]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_log.c
Merge tag 'efi-urgent' into x86/urgent
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
37
38 kmem_zone_t *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 char *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
137
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
143 {
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
146
147 do {
148 int cycle, space;
149
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
156 }
157
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
169 {
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
172
173 do {
174 int tmp;
175 int cycle, space;
176
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
185 }
186
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
196 {
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
205 {
206 struct xlog_ticket *tic;
207
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
219 {
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
228 }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
236 {
237 struct xlog_ticket *tic;
238 int need_bytes;
239
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
244
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
248 }
249
250 return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return XFS_ERROR(EIO);
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return XFS_ERROR(EIO);
381
382 XFS_STATS_INC(xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
440 {
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
445
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return XFS_ERROR(EIO);
450
451 XFS_STATS_INC(xs_try_logspace);
452
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return XFS_ERROR(ENOMEM);
458
459 tic->t_trans_type = t_type;
460 *ticp = tic;
461
462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 : tic->t_unit_res);
464
465 trace_xfs_log_reserve(log, tic);
466
467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 &need_bytes);
469 if (error)
470 goto out_error;
471
472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 trace_xfs_log_reserve_exit(log, tic);
475 xlog_verify_grant_tail(log);
476 return 0;
477
478 out_error:
479 /*
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
483 */
484 tic->t_curr_res = 0;
485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486 return error;
487 }
488
489
490 /*
491 * NOTES:
492 *
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
495 */
496
497 /*
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
510 */
511 xfs_lsn_t
512 xfs_log_done(
513 struct xfs_mount *mp,
514 struct xlog_ticket *ticket,
515 struct xlog_in_core **iclog,
516 uint flags)
517 {
518 struct xlog *log = mp->m_log;
519 xfs_lsn_t lsn = 0;
520
521 if (XLOG_FORCED_SHUTDOWN(log) ||
522 /*
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
525 */
526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 lsn = (xfs_lsn_t) -1;
529 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530 flags |= XFS_LOG_REL_PERM_RESERV;
531 }
532 }
533
534
535 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536 (flags & XFS_LOG_REL_PERM_RESERV)) {
537 trace_xfs_log_done_nonperm(log, ticket);
538
539 /*
540 * Release ticket if not permanent reservation or a specific
541 * request has been made to release a permanent reservation.
542 */
543 xlog_ungrant_log_space(log, ticket);
544 xfs_log_ticket_put(ticket);
545 } else {
546 trace_xfs_log_done_perm(log, ticket);
547
548 xlog_regrant_reserve_log_space(log, ticket);
549 /* If this ticket was a permanent reservation and we aren't
550 * trying to release it, reset the inited flags; so next time
551 * we write, a start record will be written out.
552 */
553 ticket->t_flags |= XLOG_TIC_INITED;
554 }
555
556 return lsn;
557 }
558
559 /*
560 * Attaches a new iclog I/O completion callback routine during
561 * transaction commit. If the log is in error state, a non-zero
562 * return code is handed back and the caller is responsible for
563 * executing the callback at an appropriate time.
564 */
565 int
566 xfs_log_notify(
567 struct xfs_mount *mp,
568 struct xlog_in_core *iclog,
569 xfs_log_callback_t *cb)
570 {
571 int abortflg;
572
573 spin_lock(&iclog->ic_callback_lock);
574 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575 if (!abortflg) {
576 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578 cb->cb_next = NULL;
579 *(iclog->ic_callback_tail) = cb;
580 iclog->ic_callback_tail = &(cb->cb_next);
581 }
582 spin_unlock(&iclog->ic_callback_lock);
583 return abortflg;
584 }
585
586 int
587 xfs_log_release_iclog(
588 struct xfs_mount *mp,
589 struct xlog_in_core *iclog)
590 {
591 if (xlog_state_release_iclog(mp->m_log, iclog)) {
592 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593 return EIO;
594 }
595
596 return 0;
597 }
598
599 /*
600 * Mount a log filesystem
601 *
602 * mp - ubiquitous xfs mount point structure
603 * log_target - buftarg of on-disk log device
604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
605 * num_bblocks - Number of BBSIZE blocks in on-disk log
606 *
607 * Return error or zero.
608 */
609 int
610 xfs_log_mount(
611 xfs_mount_t *mp,
612 xfs_buftarg_t *log_target,
613 xfs_daddr_t blk_offset,
614 int num_bblks)
615 {
616 int error = 0;
617 int min_logfsbs;
618
619 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
620 xfs_notice(mp, "Mounting V%d Filesystem",
621 XFS_SB_VERSION_NUM(&mp->m_sb));
622 } else {
623 xfs_notice(mp,
624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
625 XFS_SB_VERSION_NUM(&mp->m_sb));
626 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
627 }
628
629 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630 if (IS_ERR(mp->m_log)) {
631 error = -PTR_ERR(mp->m_log);
632 goto out;
633 }
634
635 /*
636 * Validate the given log space and drop a critical message via syslog
637 * if the log size is too small that would lead to some unexpected
638 * situations in transaction log space reservation stage.
639 *
640 * Note: we can't just reject the mount if the validation fails. This
641 * would mean that people would have to downgrade their kernel just to
642 * remedy the situation as there is no way to grow the log (short of
643 * black magic surgery with xfs_db).
644 *
645 * We can, however, reject mounts for CRC format filesystems, as the
646 * mkfs binary being used to make the filesystem should never create a
647 * filesystem with a log that is too small.
648 */
649 min_logfsbs = xfs_log_calc_minimum_size(mp);
650
651 if (mp->m_sb.sb_logblocks < min_logfsbs) {
652 xfs_warn(mp,
653 "Log size %d blocks too small, minimum size is %d blocks",
654 mp->m_sb.sb_logblocks, min_logfsbs);
655 error = EINVAL;
656 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657 xfs_warn(mp,
658 "Log size %d blocks too large, maximum size is %lld blocks",
659 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660 error = EINVAL;
661 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662 xfs_warn(mp,
663 "log size %lld bytes too large, maximum size is %lld bytes",
664 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665 XFS_MAX_LOG_BYTES);
666 error = EINVAL;
667 }
668 if (error) {
669 if (xfs_sb_version_hascrc(&mp->m_sb)) {
670 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671 ASSERT(0);
672 goto out_free_log;
673 }
674 xfs_crit(mp,
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
677 }
678
679 /*
680 * Initialize the AIL now we have a log.
