]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_log.c
Merge tag 'gpio-v4.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
137
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
143 {
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
146
147 do {
148 int cycle, space;
149
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
156 }
157
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
169 {
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
172
173 do {
174 int tmp;
175 int cycle, space;
176
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
185 }
186
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
196 {
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
205 {
206 struct xlog_ticket *tic;
207
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
219 {
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
228 }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
236 {
237 struct xlog_ticket *tic;
238 int need_bytes;
239
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
244
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
248 }
249
250 return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
381
382 XFS_STATS_INC(mp, xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 uint8_t client,
438 bool permanent)
439 {
440 struct xlog *log = mp->m_log;
441 struct xlog_ticket *tic;
442 int need_bytes;
443 int error = 0;
444
445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447 if (XLOG_FORCED_SHUTDOWN(log))
448 return -EIO;
449
450 XFS_STATS_INC(mp, xs_try_logspace);
451
452 ASSERT(*ticp == NULL);
453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 KM_SLEEP | KM_MAYFAIL);
455 if (!tic)
456 return -ENOMEM;
457
458 *ticp = tic;
459
460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 : tic->t_unit_res);
462
463 trace_xfs_log_reserve(log, tic);
464
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
469
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
475
476 out_error:
477 /*
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
481 */
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
485 }
486
487
488 /*
489 * NOTES:
490 *
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
493 */
494
495 /*
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
508 */
509 xfs_lsn_t
510 xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 bool regrant)
515 {
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
518
519 if (XLOG_FORCED_SHUTDOWN(log) ||
520 /*
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
523 */
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 regrant = false;
528 }
529
530
531 if (!regrant) {
532 trace_xfs_log_done_nonperm(log, ticket);
533
534 /*
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
537 */
538 xlog_ungrant_log_space(log, ticket);
539 } else {
540 trace_xfs_log_done_perm(log, ticket);
541
542 xlog_regrant_reserve_log_space(log, ticket);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
546 */
547 ticket->t_flags |= XLOG_TIC_INITED;
548 }
549
550 xfs_log_ticket_put(ticket);
551 return lsn;
552 }
553
554 /*
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
559 */
560 int
561 xfs_log_notify(
562 struct xfs_mount *mp,
563 struct xlog_in_core *iclog,
564 xfs_log_callback_t *cb)
565 {
566 int abortflg;
567
568 spin_lock(&iclog->ic_callback_lock);
569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 if (!abortflg) {
571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 cb->cb_next = NULL;
574 *(iclog->ic_callback_tail) = cb;
575 iclog->ic_callback_tail = &(cb->cb_next);
576 }
577 spin_unlock(&iclog->ic_callback_lock);
578 return abortflg;
579 }
580
581 int
582 xfs_log_release_iclog(
583 struct xfs_mount *mp,
584 struct xlog_in_core *iclog)
585 {
586 if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 return -EIO;
589 }
590
591 return 0;
592 }
593
594 /*
595 * Mount a log filesystem
596 *
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
601 *
602 * Return error or zero.
603 */
604 int
605 xfs_log_mount(
606 xfs_mount_t *mp,
607 xfs_buftarg_t *log_target,
608 xfs_daddr_t blk_offset,
609 int num_bblks)
610 {
611 int error = 0;
612 int min_logfsbs;
613
614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 xfs_notice(mp, "Mounting V%d Filesystem",
616 XFS_SB_VERSION_NUM(&mp->m_sb));
617 } else {
618 xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 XFS_SB_VERSION_NUM(&mp->m_sb));
621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 }
623
624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 if (IS_ERR(mp->m_log)) {
626 error = PTR_ERR(mp->m_log);
627 goto out;
628 }
629
630 /*
631 * Validate the given log space and drop a critical message via syslog
632 * if the log size is too small that would lead to some unexpected
633 * situations in transaction log space reservation stage.
634 *
635 * Note: we can't just reject the mount if the validation fails. This
636 * would mean that people would have to downgrade their kernel just to
637 * remedy the situation as there is no way to grow the log (short of
638 * black magic surgery with xfs_db).
639 *
640 * We can, however, reject mounts for CRC format filesystems, as the
641 * mkfs binary being used to make the filesystem should never create a
642 * filesystem with a log that is too small.
643 */
644 min_logfsbs = xfs_log_calc_minimum_size(mp);
645
646 if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 xfs_warn(mp,
648 "Log size %d blocks too small, minimum size is %d blocks",
649 mp->m_sb.sb_logblocks, min_logfsbs);
650 error = -EINVAL;
651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 xfs_warn(mp,
653 "Log size %d blocks too large, maximum size is %lld blocks",
654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 error = -EINVAL;
656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 xfs_warn(mp,
658 "log size %lld bytes too large, maximum size is %lld bytes",
659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 XFS_MAX_LOG_BYTES);
661 error = -EINVAL;
662 }
663 if (error) {
664 if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 ASSERT(0);
667 goto out_free_log;
668 }
669 xfs_crit(mp, "Log size out of supported range.");
670 xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 }
673
674 /*
675 * Initialize the AIL now we have a log.
676 */
677 error = xfs_trans_ail_init(mp);
678 if (error) {
679 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 goto out_free_log;
681 }
682 mp->m_log->l_ailp = mp->m_ail;
683
684 /*
685 * skip log recovery on a norecovery mount. pretend it all
686 * just worked.
687 */
688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691 if (readonly)
692 mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694 error = xlog_recover(mp->m_log);
695
696 if (readonly)
697 mp->m_flags |= XFS_MOUNT_RDONLY;
698 if (error) {
699 xfs_warn(mp, "log mount/recovery failed: error %d",
700 error);
701 xlog_recover_cancel(mp->m_log);
702 goto out_destroy_ail;
703 }
704 }
705
706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 "log");
708 if (error)
709 goto out_destroy_ail;
710
711 /* Normal transactions can now occur */
712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714 /*
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
718 */
719 xlog_cil_init_post_recovery(mp->m_log);
720
721 return 0;
722
723 out_destroy_ail:
724 xfs_trans_ail_destroy(mp);
725 out_free_log:
726 xlog_dealloc_log(mp->m_log);
727 out:
728 return error;
729 }
730
731 /*
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735 * here.
736 *
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
739 * it.
740 */
741 int
742 xfs_log_mount_finish(
743 struct xfs_mount *mp)
744 {
745 int error = 0;
746
747 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749 return 0;
750 }
751
752 /*
753 * During the second phase of log recovery, we need iget and
754 * iput to behave like they do for an active filesystem.
755 * xfs_fs_drop_inode needs to be able to prevent the deletion
756 * of inodes before we're done replaying log items on those
757 * inodes. Turn it off immediately after recovery finishes
758 * so that we don't leak the quota inodes if subsequent mount
759 * activities fail.
760 */
761 mp->m_super->s_flags |= MS_ACTIVE;
762 error = xlog_recover_finish(mp->m_log);
763 if (!error)
764 xfs_log_work_queue(mp);
765 mp->m_super->s_flags &= ~MS_ACTIVE;
766
767 return error;
768 }
769
770 /*
771 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
772 * the log.
773 */
774 int
775 xfs_log_mount_cancel(
776 struct xfs_mount *mp)
777 {
778 int error;
779
780 error = xlog_recover_cancel(mp->m_log);
781 xfs_log_unmount(mp);
782
783 return error;
784 }
785
786 /*
787 * Final log writes as part of unmount.
788 *
789 * Mark the filesystem clean as unmount happens. Note that during relocation
790 * this routine needs to be executed as part of source-bag while the
791 * deallocation must not be done until source-end.
792 */
793
794 /*
795 * Unmount record used to have a string "Unmount filesystem--" in the
796 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
797 * We just write the magic number now since that particular field isn't
798 * currently architecture converted and "Unmount" is a bit foo.
799 * As far as I know, there weren't any dependencies on the old behaviour.
800 */
801
802 static int
803 xfs_log_unmount_write(xfs_mount_t *mp)
804 {
805 struct xlog *log = mp->m_log;
806 xlog_in_core_t *iclog;
807 #ifdef DEBUG
808 xlog_in_core_t *first_iclog;
809 #endif
810 xlog_ticket_t *tic = NULL;
811 xfs_lsn_t lsn;
812 int error;
813
814 /*
815 * Don't write out unmount record on read-only mounts.
816 * Or, if we are doing a forced umount (typically because of IO errors).
817 */
818 if (mp->m_flags & XFS_MOUNT_RDONLY)
819 return 0;
820
821 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
822 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
823
824 #ifdef DEBUG
825 first_iclog = iclog = log->l_iclog;
826 do {
827 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
828 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
829 ASSERT(iclog->ic_offset == 0);
830 }
831 iclog = iclog->ic_next;
832 } while (iclog != first_iclog);
833 #endif
834 if (! (XLOG_FORCED_SHUTDOWN(log))) {
835 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
836 if (!error) {
837 /* the data section must be 32 bit size aligned */
838 struct {
839 uint16_t magic;
840 uint16_t pad1;
841 uint32_t pad2; /* may as well make it 64 bits */
842 } magic = {
843 .magic = XLOG_UNMOUNT_TYPE,
844 };
845 struct xfs_log_iovec reg = {
846 .i_addr = &magic,
847 .i_len = sizeof(magic),
848 .i_type = XLOG_REG_TYPE_UNMOUNT,
849 };
850 struct xfs_log_vec vec = {
851 .lv_niovecs = 1,
852 .lv_iovecp = &reg,
853 };
854
855 /* remove inited flag, and account for space used */
856 tic->t_flags = 0;
857 tic->t_curr_res -= sizeof(magic);
858 error = xlog_write(log, &vec, tic, &lsn,
859 NULL, XLOG_UNMOUNT_TRANS);
860 /*
861 * At this point, we're umounting anyway,
862 * so there's no point in transitioning log state
863 * to IOERROR. Just continue...
864 */
865 }
866
867 if (error)
868 xfs_alert(mp, "%s: unmount record failed", __func__);
869
870
871 spin_lock(&log->l_icloglock);
872 iclog = log->l_iclog;
873 atomic_inc(&iclog->ic_refcnt);
874 xlog_state_want_sync(log, iclog);
875 spin_unlock(&log->l_icloglock);
876 error = xlog_state_release_iclog(log, iclog);
877
878 spin_lock(&log->l_icloglock);
879 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
880 iclog->ic_state == XLOG_STATE_DIRTY)) {
881 if (!XLOG_FORCED_SHUTDOWN(log)) {
882 xlog_wait(&iclog->ic_force_wait,
883 &log->l_icloglock);
884 } else {
885 spin_unlock(&log->l_icloglock);
886 }
887 } else {
888 spin_unlock(&log->l_icloglock);
889 }
890 if (tic) {
891 trace_xfs_log_umount_write(log, tic);
892 xlog_ungrant_log_space(log, tic);
893 xfs_log_ticket_put(tic);
894 }
895 } else {
896 /*
897 * We're already in forced_shutdown mode, couldn't
898 * even attempt to write out the unmount transaction.
899 *
900 * Go through the motions of sync'ing and releasing
901 * the iclog, even though no I/O will actually happen,
902 * we need to wait for other log I/Os that may already
903 * be in progress. Do this as a separate section of
904 * code so we'll know if we ever get stuck here that
905 * we're in this odd situation of trying to unmount
906 * a file system that went into forced_shutdown as
907 * the result of an unmount..
908 */
909 spin_lock(&log->l_icloglock);
910 iclog = log->l_iclog;
911 atomic_inc(&iclog->ic_refcnt);
912
913 xlog_state_want_sync(log, iclog);
914 spin_unlock(&log->l_icloglock);
915 error = xlog_state_release_iclog(log, iclog);
916
917 spin_lock(&log->l_icloglock);
918
919 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
920 || iclog->ic_state == XLOG_STATE_DIRTY
921 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
922
923 xlog_wait(&iclog->ic_force_wait,
924 &log->l_icloglock);
925 } else {
926 spin_unlock(&log->l_icloglock);
927 }
928 }
929
930 return error;
931 } /* xfs_log_unmount_write */
932
933 /*
934 * Empty the log for unmount/freeze.
935 *
936 * To do this, we first need to shut down the background log work so it is not
937 * trying to cover the log as we clean up. We then need to unpin all objects in
938 * the log so we can then flush them out. Once they have completed their IO and
939 * run the callbacks removing themselves from the AIL, we can write the unmount
940 * record.
941 */
942 void
943 xfs_log_quiesce(
944 struct xfs_mount *mp)
945 {
946 cancel_delayed_work_sync(&mp->m_log->l_work);
947 xfs_log_force(mp, XFS_LOG_SYNC);
948
949 /*
950 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
951 * will push it, xfs_wait_buftarg() will not wait for it. Further,
952 * xfs_buf_iowait() cannot be used because it was pushed with the
953 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
954 * the IO to complete.
955 */
956 xfs_ail_push_all_sync(mp->m_ail);
957 xfs_wait_buftarg(mp->m_ddev_targp);
958 xfs_buf_lock(mp->m_sb_bp);
959 xfs_buf_unlock(mp->m_sb_bp);
960
961 xfs_log_unmount_write(mp);
962 }
963
964 /*
965 * Shut down and release the AIL and Log.
966 *
967 * During unmount, we need to ensure we flush all the dirty metadata objects
968 * from the AIL so that the log is empty before we write the unmount record to
969 * the log. Once this is done, we can tear down the AIL and the log.
970 */
971 void
972 xfs_log_unmount(
973 struct xfs_mount *mp)
974 {
975 xfs_log_quiesce(mp);
976
977 xfs_trans_ail_destroy(mp);
978
979 xfs_sysfs_del(&mp->m_log->l_kobj);
980
981 xlog_dealloc_log(mp->m_log);
982 }
983
984 void
985 xfs_log_item_init(
986 struct xfs_mount *mp,
987 struct xfs_log_item *item,
988 int type,
989 const struct xfs_item_ops *ops)
990 {
991 item->li_mountp = mp;
992 item->li_ailp = mp->m_ail;
993 item->li_type = type;
994 item->li_ops = ops;
995 item->li_lv = NULL;
996
997 INIT_LIST_HEAD(&item->li_ail);
998 INIT_LIST_HEAD(&item->li_cil);
999 }
1000
1001 /*
1002 * Wake up processes waiting for log space after we have moved the log tail.
