icloglock.
3391 * Then we check again after waking up, in case our
3392 * sleep was disturbed by a bad news.
3393 */
3394 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3395 spin_unlock(&log->l_icloglock);
3396 return -EIO;
3397 }
3398 XFS_STATS_INC(mp, xs_log_force_sleep);
3399 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3400 /*
3401 * No need to grab the log lock here since we're
3402 * only deciding whether or not to return EIO
3403 * and the memory read should be atomic.
3404 */
3405 if (iclog->ic_state & XLOG_STATE_IOERROR)
3406 return -EIO;
3407 } else {
3408
3409 no_sleep:
3410 spin_unlock(&log->l_icloglock);
3411 }
3412 return 0;
3413 }
3414
3415 /*
3416 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3417 * about errors or whether the log was flushed or not. This is the normal
3418 * interface to use when trying to unpin items or move the log forward.
3419 */
3420 void
3421 xfs_log_force(
3422 xfs_mount_t *mp,
3423 uint flags)
3424 {
3425 trace_xfs_log_force(mp, 0, _RET_IP_);
3426 _xfs_log_force(mp, flags, NULL);
3427 }
3428
3429 /*
3430 * Force the in-core log to disk for a specific LSN.
3431 *
3432 * Find in-core log with lsn.
3433 * If it is in the DIRTY state, just return.
3434 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3435 * state and go to sleep or return.
3436 * If it is in any other state, go to sleep or return.
3437 *
3438 * Synchronous forces are implemented with a signal variable. All callers
3439 * to force a given lsn to disk will wait on a the sv attached to the
3440 * specific in-core log. When given in-core log finally completes its
3441 * write to disk, that thread will wake up all threads waiting on the
3442 * sv.
3443 */
3444 int
3445 _xfs_log_force_lsn(
3446 struct xfs_mount *mp,
3447 xfs_lsn_t lsn,
3448 uint flags,
3449 int *log_flushed)
3450 {
3451 struct xlog *log = mp->m_log;
3452 struct xlog_in_core *iclog;
3453 int already_slept = 0;
3454
3455 ASSERT(lsn != 0);
3456
3457 XFS_STATS_INC(mp, xs_log_force);
3458
3459 lsn = xlog_cil_force_lsn(log, lsn);
3460 if (lsn == NULLCOMMITLSN)
3461 return 0;
3462
3463 try_again:
3464 spin_lock(&log->l_icloglock);
3465 iclog = log->l_iclog;
3466 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3467 spin_unlock(&log->l_icloglock);
3468 return -EIO;
3469 }
3470
3471 do {
3472 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3473 iclog = iclog->ic_next;
3474 continue;
3475 }
3476
3477 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3478 spin_unlock(&log->l_icloglock);
3479 return 0;
3480 }
3481
3482 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3483 /*
3484 * We sleep here if we haven't already slept (e.g.
3485 * this is the first time we've looked at the correct
3486 * iclog buf) and the buffer before us is going to
3487 * be sync'ed. The reason for this is that if we
3488 * are doing sync transactions here, by waiting for
3489 * the previous I/O to complete, we can allow a few
3490 * more transactions into this iclog before we close
3491 * it down.
3492 *
3493 * Otherwise, we mark the buffer WANT_SYNC, and bump
3494 * up the refcnt so we can release the log (which
3495 * drops the ref count). The state switch keeps new
3496 * transaction commits from using this buffer. When
3497 * the current commits finish writing into the buffer,
3498 * the refcount will drop to zero and the buffer will
3499 * go out then.