681 */
682 error = xfs_trans_ail_init(mp);
683 if (error) {
684 xfs_warn(mp, "AIL initialisation failed: error %d", error);
685 goto out_free_log;
686 }
687 mp->m_log->l_ailp = mp->m_ail;
688
689 /*
690 * skip log recovery on a norecovery mount. pretend it all
691 * just worked.
692 */
693 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
695
696 if (readonly)
697 mp->m_flags &= ~XFS_MOUNT_RDONLY;
698
699 error = xlog_recover(mp->m_log);
700
701 if (readonly)
702 mp->m_flags |= XFS_MOUNT_RDONLY;
703 if (error) {
704 xfs_warn(mp, "log mount/recovery failed: error %d",
705 error);
706 goto out_destroy_ail;
707 }
708 }
709
710 /* Normal transactions can now occur */
711 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
712
713 /*
714 * Now the log has been fully initialised and we know were our
715 * space grant counters are, we can initialise the permanent ticket
716 * needed for delayed logging to work.
717 */
718 xlog_cil_init_post_recovery(mp->m_log);
719
720 return 0;
721
722 out_destroy_ail:
723 xfs_trans_ail_destroy(mp);
724 out_free_log:
725 xlog_dealloc_log(mp->m_log);
726 out:
727 return error;
728 }
729
730 /*
731 * Finish the recovery of the file system. This is separate from the
732 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
733 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
734 * here.
735 *
736 * If we finish recovery successfully, start the background log work. If we are
737 * not doing recovery, then we have a RO filesystem and we don't need to start
738 * it.
739 */
740 int
741 xfs_log_mount_finish(xfs_mount_t *mp)
742 {
743 int error = 0;
744
745 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
746 error = xlog_recover_finish(mp->m_log);
747 if (!error)
748 xfs_log_work_queue(mp);
749 } else {
750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 }
752
753
754 return error;
755 }
756
757 /*
758 * Final log writes as part of unmount.
759 *
760 * Mark the filesystem clean as unmount happens. Note that during relocation
761 * this routine needs to be executed as part of source-bag while the
762 * deallocation must not be done until source-end.
763 */
764
765 /*
766 * Unmount record used to have a string "Unmount filesystem--" in the
767 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
768 * We just write the magic number now since that particular field isn't
769 * currently architecture converted and "Unmount" is a bit foo.
770 * As far as I know, there weren't any dependencies on the old behaviour.
771 */
772
773 int
774 xfs_log_unmount_write(xfs_mount_t *mp)
775 {
776 struct xlog *log = mp->m_log;
777 xlog_in_core_t *iclog;
778 #ifdef DEBUG
779 xlog_in_core_t *first_iclog;
780 #endif
781 xlog_ticket_t *tic = NULL;
782 xfs_lsn_t lsn;
783 int error;
784
785 /*
786 * Don't write out unmount record on read-only mounts.
787 * Or, if we are doing a forced umount (typically because of IO errors).
788 */
789 if (mp->m_flags & XFS_MOUNT_RDONLY)
790 return 0;
791
792 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
793 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
794
795 #ifdef DEBUG
796 first_iclog = iclog = log->l_iclog;
797 do {
798 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
799 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
800 ASSERT(iclog->ic_offset == 0);
801 }
802 iclog = iclog->ic_next;
803 } while (iclog != first_iclog);
804 #endif
805 if (! (XLOG_FORCED_SHUTDOWN(log))) {
806 error = xfs_log_reserve(mp, 600, 1, &tic,
807 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
808 if (!error) {
809 /* the data section must be 32 bit size aligned */
810 struct {
811 __uint16_t magic;
812 __uint16_t pad1;
813 __uint32_t pad2; /* may as well make it 64 bits */
814 } magic = {
815 .magic = XLOG_UNMOUNT_TYPE,
816 };
817 struct xfs_log_iovec reg = {
818 .i_addr = &magic,
819 .i_len = sizeof(magic),
820 .i_type = XLOG_REG_TYPE_UNMOUNT,
821 };
822 struct xfs_log_vec vec = {
823 .lv_niovecs = 1,
824 .lv_iovecp = &reg,
825 };
826
827 /* remove inited flag, and account for space used */
828 tic->t_flags = 0;
829 tic->t_curr_res -= sizeof(magic);
830 error = xlog_write(log, &vec, tic, &lsn,
831 NULL, XLOG_UNMOUNT_TRANS);
832 /*
833 * At this point, we're umounting anyway,
834 * so there's no point in transitioning log state
835 * to IOERROR. Just continue...
836 */
837 }
838
839 if (error)
840 xfs_alert(mp, "%s: unmount record failed", __func__);
841
842
843 spin_lock(&log->l_icloglock);
844 iclog = log->l_iclog;
845 atomic_inc(&iclog->ic_refcnt);
846 xlog_state_want_sync(log, iclog);
847 spin_unlock(&log->l_icloglock);
848 error = xlog_state_release_iclog(log, iclog);
849
850 spin_lock(&log->l_icloglock);
851 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
852 iclog->ic_state == XLOG_STATE_DIRTY)) {
853 if (!XLOG_FORCED_SHUTDOWN(log)) {
854 xlog_wait(&iclog->ic_force_wait,
855 &log->l_icloglock);
856 } else {
857 spin_unlock(&log->l_icloglock);
858 }
859 } else {
860 spin_unlock(&log->l_icloglock);
861 }
862 if (tic) {
863 trace_xfs_log_umount_write(log, tic);
864 xlog_ungrant_log_space(log, tic);
865 xfs_log_ticket_put(tic);
866 }
867 } else {
868 /*
869 * We're already in forced_shutdown mode, couldn't
870 * even attempt to write out the unmount transaction.
871 *
872 * Go through the motions of sync'ing and releasing
873 * the iclog, even though no I/O will actually happen,
874 * we need to wait for other log I/Os that may already
875 * be in progress. Do this as a separate section of
876 * code so we'll know if we ever get stuck here that
877 * we're in this odd situation of trying to unmount
878 * a file system that went into forced_shutdown as
879 * the result of an unmount..