1003 */
1004 void
1005 xfs_log_space_wake(
1006 struct xfs_mount *mp)
1007 {
1008 struct xlog *log = mp->m_log;
1009 int free_bytes;
1010
1011 if (XLOG_FORCED_SHUTDOWN(log))
1012 return;
1013
1014 if (!list_empty_careful(&log->l_write_head.waiters)) {
1015 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1016
1017 spin_lock(&log->l_write_head.lock);
1018 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1019 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1020 spin_unlock(&log->l_write_head.lock);
1021 }
1022
1023 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1024 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1025
1026 spin_lock(&log->l_reserve_head.lock);
1027 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1028 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1029 spin_unlock(&log->l_reserve_head.lock);
1030 }
1031 }
1032
1033 /*
1034 * Determine if we have a transaction that has gone to disk that needs to be
1035 * covered. To begin the transition to the idle state firstly the log needs to
1036 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1037 * we start attempting to cover the log.
1038 *
1039 * Only if we are then in a state where covering is needed, the caller is
1040 * informed that dummy transactions are required to move the log into the idle
1041 * state.
1042 *
1043 * If there are any items in the AIl or CIL, then we do not want to attempt to
1044 * cover the log as we may be in a situation where there isn't log space
1045 * available to run a dummy transaction and this can lead to deadlocks when the
1046 * tail of the log is pinned by an item that is modified in the CIL. Hence
1047 * there's no point in running a dummy transaction at this point because we
1048 * can't start trying to idle the log until both the CIL and AIL are empty.
1049 */
1050 static int
1051 xfs_log_need_covered(xfs_mount_t *mp)
1052 {
1053 struct xlog *log = mp->m_log;
1054 int needed = 0;
1055
1056 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1057 return 0;
1058
1059 if (!xlog_cil_empty(log))
1060 return 0;
1061
1062 spin_lock(&log->l_icloglock);
1063 switch (log->l_covered_state) {
1064 case XLOG_STATE_COVER_DONE:
1065 case XLOG_STATE_COVER_DONE2:
1066 case XLOG_STATE_COVER_IDLE:
1067 break;
1068 case XLOG_STATE_COVER_NEED:
1069 case XLOG_STATE_COVER_NEED2:
1070 if (xfs_ail_min_lsn(log->l_ailp))
1071 break;
1072 if (!xlog_iclogs_empty(log))
1073 break;
1074
1075 needed = 1;
1076 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1077 log->l_covered_state = XLOG_STATE_COVER_DONE;
1078 else
1079 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1080 break;
1081 default:
1082 needed = 1;
1083 break;
1084 }
1085 spin_unlock(&log->l_icloglock);
1086 return needed;
1087 }
1088
1089 /*
1090 * We may be holding the log iclog lock upon entering this routine.
1091 */
1092 xfs_lsn_t
1093 xlog_assign_tail_lsn_locked(
1094 struct xfs_mount *mp)
1095 {
1096 struct xlog *log = mp->m_log;
1097 struct xfs_log_item *lip;
1098 xfs_lsn_t tail_lsn;
1099
1100 assert_spin_locked(&mp->m_ail->xa_lock);
1101
1102 /*
1103 * To make sure we always have a valid LSN for the log tail we keep
1104 * track of the last LSN which was committed in log->l_last_sync_lsn,
1105 * and use that when the AIL was empty.
1106 */
1107 lip = xfs_ail_min(mp->m_ail);
1108 if (lip)
1109 tail_lsn = lip->li_lsn;
1110 else
1111 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1112 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1113 atomic64_set(&log->l_tail_lsn, tail_lsn);
1114 return tail_lsn;
1115 }
1116
1117 xfs_lsn_t
1118 xlog_assign_tail_lsn(
1119 struct xfs_mount *mp)
1120 {
1121 xfs_lsn_t tail_lsn;
1122
1123 spin_lock(&mp->m_ail->xa_lock);
1124 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1125 spin_unlock(&mp->m_ail->xa_lock);
1126
1127 return tail_lsn;
1128 }
1129
1130 /*
1131 * Return the space in the log between the tail and the head. The head
1132 * is passed in the cycle/bytes formal parms. In the special case where
1133 * the reserve head has wrapped passed the tail, this calculation is no
1134 * longer valid. In this case, just return 0 which means there is no space
1135 * in the log. This works for all places where this function is called
1136 * with the reserve head. Of course, if the write head were to ever
1137 * wrap the tail, we should blow up. Rather than catch this case here,
1138 * we depend on other ASSERTions in other parts of the code. XXXmiken
1139 *
1140 * This code also handles the case where the reservation head is behind
1141 * the tail. The details of this case are described below, but the end
1142 * result is that we return the size of the log as the amount of space left.
1143 */
1144 STATIC int
1145 xlog_space_left(
1146 struct xlog *log,
1147 atomic64_t *head)
1148 {
1149 int free_bytes;
1150 int tail_bytes;
1151 int tail_cycle;
1152 int head_cycle;
1153 int head_bytes;
1154
1155 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1156 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1157 tail_bytes = BBTOB(tail_bytes);
1158 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1159 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1160 else if (tail_cycle + 1 < head_cycle)
1161 return 0;
1162 else if (tail_cycle < head_cycle) {
1163 ASSERT(tail_cycle == (head_cycle - 1));
1164 free_bytes = tail_bytes - head_bytes;
1165 } else {
1166 /*
1167 * The reservation head is behind the tail.
1168 * In this case we just want to return the size of the
1169 * log as the amount of space left.
1170 */
1171 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1172 xfs_alert(log->l_mp,
1173 " tail_cycle = %d, tail_bytes = %d",
1174 tail_cycle, tail_bytes);
1175 xfs_alert(log->l_mp,
1176 " GH cycle = %d, GH bytes = %d",
1177 head_cycle, head_bytes);
1178 ASSERT(0);
1179 free_bytes = log->l_logsize;
1180 }
1181 return free_bytes;
1182 }
1183
1184
1185 /*
1186 * Log function which is called when an io completes.
1187 *
1188 * The log manager needs its own routine, in order to control what
1189 * happens with the buffer after the write completes.
1190 */
1191 static void
1192 xlog_iodone(xfs_buf_t *bp)
1193 {
1194 struct xlog_in_core *iclog = bp->b_fspriv;
1195 struct xlog *l = iclog->ic_log;
1196 int aborted = 0;
1197
1198 /*
1199 * Race to shutdown the filesystem if we see an error or the iclog is in
1200 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1201 * CRC errors into log recovery.
1202 */
1203 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1204 iclog->ic_state & XLOG_STATE_IOABORT) {
1205 if (iclog->ic_state & XLOG_STATE_IOABORT)
1206 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1207
1208 xfs_buf_ioerror_alert(bp, __func__);
1209 xfs_buf_stale(bp);
1210 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1211 /*
1212 * This flag will be propagated to the trans-committed
1213 * callback routines to let them know that the log-commit
1214 * didn't succeed.
1215 */
1216 aborted = XFS_LI_ABORTED;
1217 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1218 aborted = XFS_LI_ABORTED;
1219 }
1220
1221 /* log I/O is always issued ASYNC */
1222 ASSERT(bp->b_flags & XBF_ASYNC);
1223 xlog_state_done_syncing(iclog, aborted);
1224
1225 /*
1226 * drop the buffer lock now that we are done. Nothing references
1227 * the buffer after this, so an unmount waiting on this lock can now
1228 * tear it down safely. As such, it is unsafe to reference the buffer
1229 * (bp) after the unlock as we could race with it being freed.
1230 */
1231 xfs_buf_unlock(bp);
1232 }
1233
1234 /*
1235 * Return size of each in-core log record buffer.
1236 *
1237 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1238 *
1239 * If the filesystem blocksize is too large, we may need to choose a
1240 * larger size since the directory code currently logs entire blocks.
1241 */
1242
1243 STATIC void
1244 xlog_get_iclog_buffer_size(
1245 struct xfs_mount *mp,
1246 struct xlog *log)
1247 {
1248 int size;
1249 int xhdrs;
1250
1251 if (mp->m_logbufs <= 0)
1252 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1253 else
1254 log->l_iclog_bufs = mp->m_logbufs;
1255
1256 /*
1257 * Buffer size passed in from mount system call.
1258 */
1259 if (mp->m_logbsize > 0) {
1260 size = log->l_iclog_size = mp->m_logbsize;
1261 log->l_iclog_size_log = 0;
1262 while (size != 1) {
1263 log->l_iclog_size_log++;
1264 size >>= 1;
1265 }
1266
1267 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1268 /* # headers = size / 32k
1269 * one header holds cycles from 32k of data
1270 */
1271
1272 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1273 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1274 xhdrs++;
1275 log->l_iclog_hsize = xhdrs << BBSHIFT;
1276 log->l_iclog_heads = xhdrs;
1277 } else {
1278 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1279 log->l_iclog_hsize = BBSIZE;
1280 log->l_iclog_heads = 1;
1281 }
1282 goto done;
1283 }
1284
1285 /* All machines use 32kB buffers by default. */
1286 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1287 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1288
1289 /* the default log size is 16k or 32k which is one header sector */
1290 log->l_iclog_hsize = BBSIZE;
1291 log->l_iclog_heads = 1;
1292
1293 done:
1294 /* are we being asked to make the sizes selected above visible? */
1295 if (mp->m_logbufs == 0)
1296 mp->m_logbufs = log->l_iclog_bufs;
1297 if (mp->m_logbsize == 0)
1298 mp->m_logbsize = log->l_iclog_size;
1299 } /* xlog_get_iclog_buffer_size */
1300
1301
1302 void
1303 xfs_log_work_queue(
1304 struct xfs_mount *mp)
1305 {
1306 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1307 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1308 }
1309
1310 /*
1311 * Every sync period we need to unpin all items in the AIL and push them to
1312 * disk. If there is nothing dirty, then we might need to cover the log to
1313 * indicate that the filesystem is idle.
1314 */
1315 static void
1316 xfs_log_worker(
1317 struct work_struct *work)
1318 {
1319 struct xlog *log = container_of(to_delayed_work(work),
1320 struct xlog, l_work);
1321 struct xfs_mount *mp = log->l_mp;
1322
1323 /* dgc: errors ignored - not fatal and nowhere to report them */
1324 if (xfs_log_need_covered(mp)) {
1325 /*
1326 * Dump a transaction into the log that contains no real change.
1327 * This is needed to stamp the current tail LSN into the log
1328 * during the covering operation.
1329 *
1330 * We cannot use an inode here for this - that will push dirty
1331 * state back up into the VFS and then periodic inode flushing
1332 * will prevent log covering from making progress. Hence we
1333 * synchronously log the superblock instead to ensure the
1334 * superblock is immediately unpinned and can be written back.
1335 */
1336 xfs_sync_sb(mp, true);
1337 } else
1338 xfs_log_force(mp, 0);
1339
1340 /* start pushing all the metadata that is currently dirty */
1341 xfs_ail_push_all(mp->m_ail);
1342
1343 /* queue us up again */
1344 xfs_log_work_queue(mp);
1345 }
1346
1347 /*
1348 * This routine initializes some of the log structure for a given mount point.
1349 * Its primary purpose is to fill in enough, so recovery can occur. However,
1350 * some other stuff may be filled in too.
1351 */
1352 STATIC struct xlog *
1353 xlog_alloc_log(
1354 struct xfs_mount *mp,
1355 struct xfs_buftarg *log_target,
1356 xfs_daddr_t blk_offset,
1357 int num_bblks)
1358 {
1359 struct xlog *log;
1360 xlog_rec_header_t *head;
1361 xlog_in_core_t **iclogp;
1362 xlog_in_core_t *iclog, *prev_iclog=NULL;
1363 xfs_buf_t *bp;
1364 int i;
1365 int error = -ENOMEM;
1366 uint log2_size = 0;
1367
1368 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1369 if (!log) {
1370 xfs_warn(mp, "Log allocation failed: No memory!");
1371 goto out;
1372 }
1373
1374 log->l_mp = mp;
1375 log->l_targ = log_target;
1376 log->l_logsize = BBTOB(num_bblks);
1377 log->l_logBBstart = blk_offset;
1378 log->l_logBBsize = num_bblks;
1379 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1380 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1381 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1382
1383 log->l_prev_block = -1;
1384 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1385 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1386 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1387 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1388
1389 xlog_grant_head_init(&log->l_reserve_head);
1390 xlog_grant_head_init(&log->l_write_head);
1391
1392 error = -EFSCORRUPTED;
1393 if (xfs_sb_version_hassector(&mp->m_sb)) {
1394 log2_size = mp->m_sb.sb_logsectlog;
1395 if (log2_size < BBSHIFT) {
1396 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1397 log2_size, BBSHIFT);
1398 goto out_free_log;
1399 }
1400
1401 log2_size -= BBSHIFT;
1402 if (log2_size > mp->m_sectbb_log) {
1403 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1404 log2_size, mp->m_sectbb_log);
1405 goto out_free_log;
1406 }
1407
1408 /* for larger sector sizes, must have v2 or external log */
1409 if (log2_size && log->l_logBBstart > 0 &&
1410 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1411 xfs_warn(mp,
1412 "log sector size (0x%x) invalid for configuration.",
1413 log2_size);
1414 goto out_free_log;
1415 }
1416 }
1417 log->l_sectBBsize = 1 << log2_size;
1418
1419 xlog_get_iclog_buffer_size(mp, log);
1420
1421 /*
1422 * Use a NULL block for the extra log buffer used during splits so that
1423 * it will trigger errors if we ever try to do IO on it without first
1424 * having set it up properly.
1425 */
1426 error = -ENOMEM;
1427 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1428 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1429 if (!bp)
1430 goto out_free_log;
1431
1432 /*
1433 * The iclogbuf buffer locks are held over IO but we are not going to do
1434 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1435 * when appropriately.