3500 */
3501 if (!already_slept &&
3502 (iclog->ic_prev->ic_state &
3503 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3504 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3505
3506 XFS_STATS_INC(mp, xs_log_force_sleep);
3507
3508 xlog_wait(&iclog->ic_prev->ic_write_wait,
3509 &log->l_icloglock);
3510 already_slept = 1;
3511 goto try_again;
3512 }
3513 atomic_inc(&iclog->ic_refcnt);
3514 xlog_state_switch_iclogs(log, iclog, 0);
3515 spin_unlock(&log->l_icloglock);
3516 if (xlog_state_release_iclog(log, iclog))
3517 return -EIO;
3518 if (log_flushed)
3519 *log_flushed = 1;
3520 spin_lock(&log->l_icloglock);
3521 }
3522
3523 if ((flags & XFS_LOG_SYNC) && /* sleep */
3524 !(iclog->ic_state &
3525 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3526 /*
3527 * Don't wait on completion if we know that we've
3528 * gotten a log write error.
3529 */
3530 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3531 spin_unlock(&log->l_icloglock);
3532 return -EIO;
3533 }
3534 XFS_STATS_INC(mp, xs_log_force_sleep);
3535 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3536 /*
3537 * No need to grab the log lock here since we're
3538 * only deciding whether or not to return EIO
3539 * and the memory read should be atomic.
3540 */
3541 if (iclog->ic_state & XLOG_STATE_IOERROR)
3542 return -EIO;
3543 } else { /* just return */
3544 spin_unlock(&log->l_icloglock);
3545 }
3546
3547 return 0;
3548 } while (iclog != log->l_iclog);
3549
3550 spin_unlock(&log->l_icloglock);
3551 return 0;
3552 }
3553
3554 /*
3555 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3556 * about errors or whether the log was flushed or not. This is the normal
3557 * interface to use when trying to unpin items or move the log forward.
3558 */
3559 void
3560 xfs_log_force_lsn(
3561 xfs_mount_t *mp,
3562 xfs_lsn_t lsn,
3563 uint flags)
3564 {
3565 trace_xfs_log_force(mp, lsn, _RET_IP_);
3566 _xfs_log_force_lsn(mp, lsn, flags, NULL);
3567 }
3568
3569 /*
3570 * Called when we want to mark the current iclog as being ready to sync to
3571 * disk.
3572 */
3573 STATIC void
3574 xlog_state_want_sync(
3575 struct xlog *log,
3576 struct xlog_in_core *iclog)
3577 {
3578 assert_spin_locked(&log->l_icloglock);
3579
3580 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3581 xlog_state_switch_iclogs(log, iclog, 0);
3582 } else {
3583 ASSERT(iclog->ic_state &
3584 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3585 }
3586 }
3587
3588
3589 /*****************************************************************************
3590 *
3591 * TICKET functions
3592 *
3593 *****************************************************************************
3594 */
3595
3596 /*
3597 * Free a used ticket when its refcount falls to zero.
3598 */
3599 void
3600 xfs_log_ticket_put(
3601 xlog_ticket_t *ticket)
3602 {
3603 ASSERT(atomic_read(&ticket->t_ref) > 0);
3604 if (atomic_dec_and_test(&ticket->t_ref))
3605 kmem_zone_free(xfs_log_ticket_zone, ticket);
3606 }
3607
3608 xlog_ticket_t *
3609 xfs_log_ticket_get(
3610 xlog_ticket_t *ticket)
3611 {
3612 ASSERT(atomic_read(&ticket->t_ref) > 0);
3613 atomic_inc(&ticket->t_ref);
3614 return ticket;
3615 }
3616
3617 /*
3618 * Figure out the total log space unit (in bytes) that would be
3619 * required for a log ticket.
3620 */
3621 int
3622 xfs_log_calc_unit_res(
3623 struct xfs_mount *mp,
3624 int unit_bytes)
3625 {
3626 struct xlog *log = mp->m_log;
3627 int iclog_space;
3628 uint num_headers;
3629
3630 /*
3631 * Permanent reservations have up to 'cnt'-1 active log operations
3632 * in the log. A unit in this case is the amount of space for one
3633 * of these log operations. Normal reservations have a cnt of 1
3634 * and their unit amount is the total amount of space required.
3635 *
3636 * The following lines of code account for non-transaction data
3637 * which occupy space in the on-disk log.
3638 *
3639 * Normal form of a transaction is:
3640 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3641 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3642 *
3643 * We need to account for all the leadup data and trailer data
3644 * around the transaction data.