880 */
881 spin_lock(&log->l_icloglock);
882 iclog = log->l_iclog;
883 atomic_inc(&iclog->ic_refcnt);
884
885 xlog_state_want_sync(log, iclog);
886 spin_unlock(&log->l_icloglock);
887 error = xlog_state_release_iclog(log, iclog);
888
889 spin_lock(&log->l_icloglock);
890
891 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
892 || iclog->ic_state == XLOG_STATE_DIRTY
893 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
894
895 xlog_wait(&iclog->ic_force_wait,
896 &log->l_icloglock);
897 } else {
898 spin_unlock(&log->l_icloglock);
899 }
900 }
901
902 return error;
903 } /* xfs_log_unmount_write */
904
905 /*
906 * Empty the log for unmount/freeze.
907 *
908 * To do this, we first need to shut down the background log work so it is not
909 * trying to cover the log as we clean up. We then need to unpin all objects in
910 * the log so we can then flush them out. Once they have completed their IO and
911 * run the callbacks removing themselves from the AIL, we can write the unmount
912 * record.
913 */
914 void
915 xfs_log_quiesce(
916 struct xfs_mount *mp)
917 {
918 cancel_delayed_work_sync(&mp->m_log->l_work);
919 xfs_log_force(mp, XFS_LOG_SYNC);
920
921 /*
922 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
923 * will push it, xfs_wait_buftarg() will not wait for it. Further,
924 * xfs_buf_iowait() cannot be used because it was pushed with the
925 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
926 * the IO to complete.
927 */
928 xfs_ail_push_all_sync(mp->m_ail);
929 xfs_wait_buftarg(mp->m_ddev_targp);
930 xfs_buf_lock(mp->m_sb_bp);
931 xfs_buf_unlock(mp->m_sb_bp);
932
933 xfs_log_unmount_write(mp);
934 }
935
936 /*
937 * Shut down and release the AIL and Log.
938 *
939 * During unmount, we need to ensure we flush all the dirty metadata objects
940 * from the AIL so that the log is empty before we write the unmount record to
941 * the log. Once this is done, we can tear down the AIL and the log.
942 */
943 void
944 xfs_log_unmount(
945 struct xfs_mount *mp)
946 {
947 xfs_log_quiesce(mp);
948
949 xfs_trans_ail_destroy(mp);
950 xlog_dealloc_log(mp->m_log);
951 }
952
953 void
954 xfs_log_item_init(
955 struct xfs_mount *mp,
956 struct xfs_log_item *item,
957 int type,
958 const struct xfs_item_ops *ops)
959 {
960 item->li_mountp = mp;
961 item->li_ailp = mp->m_ail;
962 item->li_type = type;
963 item->li_ops = ops;
964 item->li_lv = NULL;
965
966 INIT_LIST_HEAD(&item->li_ail);
967 INIT_LIST_HEAD(&item->li_cil);
968 }
969
970 /*
971 * Wake up processes waiting for log space after we have moved the log tail.
972 */
973 void
974 xfs_log_space_wake(
975 struct xfs_mount *mp)
976 {
977 struct xlog *log = mp->m_log;
978 int free_bytes;
979
980 if (XLOG_FORCED_SHUTDOWN(log))
981 return;
982
983 if (!list_empty_careful(&log->l_write_head.waiters)) {
984 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
985
986 spin_lock(&log->l_write_head.lock);
987 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
988 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
989 spin_unlock(&log->l_write_head.lock);
990 }
991
992 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
993 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
994
995 spin_lock(&log->l_reserve_head.lock);
996 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
997 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
998 spin_unlock(&log->l_reserve_head.lock);
999 }
1000 }
1001
1002 /*
1003 * Determine if we have a transaction that has gone to disk that needs to be
1004 * covered. To begin the transition to the idle state firstly the log needs to
1005 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1006 * we start attempting to cover the log.
1007 *
1008 * Only if we are then in a state where covering is needed, the caller is
1009 * informed that dummy transactions are required to move the log into the idle
1010 * state.
1011 *
1012 * If there are any items in the AIl or CIL, then we do not want to attempt to
1013 * cover the log as we may be in a situation where there isn't log space
1014 * available to run a dummy transaction and this can lead to deadlocks when the
1015 * tail of the log is pinned by an item that is modified in the CIL. Hence
1016 * there's no point in running a dummy transaction at this point because we
1017 * can't start trying to idle the log until both the CIL and AIL are empty.
1018 */
1019 int
1020 xfs_log_need_covered(xfs_mount_t *mp)
1021 {
1022 struct xlog *log = mp->m_log;
1023 int needed = 0;
1024
1025 if (!xfs_fs_writable(mp))
1026 return 0;
1027
1028 if (!xlog_cil_empty(log))
1029 return 0;
1030
1031 spin_lock(&log->l_icloglock);
1032 switch (log->l_covered_state) {
1033 case XLOG_STATE_COVER_DONE:
1034 case XLOG_STATE_COVER_DONE2:
1035 case XLOG_STATE_COVER_IDLE:
1036 break;
1037 case XLOG_STATE_COVER_NEED:
1038 case XLOG_STATE_COVER_NEED2:
1039 if (xfs_ail_min_lsn(log->l_ailp))
1040 break;
1041 if (!xlog_iclogs_empty(log))
1042 break;
1043
1044 needed = 1;
1045 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1046 log->l_covered_state = XLOG_STATE_COVER_DONE;
1047 else
1048 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1049 break;
1050 default:
1051 needed = 1;
1052 break;
1053 }
1054 spin_unlock(&log->l_icloglock);
1055 return needed;
1056 }
1057
1058 /*
1059 * We may be holding the log iclog lock upon entering this routine.
1060 */
1061 xfs_lsn_t
1062 xlog_assign_tail_lsn_locked(
1063 struct xfs_mount *mp)
1064 {
1065 struct xlog *log = mp->m_log;
1066 struct xfs_log_item *lip;
1067 xfs_lsn_t tail_lsn;
1068
1069 assert_spin_locked(&mp->m_ail->xa_lock);
1070
1071 /*
1072 * To make sure we always have a valid LSN for the log tail we keep
1073 * track of the last LSN which was committed in log->l_last_sync_lsn,
1074 * and use that when the AIL was empty.