1436 */
1437 ASSERT(xfs_buf_islocked(bp));
1438 xfs_buf_unlock(bp);
1439
1440 /* use high priority wq for log I/O completion */
1441 bp->b_ioend_wq = mp->m_log_workqueue;
1442 bp->b_iodone = xlog_iodone;
1443 log->l_xbuf = bp;
1444
1445 spin_lock_init(&log->l_icloglock);
1446 init_waitqueue_head(&log->l_flush_wait);
1447
1448 iclogp = &log->l_iclog;
1449 /*
1450 * The amount of memory to allocate for the iclog structure is
1451 * rather funky due to the way the structure is defined. It is
1452 * done this way so that we can use different sizes for machines
1453 * with different amounts of memory. See the definition of
1454 * xlog_in_core_t in xfs_log_priv.h for details.
1455 */
1456 ASSERT(log->l_iclog_size >= 4096);
1457 for (i=0; i < log->l_iclog_bufs; i++) {
1458 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1459 if (!*iclogp)
1460 goto out_free_iclog;
1461
1462 iclog = *iclogp;
1463 iclog->ic_prev = prev_iclog;
1464 prev_iclog = iclog;
1465
1466 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1467 BTOBB(log->l_iclog_size),
1468 XBF_NO_IOACCT);
1469 if (!bp)
1470 goto out_free_iclog;
1471
1472 ASSERT(xfs_buf_islocked(bp));
1473 xfs_buf_unlock(bp);
1474
1475 /* use high priority wq for log I/O completion */
1476 bp->b_ioend_wq = mp->m_log_workqueue;
1477 bp->b_iodone = xlog_iodone;
1478 iclog->ic_bp = bp;
1479 iclog->ic_data = bp->b_addr;
1480 #ifdef DEBUG
1481 log->l_iclog_bak[i] = &iclog->ic_header;
1482 #endif
1483 head = &iclog->ic_header;
1484 memset(head, 0, sizeof(xlog_rec_header_t));
1485 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1486 head->h_version = cpu_to_be32(
1487 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1488 head->h_size = cpu_to_be32(log->l_iclog_size);
1489 /* new fields */
1490 head->h_fmt = cpu_to_be32(XLOG_FMT);
1491 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1492
1493 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1494 iclog->ic_state = XLOG_STATE_ACTIVE;
1495 iclog->ic_log = log;
1496 atomic_set(&iclog->ic_refcnt, 0);
1497 spin_lock_init(&iclog->ic_callback_lock);
1498 iclog->ic_callback_tail = &(iclog->ic_callback);
1499 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1500
1501 init_waitqueue_head(&iclog->ic_force_wait);
1502 init_waitqueue_head(&iclog->ic_write_wait);
1503
1504 iclogp = &iclog->ic_next;
1505 }
1506 *iclogp = log->l_iclog; /* complete ring */
1507 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1508
1509 error = xlog_cil_init(log);
1510 if (error)
1511 goto out_free_iclog;
1512 return log;
1513
1514 out_free_iclog:
1515 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1516 prev_iclog = iclog->ic_next;
1517 if (iclog->ic_bp)
1518 xfs_buf_free(iclog->ic_bp);
1519 kmem_free(iclog);
1520 }
1521 spinlock_destroy(&log->l_icloglock);
1522 xfs_buf_free(log->l_xbuf);
1523 out_free_log:
1524 kmem_free(log);
1525 out:
1526 return ERR_PTR(error);
1527 } /* xlog_alloc_log */
1528
1529
1530 /*
1531 * Write out the commit record of a transaction associated with the given
1532 * ticket. Return the lsn of the commit record.
1533 */
1534 STATIC int
1535 xlog_commit_record(
1536 struct xlog *log,
1537 struct xlog_ticket *ticket,
1538 struct xlog_in_core **iclog,
1539 xfs_lsn_t *commitlsnp)
1540 {
1541 struct xfs_mount *mp = log->l_mp;
1542 int error;
1543 struct xfs_log_iovec reg = {
1544 .i_addr = NULL,
1545 .i_len = 0,
1546 .i_type = XLOG_REG_TYPE_COMMIT,
1547 };
1548 struct xfs_log_vec vec = {
1549 .lv_niovecs = 1,
1550 .lv_iovecp = &reg,
1551 };
1552
1553 ASSERT_ALWAYS(iclog);
1554 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1555 XLOG_COMMIT_TRANS);
1556 if (error)
1557 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1558 return error;
1559 }
1560
1561 /*
1562 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1563 * log space. This code pushes on the lsn which would supposedly free up
1564 * the 25% which we want to leave free. We may need to adopt a policy which
1565 * pushes on an lsn which is further along in the log once we reach the high
1566 * water mark. In this manner, we would be creating a low water mark.
1567 */
1568 STATIC void
1569 xlog_grant_push_ail(
1570 struct xlog *log,
1571 int need_bytes)
1572 {
1573 xfs_lsn_t threshold_lsn = 0;
1574 xfs_lsn_t last_sync_lsn;
1575 int free_blocks;
1576 int free_bytes;
1577 int threshold_block;
1578 int threshold_cycle;
1579 int free_threshold;
1580
1581 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1582
1583 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1584 free_blocks = BTOBBT(free_bytes);
1585
1586 /*
1587 * Set the threshold for the minimum number of free blocks in the
1588 * log to the maximum of what the caller needs, one quarter of the
1589 * log, and 256 blocks.
1590 */
1591 free_threshold = BTOBB(need_bytes);
1592 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1593 free_threshold = MAX(free_threshold, 256);
1594 if (free_blocks >= free_threshold)
1595 return;
1596
1597 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1598 &threshold_block);
1599 threshold_block += free_threshold;
1600 if (threshold_block >= log->l_logBBsize) {
1601 threshold_block -= log->l_logBBsize;
1602 threshold_cycle += 1;
1603 }
1604 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1605 threshold_block);
1606 /*
1607 * Don't pass in an lsn greater than the lsn of the last
1608 * log record known to be on disk. Use a snapshot of the last sync lsn
1609 * so that it doesn't change between the compare and the set.
1610 */
1611 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1612 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1613 threshold_lsn = last_sync_lsn;
1614
1615 /*
1616 * Get the transaction layer to kick the dirty buffers out to
1617 * disk asynchronously. No point in trying to do this if
1618 * the filesystem is shutting down.
1619 */
1620 if (!XLOG_FORCED_SHUTDOWN(log))
1621 xfs_ail_push(log->l_ailp, threshold_lsn);
1622 }
1623
1624 /*
1625 * Stamp cycle number in every block
1626 */
1627 STATIC void
1628 xlog_pack_data(
1629 struct xlog *log,
1630 struct xlog_in_core *iclog,
1631 int roundoff)
1632 {
1633 int i, j, k;
1634 int size = iclog->ic_offset + roundoff;
1635 __be32 cycle_lsn;
1636 char *dp;
1637
1638 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1639
1640 dp = iclog->ic_datap;
1641 for (i = 0; i < BTOBB(size); i++) {
1642 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1643 break;
1644 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1645 *(__be32 *)dp = cycle_lsn;
1646 dp += BBSIZE;
1647 }
1648
1649 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1650 xlog_in_core_2_t *xhdr = iclog->ic_data;
1651
1652 for ( ; i < BTOBB(size); i++) {
1653 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1654 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1655 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1656 *(__be32 *)dp = cycle_lsn;
1657 dp += BBSIZE;
1658 }
1659
1660 for (i = 1; i < log->l_iclog_heads; i++)
1661 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1662 }
1663 }
1664
1665 /*
1666 * Calculate the checksum for a log buffer.
1667 *
1668 * This is a little more complicated than it should be because the various
1669 * headers and the actual data are non-contiguous.
1670 */
1671 __le32
1672 xlog_cksum(
1673 struct xlog *log,
1674 struct xlog_rec_header *rhead,
1675 char *dp,
1676 int size)
1677 {
1678 uint32_t crc;
1679
1680 /* first generate the crc for the record header ... */
1681 crc = xfs_start_cksum_update((char *)rhead,
1682 sizeof(struct xlog_rec_header),
1683 offsetof(struct xlog_rec_header, h_crc));
1684
1685 /* ... then for additional cycle data for v2 logs ... */
1686 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1687 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1688 int i;
1689 int xheads;
1690
1691 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1692 if (size % XLOG_HEADER_CYCLE_SIZE)
1693 xheads++;
1694
1695 for (i = 1; i < xheads; i++) {
1696 crc = crc32c(crc, &xhdr[i].hic_xheader,
1697 sizeof(struct xlog_rec_ext_header));
1698 }
1699 }
1700
1701 /* ... and finally for the payload */
1702 crc = crc32c(crc, dp, size);
1703
1704 return xfs_end_cksum(crc);
1705 }
1706
1707 /*
1708 * The bdstrat callback function for log bufs. This gives us a central
1709 * place to trap bufs in case we get hit by a log I/O error and need to
1710 * shutdown. Actually, in practice, even when we didn't get a log error,
1711 * we transition the iclogs to IOERROR state *after* flushing all existing
1712 * iclogs to disk. This is because we don't want anymore new transactions to be
1713 * started or completed afterwards.
1714 *
1715 * We lock the iclogbufs here so that we can serialise against IO completion
1716 * during unmount. We might be processing a shutdown triggered during unmount,
1717 * and that can occur asynchronously to the unmount thread, and hence we need to
1718 * ensure that completes before tearing down the iclogbufs. Hence we need to
1719 * hold the buffer lock across the log IO to acheive that.
1720 */
1721 STATIC int
1722 xlog_bdstrat(
1723 struct xfs_buf *bp)
1724 {
1725 struct xlog_in_core *iclog = bp->b_fspriv;
1726
1727 xfs_buf_lock(bp);
1728 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1729 xfs_buf_ioerror(bp, -EIO);
1730 xfs_buf_stale(bp);
1731 xfs_buf_ioend(bp);
1732 /*
1733 * It would seem logical to return EIO here, but we rely on
1734 * the log state machine to propagate I/O errors instead of
1735 * doing it here. Similarly, IO completion will unlock the
1736 * buffer, so we don't do it here.
1737 */
1738 return 0;
1739 }
1740
1741 xfs_buf_submit(bp);
1742 return 0;
1743 }
1744
1745 /*
1746 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1747 * fashion. Previously, we should have moved the current iclog
1748 * ptr in the log to point to the next available iclog. This allows further
1749 * write to continue while this code syncs out an iclog ready to go.
1750 * Before an in-core log can be written out, the data section must be scanned
1751 * to save away the 1st word of each BBSIZE block into the header. We replace
1752 * it with the current cycle count. Each BBSIZE block is tagged with the
1753 * cycle count because there in an implicit assumption that drives will
1754 * guarantee that entire 512 byte blocks get written at once. In other words,
1755 * we can't have part of a 512 byte block written and part not written. By
1756 * tagging each block, we will know which blocks are valid when recovering
1757 * after an unclean shutdown.
1758 *
1759 * This routine is single threaded on the iclog. No other thread can be in
1760 * this routine with the same iclog. Changing contents of iclog can there-
1761 * fore be done without grabbing the state machine lock. Updating the global
1762 * log will require grabbing the lock though.
1763 *
1764 * The entire log manager uses a logical block numbering scheme. Only
1765 * log_sync (and then only bwrite()) know about the fact that the log may
1766 * not start with block zero on a given device. The log block start offset
1767 * is added immediately before calling bwrite().
1768 */
1769
1770 STATIC int
1771 xlog_sync(
1772 struct xlog *log,
1773 struct xlog_in_core *iclog)
1774 {
1775 xfs_buf_t *bp;
1776 int i;
1777 uint count; /* byte count of bwrite */
1778 uint count_init; /* initial count before roundup */
1779 int roundoff; /* roundoff to BB or stripe */
1780 int split = 0; /* split write into two regions */
1781 int error;
1782 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1783 int size;
1784
1785 XFS_STATS_INC(log->l_mp, xs_log_writes);
1786 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1787
1788 /* Add for LR header */
1789 count_init = log->l_iclog_hsize + iclog->ic_offset;
1790
1791 /* Round out the log write size */
1792 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1793 /* we have a v2 stripe unit to use */
1794 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1795 } else {
1796 count = BBTOB(BTOBB(count_init));
1797 }
1798 roundoff = count - count_init;
1799 ASSERT(roundoff >= 0);
1800 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1801 roundoff < log->l_mp->m_sb.sb_logsunit)
1802 ||
1803 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1804 roundoff < BBTOB(1)));
1805
1806 /* move grant heads by roundoff in sync */
1807 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1808 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1809
1810 /* put cycle number in every block */
1811 xlog_pack_data(log, iclog, roundoff);
1812
1813 /* real byte length */
1814 size = iclog->ic_offset;
1815 if (v2)
1816 size += roundoff;
1817 iclog->ic_header.h_len = cpu_to_be32(size);
1818
1819 bp = iclog->ic_bp;
1820 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1821
1822 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1823
1824 /* Do we need to split this write into 2 parts? */
1825 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1826 char *dptr;
1827
1828 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1829 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1830 iclog->ic_bwritecnt = 2;
1831
1832 /*
1833 * Bump the cycle numbers at the start of each block in the
1834 * part of the iclog that ends up in the buffer that gets
1835 * written to the start of the log.
1836 *
1837 * Watch out for the header magic number case, though.
1838 */
1839 dptr = (char *)&iclog->ic_header + count;
1840 for (i = 0; i < split; i += BBSIZE) {
1841 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1842 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1843 cycle++;
1844 *(__be32 *)dptr = cpu_to_be32(cycle);
1845
1846 dptr += BBSIZE;
1847 }
1848 } else {
1849 iclog->ic_bwritecnt = 1;
1850 }
1851
1852 /* calculcate the checksum */
1853 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1854 iclog->ic_datap, size);
1855 /*
1856 * Intentionally corrupt the log record CRC based on the error injection
1857 * frequency, if defined. This facilitates testing log recovery in the
1858 * event of torn writes. Hence, set the IOABORT state to abort the log
1859 * write on I/O completion and shutdown the fs. The subsequent mount
1860 * detects the bad CRC and attempts to recover.