3645 * And then we need to account for the worst case in terms of using
3646 * more space.
3647 * The worst case will happen if:
3648 * - the placement of the transaction happens to be such that the
3649 * roundoff is at its maximum
3650 * - the transaction data is synced before the commit record is synced
3651 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3652 * Therefore the commit record is in its own Log Record.
3653 * This can happen as the commit record is called with its
3654 * own region to xlog_write().
3655 * This then means that in the worst case, roundoff can happen for
3656 * the commit-rec as well.
3657 * The commit-rec is smaller than padding in this scenario and so it is
3658 * not added separately.
3659 */
3660
3661 /* for trans header */
3662 unit_bytes += sizeof(xlog_op_header_t);
3663 unit_bytes += sizeof(xfs_trans_header_t);
3664
3665 /* for start-rec */
3666 unit_bytes += sizeof(xlog_op_header_t);
3667
3668 /*
3669 * for LR headers - the space for data in an iclog is the size minus
3670 * the space used for the headers. If we use the iclog size, then we
3671 * undercalculate the number of headers required.
3672 *
3673 * Furthermore - the addition of op headers for split-recs might
3674 * increase the space required enough to require more log and op
3675 * headers, so take that into account too.
3676 *
3677 * IMPORTANT: This reservation makes the assumption that if this
3678 * transaction is the first in an iclog and hence has the LR headers
3679 * accounted to it, then the remaining space in the iclog is
3680 * exclusively for this transaction. i.e. if the transaction is larger
3681 * than the iclog, it will be the only thing in that iclog.
3682 * Fundamentally, this means we must pass the entire log vector to
3683 * xlog_write to guarantee this.
3684 */
3685 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3686 num_headers = howmany(unit_bytes, iclog_space);
3687
3688 /* for split-recs - ophdrs added when data split over LRs */
3689 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3690
3691 /* add extra header reservations if we overrun */
3692 while (!num_headers ||
3693 howmany(unit_bytes, iclog_space) > num_headers) {
3694 unit_bytes += sizeof(xlog_op_header_t);
3695 num_headers++;
3696 }
3697 unit_bytes += log->l_iclog_hsize * num_headers;
3698
3699 /* for commit-rec LR header - note: padding will subsume the ophdr */
3700 unit_bytes += log->l_iclog_hsize;
3701
3702 /* for roundoff padding for transaction data and one for commit record */
3703 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3704 /* log su roundoff */
3705 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3706 } else {
3707 /* BB roundoff */
3708 unit_bytes += 2 * BBSIZE;
3709 }
3710
3711 return unit_bytes;
3712 }
3713
3714 /*
3715 * Allocate and initialise a new log ticket.
3716 */
3717 struct xlog_ticket *
3718 xlog_ticket_alloc(
3719 struct xlog *log,
3720 int unit_bytes,
3721 int cnt,
3722 char client,
3723 bool permanent,
3724 xfs_km_flags_t alloc_flags)
3725 {
3726 struct xlog_ticket *tic;
3727 int unit_res;
3728
3729 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3730 if (!tic)
3731 return NULL;
3732
3733 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3734
3735 atomic_set(&tic->t_ref, 1);
3736 tic->t_task = current;
3737 INIT_LIST_HEAD(&tic->t_queue);
3738 tic->t_unit_res = unit_res;
3739 tic->t_curr_res = unit_res;
3740 tic->t_cnt = cnt;
3741 tic->t_ocnt = cnt;
3742 tic->t_tid = prandom_u32();
3743 tic->t_clientid = client;
3744 tic->t_flags = XLOG_TIC_INITED;
3745 if (permanent)
3746 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3747
3748 xlog_tic_reset_res(tic);
3749
3750 return tic;
3751 }
3752
3753
3754 /******************************************************************************
3755 *
3756 * Log debug routines
3757 *
3758 ******************************************************************************
3759 */
3760 #if defined(DEBUG)
3761 /*
3762 * Make sure that the destination ptr is within the valid data region of
3763 * one of the iclogs. This uses backup pointers stored in a different
3764 * part of the log in case we trash the log structure.