1075 */
1076 lip = xfs_ail_min(mp->m_ail);
1077 if (lip)
1078 tail_lsn = lip->li_lsn;
1079 else
1080 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1081 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1082 atomic64_set(&log->l_tail_lsn, tail_lsn);
1083 return tail_lsn;
1084 }
1085
1086 xfs_lsn_t
1087 xlog_assign_tail_lsn(
1088 struct xfs_mount *mp)
1089 {
1090 xfs_lsn_t tail_lsn;
1091
1092 spin_lock(&mp->m_ail->xa_lock);
1093 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1094 spin_unlock(&mp->m_ail->xa_lock);
1095
1096 return tail_lsn;
1097 }
1098
1099 /*
1100 * Return the space in the log between the tail and the head. The head
1101 * is passed in the cycle/bytes formal parms. In the special case where
1102 * the reserve head has wrapped passed the tail, this calculation is no
1103 * longer valid. In this case, just return 0 which means there is no space
1104 * in the log. This works for all places where this function is called
1105 * with the reserve head. Of course, if the write head were to ever
1106 * wrap the tail, we should blow up. Rather than catch this case here,
1107 * we depend on other ASSERTions in other parts of the code. XXXmiken
1108 *
1109 * This code also handles the case where the reservation head is behind
1110 * the tail. The details of this case are described below, but the end
1111 * result is that we return the size of the log as the amount of space left.
1112 */
1113 STATIC int
1114 xlog_space_left(
1115 struct xlog *log,
1116 atomic64_t *head)
1117 {
1118 int free_bytes;
1119 int tail_bytes;
1120 int tail_cycle;
1121 int head_cycle;
1122 int head_bytes;
1123
1124 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1125 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1126 tail_bytes = BBTOB(tail_bytes);
1127 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1128 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1129 else if (tail_cycle + 1 < head_cycle)
1130 return 0;
1131 else if (tail_cycle < head_cycle) {
1132 ASSERT(tail_cycle == (head_cycle - 1));
1133 free_bytes = tail_bytes - head_bytes;
1134 } else {
1135 /*
1136 * The reservation head is behind the tail.
1137 * In this case we just want to return the size of the
1138 * log as the amount of space left.
1139 */
1140 xfs_alert(log->l_mp,
1141 "xlog_space_left: head behind tail\n"
1142 " tail_cycle = %d, tail_bytes = %d\n"
1143 " GH cycle = %d, GH bytes = %d",
1144 tail_cycle, tail_bytes, head_cycle, head_bytes);
1145 ASSERT(0);
1146 free_bytes = log->l_logsize;
1147 }
1148 return free_bytes;
1149 }
1150
1151
1152 /*
1153 * Log function which is called when an io completes.
1154 *
1155 * The log manager needs its own routine, in order to control what
1156 * happens with the buffer after the write completes.
1157 */
1158 void
1159 xlog_iodone(xfs_buf_t *bp)
1160 {
1161 struct xlog_in_core *iclog = bp->b_fspriv;
1162 struct xlog *l = iclog->ic_log;
1163 int aborted = 0;
1164
1165 /*
1166 * Race to shutdown the filesystem if we see an error.
1167 */
1168 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1169 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1170 xfs_buf_ioerror_alert(bp, __func__);
1171 xfs_buf_stale(bp);
1172 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1173 /*
1174 * This flag will be propagated to the trans-committed
1175 * callback routines to let them know that the log-commit
1176 * didn't succeed.
1177 */
1178 aborted = XFS_LI_ABORTED;
1179 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1180 aborted = XFS_LI_ABORTED;
1181 }
1182
1183 /* log I/O is always issued ASYNC */
1184 ASSERT(XFS_BUF_ISASYNC(bp));
1185 xlog_state_done_syncing(iclog, aborted);
1186
1187 /*
1188 * drop the buffer lock now that we are done. Nothing references
1189 * the buffer after this, so an unmount waiting on this lock can now
1190 * tear it down safely. As such, it is unsafe to reference the buffer
1191 * (bp) after the unlock as we could race with it being freed.
1192 */
1193 xfs_buf_unlock(bp);
1194 }
1195
1196 /*
1197 * Return size of each in-core log record buffer.
1198 *
1199 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1200 *
1201 * If the filesystem blocksize is too large, we may need to choose a
1202 * larger size since the directory code currently logs entire blocks.
1203 */
1204
1205 STATIC void
1206 xlog_get_iclog_buffer_size(
1207 struct xfs_mount *mp,
1208 struct xlog *log)
1209 {
1210 int size;
1211 int xhdrs;
1212
1213 if (mp->m_logbufs <= 0)
1214 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1215 else
1216 log->l_iclog_bufs = mp->m_logbufs;
1217
1218 /*
1219 * Buffer size passed in from mount system call.
1220 */
1221 if (mp->m_logbsize > 0) {
1222 size = log->l_iclog_size = mp->m_logbsize;
1223 log->l_iclog_size_log = 0;
1224 while (size != 1) {
1225 log->l_iclog_size_log++;
1226 size >>= 1;
1227 }
1228
1229 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1230 /* # headers = size / 32k
1231 * one header holds cycles from 32k of data
1232 */
1233
1234 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1235 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1236 xhdrs++;
1237 log->l_iclog_hsize = xhdrs << BBSHIFT;
1238 log->l_iclog_heads = xhdrs;
1239 } else {
1240 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1241 log->l_iclog_hsize = BBSIZE;
1242 log->l_iclog_heads = 1;
1243 }
1244 goto done;
1245 }
1246
1247 /* All machines use 32kB buffers by default. */
1248 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1249 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1250
1251 /* the default log size is 16k or 32k which is one header sector */
1252 log->l_iclog_hsize = BBSIZE;
1253 log->l_iclog_heads = 1;
1254
1255 done:
1256 /* are we being asked to make the sizes selected above visible? */
1257 if (mp->m_logbufs == 0)
1258 mp->m_logbufs = log->l_iclog_bufs;
1259 if (mp->m_logbsize == 0)
1260 mp->m_logbsize = log->l_iclog_size;
1261 } /* xlog_get_iclog_buffer_size */
1262
1263
1264 void
1265 xfs_log_work_queue(
1266 struct xfs_mount *mp)
1267 {
1268 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1269 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1270 }
1271
1272 /*
1273 * Every sync period we need to unpin all items in the AIL and push them to
1274 * disk. If there is nothing dirty, then we might need to cover the log to
1275 * indicate that the filesystem is idle.