1861 */
1862 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1863 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1864 iclog->ic_state |= XLOG_STATE_IOABORT;
1865 xfs_warn(log->l_mp,
1866 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1867 be64_to_cpu(iclog->ic_header.h_lsn));
1868 }
1869
1870 bp->b_io_length = BTOBB(count);
1871 bp->b_fspriv = iclog;
1872 bp->b_flags &= ~XBF_FLUSH;
1873 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1874
1875 /*
1876 * Flush the data device before flushing the log to make sure all meta
1877 * data written back from the AIL actually made it to disk before
1878 * stamping the new log tail LSN into the log buffer. For an external
1879 * log we need to issue the flush explicitly, and unfortunately
1880 * synchronously here; for an internal log we can simply use the block
1881 * layer state machine for preflushes.
1882 */
1883 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1884 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1885 else
1886 bp->b_flags |= XBF_FLUSH;
1887
1888 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1889 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1890
1891 xlog_verify_iclog(log, iclog, count, true);
1892
1893 /* account for log which doesn't start at block #0 */
1894 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1895
1896 /*
1897 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1898 * is shutting down.
1899 */
1900 error = xlog_bdstrat(bp);
1901 if (error) {
1902 xfs_buf_ioerror_alert(bp, "xlog_sync");
1903 return error;
1904 }
1905 if (split) {
1906 bp = iclog->ic_log->l_xbuf;
1907 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1908 xfs_buf_associate_memory(bp,
1909 (char *)&iclog->ic_header + count, split);
1910 bp->b_fspriv = iclog;
1911 bp->b_flags &= ~XBF_FLUSH;
1912 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1913
1914 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1915 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1916
1917 /* account for internal log which doesn't start at block #0 */
1918 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1919 error = xlog_bdstrat(bp);
1920 if (error) {
1921 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1922 return error;
1923 }
1924 }
1925 return 0;
1926 } /* xlog_sync */
1927
1928 /*
1929 * Deallocate a log structure
1930 */
1931 STATIC void
1932 xlog_dealloc_log(
1933 struct xlog *log)
1934 {
1935 xlog_in_core_t *iclog, *next_iclog;
1936 int i;
1937
1938 xlog_cil_destroy(log);
1939
1940 /*
1941 * Cycle all the iclogbuf locks to make sure all log IO completion
1942 * is done before we tear down these buffers.
1943 */
1944 iclog = log->l_iclog;
1945 for (i = 0; i < log->l_iclog_bufs; i++) {
1946 xfs_buf_lock(iclog->ic_bp);
1947 xfs_buf_unlock(iclog->ic_bp);
1948 iclog = iclog->ic_next;
1949 }
1950
1951 /*
1952 * Always need to ensure that the extra buffer does not point to memory
1953 * owned by another log buffer before we free it. Also, cycle the lock
1954 * first to ensure we've completed IO on it.
1955 */
1956 xfs_buf_lock(log->l_xbuf);
1957 xfs_buf_unlock(log->l_xbuf);
1958 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1959 xfs_buf_free(log->l_xbuf);
1960
1961 iclog = log->l_iclog;
1962 for (i = 0; i < log->l_iclog_bufs; i++) {
1963 xfs_buf_free(iclog->ic_bp);
1964 next_iclog = iclog->ic_next;
1965 kmem_free(iclog);
1966 iclog = next_iclog;
1967 }
1968 spinlock_destroy(&log->l_icloglock);
1969
1970 log->l_mp->m_log = NULL;
1971 kmem_free(log);
1972 } /* xlog_dealloc_log */
1973
1974 /*
1975 * Update counters atomically now that memcpy is done.
1976 */
1977 /* ARGSUSED */
1978 static inline void
1979 xlog_state_finish_copy(
1980 struct xlog *log,
1981 struct xlog_in_core *iclog,
1982 int record_cnt,
1983 int copy_bytes)
1984 {
1985 spin_lock(&log->l_icloglock);
1986
1987 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1988 iclog->ic_offset += copy_bytes;
1989
1990 spin_unlock(&log->l_icloglock);
1991 } /* xlog_state_finish_copy */
1992
1993
1994
1995
1996 /*
1997 * print out info relating to regions written which consume
1998 * the reservation
1999 */
2000 void
2001 xlog_print_tic_res(
2002 struct xfs_mount *mp,
2003 struct xlog_ticket *ticket)
2004 {
2005 uint i;
2006 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2007
2008 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2009 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2010 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2011 REG_TYPE_STR(BFORMAT, "bformat"),
2012 REG_TYPE_STR(BCHUNK, "bchunk"),
2013 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2014 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2015 REG_TYPE_STR(IFORMAT, "iformat"),
2016 REG_TYPE_STR(ICORE, "icore"),
2017 REG_TYPE_STR(IEXT, "iext"),
2018 REG_TYPE_STR(IBROOT, "ibroot"),
2019 REG_TYPE_STR(ILOCAL, "ilocal"),
2020 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2021 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2022 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2023 REG_TYPE_STR(QFORMAT, "qformat"),
2024 REG_TYPE_STR(DQUOT, "dquot"),
2025 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2026 REG_TYPE_STR(LRHEADER, "LR header"),
2027 REG_TYPE_STR(UNMOUNT, "unmount"),
2028 REG_TYPE_STR(COMMIT, "commit"),
2029 REG_TYPE_STR(TRANSHDR, "trans header"),
2030 REG_TYPE_STR(ICREATE, "inode create")
2031 };
2032 #undef REG_TYPE_STR
2033
2034 xfs_warn(mp, "ticket reservation summary:");
2035 xfs_warn(mp, " unit res = %d bytes",
2036 ticket->t_unit_res);
2037 xfs_warn(mp, " current res = %d bytes",
2038 ticket->t_curr_res);
2039 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2040 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2041 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2042 ticket->t_res_num_ophdrs, ophdr_spc);
2043 xfs_warn(mp, " ophdr + reg = %u bytes",
2044 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2045 xfs_warn(mp, " num regions = %u",
2046 ticket->t_res_num);
2047
2048 for (i = 0; i < ticket->t_res_num; i++) {
2049 uint r_type = ticket->t_res_arr[i].r_type;
2050 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2051 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2052 "bad-rtype" : res_type_str[r_type]),
2053 ticket->t_res_arr[i].r_len);
2054 }
2055 }
2056
2057 /*
2058 * Print a summary of the transaction.
2059 */
2060 void
2061 xlog_print_trans(
2062 struct xfs_trans *tp)
2063 {
2064 struct xfs_mount *mp = tp->t_mountp;
2065 struct xfs_log_item_desc *lidp;
2066
2067 /* dump core transaction and ticket info */
2068 xfs_warn(mp, "transaction summary:");
2069 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2070
2071 xlog_print_tic_res(mp, tp->t_ticket);
2072
2073 /* dump each log item */
2074 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2075 struct xfs_log_item *lip = lidp->lid_item;
2076 struct xfs_log_vec *lv = lip->li_lv;
2077 struct xfs_log_iovec *vec;
2078 int i;
2079
2080 xfs_warn(mp, "log item: ");
2081 xfs_warn(mp, " type = 0x%x", lip->li_type);
2082 xfs_warn(mp, " flags = 0x%x", lip->li_flags);
2083 if (!lv)
2084 continue;
2085 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2086 xfs_warn(mp, " size = %d", lv->lv_size);
2087 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2088 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2089
2090 /* dump each iovec for the log item */
2091 vec = lv->lv_iovecp;
2092 for (i = 0; i < lv->lv_niovecs; i++) {
2093 int dumplen = min(vec->i_len, 32);
2094
2095 xfs_warn(mp, " iovec[%d]", i);
2096 xfs_warn(mp, " type = 0x%x", vec->i_type);
2097 xfs_warn(mp, " len = %d", vec->i_len);
2098 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2099 xfs_hex_dump(vec->i_addr, dumplen);
2100
2101 vec++;
2102 }
2103 }
2104 }
2105
2106 /*
2107 * Calculate the potential space needed by the log vector. Each region gets
2108 * its own xlog_op_header_t and may need to be double word aligned.
2109 */
2110 static int
2111 xlog_write_calc_vec_length(
2112 struct xlog_ticket *ticket,
2113 struct xfs_log_vec *log_vector)
2114 {
2115 struct xfs_log_vec *lv;
2116 int headers = 0;
2117 int len = 0;
2118 int i;
2119
2120 /* acct for start rec of xact */
2121 if (ticket->t_flags & XLOG_TIC_INITED)
2122 headers++;
2123
2124 for (lv = log_vector; lv; lv = lv->lv_next) {
2125 /* we don't write ordered log vectors */
2126 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2127 continue;
2128
2129 headers += lv->lv_niovecs;
2130
2131 for (i = 0; i < lv->lv_niovecs; i++) {
2132 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2133
2134 len += vecp->i_len;
2135 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2136 }
2137 }
2138
2139 ticket->t_res_num_ophdrs += headers;
2140 len += headers * sizeof(struct xlog_op_header);
2141
2142 return len;
2143 }
2144
2145 /*
2146 * If first write for transaction, insert start record We can't be trying to
2147 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2148 */
2149 static int
2150 xlog_write_start_rec(
2151 struct xlog_op_header *ophdr,
2152 struct xlog_ticket *ticket)
2153 {
2154 if (!(ticket->t_flags & XLOG_TIC_INITED))
2155 return 0;
2156
2157 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158 ophdr->oh_clientid = ticket->t_clientid;
2159 ophdr->oh_len = 0;
2160 ophdr->oh_flags = XLOG_START_TRANS;
2161 ophdr->oh_res2 = 0;
2162
2163 ticket->t_flags &= ~XLOG_TIC_INITED;
2164
2165 return sizeof(struct xlog_op_header);
2166 }
2167
2168 static xlog_op_header_t *
2169 xlog_write_setup_ophdr(
2170 struct xlog *log,
2171 struct xlog_op_header *ophdr,
2172 struct xlog_ticket *ticket,
2173 uint flags)
2174 {
2175 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2176 ophdr->oh_clientid = ticket->t_clientid;
2177 ophdr->oh_res2 = 0;
2178
2179 /* are we copying a commit or unmount record? */
2180 ophdr->oh_flags = flags;
2181
2182 /*
2183 * We've seen logs corrupted with bad transaction client ids. This
2184 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2185 * and shut down the filesystem.
2186 */
2187 switch (ophdr->oh_clientid) {
2188 case XFS_TRANSACTION:
2189 case XFS_VOLUME:
2190 case XFS_LOG:
2191 break;
2192 default:
2193 xfs_warn(log->l_mp,
2194 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2195 ophdr->oh_clientid, ticket);
2196 return NULL;
2197 }
2198
2199 return ophdr;
2200 }
2201
2202 /*
2203 * Set up the parameters of the region copy into the log. This has
2204 * to handle region write split across multiple log buffers - this
2205 * state is kept external to this function so that this code can
2206 * be written in an obvious, self documenting manner.
2207 */
2208 static int
2209 xlog_write_setup_copy(
2210 struct xlog_ticket *ticket,
2211 struct xlog_op_header *ophdr,
2212 int space_available,
2213 int space_required,
2214 int *copy_off,
2215 int *copy_len,
2216 int *last_was_partial_copy,
2217 int *bytes_consumed)
2218 {
2219 int still_to_copy;
2220
2221 still_to_copy = space_required - *bytes_consumed;
2222 *copy_off = *bytes_consumed;
2223
2224 if (still_to_copy <= space_available) {
2225 /* write of region completes here */
2226 *copy_len = still_to_copy;
2227 ophdr->oh_len = cpu_to_be32(*copy_len);
2228 if (*last_was_partial_copy)
2229 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2230 *last_was_partial_copy = 0;
2231 *bytes_consumed = 0;
2232 return 0;
2233 }
2234
2235 /* partial write of region, needs extra log op header reservation */
2236 *copy_len = space_available;
2237 ophdr->oh_len = cpu_to_be32(*copy_len);
2238 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2239 if (*last_was_partial_copy)
2240 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2241 *bytes_consumed += *copy_len;
2242 (*last_was_partial_copy)++;
2243
2244 /* account for new log op header */
2245 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2246 ticket->t_res_num_ophdrs++;
2247
2248 return sizeof(struct xlog_op_header);
2249 }
2250
2251 static int
2252 xlog_write_copy_finish(
2253 struct xlog *log,
2254 struct xlog_in_core *iclog,
2255 uint flags,
2256 int *record_cnt,
2257 int *data_cnt,
2258 int *partial_copy,
2259 int *partial_copy_len,
2260 int log_offset,
2261 struct xlog_in_core **commit_iclog)
2262 {
2263 if (*partial_copy) {
2264 /*
2265 * This iclog has already been marked WANT_SYNC by
2266 * xlog_state_get_iclog_space.
2267 */
2268 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2269 *record_cnt = 0;
2270 *data_cnt = 0;
2271 return xlog_state_release_iclog(log, iclog);
2272 }
2273
2274 *partial_copy = 0;
2275 *partial_copy_len = 0;
2276
2277 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2278 /* no more space in this iclog - push it. */
2279 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2280 *record_cnt = 0;
2281 *data_cnt = 0;
2282
2283 spin_lock(&log->l_icloglock);
2284 xlog_state_want_sync(log, iclog);
2285 spin_unlock(&log->l_icloglock);
2286
2287 if (!commit_iclog)
2288 return xlog_state_release_iclog(log, iclog);
2289 ASSERT(flags & XLOG_COMMIT_TRANS);
2290 *commit_iclog = iclog;
2291 }
2292
2293 return 0;
2294 }
2295
2296 /*
2297 * Write some region out to in-core log
2298 *
2299 * This will be called when writing externally provided regions or when
2300 * writing out a commit record for a given transaction.
2301 *
2302 * General algorithm:
2303 * 1. Find total length of this write. This may include adding to the
2304 * lengths passed in.
2305 * 2. Check whether we violate the tickets reservation.
2306 * 3. While writing to this iclog
2307 * A. Reserve as much space in this iclog as can get
2308 * B. If this is first write, save away start lsn
2309 * C. While writing this region:
2310 * 1. If first write of transaction, write start record
2311 * 2. Write log operation header (header per region)
2312 * 3. Find out if we can fit entire region into this iclog
2313 * 4. Potentially, verify destination memcpy ptr
2314 * 5. Memcpy (partial) region
2315 * 6. If partial copy, release iclog; otherwise, continue
2316 * copying more regions into current iclog
2317 * 4. Mark want sync bit (in simulation mode)
2318 * 5. Release iclog for potential flush to on-disk log.