3765 */
3766 STATIC void
3767 xlog_verify_dest_ptr(
3768 struct xlog *log,
3769 void *ptr)
3770 {
3771 int i;
3772 int good_ptr = 0;
3773
3774 for (i = 0; i < log->l_iclog_bufs; i++) {
3775 if (ptr >= log->l_iclog_bak[i] &&
3776 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3777 good_ptr++;
3778 }
3779
3780 if (!good_ptr)
3781 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3782 }
3783
3784 /*
3785 * Check to make sure the grant write head didn't just over lap the tail. If
3786 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3787 * the cycles differ by exactly one and check the byte count.
3788 *
3789 * This check is run unlocked, so can give false positives. Rather than assert
3790 * on failures, use a warn-once flag and a panic tag to allow the admin to
3791 * determine if they want to panic the machine when such an error occurs. For
3792 * debug kernels this will have the same effect as using an assert but, unlinke
3793 * an assert, it can be turned off at runtime.
3794 */
3795 STATIC void
3796 xlog_verify_grant_tail(
3797 struct xlog *log)
3798 {
3799 int tail_cycle, tail_blocks;
3800 int cycle, space;
3801
3802 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3803 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3804 if (tail_cycle != cycle) {
3805 if (cycle - 1 != tail_cycle &&
3806 !(log->l_flags & XLOG_TAIL_WARN)) {
3807 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3808 "%s: cycle - 1 != tail_cycle", __func__);
3809 log->l_flags |= XLOG_TAIL_WARN;
3810 }
3811
3812 if (space > BBTOB(tail_blocks) &&
3813 !(log->l_flags & XLOG_TAIL_WARN)) {
3814 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3815 "%s: space > BBTOB(tail_blocks)", __func__);
3816 log->l_flags |= XLOG_TAIL_WARN;
3817 }
3818 }
3819 }
3820
3821 /* check if it will fit */
3822 STATIC void
3823 xlog_verify_tail_lsn(
3824 struct xlog *log,
3825 struct xlog_in_core *iclog,
3826 xfs_lsn_t tail_lsn)
3827 {
3828 int blocks;
3829
3830 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3831 blocks =
3832 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3833 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3834 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3835 } else {
3836 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3837
3838 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3839 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3840
3841 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3842 if (blocks < BTOBB(iclog->ic_offset) + 1)
3843 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3844 }
3845 } /* xlog_verify_tail_lsn */
3846
3847 /*
3848 * Perform a number of checks on the iclog before writing to disk.
3849 *
3850 * 1. Make sure the iclogs are still circular
3851 * 2. Make sure we have a good magic number
3852 * 3. Make sure we don't have magic numbers in the data
3853 * 4. Check fields of each log operation header for:
3854 * A. Valid client identifier
3855 * B. tid ptr value falls in valid ptr space (user space code)
3856 * C. Length in log record header is correct according to the
3857 * individual operation headers within record.
3858 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3859 * log, check the preceding blocks of the physical log to make sure all
3860 * the cycle numbers agree with the current cycle number.