1276 */
1277 void
1278 xfs_log_worker(
1279 struct work_struct *work)
1280 {
1281 struct xlog *log = container_of(to_delayed_work(work),
1282 struct xlog, l_work);
1283 struct xfs_mount *mp = log->l_mp;
1284
1285 /* dgc: errors ignored - not fatal and nowhere to report them */
1286 if (xfs_log_need_covered(mp))
1287 xfs_fs_log_dummy(mp);
1288 else
1289 xfs_log_force(mp, 0);
1290
1291 /* start pushing all the metadata that is currently dirty */
1292 xfs_ail_push_all(mp->m_ail);
1293
1294 /* queue us up again */
1295 xfs_log_work_queue(mp);
1296 }
1297
1298 /*
1299 * This routine initializes some of the log structure for a given mount point.
1300 * Its primary purpose is to fill in enough, so recovery can occur. However,
1301 * some other stuff may be filled in too.
1302 */
1303 STATIC struct xlog *
1304 xlog_alloc_log(
1305 struct xfs_mount *mp,
1306 struct xfs_buftarg *log_target,
1307 xfs_daddr_t blk_offset,
1308 int num_bblks)
1309 {
1310 struct xlog *log;
1311 xlog_rec_header_t *head;
1312 xlog_in_core_t **iclogp;
1313 xlog_in_core_t *iclog, *prev_iclog=NULL;
1314 xfs_buf_t *bp;
1315 int i;
1316 int error = ENOMEM;
1317 uint log2_size = 0;
1318
1319 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1320 if (!log) {
1321 xfs_warn(mp, "Log allocation failed: No memory!");
1322 goto out;
1323 }
1324
1325 log->l_mp = mp;
1326 log->l_targ = log_target;
1327 log->l_logsize = BBTOB(num_bblks);
1328 log->l_logBBstart = blk_offset;
1329 log->l_logBBsize = num_bblks;
1330 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1331 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1332 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1333
1334 log->l_prev_block = -1;
1335 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1336 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1337 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1338 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1339
1340 xlog_grant_head_init(&log->l_reserve_head);
1341 xlog_grant_head_init(&log->l_write_head);
1342
1343 error = EFSCORRUPTED;
1344 if (xfs_sb_version_hassector(&mp->m_sb)) {
1345 log2_size = mp->m_sb.sb_logsectlog;
1346 if (log2_size < BBSHIFT) {
1347 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1348 log2_size, BBSHIFT);
1349 goto out_free_log;
1350 }
1351
1352 log2_size -= BBSHIFT;
1353 if (log2_size > mp->m_sectbb_log) {
1354 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1355 log2_size, mp->m_sectbb_log);
1356 goto out_free_log;
1357 }
1358
1359 /* for larger sector sizes, must have v2 or external log */
1360 if (log2_size && log->l_logBBstart > 0 &&
1361 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1362 xfs_warn(mp,
1363 "log sector size (0x%x) invalid for configuration.",
1364 log2_size);
1365 goto out_free_log;
1366 }
1367 }
1368 log->l_sectBBsize = 1 << log2_size;
1369
1370 xlog_get_iclog_buffer_size(mp, log);
1371
1372 error = ENOMEM;
1373 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1374 if (!bp)
1375 goto out_free_log;
1376
1377 /*
1378 * The iclogbuf buffer locks are held over IO but we are not going to do
1379 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1380 * when appropriately.
1381 */
1382 ASSERT(xfs_buf_islocked(bp));
1383 xfs_buf_unlock(bp);
1384
1385 bp->b_iodone = xlog_iodone;
1386 log->l_xbuf = bp;
1387
1388 spin_lock_init(&log->l_icloglock);
1389 init_waitqueue_head(&log->l_flush_wait);
1390
1391 iclogp = &log->l_iclog;
1392 /*
1393 * The amount of memory to allocate for the iclog structure is
1394 * rather funky due to the way the structure is defined. It is
1395 * done this way so that we can use different sizes for machines
1396 * with different amounts of memory. See the definition of
1397 * xlog_in_core_t in xfs_log_priv.h for details.
1398 */
1399 ASSERT(log->l_iclog_size >= 4096);
1400 for (i=0; i < log->l_iclog_bufs; i++) {
1401 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1402 if (!*iclogp)
1403 goto out_free_iclog;
1404
1405 iclog = *iclogp;
1406 iclog->ic_prev = prev_iclog;
1407 prev_iclog = iclog;
1408
1409 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1410 BTOBB(log->l_iclog_size), 0);
1411 if (!bp)
1412 goto out_free_iclog;
1413
1414 ASSERT(xfs_buf_islocked(bp));
1415 xfs_buf_unlock(bp);
1416
1417 bp->b_iodone = xlog_iodone;
1418 iclog->ic_bp = bp;
1419 iclog->ic_data = bp->b_addr;
1420 #ifdef DEBUG
1421 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1422 #endif
1423 head = &iclog->ic_header;
1424 memset(head, 0, sizeof(xlog_rec_header_t));
1425 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1426 head->h_version = cpu_to_be32(
1427 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1428 head->h_size = cpu_to_be32(log->l_iclog_size);
1429 /* new fields */
1430 head->h_fmt = cpu_to_be32(XLOG_FMT);
1431 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1432
1433 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1434 iclog->ic_state = XLOG_STATE_ACTIVE;
1435 iclog->ic_log = log;
1436 atomic_set(&iclog->ic_refcnt, 0);
1437 spin_lock_init(&iclog->ic_callback_lock);
1438 iclog->ic_callback_tail = &(iclog->ic_callback);
1439 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1440
1441 init_waitqueue_head(&iclog->ic_force_wait);
1442 init_waitqueue_head(&iclog->ic_write_wait);
1443
1444 iclogp = &iclog->ic_next;
1445 }
1446 *iclogp = log->l_iclog; /* complete ring */
1447 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1448
1449 error = xlog_cil_init(log);
1450 if (error)
1451 goto out_free_iclog;
1452 return log;
1453
1454 out_free_iclog:
1455 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1456 prev_iclog = iclog->ic_next;
1457 if (iclog->ic_bp)
1458 xfs_buf_free(iclog->ic_bp);
1459 kmem_free(iclog);
1460 }
1461 spinlock_destroy(&log->l_icloglock);
1462 xfs_buf_free(log->l_xbuf);
1463 out_free_log:
1464 kmem_free(log);
1465 out:
1466 return ERR_PTR(-error);
1467 } /* xlog_alloc_log */
1468
1469
1470 /*
1471 * Write out the commit record of a transaction associated with the given
1472 * ticket. Return the lsn of the commit record.