2319 *
2320 * ERRORS:
2321 * 1. Panic if reservation is overrun. This should never happen since
2322 * reservation amounts are generated internal to the filesystem.
2323 * NOTES:
2324 * 1. Tickets are single threaded data structures.
2325 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2326 * syncing routine. When a single log_write region needs to span
2327 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2328 * on all log operation writes which don't contain the end of the
2329 * region. The XLOG_END_TRANS bit is used for the in-core log
2330 * operation which contains the end of the continued log_write region.
2331 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2332 * we don't really know exactly how much space will be used. As a result,
2333 * we don't update ic_offset until the end when we know exactly how many
2334 * bytes have been written out.
2335 */
2336 int
2337 xlog_write(
2338 struct xlog *log,
2339 struct xfs_log_vec *log_vector,
2340 struct xlog_ticket *ticket,
2341 xfs_lsn_t *start_lsn,
2342 struct xlog_in_core **commit_iclog,
2343 uint flags)
2344 {
2345 struct xlog_in_core *iclog = NULL;
2346 struct xfs_log_iovec *vecp;
2347 struct xfs_log_vec *lv;
2348 int len;
2349 int index;
2350 int partial_copy = 0;
2351 int partial_copy_len = 0;
2352 int contwr = 0;
2353 int record_cnt = 0;
2354 int data_cnt = 0;
2355 int error;
2356
2357 *start_lsn = 0;
2358
2359 len = xlog_write_calc_vec_length(ticket, log_vector);
2360
2361 /*
2362 * Region headers and bytes are already accounted for.
2363 * We only need to take into account start records and
2364 * split regions in this function.
2365 */
2366 if (ticket->t_flags & XLOG_TIC_INITED)
2367 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2368
2369 /*
2370 * Commit record headers need to be accounted for. These
2371 * come in as separate writes so are easy to detect.
2372 */
2373 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2374 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2375
2376 if (ticket->t_curr_res < 0) {
2377 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2378 "ctx ticket reservation ran out. Need to up reservation");
2379 xlog_print_tic_res(log->l_mp, ticket);
2380 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2381 }
2382
2383 index = 0;
2384 lv = log_vector;
2385 vecp = lv->lv_iovecp;
2386 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2387 void *ptr;
2388 int log_offset;
2389
2390 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2391 &contwr, &log_offset);
2392 if (error)
2393 return error;
2394
2395 ASSERT(log_offset <= iclog->ic_size - 1);
2396 ptr = iclog->ic_datap + log_offset;
2397
2398 /* start_lsn is the first lsn written to. That's all we need. */
2399 if (!*start_lsn)
2400 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2401
2402 /*
2403 * This loop writes out as many regions as can fit in the amount
2404 * of space which was allocated by xlog_state_get_iclog_space().
2405 */
2406 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2407 struct xfs_log_iovec *reg;
2408 struct xlog_op_header *ophdr;
2409 int start_rec_copy;
2410 int copy_len;
2411 int copy_off;
2412 bool ordered = false;
2413
2414 /* ordered log vectors have no regions to write */
2415 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2416 ASSERT(lv->lv_niovecs == 0);
2417 ordered = true;
2418 goto next_lv;
2419 }
2420
2421 reg = &vecp[index];
2422 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2423 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2424
2425 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2426 if (start_rec_copy) {
2427 record_cnt++;
2428 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2429 start_rec_copy);
2430 }
2431
2432 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2433 if (!ophdr)
2434 return -EIO;
2435
2436 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2437 sizeof(struct xlog_op_header));
2438
2439 len += xlog_write_setup_copy(ticket, ophdr,
2440 iclog->ic_size-log_offset,
2441 reg->i_len,
2442 &copy_off, &copy_len,
2443 &partial_copy,
2444 &partial_copy_len);
2445 xlog_verify_dest_ptr(log, ptr);
2446
2447 /*
2448 * Copy region.
2449 *
2450 * Unmount records just log an opheader, so can have
2451 * empty payloads with no data region to copy. Hence we
2452 * only copy the payload if the vector says it has data
2453 * to copy.
2454 */
2455 ASSERT(copy_len >= 0);
2456 if (copy_len > 0) {
2457 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2458 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2459 copy_len);
2460 }
2461 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2462 record_cnt++;
2463 data_cnt += contwr ? copy_len : 0;
2464
2465 error = xlog_write_copy_finish(log, iclog, flags,
2466 &record_cnt, &data_cnt,
2467 &partial_copy,
2468 &partial_copy_len,
2469 log_offset,
2470 commit_iclog);
2471 if (error)
2472 return error;
2473
2474 /*
2475 * if we had a partial copy, we need to get more iclog
2476 * space but we don't want to increment the region
2477 * index because there is still more is this region to
2478 * write.
2479 *
2480 * If we completed writing this region, and we flushed
2481 * the iclog (indicated by resetting of the record
2482 * count), then we also need to get more log space. If
2483 * this was the last record, though, we are done and
2484 * can just return.
2485 */
2486 if (partial_copy)
2487 break;
2488
2489 if (++index == lv->lv_niovecs) {
2490 next_lv:
2491 lv = lv->lv_next;
2492 index = 0;
2493 if (lv)
2494 vecp = lv->lv_iovecp;
2495 }
2496 if (record_cnt == 0 && ordered == false) {
2497 if (!lv)
2498 return 0;
2499 break;
2500 }
2501 }
2502 }
2503
2504 ASSERT(len == 0);
2505
2506 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2507 if (!commit_iclog)
2508 return xlog_state_release_iclog(log, iclog);
2509
2510 ASSERT(flags & XLOG_COMMIT_TRANS);
2511 *commit_iclog = iclog;
2512 return 0;
2513 }
2514
2515
2516 /*****************************************************************************
2517 *
2518 * State Machine functions
2519 *
2520 *****************************************************************************
2521 */
2522
2523 /* Clean iclogs starting from the head. This ordering must be
2524 * maintained, so an iclog doesn't become ACTIVE beyond one that
2525 * is SYNCING. This is also required to maintain the notion that we use
2526 * a ordered wait queue to hold off would be writers to the log when every
2527 * iclog is trying to sync to disk.
2528 *
2529 * State Change: DIRTY -> ACTIVE
2530 */
2531 STATIC void
2532 xlog_state_clean_log(
2533 struct xlog *log)
2534 {
2535 xlog_in_core_t *iclog;
2536 int changed = 0;
2537
2538 iclog = log->l_iclog;
2539 do {
2540 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2541 iclog->ic_state = XLOG_STATE_ACTIVE;
2542 iclog->ic_offset = 0;
2543 ASSERT(iclog->ic_callback == NULL);
2544 /*
2545 * If the number of ops in this iclog indicate it just
2546 * contains the dummy transaction, we can
2547 * change state into IDLE (the second time around).
2548 * Otherwise we should change the state into
2549 * NEED a dummy.
2550 * We don't need to cover the dummy.
2551 */
2552 if (!changed &&
2553 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2554 XLOG_COVER_OPS)) {
2555 changed = 1;
2556 } else {
2557 /*
2558 * We have two dirty iclogs so start over
2559 * This could also be num of ops indicates
2560 * this is not the dummy going out.
2561 */
2562 changed = 2;
2563 }
2564 iclog->ic_header.h_num_logops = 0;
2565 memset(iclog->ic_header.h_cycle_data, 0,
2566 sizeof(iclog->ic_header.h_cycle_data));
2567 iclog->ic_header.h_lsn = 0;
2568 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2569 /* do nothing */;
2570 else
2571 break; /* stop cleaning */
2572 iclog = iclog->ic_next;
2573 } while (iclog != log->l_iclog);
2574
2575 /* log is locked when we are called */
2576 /*
2577 * Change state for the dummy log recording.
2578 * We usually go to NEED. But we go to NEED2 if the changed indicates
2579 * we are done writing the dummy record.
2580 * If we are done with the second dummy recored (DONE2), then
2581 * we go to IDLE.
2582 */
2583 if (changed) {
2584 switch (log->l_covered_state) {
2585 case XLOG_STATE_COVER_IDLE:
2586 case XLOG_STATE_COVER_NEED:
2587 case XLOG_STATE_COVER_NEED2:
2588 log->l_covered_state = XLOG_STATE_COVER_NEED;
2589 break;
2590
2591 case XLOG_STATE_COVER_DONE:
2592 if (changed == 1)
2593 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2594 else
2595 log->l_covered_state = XLOG_STATE_COVER_NEED;
2596 break;
2597
2598 case XLOG_STATE_COVER_DONE2:
2599 if (changed == 1)
2600 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2601 else
2602 log->l_covered_state = XLOG_STATE_COVER_NEED;
2603 break;
2604
2605 default:
2606 ASSERT(0);
2607 }
2608 }
2609 } /* xlog_state_clean_log */
2610
2611 STATIC xfs_lsn_t
2612 xlog_get_lowest_lsn(
2613 struct xlog *log)
2614 {
2615 xlog_in_core_t *lsn_log;
2616 xfs_lsn_t lowest_lsn, lsn;
2617
2618 lsn_log = log->l_iclog;
2619 lowest_lsn = 0;
2620 do {
2621 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2622 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2623 if ((lsn && !lowest_lsn) ||
2624 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2625 lowest_lsn = lsn;
2626 }
2627 }
2628 lsn_log = lsn_log->ic_next;
2629 } while (lsn_log != log->l_iclog);
2630 return lowest_lsn;
2631 }
2632
2633
2634 STATIC void
2635 xlog_state_do_callback(
2636 struct xlog *log,
2637 int aborted,
2638 struct xlog_in_core *ciclog)
2639 {
2640 xlog_in_core_t *iclog;
2641 xlog_in_core_t *first_iclog; /* used to know when we've
2642 * processed all iclogs once */
2643 xfs_log_callback_t *cb, *cb_next;
2644 int flushcnt = 0;
2645 xfs_lsn_t lowest_lsn;
2646 int ioerrors; /* counter: iclogs with errors */
2647 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2648 int funcdidcallbacks; /* flag: function did callbacks */
2649 int repeats; /* for issuing console warnings if
2650 * looping too many times */
2651 int wake = 0;
2652
2653 spin_lock(&log->l_icloglock);
2654 first_iclog = iclog = log->l_iclog;
2655 ioerrors = 0;
2656 funcdidcallbacks = 0;
2657 repeats = 0;
2658
2659 do {
2660 /*
2661 * Scan all iclogs starting with the one pointed to by the
2662 * log. Reset this starting point each time the log is
2663 * unlocked (during callbacks).
2664 *
2665 * Keep looping through iclogs until one full pass is made
2666 * without running any callbacks.
2667 */
2668 first_iclog = log->l_iclog;
2669 iclog = log->l_iclog;
2670 loopdidcallbacks = 0;
2671 repeats++;
2672
2673 do {
2674
2675 /* skip all iclogs in the ACTIVE & DIRTY states */
2676 if (iclog->ic_state &
2677 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2678 iclog = iclog->ic_next;
2679 continue;
2680 }
2681
2682 /*
2683 * Between marking a filesystem SHUTDOWN and stopping
2684 * the log, we do flush all iclogs to disk (if there
2685 * wasn't a log I/O error). So, we do want things to
2686 * go smoothly in case of just a SHUTDOWN w/o a
2687 * LOG_IO_ERROR.
2688 */
2689 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2690 /*
2691 * Can only perform callbacks in order. Since
2692 * this iclog is not in the DONE_SYNC/
2693 * DO_CALLBACK state, we skip the rest and
2694 * just try to clean up. If we set our iclog
2695 * to DO_CALLBACK, we will not process it when
2696 * we retry since a previous iclog is in the
2697 * CALLBACK and the state cannot change since
2698 * we are holding the l_icloglock.
2699 */
2700 if (!(iclog->ic_state &
2701 (XLOG_STATE_DONE_SYNC |
2702 XLOG_STATE_DO_CALLBACK))) {
2703 if (ciclog && (ciclog->ic_state ==
2704 XLOG_STATE_DONE_SYNC)) {
2705 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2706 }
2707 break;
2708 }
2709 /*
2710 * We now have an iclog that is in either the
2711 * DO_CALLBACK or DONE_SYNC states. The other
2712 * states (WANT_SYNC, SYNCING, or CALLBACK were
2713 * caught by the above if and are going to
2714 * clean (i.e. we aren't doing their callbacks)
2715 * see the above if.
2716 */
2717
2718 /*
2719 * We will do one more check here to see if we
2720 * have chased our tail around.
2721 */
2722
2723 lowest_lsn = xlog_get_lowest_lsn(log);
2724 if (lowest_lsn &&
2725 XFS_LSN_CMP(lowest_lsn,
2726 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2727 iclog = iclog->ic_next;
2728 continue; /* Leave this iclog for
2729 * another thread */
2730 }
2731
2732 iclog->ic_state = XLOG_STATE_CALLBACK;
2733
2734
2735 /*
2736 * Completion of a iclog IO does not imply that
2737 * a transaction has completed, as transactions
2738 * can be large enough to span many iclogs. We
2739 * cannot change the tail of the log half way
2740 * through a transaction as this may be the only
2741 * transaction in the log and moving th etail to
2742 * point to the middle of it will prevent
2743 * recovery from finding the start of the
2744 * transaction. Hence we should only update the
2745 * last_sync_lsn if this iclog contains
2746 * transaction completion callbacks on it.
2747 *
2748 * We have to do this before we drop the
2749 * icloglock to ensure we are the only one that
2750 * can update it.
2751 */
2752 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2753 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2754 if (iclog->ic_callback)
2755 atomic64_set(&log->l_last_sync_lsn,
2756 be64_to_cpu(iclog->ic_header.h_lsn));
2757
2758 } else
2759 ioerrors++;
2760
2761 spin_unlock(&log->l_icloglock);
2762
2763 /*
2764 * Keep processing entries in the callback list until
2765 * we come around and it is empty. We need to
2766 * atomically see that the list is empty and change the
2767 * state to DIRTY so that we don't miss any more
2768 * callbacks being added.