3861 */
3862 STATIC void
3863 xlog_verify_iclog(
3864 struct xlog *log,
3865 struct xlog_in_core *iclog,
3866 int count,
3867 bool syncing)
3868 {
3869 xlog_op_header_t *ophead;
3870 xlog_in_core_t *icptr;
3871 xlog_in_core_2_t *xhdr;
3872 void *base_ptr, *ptr, *p;
3873 ptrdiff_t field_offset;
3874 uint8_t clientid;
3875 int len, i, j, k, op_len;
3876 int idx;
3877
3878 /* check validity of iclog pointers */
3879 spin_lock(&log->l_icloglock);
3880 icptr = log->l_iclog;
3881 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3882 ASSERT(icptr);
3883
3884 if (icptr != log->l_iclog)
3885 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3886 spin_unlock(&log->l_icloglock);
3887
3888 /* check log magic numbers */
3889 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3890 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3891
3892 base_ptr = ptr = &iclog->ic_header;
3893 p = &iclog->ic_header;
3894 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3895 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3896 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3897 __func__);
3898 }
3899
3900 /* check fields */
3901 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3902 base_ptr = ptr = iclog->ic_datap;
3903 ophead = ptr;
3904 xhdr = iclog->ic_data;
3905 for (i = 0; i < len; i++) {
3906 ophead = ptr;
3907
3908 /* clientid is only 1 byte */
3909 p = &ophead->oh_clientid;
3910 field_offset = p - base_ptr;
3911 if (!syncing || (field_offset & 0x1ff)) {
3912 clientid = ophead->oh_clientid;
3913 } else {
3914 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3915 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3916 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3917 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3918 clientid = xlog_get_client_id(
3919 xhdr[j].hic_xheader.xh_cycle_data[k]);
3920 } else {
3921 clientid = xlog_get_client_id(
3922 iclog->ic_header.h_cycle_data[idx]);
3923 }
3924 }
3925 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3926 xfs_warn(log->l_mp,
3927 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3928 __func__, clientid, ophead,
3929 (unsigned long)field_offset);
3930
3931 /* check length */
3932 p = &ophead->oh_len;
3933 field_offset = p - base_ptr;
3934 if (!syncing || (field_offset & 0x1ff)) {
3935 op_len = be32_to_cpu(ophead->oh_len);
3936 } else {
3937 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3938 (uintptr_t)iclog->ic_datap);
3939 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3940 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3941 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3942 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3943 } else {
3944 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3945 }
3946 }
3947 ptr += sizeof(xlog_op_header_t) + op_len;
3948 }
3949 } /* xlog_verify_iclog */
3950 #endif
3951
3952 /*
3953 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3954 */
3955 STATIC int
3956 xlog_state_ioerror(
3957 struct xlog *log)
3958 {
3959 xlog_in_core_t *iclog, *ic;
3960
3961 iclog = log->l_iclog;
3962 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3963 /*
3964 * Mark all the incore logs IOERROR.
3965 * From now on, no log flushes will result.
3966 */
3967 ic = iclog;
3968 do {
3969 ic->ic_state = XLOG_STATE_IOERROR;
3970 ic = ic->ic_next;
3971 } while (ic != iclog);
3972 return 0;
3973 }
3974 /*
3975 * Return non-zero, if state transition has already happened.
3976 */
3977 return 1;
3978 }
3979
3980 /*
3981 * This is called from xfs_force_shutdown, when we're forcibly
3982 * shutting down the filesystem, typically because of an IO error.
3983 * Our main objectives here are to make sure that:
3984 * a. if !logerror, flush the logs to disk. Anything modified
3985 * after this is ignored.
3986 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3987 * parties to find out, 'atomically'.
3988 * c. those who're sleeping on log reservations, pinned objects and
3989 * other resources get woken up, and be told the bad news.
3990 * d. nothing new gets queued up after (b) and (c) are done.
3991 *
3992 * Note: for the !logerror case we need to flush the regions held in memory out
3993 * to disk first. This needs to be done before the log is marked as shutdown,
3994 * otherwise the iclog writes will fail.
3995 */
3996 int
3997 xfs_log_force_umount(
3998 struct xfs_mount *mp,
3999 int logerror)
4000 {
4001 struct xlog *log;
4002 int retval;
4003
4004 log = mp->m_log;
4005
4006 /*
4007 * If this happens during log recovery, don't worry about
4008 * locking; the log isn't open for business yet.
4009 */
4010 if (!log ||
4011 log->l_flags & XLOG_ACTIVE_RECOVERY) {
4012 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4013 if (mp->m_sb_bp)
4014 mp->m_sb_bp->b_flags |= XBF_DONE;
4015 return 0;
4016 }
4017
4018 /*
4019 * Somebody could've already done the hard work for us.
4020 * No need to get locks for this.