1473 */
1474 STATIC int
1475 xlog_commit_record(
1476 struct xlog *log,
1477 struct xlog_ticket *ticket,
1478 struct xlog_in_core **iclog,
1479 xfs_lsn_t *commitlsnp)
1480 {
1481 struct xfs_mount *mp = log->l_mp;
1482 int error;
1483 struct xfs_log_iovec reg = {
1484 .i_addr = NULL,
1485 .i_len = 0,
1486 .i_type = XLOG_REG_TYPE_COMMIT,
1487 };
1488 struct xfs_log_vec vec = {
1489 .lv_niovecs = 1,
1490 .lv_iovecp = &reg,
1491 };
1492
1493 ASSERT_ALWAYS(iclog);
1494 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1495 XLOG_COMMIT_TRANS);
1496 if (error)
1497 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1498 return error;
1499 }
1500
1501 /*
1502 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1503 * log space. This code pushes on the lsn which would supposedly free up
1504 * the 25% which we want to leave free. We may need to adopt a policy which
1505 * pushes on an lsn which is further along in the log once we reach the high
1506 * water mark. In this manner, we would be creating a low water mark.
1507 */
1508 STATIC void
1509 xlog_grant_push_ail(
1510 struct xlog *log,
1511 int need_bytes)
1512 {
1513 xfs_lsn_t threshold_lsn = 0;
1514 xfs_lsn_t last_sync_lsn;
1515 int free_blocks;
1516 int free_bytes;
1517 int threshold_block;
1518 int threshold_cycle;
1519 int free_threshold;
1520
1521 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1522
1523 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1524 free_blocks = BTOBBT(free_bytes);
1525
1526 /*
1527 * Set the threshold for the minimum number of free blocks in the
1528 * log to the maximum of what the caller needs, one quarter of the
1529 * log, and 256 blocks.
1530 */
1531 free_threshold = BTOBB(need_bytes);
1532 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1533 free_threshold = MAX(free_threshold, 256);
1534 if (free_blocks >= free_threshold)
1535 return;
1536
1537 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1538 &threshold_block);
1539 threshold_block += free_threshold;
1540 if (threshold_block >= log->l_logBBsize) {
1541 threshold_block -= log->l_logBBsize;
1542 threshold_cycle += 1;
1543 }
1544 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1545 threshold_block);
1546 /*
1547 * Don't pass in an lsn greater than the lsn of the last
1548 * log record known to be on disk. Use a snapshot of the last sync lsn
1549 * so that it doesn't change between the compare and the set.
1550 */
1551 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1552 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1553 threshold_lsn = last_sync_lsn;
1554
1555 /*
1556 * Get the transaction layer to kick the dirty buffers out to
1557 * disk asynchronously. No point in trying to do this if
1558 * the filesystem is shutting down.
1559 */
1560 if (!XLOG_FORCED_SHUTDOWN(log))
1561 xfs_ail_push(log->l_ailp, threshold_lsn);
1562 }
1563
1564 /*
1565 * Stamp cycle number in every block
1566 */
1567 STATIC void
1568 xlog_pack_data(
1569 struct xlog *log,
1570 struct xlog_in_core *iclog,
1571 int roundoff)
1572 {
1573 int i, j, k;
1574 int size = iclog->ic_offset + roundoff;
1575 __be32 cycle_lsn;
1576 xfs_caddr_t dp;
1577
1578 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1579
1580 dp = iclog->ic_datap;
1581 for (i = 0; i < BTOBB(size); i++) {
1582 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1583 break;
1584 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1585 *(__be32 *)dp = cycle_lsn;
1586 dp += BBSIZE;
1587 }
1588
1589 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1590 xlog_in_core_2_t *xhdr = iclog->ic_data;
1591
1592 for ( ; i < BTOBB(size); i++) {
1593 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1594 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1595 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1596 *(__be32 *)dp = cycle_lsn;
1597 dp += BBSIZE;
1598 }
1599
1600 for (i = 1; i < log->l_iclog_heads; i++)
1601 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1602 }
1603 }
1604
1605 /*
1606 * Calculate the checksum for a log buffer.
1607 *
1608 * This is a little more complicated than it should be because the various
1609 * headers and the actual data are non-contiguous.
1610 */
1611 __le32
1612 xlog_cksum(
1613 struct xlog *log,
1614 struct xlog_rec_header *rhead,
1615 char *dp,
1616 int size)
1617 {
1618 __uint32_t crc;
1619
1620 /* first generate the crc for the record header ... */
1621 crc = xfs_start_cksum((char *)rhead,
1622 sizeof(struct xlog_rec_header),
1623 offsetof(struct xlog_rec_header, h_crc));
1624
1625 /* ... then for additional cycle data for v2 logs ... */
1626 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1627 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1628 int i;
1629
1630 for (i = 1; i < log->l_iclog_heads; i++) {
1631 crc = crc32c(crc, &xhdr[i].hic_xheader,
1632 sizeof(struct xlog_rec_ext_header));
1633 }
1634 }
1635
1636 /* ... and finally for the payload */
1637 crc = crc32c(crc, dp, size);
1638
1639 return xfs_end_cksum(crc);
1640 }
1641
1642 /*
1643 * The bdstrat callback function for log bufs. This gives us a central
1644 * place to trap bufs in case we get hit by a log I/O error and need to
1645 * shutdown. Actually, in practice, even when we didn't get a log error,
1646 * we transition the iclogs to IOERROR state *after* flushing all existing
1647 * iclogs to disk. This is because we don't want anymore new transactions to be
1648 * started or completed afterwards.
1649 *
1650 * We lock the iclogbufs here so that we can serialise against IO completion
1651 * during unmount. We might be processing a shutdown triggered during unmount,
1652 * and that can occur asynchronously to the unmount thread, and hence we need to
1653 * ensure that completes before tearing down the iclogbufs. Hence we need to
1654 * hold the buffer lock across the log IO to acheive that.