2769 */
2770 spin_lock(&iclog->ic_callback_lock);
2771 cb = iclog->ic_callback;
2772 while (cb) {
2773 iclog->ic_callback_tail = &(iclog->ic_callback);
2774 iclog->ic_callback = NULL;
2775 spin_unlock(&iclog->ic_callback_lock);
2776
2777 /* perform callbacks in the order given */
2778 for (; cb; cb = cb_next) {
2779 cb_next = cb->cb_next;
2780 cb->cb_func(cb->cb_arg, aborted);
2781 }
2782 spin_lock(&iclog->ic_callback_lock);
2783 cb = iclog->ic_callback;
2784 }
2785
2786 loopdidcallbacks++;
2787 funcdidcallbacks++;
2788
2789 spin_lock(&log->l_icloglock);
2790 ASSERT(iclog->ic_callback == NULL);
2791 spin_unlock(&iclog->ic_callback_lock);
2792 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2793 iclog->ic_state = XLOG_STATE_DIRTY;
2794
2795 /*
2796 * Transition from DIRTY to ACTIVE if applicable.
2797 * NOP if STATE_IOERROR.
2798 */
2799 xlog_state_clean_log(log);
2800
2801 /* wake up threads waiting in xfs_log_force() */
2802 wake_up_all(&iclog->ic_force_wait);
2803
2804 iclog = iclog->ic_next;
2805 } while (first_iclog != iclog);
2806
2807 if (repeats > 5000) {
2808 flushcnt += repeats;
2809 repeats = 0;
2810 xfs_warn(log->l_mp,
2811 "%s: possible infinite loop (%d iterations)",
2812 __func__, flushcnt);
2813 }
2814 } while (!ioerrors && loopdidcallbacks);
2815
2816 #ifdef DEBUG
2817 /*
2818 * Make one last gasp attempt to see if iclogs are being left in limbo.
2819 * If the above loop finds an iclog earlier than the current iclog and
2820 * in one of the syncing states, the current iclog is put into
2821 * DO_CALLBACK and the callbacks are deferred to the completion of the
2822 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2823 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2824 * states.
2825 *
2826 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2827 * for ic_state == SYNCING.
2828 */
2829 if (funcdidcallbacks) {
2830 first_iclog = iclog = log->l_iclog;
2831 do {
2832 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2833 /*
2834 * Terminate the loop if iclogs are found in states
2835 * which will cause other threads to clean up iclogs.
2836 *
2837 * SYNCING - i/o completion will go through logs
2838 * DONE_SYNC - interrupt thread should be waiting for
2839 * l_icloglock
2840 * IOERROR - give up hope all ye who enter here
2841 */
2842 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2843 iclog->ic_state & XLOG_STATE_SYNCING ||
2844 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2845 iclog->ic_state == XLOG_STATE_IOERROR )
2846 break;
2847 iclog = iclog->ic_next;
2848 } while (first_iclog != iclog);
2849 }
2850 #endif
2851
2852 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2853 wake = 1;
2854 spin_unlock(&log->l_icloglock);
2855
2856 if (wake)
2857 wake_up_all(&log->l_flush_wait);
2858 }
2859
2860
2861 /*
2862 * Finish transitioning this iclog to the dirty state.
2863 *
2864 * Make sure that we completely execute this routine only when this is
2865 * the last call to the iclog. There is a good chance that iclog flushes,
2866 * when we reach the end of the physical log, get turned into 2 separate
2867 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2868 * routine. By using the reference count bwritecnt, we guarantee that only
2869 * the second completion goes through.
2870 *
2871 * Callbacks could take time, so they are done outside the scope of the
2872 * global state machine log lock.
2873 */
2874 STATIC void
2875 xlog_state_done_syncing(
2876 xlog_in_core_t *iclog,
2877 int aborted)
2878 {
2879 struct xlog *log = iclog->ic_log;
2880
2881 spin_lock(&log->l_icloglock);
2882
2883 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2884 iclog->ic_state == XLOG_STATE_IOERROR);
2885 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2886 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2887
2888
2889 /*
2890 * If we got an error, either on the first buffer, or in the case of
2891 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2892 * and none should ever be attempted to be written to disk
2893 * again.
2894 */
2895 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2896 if (--iclog->ic_bwritecnt == 1) {
2897 spin_unlock(&log->l_icloglock);
2898 return;
2899 }
2900 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2901 }
2902
2903 /*
2904 * Someone could be sleeping prior to writing out the next
2905 * iclog buffer, we wake them all, one will get to do the
2906 * I/O, the others get to wait for the result.
2907 */
2908 wake_up_all(&iclog->ic_write_wait);
2909 spin_unlock(&log->l_icloglock);
2910 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2911 } /* xlog_state_done_syncing */
2912
2913
2914 /*
2915 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2916 * sleep. We wait on the flush queue on the head iclog as that should be
2917 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2918 * we will wait here and all new writes will sleep until a sync completes.
2919 *
2920 * The in-core logs are used in a circular fashion. They are not used
2921 * out-of-order even when an iclog past the head is free.
2922 *
2923 * return:
2924 * * log_offset where xlog_write() can start writing into the in-core
2925 * log's data space.
2926 * * in-core log pointer to which xlog_write() should write.
2927 * * boolean indicating this is a continued write to an in-core log.
2928 * If this is the last write, then the in-core log's offset field
2929 * needs to be incremented, depending on the amount of data which
2930 * is copied.
2931 */
2932 STATIC int
2933 xlog_state_get_iclog_space(
2934 struct xlog *log,
2935 int len,
2936 struct xlog_in_core **iclogp,
2937 struct xlog_ticket *ticket,
2938 int *continued_write,
2939 int *logoffsetp)
2940 {
2941 int log_offset;
2942 xlog_rec_header_t *head;
2943 xlog_in_core_t *iclog;
2944 int error;
2945
2946 restart:
2947 spin_lock(&log->l_icloglock);
2948 if (XLOG_FORCED_SHUTDOWN(log)) {
2949 spin_unlock(&log->l_icloglock);
2950 return -EIO;
2951 }
2952
2953 iclog = log->l_iclog;
2954 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2955 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2956
2957 /* Wait for log writes to have flushed */
2958 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2959 goto restart;
2960 }
2961
2962 head = &iclog->ic_header;
2963
2964 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2965 log_offset = iclog->ic_offset;
2966
2967 /* On the 1st write to an iclog, figure out lsn. This works
2968 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2969 * committing to. If the offset is set, that's how many blocks
2970 * must be written.
2971 */
2972 if (log_offset == 0) {
2973 ticket->t_curr_res -= log->l_iclog_hsize;
2974 xlog_tic_add_region(ticket,
2975 log->l_iclog_hsize,
2976 XLOG_REG_TYPE_LRHEADER);
2977 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2978 head->h_lsn = cpu_to_be64(
2979 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2980 ASSERT(log->l_curr_block >= 0);
2981 }
2982
2983 /* If there is enough room to write everything, then do it. Otherwise,
2984 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2985 * bit is on, so this will get flushed out. Don't update ic_offset
2986 * until you know exactly how many bytes get copied. Therefore, wait
2987 * until later to update ic_offset.
2988 *
2989 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2990 * can fit into remaining data section.
2991 */
2992 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2993 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2994
2995 /*
2996 * If I'm the only one writing to this iclog, sync it to disk.
2997 * We need to do an atomic compare and decrement here to avoid
2998 * racing with concurrent atomic_dec_and_lock() calls in
2999 * xlog_state_release_iclog() when there is more than one
3000 * reference to the iclog.
3001 */
3002 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3003 /* we are the only one */
3004 spin_unlock(&log->l_icloglock);
3005 error = xlog_state_release_iclog(log, iclog);
3006 if (error)
3007 return error;
3008 } else {
3009 spin_unlock(&log->l_icloglock);
3010 }
3011 goto restart;
3012 }
3013
3014 /* Do we have enough room to write the full amount in the remainder
3015 * of this iclog? Or must we continue a write on the next iclog and
3016 * mark this iclog as completely taken? In the case where we switch
3017 * iclogs (to mark it taken), this particular iclog will release/sync
3018 * to disk in xlog_write().
3019 */
3020 if (len <= iclog->ic_size - iclog->ic_offset) {
3021 *continued_write = 0;
3022 iclog->ic_offset += len;
3023 } else {
3024 *continued_write = 1;
3025 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3026 }
3027 *iclogp = iclog;
3028
3029 ASSERT(iclog->ic_offset <= iclog->ic_size);
3030 spin_unlock(&log->l_icloglock);
3031
3032 *logoffsetp = log_offset;
3033 return 0;
3034 } /* xlog_state_get_iclog_space */
3035
3036 /* The first cnt-1 times through here we don't need to
3037 * move the grant write head because the permanent
3038 * reservation has reserved cnt times the unit amount.
3039 * Release part of current permanent unit reservation and
3040 * reset current reservation to be one units worth. Also
3041 * move grant reservation head forward.
3042 */
3043 STATIC void
3044 xlog_regrant_reserve_log_space(
3045 struct xlog *log,
3046 struct xlog_ticket *ticket)
3047 {
3048 trace_xfs_log_regrant_reserve_enter(log, ticket);
3049
3050 if (ticket->t_cnt > 0)
3051 ticket->t_cnt--;
3052
3053 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3054 ticket->t_curr_res);
3055 xlog_grant_sub_space(log, &log->l_write_head.grant,
3056 ticket->t_curr_res);
3057 ticket->t_curr_res = ticket->t_unit_res;
3058 xlog_tic_reset_res(ticket);
3059
3060 trace_xfs_log_regrant_reserve_sub(log, ticket);
3061
3062 /* just return if we still have some of the pre-reserved space */
3063 if (ticket->t_cnt > 0)
3064 return;
3065
3066 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3067 ticket->t_unit_res);
3068
3069 trace_xfs_log_regrant_reserve_exit(log, ticket);
3070
3071 ticket->t_curr_res = ticket->t_unit_res;
3072 xlog_tic_reset_res(ticket);
3073 } /* xlog_regrant_reserve_log_space */
3074
3075
3076 /*
3077 * Give back the space left from a reservation.
3078 *
3079 * All the information we need to make a correct determination of space left
3080 * is present. For non-permanent reservations, things are quite easy. The
3081 * count should have been decremented to zero. We only need to deal with the
3082 * space remaining in the current reservation part of the ticket. If the
3083 * ticket contains a permanent reservation, there may be left over space which
3084 * needs to be released. A count of N means that N-1 refills of the current
3085 * reservation can be done before we need to ask for more space. The first
3086 * one goes to fill up the first current reservation. Once we run out of
3087 * space, the count will stay at zero and the only space remaining will be
3088 * in the current reservation field.
3089 */
3090 STATIC void
3091 xlog_ungrant_log_space(
3092 struct xlog *log,
3093 struct xlog_ticket *ticket)
3094 {
3095 int bytes;
3096
3097 if (ticket->t_cnt > 0)
3098 ticket->t_cnt--;
3099
3100 trace_xfs_log_ungrant_enter(log, ticket);
3101 trace_xfs_log_ungrant_sub(log, ticket);
3102
3103 /*
3104 * If this is a permanent reservation ticket, we may be able to free
3105 * up more space based on the remaining count.
3106 */
3107 bytes = ticket->t_curr_res;
3108 if (ticket->t_cnt > 0) {
3109 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3110 bytes += ticket->t_unit_res*ticket->t_cnt;
3111 }
3112
3113 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3114 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3115
3116 trace_xfs_log_ungrant_exit(log, ticket);
3117
3118 xfs_log_space_wake(log->l_mp);
3119 }
3120
3121 /*
3122 * Flush iclog to disk if this is the last reference to the given iclog and
3123 * the WANT_SYNC bit is set.
3124 *
3125 * When this function is entered, the iclog is not necessarily in the
3126 * WANT_SYNC state. It may be sitting around waiting to get filled.
3127 *
3128 *
3129 */
3130 STATIC int
3131 xlog_state_release_iclog(
3132 struct xlog *log,
3133 struct xlog_in_core *iclog)
3134 {
3135 int sync = 0; /* do we sync? */
3136
3137 if (iclog->ic_state & XLOG_STATE_IOERROR)
3138 return -EIO;
3139
3140 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3141 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3142 return 0;
3143
3144 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3145 spin_unlock(&log->l_icloglock);
3146 return -EIO;
3147 }
3148 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3149 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3150
3151 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3152 /* update tail before writing to iclog */
3153 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3154 sync++;
3155 iclog->ic_state = XLOG_STATE_SYNCING;
3156 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3157 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3158 /* cycle incremented when incrementing curr_block */
3159 }
3160 spin_unlock(&log->l_icloglock);
3161
3162 /*
3163 * We let the log lock go, so it's possible that we hit a log I/O
3164 * error or some other SHUTDOWN condition that marks the iclog
3165 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3166 * this iclog has consistent data, so we ignore IOERROR
3167 * flags after this point.
3168 */
3169 if (sync)
3170 return xlog_sync(log, iclog);
3171 return 0;
3172 } /* xlog_state_release_iclog */
3173
3174
3175 /*
3176 * This routine will mark the current iclog in the ring as WANT_SYNC
3177 * and move the current iclog pointer to the next iclog in the ring.
3178 * When this routine is called from xlog_state_get_iclog_space(), the
3179 * exact size of the iclog has not yet been determined. All we know is
3180 * that every data block. We have run out of space in this log record.
3181 */
3182 STATIC void
3183 xlog_state_switch_iclogs(
3184 struct xlog *log,
3185 struct xlog_in_core *iclog,
3186 int eventual_size)
3187 {
3188 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3189 if (!eventual_size)
3190 eventual_size = iclog->ic_offset;
3191 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3192 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3193 log->l_prev_block = log->l_curr_block;
3194 log->l_prev_cycle = log->l_curr_cycle;
3195
3196 /* roll log?: ic_offset changed later */
3197 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3198
3199 /* Round up to next log-sunit */
3200 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3201 log->l_mp->m_sb.sb_logsunit > 1) {
3202 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3203 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3204 }
3205
3206 if (log->l_curr_block >= log->l_logBBsize) {
3207 /*
3208 * Rewind the current block before the cycle is bumped to make
3209 * sure that the combined LSN never transiently moves forward
3210 * when the log wraps to the next cycle. This is to support the
3211 * unlocked sample of these fields from xlog_valid_lsn(). Most
3212 * other cases should acquire l_icloglock.