4021 */
4022 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
4023 ASSERT(XLOG_FORCED_SHUTDOWN(log));
4024 return 1;
4025 }
4026
4027 /*
4028 * Flush all the completed transactions to disk before marking the log
4029 * being shut down. We need to do it in this order to ensure that
4030 * completed operations are safely on disk before we shut down, and that
4031 * we don't have to issue any buffer IO after the shutdown flags are set
4032 * to guarantee this.
4033 */
4034 if (!logerror)
4035 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4036
4037 /*
4038 * mark the filesystem and the as in a shutdown state and wake
4039 * everybody up to tell them the bad news.
4040 */
4041 spin_lock(&log->l_icloglock);
4042 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4043 if (mp->m_sb_bp)
4044 mp->m_sb_bp->b_flags |= XBF_DONE;
4045
4046 /*
4047 * Mark the log and the iclogs with IO error flags to prevent any
4048 * further log IO from being issued or completed.
4049 */
4050 log->l_flags |= XLOG_IO_ERROR;
4051 retval = xlog_state_ioerror(log);
4052 spin_unlock(&log->l_icloglock);
4053
4054 /*
4055 * We don't want anybody waiting for log reservations after this. That
4056 * means we have to wake up everybody queued up on reserveq as well as
4057 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4058 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4059 * action is protected by the grant locks.
4060 */
4061 xlog_grant_head_wake_all(&log->l_reserve_head);
4062 xlog_grant_head_wake_all(&log->l_write_head);
4063
4064 /*
4065 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4066 * as if the log writes were completed. The abort handling in the log
4067 * item committed callback functions will do this again under lock to
4068 * avoid races.
4069 */
4070 wake_up_all(&log->l_cilp->xc_commit_wait);
4071 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4072
4073 #ifdef XFSERRORDEBUG
4074 {
4075 xlog_in_core_t *iclog;
4076
4077 spin_lock(&log->l_icloglock);
4078 iclog = log->l_iclog;
4079 do {
4080 ASSERT(iclog->ic_callback == 0);
4081 iclog = iclog->ic_next;
4082 } while (iclog != log->l_iclog);
4083 spin_unlock(&log->l_icloglock);
4084 }
4085 #endif
4086 /* return non-zero if log IOERROR transition had already happened */
4087 return retval;
4088 }
4089
4090 STATIC int
4091 xlog_iclogs_empty(
4092 struct xlog *log)
4093 {
4094 xlog_in_core_t *iclog;
4095
4096 iclog = log->l_iclog;
4097 do {
4098 /* endianness does not matter here, zero is zero in
4099 * any language.
4100 */
4101 if (iclog->ic_header.h_num_logops)
4102 return 0;
4103 iclog = iclog->ic_next;
4104 } while (iclog != log->l_iclog);
4105 return 1;
4106 }
4107
4108 /*
4109 * Verify that an LSN stamped into a piece of metadata is valid. This is
4110 * intended for use in read verifiers on v5 superblocks.
4111 */
4112 bool
4113 xfs_log_check_lsn(
4114 struct xfs_mount *mp,
4115 xfs_lsn_t lsn)
4116 {
4117 struct xlog *log = mp->m_log;
4118 bool valid;
4119
4120 /*
4121 * norecovery mode skips mount-time log processing and unconditionally
4122 * resets the in-core LSN. We can't validate in this mode, but
4123 * modifications are not allowed anyways so just return true.
4124 */
4125 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4126 return true;
4127
4128 /*
4129 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4130 * handled by recovery and thus safe to ignore here.
4131 */
4132 if (lsn == NULLCOMMITLSN)
4133 return true;
4134
4135 valid = xlog_valid_lsn(mp->m_log, lsn);
4136
4137 /* warn the user about what's gone wrong before verifier failure */
4138 if (!valid) {
4139 spin_lock(&log->l_icloglock);
4140 xfs_warn(mp,
4141 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4142 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4143 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4144 log->l_curr_cycle, log->l_curr_block);
4145 spin_unlock(&log->l_icloglock);
4146 }
4147
4148 return valid;
4149 }