1655 */
1656 STATIC int
1657 xlog_bdstrat(
1658 struct xfs_buf *bp)
1659 {
1660 struct xlog_in_core *iclog = bp->b_fspriv;
1661
1662 xfs_buf_lock(bp);
1663 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1664 xfs_buf_ioerror(bp, EIO);
1665 xfs_buf_stale(bp);
1666 xfs_buf_ioend(bp, 0);
1667 /*
1668 * It would seem logical to return EIO here, but we rely on
1669 * the log state machine to propagate I/O errors instead of
1670 * doing it here. Similarly, IO completion will unlock the
1671 * buffer, so we don't do it here.
1672 */
1673 return 0;
1674 }
1675
1676 xfs_buf_iorequest(bp);
1677 return 0;
1678 }
1679
1680 /*
1681 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1682 * fashion. Previously, we should have moved the current iclog
1683 * ptr in the log to point to the next available iclog. This allows further
1684 * write to continue while this code syncs out an iclog ready to go.
1685 * Before an in-core log can be written out, the data section must be scanned
1686 * to save away the 1st word of each BBSIZE block into the header. We replace
1687 * it with the current cycle count. Each BBSIZE block is tagged with the
1688 * cycle count because there in an implicit assumption that drives will
1689 * guarantee that entire 512 byte blocks get written at once. In other words,
1690 * we can't have part of a 512 byte block written and part not written. By
1691 * tagging each block, we will know which blocks are valid when recovering
1692 * after an unclean shutdown.
1693 *
1694 * This routine is single threaded on the iclog. No other thread can be in
1695 * this routine with the same iclog. Changing contents of iclog can there-
1696 * fore be done without grabbing the state machine lock. Updating the global
1697 * log will require grabbing the lock though.
1698 *
1699 * The entire log manager uses a logical block numbering scheme. Only
1700 * log_sync (and then only bwrite()) know about the fact that the log may
1701 * not start with block zero on a given device. The log block start offset
1702 * is added immediately before calling bwrite().
1703 */
1704
1705 STATIC int
1706 xlog_sync(
1707 struct xlog *log,
1708 struct xlog_in_core *iclog)
1709 {
1710 xfs_buf_t *bp;
1711 int i;
1712 uint count; /* byte count of bwrite */
1713 uint count_init; /* initial count before roundup */
1714 int roundoff; /* roundoff to BB or stripe */
1715 int split = 0; /* split write into two regions */
1716 int error;
1717 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1718 int size;
1719
1720 XFS_STATS_INC(xs_log_writes);
1721 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1722
1723 /* Add for LR header */
1724 count_init = log->l_iclog_hsize + iclog->ic_offset;
1725
1726 /* Round out the log write size */
1727 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1728 /* we have a v2 stripe unit to use */
1729 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1730 } else {
1731 count = BBTOB(BTOBB(count_init));
1732 }
1733 roundoff = count - count_init;
1734 ASSERT(roundoff >= 0);
1735 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1736 roundoff < log->l_mp->m_sb.sb_logsunit)
1737 ||
1738 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1739 roundoff < BBTOB(1)));
1740
1741 /* move grant heads by roundoff in sync */
1742 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1743 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1744
1745 /* put cycle number in every block */
1746 xlog_pack_data(log, iclog, roundoff);
1747
1748 /* real byte length */
1749 size = iclog->ic_offset;
1750 if (v2)
1751 size += roundoff;
1752 iclog->ic_header.h_len = cpu_to_be32(size);
1753
1754 bp = iclog->ic_bp;
1755 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1756
1757 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1758
1759 /* Do we need to split this write into 2 parts? */
1760 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1761 char *dptr;
1762
1763 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1764 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1765 iclog->ic_bwritecnt = 2;
1766
1767 /*
1768 * Bump the cycle numbers at the start of each block in the
1769 * part of the iclog that ends up in the buffer that gets
1770 * written to the start of the log.
1771 *
1772 * Watch out for the header magic number case, though.
1773 */
1774 dptr = (char *)&iclog->ic_header + count;
1775 for (i = 0; i < split; i += BBSIZE) {
1776 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1777 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1778 cycle++;
1779 *(__be32 *)dptr = cpu_to_be32(cycle);
1780
1781 dptr += BBSIZE;
1782 }
1783 } else {
1784 iclog->ic_bwritecnt = 1;
1785 }
1786
1787 /* calculcate the checksum */
1788 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1789 iclog->ic_datap, size);
1790
1791 bp->b_io_length = BTOBB(count);
1792 bp->b_fspriv = iclog;
1793 XFS_BUF_ZEROFLAGS(bp);
1794 XFS_BUF_ASYNC(bp);
1795 bp->b_flags |= XBF_SYNCIO;
1796
1797 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1798 bp->b_flags |= XBF_FUA;
1799
1800 /*
1801 * Flush the data device before flushing the log to make
1802 * sure all meta data written back from the AIL actually made
1803 * it to disk before stamping the new log tail LSN into the
1804 * log buffer. For an external log we need to issue the
1805 * flush explicitly, and unfortunately synchronously here;
1806 * for an internal log we can simply use the block layer
1807 * state machine for preflushes.
1808 */
1809 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1810 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1811 else
1812 bp->b_flags |= XBF_FLUSH;
1813 }
1814
1815 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1816 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1817
1818 xlog_verify_iclog(log, iclog, count, true);
1819
1820 /* account for log which doesn't start at block #0 */
1821 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1822 /*
1823 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1824 * is shutting down.