3213 */
3214 log->l_curr_block -= log->l_logBBsize;
3215 ASSERT(log->l_curr_block >= 0);
3216 smp_wmb();
3217 log->l_curr_cycle++;
3218 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3219 log->l_curr_cycle++;
3220 }
3221 ASSERT(iclog == log->l_iclog);
3222 log->l_iclog = iclog->ic_next;
3223 } /* xlog_state_switch_iclogs */
3224
3225 /*
3226 * Write out all data in the in-core log as of this exact moment in time.
3227 *
3228 * Data may be written to the in-core log during this call. However,
3229 * we don't guarantee this data will be written out. A change from past
3230 * implementation means this routine will *not* write out zero length LRs.
3231 *
3232 * Basically, we try and perform an intelligent scan of the in-core logs.
3233 * If we determine there is no flushable data, we just return. There is no
3234 * flushable data if:
3235 *
3236 * 1. the current iclog is active and has no data; the previous iclog
3237 * is in the active or dirty state.
3238 * 2. the current iclog is drity, and the previous iclog is in the
3239 * active or dirty state.
3240 *
3241 * We may sleep if:
3242 *
3243 * 1. the current iclog is not in the active nor dirty state.
3244 * 2. the current iclog dirty, and the previous iclog is not in the
3245 * active nor dirty state.
3246 * 3. the current iclog is active, and there is another thread writing
3247 * to this particular iclog.
3248 * 4. a) the current iclog is active and has no other writers
3249 * b) when we return from flushing out this iclog, it is still
3250 * not in the active nor dirty state.
3251 */
3252 int
3253 _xfs_log_force(
3254 struct xfs_mount *mp,
3255 uint flags,
3256 int *log_flushed)
3257 {
3258 struct xlog *log = mp->m_log;
3259 struct xlog_in_core *iclog;
3260 xfs_lsn_t lsn;
3261
3262 XFS_STATS_INC(mp, xs_log_force);
3263
3264 xlog_cil_force(log);
3265
3266 spin_lock(&log->l_icloglock);
3267
3268 iclog = log->l_iclog;
3269 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3270 spin_unlock(&log->l_icloglock);
3271 return -EIO;
3272 }
3273
3274 /* If the head iclog is not active nor dirty, we just attach
3275 * ourselves to the head and go to sleep.
3276 */
3277 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3278 iclog->ic_state == XLOG_STATE_DIRTY) {
3279 /*
3280 * If the head is dirty or (active and empty), then
3281 * we need to look at the previous iclog. If the previous
3282 * iclog is active or dirty we are done. There is nothing
3283 * to sync out. Otherwise, we attach ourselves to the
3284 * previous iclog and go to sleep.
3285 */
3286 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3287 (atomic_read(&iclog->ic_refcnt) == 0
3288 && iclog->ic_offset == 0)) {
3289 iclog = iclog->ic_prev;
3290 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3291 iclog->ic_state == XLOG_STATE_DIRTY)
3292 goto no_sleep;
3293 else
3294 goto maybe_sleep;
3295 } else {
3296 if (atomic_read(&iclog->ic_refcnt) == 0) {
3297 /* We are the only one with access to this
3298 * iclog. Flush it out now. There should
3299 * be a roundoff of zero to show that someone
3300 * has already taken care of the roundoff from
3301 * the previous sync.
3302 */
3303 atomic_inc(&iclog->ic_refcnt);
3304 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3305 xlog_state_switch_iclogs(log, iclog, 0);
3306 spin_unlock(&log->l_icloglock);
3307
3308 if (xlog_state_release_iclog(log, iclog))
3309 return -EIO;
3310
3311 if (log_flushed)
3312 *log_flushed = 1;
3313 spin_lock(&log->l_icloglock);
3314 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3315 iclog->ic_state != XLOG_STATE_DIRTY)
3316 goto maybe_sleep;
3317 else
3318 goto no_sleep;
3319 } else {
3320 /* Someone else is writing to this iclog.
3321 * Use its call to flush out the data. However,
3322 * the other thread may not force out this LR,
3323 * so we mark it WANT_SYNC.
3324 */
3325 xlog_state_switch_iclogs(log, iclog, 0);
3326 goto maybe_sleep;
3327 }
3328 }
3329 }
3330
3331 /* By the time we come around again, the iclog could've been filled
3332 * which would give it another lsn. If we have a new lsn, just
3333 * return because the relevant data has been flushed.
3334 */
3335 maybe_sleep:
3336 if (flags & XFS_LOG_SYNC) {
3337 /*
3338 * We must check if we're shutting down here, before
3339 * we wait, while we're holding the l_icloglock.
3340 * Then we check again after waking up, in case our
3341 * sleep was disturbed by a bad news.
3342 */
3343 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3344 spin_unlock(&log->l_icloglock);
3345 return -EIO;
3346 }
3347 XFS_STATS_INC(mp, xs_log_force_sleep);
3348 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3349 /*
3350 * No need to grab the log lock here since we're
3351 * only deciding whether or not to return EIO
3352 * and the memory read should be atomic.
3353 */
3354 if (iclog->ic_state & XLOG_STATE_IOERROR)
3355 return -EIO;
3356 if (log_flushed)
3357 *log_flushed = 1;
3358 } else {
3359
3360 no_sleep:
3361 spin_unlock(&log->l_icloglock);
3362 }
3363 return 0;
3364 }
3365
3366 /*
3367 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3368 * about errors or whether the log was flushed or not. This is the normal
3369 * interface to use when trying to unpin items or move the log forward.
3370 */
3371 void
3372 xfs_log_force(
3373 xfs_mount_t *mp,
3374 uint flags)
3375 {
3376 trace_xfs_log_force(mp, 0, _RET_IP_);
3377 _xfs_log_force(mp, flags, NULL);
3378 }
3379
3380 /*
3381 * Force the in-core log to disk for a specific LSN.
3382 *
3383 * Find in-core log with lsn.
3384 * If it is in the DIRTY state, just return.
3385 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3386 * state and go to sleep or return.
3387 * If it is in any other state, go to sleep or return.
3388 *
3389 * Synchronous forces are implemented with a signal variable. All callers
3390 * to force a given lsn to disk will wait on a the sv attached to the
3391 * specific in-core log. When given in-core log finally completes its
3392 * write to disk, that thread will wake up all threads waiting on the
3393 * sv.
3394 */
3395 int
3396 _xfs_log_force_lsn(
3397 struct xfs_mount *mp,
3398 xfs_lsn_t lsn,
3399 uint flags,
3400 int *log_flushed)
3401 {
3402 struct xlog *log = mp->m_log;
3403 struct xlog_in_core *iclog;
3404 int already_slept = 0;
3405
3406 ASSERT(lsn != 0);
3407
3408 XFS_STATS_INC(mp, xs_log_force);
3409
3410 lsn = xlog_cil_force_lsn(log, lsn);
3411 if (lsn == NULLCOMMITLSN)
3412 return 0;
3413
3414 try_again:
3415 spin_lock(&log->l_icloglock);
3416 iclog = log->l_iclog;
3417 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3418 spin_unlock(&log->l_icloglock);
3419 return -EIO;
3420 }
3421
3422 do {
3423 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3424 iclog = iclog->ic_next;
3425 continue;
3426 }
3427
3428 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3429 spin_unlock(&log->l_icloglock);
3430 return 0;
3431 }
3432
3433 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3434 /*
3435 * We sleep here if we haven't already slept (e.g.
3436 * this is the first time we've looked at the correct
3437 * iclog buf) and the buffer before us is going to
3438 * be sync'ed. The reason for this is that if we
3439 * are doing sync transactions here, by waiting for
3440 * the previous I/O to complete, we can allow a few
3441 * more transactions into this iclog before we close
3442 * it down.
3443 *
3444 * Otherwise, we mark the buffer WANT_SYNC, and bump
3445 * up the refcnt so we can release the log (which
3446 * drops the ref count). The state switch keeps new
3447 * transaction commits from using this buffer. When
3448 * the current commits finish writing into the buffer,
3449 * the refcount will drop to zero and the buffer will
3450 * go out then.
3451 */
3452 if (!already_slept &&
3453 (iclog->ic_prev->ic_state &
3454 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3455 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3456
3457 XFS_STATS_INC(mp, xs_log_force_sleep);
3458
3459 xlog_wait(&iclog->ic_prev->ic_write_wait,
3460 &log->l_icloglock);
3461 if (log_flushed)
3462 *log_flushed = 1;
3463 already_slept = 1;
3464 goto try_again;
3465 }
3466 atomic_inc(&iclog->ic_refcnt);
3467 xlog_state_switch_iclogs(log, iclog, 0);
3468 spin_unlock(&log->l_icloglock);
3469 if (xlog_state_release_iclog(log, iclog))
3470 return -EIO;
3471 if (log_flushed)
3472 *log_flushed = 1;
3473 spin_lock(&log->l_icloglock);
3474 }
3475
3476 if ((flags & XFS_LOG_SYNC) && /* sleep */
3477 !(iclog->ic_state &
3478 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3479 /*
3480 * Don't wait on completion if we know that we've
3481 * gotten a log write error.
3482 */
3483 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3484 spin_unlock(&log->l_icloglock);
3485 return -EIO;
3486 }
3487 XFS_STATS_INC(mp, xs_log_force_sleep);
3488 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3489 /*
3490 * No need to grab the log lock here since we're
3491 * only deciding whether or not to return EIO
3492 * and the memory read should be atomic.
3493 */
3494 if (iclog->ic_state & XLOG_STATE_IOERROR)
3495 return -EIO;
3496
3497 if (log_flushed)
3498 *log_flushed = 1;
3499 } else { /* just return */
3500 spin_unlock(&log->l_icloglock);
3501 }
3502
3503 return 0;
3504 } while (iclog != log->l_iclog);
3505
3506 spin_unlock(&log->l_icloglock);
3507 return 0;
3508 }
3509
3510 /*
3511 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3512 * about errors or whether the log was flushed or not. This is the normal
3513 * interface to use when trying to unpin items or move the log forward.
3514 */
3515 void
3516 xfs_log_force_lsn(
3517 xfs_mount_t *mp,
3518 xfs_lsn_t lsn,
3519 uint flags)
3520 {
3521 trace_xfs_log_force(mp, lsn, _RET_IP_);
3522 _xfs_log_force_lsn(mp, lsn, flags, NULL);
3523 }
3524
3525 /*
3526 * Called when we want to mark the current iclog as being ready to sync to
3527 * disk.
3528 */
3529 STATIC void
3530 xlog_state_want_sync(
3531 struct xlog *log,
3532 struct xlog_in_core *iclog)
3533 {
3534 assert_spin_locked(&log->l_icloglock);
3535
3536 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3537 xlog_state_switch_iclogs(log, iclog, 0);
3538 } else {
3539 ASSERT(iclog->ic_state &
3540 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3541 }
3542 }
3543
3544
3545 /*****************************************************************************
3546 *
3547 * TICKET functions
3548 *
3549 *****************************************************************************
3550 */
3551
3552 /*
3553 * Free a used ticket when its refcount falls to zero.
3554 */
3555 void
3556 xfs_log_ticket_put(
3557 xlog_ticket_t *ticket)
3558 {
3559 ASSERT(atomic_read(&ticket->t_ref) > 0);
3560 if (atomic_dec_and_test(&ticket->t_ref))
3561 kmem_zone_free(xfs_log_ticket_zone, ticket);
3562 }
3563
3564 xlog_ticket_t *
3565 xfs_log_ticket_get(
3566 xlog_ticket_t *ticket)
3567 {
3568 ASSERT(atomic_read(&ticket->t_ref) > 0);
3569 atomic_inc(&ticket->t_ref);
3570 return ticket;
3571 }
3572
3573 /*
3574 * Figure out the total log space unit (in bytes) that would be
3575 * required for a log ticket.
3576 */
3577 int
3578 xfs_log_calc_unit_res(
3579 struct xfs_mount *mp,
3580 int unit_bytes)
3581 {
3582 struct xlog *log = mp->m_log;
3583 int iclog_space;
3584 uint num_headers;
3585
3586 /*
3587 * Permanent reservations have up to 'cnt'-1 active log operations
3588 * in the log. A unit in this case is the amount of space for one
3589 * of these log operations. Normal reservations have a cnt of 1
3590 * and their unit amount is the total amount of space required.
3591 *
3592 * The following lines of code account for non-transaction data
3593 * which occupy space in the on-disk log.
3594 *
3595 * Normal form of a transaction is:
3596 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3597 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3598 *
3599 * We need to account for all the leadup data and trailer data
3600 * around the transaction data.
3601 * And then we need to account for the worst case in terms of using
3602 * more space.
3603 * The worst case will happen if:
3604 * - the placement of the transaction happens to be such that the
3605 * roundoff is at its maximum
3606 * - the transaction data is synced before the commit record is synced
3607 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3608 * Therefore the commit record is in its own Log Record.
3609 * This can happen as the commit record is called with its
3610 * own region to xlog_write().
3611 * This then means that in the worst case, roundoff can happen for
3612 * the commit-rec as well.
3613 * The commit-rec is smaller than padding in this scenario and so it is
3614 * not added separately.
3615 */
3616
3617 /* for trans header */
3618 unit_bytes += sizeof(xlog_op_header_t);
3619 unit_bytes += sizeof(xfs_trans_header_t);
3620
3621 /* for start-rec */
3622 unit_bytes += sizeof(xlog_op_header_t);
3623
3624 /*
3625 * for LR headers - the space for data in an iclog is the size minus
3626 * the space used for the headers. If we use the iclog size, then we
3627 * undercalculate the number of headers required.
3628 *
3629 * Furthermore - the addition of op headers for split-recs might
3630 * increase the space required enough to require more log and op
3631 * headers, so take that into account too.
3632 *
3633 * IMPORTANT: This reservation makes the assumption that if this
3634 * transaction is the first in an iclog and hence has the LR headers
3635 * accounted to it, then the remaining space in the iclog is
3636 * exclusively for this transaction. i.e. if the transaction is larger
3637 * than the iclog, it will be the only thing in that iclog.
3638 * Fundamentally, this means we must pass the entire log vector to
3639 * xlog_write to guarantee this.
3640 */
3641 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3642 num_headers = howmany(unit_bytes, iclog_space);
3643
3644 /* for split-recs - ophdrs added when data split over LRs */
3645 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3646
3647 /* add extra header reservations if we overrun */
3648 while (!num_headers ||
3649 howmany(unit_bytes, iclog_space) > num_headers) {
3650 unit_bytes += sizeof(xlog_op_header_t);
3651 num_headers++;
3652 }
3653 unit_bytes += log->l_iclog_hsize * num_headers;
3654
3655 /* for commit-rec LR header - note: padding will subsume the ophdr */
3656 unit_bytes += log->l_iclog_hsize;
3657
3658 /* for roundoff padding for transaction data and one for commit record */
3659 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3660 /* log su roundoff */
3661 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3662 } else {
3663 /* BB roundoff */
3664 unit_bytes += 2 * BBSIZE;
3665 }
3666
3667 return unit_bytes;
3668 }
3669
3670 /*
3671 * Allocate and initialise a new log ticket.
3672 */
3673 struct xlog_ticket *
3674 xlog_ticket_alloc(
3675 struct xlog *log,
3676 int unit_bytes,
3677 int cnt,
3678 char client,
3679 bool permanent,
3680 xfs_km_flags_t alloc_flags)
3681 {
3682 struct xlog_ticket *tic;
3683 int unit_res;
3684
3685 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3686 if (!tic)
3687 return NULL;
3688
3689 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3690
3691 atomic_set(&tic->t_ref, 1);
3692 tic->t_task = current;
3693 INIT_LIST_HEAD(&tic->t_queue);
3694 tic->t_unit_res = unit_res;
3695 tic->t_curr_res = unit_res;
3696 tic->t_cnt = cnt;
3697 tic->t_ocnt = cnt;
3698 tic->t_tid = prandom_u32();
3699 tic->t_clientid = client;
3700 tic->t_flags = XLOG_TIC_INITED;
3701 if (permanent)
3702 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3703
3704 xlog_tic_reset_res(tic);
3705
3706 return tic;
3707 }
3708
3709
3710 /******************************************************************************
3711 *
3712 * Log debug routines
3713 *
3714 ******************************************************************************
3715 */
3716 #if defined(DEBUG)
3717 /*
3718 * Make sure that the destination ptr is within the valid data region of
3719 * one of the iclogs. This uses backup pointers stored in a different
3720 * part of the log in case we trash the log structure.
3721 */
3722 void
3723 xlog_verify_dest_ptr(
3724 struct xlog *log,
3725 void *ptr)
3726 {
3727 int i;
3728 int good_ptr = 0;
3729
3730 for (i = 0; i < log->l_iclog_bufs; i++) {
3731 if (ptr >= log->l_iclog_bak[i] &&
3732 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3733 good_ptr++;
3734 }
3735
3736 if (!good_ptr)
3737 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3738 }
3739
3740 /*
3741 * Check to make sure the grant write head didn't just over lap the tail. If
3742 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3743 * the cycles differ by exactly one and check the byte count.
3744 *
3745 * This check is run unlocked, so can give false positives. Rather than assert
3746 * on failures, use a warn-once flag and a panic tag to allow the admin to
3747 * determine if they want to panic the machine when such an error occurs. For
3748 * debug kernels this will have the same effect as using an assert but, unlinke
3749 * an assert, it can be turned off at runtime.
3750 */
3751 STATIC void
3752 xlog_verify_grant_tail(
3753 struct xlog *log)
3754 {
3755 int tail_cycle, tail_blocks;
3756 int cycle, space;
3757
3758 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3759 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3760 if (tail_cycle != cycle) {
3761 if (cycle - 1 != tail_cycle &&
3762 !(log->l_flags & XLOG_TAIL_WARN)) {
3763 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3764 "%s: cycle - 1 != tail_cycle", __func__);
3765 log->l_flags |= XLOG_TAIL_WARN;
3766 }
3767
3768 if (space > BBTOB(tail_blocks) &&
3769 !(log->l_flags & XLOG_TAIL_WARN)) {
3770 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3771 "%s: space > BBTOB(tail_blocks)", __func__);
3772 log->l_flags |= XLOG_TAIL_WARN;
3773 }
3774 }
3775 }
3776
3777 /* check if it will fit */
3778 STATIC void
3779 xlog_verify_tail_lsn(
3780 struct xlog *log,
3781 struct xlog_in_core *iclog,
3782 xfs_lsn_t tail_lsn)
3783 {
3784 int blocks;
3785
3786 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3787 blocks =
3788 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3789 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3790 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3791 } else {
3792 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3793
3794 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3795 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3796
3797 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3798 if (blocks < BTOBB(iclog->ic_offset) + 1)
3799 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3800 }
3801 } /* xlog_verify_tail_lsn */
3802
3803 /*
3804 * Perform a number of checks on the iclog before writing to disk.
3805 *
3806 * 1. Make sure the iclogs are still circular
3807 * 2. Make sure we have a good magic number
3808 * 3. Make sure we don't have magic numbers in the data
3809 * 4. Check fields of each log operation header for:
3810 * A. Valid client identifier
3811 * B. tid ptr value falls in valid ptr space (user space code)
3812 * C. Length in log record header is correct according to the
3813 * individual operation headers within record.
3814 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3815 * log, check the preceding blocks of the physical log to make sure all
3816 * the cycle numbers agree with the current cycle number.
3817 */
3818 STATIC void
3819 xlog_verify_iclog(
3820 struct xlog *log,
3821 struct xlog_in_core *iclog,
3822 int count,
3823 bool syncing)
3824 {
3825 xlog_op_header_t *ophead;
3826 xlog_in_core_t *icptr;
3827 xlog_in_core_2_t *xhdr;
3828 void *base_ptr, *ptr, *p;
3829 ptrdiff_t field_offset;
3830 uint8_t clientid;
3831 int len, i, j, k, op_len;
3832 int idx;
3833
3834 /* check validity of iclog pointers */
3835 spin_lock(&log->l_icloglock);
3836 icptr = log->l_iclog;
3837 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3838 ASSERT(icptr);
3839
3840 if (icptr != log->l_iclog)
3841 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3842 spin_unlock(&log->l_icloglock);
3843
3844 /* check log magic numbers */
3845 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3846 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3847
3848 base_ptr = ptr = &iclog->ic_header;
3849 p = &iclog->ic_header;
3850 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3851 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3852 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3853 __func__);
3854 }
3855
3856 /* check fields */
3857 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3858 base_ptr = ptr = iclog->ic_datap;
3859 ophead = ptr;
3860 xhdr = iclog->ic_data;
3861 for (i = 0; i < len; i++) {
3862 ophead = ptr;
3863
3864 /* clientid is only 1 byte */
3865 p = &ophead->oh_clientid;
3866 field_offset = p - base_ptr;
3867 if (!syncing || (field_offset & 0x1ff)) {
3868 clientid = ophead->oh_clientid;
3869 } else {
3870 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3871 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3872 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3873 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3874 clientid = xlog_get_client_id(
3875 xhdr[j].hic_xheader.xh_cycle_data[k]);
3876 } else {
3877 clientid = xlog_get_client_id(
3878 iclog->ic_header.h_cycle_data[idx]);
3879 }
3880 }
3881 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3882 xfs_warn(log->l_mp,
3883 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3884 __func__, clientid, ophead,
3885 (unsigned long)field_offset);
3886
3887 /* check length */
3888 p = &ophead->oh_len;
3889 field_offset = p - base_ptr;
3890 if (!syncing || (field_offset & 0x1ff)) {
3891 op_len = be32_to_cpu(ophead->oh_len);
3892 } else {
3893 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3894 (uintptr_t)iclog->ic_datap);
3895 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3896 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3897 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3898 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3899 } else {
3900 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3901 }
3902 }
3903 ptr += sizeof(xlog_op_header_t) + op_len;
3904 }
3905 } /* xlog_verify_iclog */
3906 #endif
3907
3908 /*
3909 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3910 */
3911 STATIC int
3912 xlog_state_ioerror(
3913 struct xlog *log)
3914 {
3915 xlog_in_core_t *iclog, *ic;
3916
3917 iclog = log->l_iclog;
3918 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3919 /*
3920 * Mark all the incore logs IOERROR.
3921 * From now on, no log flushes will result.
3922 */
3923 ic = iclog;
3924 do {
3925 ic->ic_state = XLOG_STATE_IOERROR;
3926 ic = ic->ic_next;
3927 } while (ic != iclog);
3928 return 0;
3929 }
3930 /*
3931 * Return non-zero, if state transition has already happened.
3932 */
3933 return 1;
3934 }
3935
3936 /*
3937 * This is called from xfs_force_shutdown, when we're forcibly
3938 * shutting down the filesystem, typically because of an IO error.
3939 * Our main objectives here are to make sure that:
3940 * a. if !logerror, flush the logs to disk. Anything modified
3941 * after this is ignored.
3942 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3943 * parties to find out, 'atomically'.
3944 * c. those who're sleeping on log reservations, pinned objects and
3945 * other resources get woken up, and be told the bad news.
3946 * d. nothing new gets queued up after (b) and (c) are done.
3947 *
3948 * Note: for the !logerror case we need to flush the regions held in memory out
3949 * to disk first. This needs to be done before the log is marked as shutdown,
3950 * otherwise the iclog writes will fail.
3951 */
3952 int
3953 xfs_log_force_umount(
3954 struct xfs_mount *mp,
3955 int logerror)
3956 {
3957 struct xlog *log;
3958 int retval;
3959
3960 log = mp->m_log;
3961
3962 /*
3963 * If this happens during log recovery, don't worry about
3964 * locking; the log isn't open for business yet.
3965 */
3966 if (!log ||
3967 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3968 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3969 if (mp->m_sb_bp)
3970 mp->m_sb_bp->b_flags |= XBF_DONE;
3971 return 0;
3972 }
3973
3974 /*
3975 * Somebody could've already done the hard work for us.
3976 * No need to get locks for this.
3977 */
3978 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3979 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3980 return 1;
3981 }
3982
3983 /*
3984 * Flush all the completed transactions to disk before marking the log
3985 * being shut down. We need to do it in this order to ensure that
3986 * completed operations are safely on disk before we shut down, and that
3987 * we don't have to issue any buffer IO after the shutdown flags are set
3988 * to guarantee this.
3989 */
3990 if (!logerror)
3991 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3992
3993 /*
3994 * mark the filesystem and the as in a shutdown state and wake
3995 * everybody up to tell them the bad news.
3996 */
3997 spin_lock(&log->l_icloglock);
3998 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3999 if (mp->m_sb_bp)
4000 mp->m_sb_bp->b_flags |= XBF_DONE;
4001
4002 /*
4003 * Mark the log and the iclogs with IO error flags to prevent any
4004 * further log IO from being issued or completed.
4005 */
4006 log->l_flags |= XLOG_IO_ERROR;
4007 retval = xlog_state_ioerror(log);
4008 spin_unlock(&log->l_icloglock);
4009
4010 /*
4011 * We don't want anybody waiting for log reservations after this. That
4012 * means we have to wake up everybody queued up on reserveq as well as
4013 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4014 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4015 * action is protected by the grant locks.
4016 */
4017 xlog_grant_head_wake_all(&log->l_reserve_head);
4018 xlog_grant_head_wake_all(&log->l_write_head);
4019
4020 /*
4021 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4022 * as if the log writes were completed. The abort handling in the log
4023 * item committed callback functions will do this again under lock to
4024 * avoid races.
4025 */
4026 wake_up_all(&log->l_cilp->xc_commit_wait);
4027 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4028
4029 #ifdef XFSERRORDEBUG
4030 {
4031 xlog_in_core_t *iclog;
4032
4033 spin_lock(&log->l_icloglock);
4034 iclog = log->l_iclog;
4035 do {
4036 ASSERT(iclog->ic_callback == 0);
4037 iclog = iclog->ic_next;
4038 } while (iclog != log->l_iclog);
4039 spin_unlock(&log->l_icloglock);
4040 }
4041 #endif
4042 /* return non-zero if log IOERROR transition had already happened */
4043 return retval;
4044 }
4045
4046 STATIC int
4047 xlog_iclogs_empty(
4048 struct xlog *log)
4049 {
4050 xlog_in_core_t *iclog;
4051
4052 iclog = log->l_iclog;
4053 do {
4054 /* endianness does not matter here, zero is zero in
4055 * any language.
4056 */
4057 if (iclog->ic_header.h_num_logops)
4058 return 0;
4059 iclog = iclog->ic_next;
4060 } while (iclog != log->l_iclog);
4061 return 1;
4062 }
4063
4064 /*
4065 * Verify that an LSN stamped into a piece of metadata is valid. This is
4066 * intended for use in read verifiers on v5 superblocks.
4067 */
4068 bool
4069 xfs_log_check_lsn(
4070 struct xfs_mount *mp,
4071 xfs_lsn_t lsn)
4072 {
4073 struct xlog *log = mp->m_log;
4074 bool valid;
4075
4076 /*
4077 * norecovery mode skips mount-time log processing and unconditionally
4078 * resets the in-core LSN. We can't validate in this mode, but
4079 * modifications are not allowed anyways so just return true.
4080 */
4081 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4082 return true;
4083
4084 /*
4085 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4086 * handled by recovery and thus safe to ignore here.
4087 */
4088 if (lsn == NULLCOMMITLSN)
4089 return true;
4090
4091 valid = xlog_valid_lsn(mp->m_log, lsn);
4092
4093 /* warn the user about what's gone wrong before verifier failure */
4094 if (!valid) {
4095 spin_lock(&log->l_icloglock);
4096 xfs_warn(mp,
4097 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4098 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4099 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4100 log->l_curr_cycle, log->l_curr_block);
4101 spin_unlock(&log->l_icloglock);
4102 }
4103
4104 return valid;
4105 }