1825 */
1826 XFS_BUF_WRITE(bp);
1827
1828 error = xlog_bdstrat(bp);
1829 if (error) {
1830 xfs_buf_ioerror_alert(bp, "xlog_sync");
1831 return error;
1832 }
1833 if (split) {
1834 bp = iclog->ic_log->l_xbuf;
1835 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1836 xfs_buf_associate_memory(bp,
1837 (char *)&iclog->ic_header + count, split);
1838 bp->b_fspriv = iclog;
1839 XFS_BUF_ZEROFLAGS(bp);
1840 XFS_BUF_ASYNC(bp);
1841 bp->b_flags |= XBF_SYNCIO;
1842 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1843 bp->b_flags |= XBF_FUA;
1844
1845 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1846 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1847
1848 /* account for internal log which doesn't start at block #0 */
1849 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1850 XFS_BUF_WRITE(bp);
1851 error = xlog_bdstrat(bp);
1852 if (error) {
1853 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1854 return error;
1855 }
1856 }
1857 return 0;
1858 } /* xlog_sync */
1859
1860 /*
1861 * Deallocate a log structure
1862 */
1863 STATIC void
1864 xlog_dealloc_log(
1865 struct xlog *log)
1866 {
1867 xlog_in_core_t *iclog, *next_iclog;
1868 int i;
1869
1870 xlog_cil_destroy(log);
1871
1872 /*
1873 * Cycle all the iclogbuf locks to make sure all log IO completion
1874 * is done before we tear down these buffers.
1875 */
1876 iclog = log->l_iclog;
1877 for (i = 0; i < log->l_iclog_bufs; i++) {
1878 xfs_buf_lock(iclog->ic_bp);
1879 xfs_buf_unlock(iclog->ic_bp);
1880 iclog = iclog->ic_next;
1881 }
1882
1883 /*
1884 * Always need to ensure that the extra buffer does not point to memory
1885 * owned by another log buffer before we free it. Also, cycle the lock
1886 * first to ensure we've completed IO on it.
1887 */
1888 xfs_buf_lock(log->l_xbuf);
1889 xfs_buf_unlock(log->l_xbuf);
1890 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1891 xfs_buf_free(log->l_xbuf);
1892
1893 iclog = log->l_iclog;
1894 for (i = 0; i < log->l_iclog_bufs; i++) {
1895 xfs_buf_free(iclog->ic_bp);
1896 next_iclog = iclog->ic_next;
1897 kmem_free(iclog);
1898 iclog = next_iclog;
1899 }
1900 spinlock_destroy(&log->l_icloglock);
1901
1902 log->l_mp->m_log = NULL;
1903 kmem_free(log);
1904 } /* xlog_dealloc_log */
1905
1906 /*
1907 * Update counters atomically now that memcpy is done.
1908 */
1909 /* ARGSUSED */
1910 static inline void
1911 xlog_state_finish_copy(
1912 struct xlog *log,
1913 struct xlog_in_core *iclog,
1914 int record_cnt,
1915 int copy_bytes)
1916 {
1917 spin_lock(&log->l_icloglock);
1918
1919 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1920 iclog->ic_offset += copy_bytes;
1921
1922 spin_unlock(&log->l_icloglock);
1923 } /* xlog_state_finish_copy */
1924
1925
1926
1927
1928 /*
1929 * print out info relating to regions written which consume
1930 * the reservation
1931 */
1932 void
1933 xlog_print_tic_res(
1934 struct xfs_mount *mp,
1935 struct xlog_ticket *ticket)
1936 {
1937 uint i;
1938 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1939
1940 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1941 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1942 "bformat",
1943 "bchunk",
1944 "efi_format",
1945 "efd_format",
1946 "iformat",
1947 "icore",
1948 "iext",
1949 "ibroot",
1950 "ilocal",
1951 "iattr_ext",
1952 "iattr_broot",
1953 "iattr_local",
1954 "qformat",
1955 "dquot",
1956 "quotaoff",
1957 "LR header",
1958 "unmount",
1959 "commit",
1960 "trans header"
1961 };
1962 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1963 "SETATTR_NOT_SIZE",
1964 "SETATTR_SIZE",
1965 "INACTIVE",
1966 "CREATE",
1967 "CREATE_TRUNC",
1968 "TRUNCATE_FILE",
1969 "REMOVE",
1970 "LINK",
1971 "RENAME",
1972 "MKDIR",
1973 "RMDIR",
1974 "SYMLINK",
1975 "SET_DMATTRS",
1976 "GROWFS",
1977 "STRAT_WRITE",
1978 "DIOSTRAT",
1979 "WRITE_SYNC",
1980 "WRITEID",
1981 "ADDAFORK",
1982 "ATTRINVAL",
1983 "ATRUNCATE",
1984 "ATTR_SET",
1985 "ATTR_RM",
1986 "ATTR_FLAG",
1987 "CLEAR_AGI_BUCKET",
1988 "QM_SBCHANGE",
1989 "DUMMY1",
1990 "DUMMY2",
1991 "QM_QUOTAOFF",
1992 "QM_DQALLOC",
1993 "QM_SETQLIM",
1994 "QM_DQCLUSTER",
1995 "QM_QINOCREATE",
1996 "QM_QUOTAOFF_END",
1997 "SB_UNIT",
1998 "FSYNC_TS",
1999 "GROWFSRT_ALLOC",
2000 "GROWFSRT_ZERO",
2001 "GROWFSRT_FREE",
2002 "SWAPEXT"
2003 };
2004
2005 xfs_warn(mp,
2006 "xlog_write: reservation summary:\n"
2007 " trans type = %s (%u)\n"
2008 " unit res = %d bytes\n"
2009 " current res = %d bytes\n"
2010 " total reg = %u bytes (o/flow = %u bytes)\n"
2011 " ophdrs = %u (ophdr space = %u bytes)\n"
2012 " ophdr + reg = %u bytes\n"
2013 " num regions = %u\n",
2014 ((ticket->t_trans_type <= 0 ||
2015 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2016 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2017 ticket->t_trans_type,
2018 ticket->t_unit_res,
2019 ticket->t_curr_res,
2020 ticket->t_res_arr_sum, ticket->t_res_o_flow,
2021 ticket->t_res_num_ophdrs, ophdr_spc,
2022 ticket->t_res_arr_sum +
2023 ticket->t_res_o_flow + ophdr_spc,
2024 ticket->t_res_num);
2025
2026 for (i = 0; i < ticket->t_res_num; i++) {
2027 uint r_type = ticket->t_res_arr[i].r_type;
2028 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2029 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2030 "bad-rtype" : res_type_str[r_type-1]),
2031 ticket->t_res_arr[i].r_len);
2032 }
2033
2034 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2035 "xlog_write: reservation ran out. Need to up reservation");
2036 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2037 }
2038
2039 /*
2040 * Calculate the potential space needed by the log vector. Each region gets
2041 * its own xlog_op_header_t and may need to be double word aligned.
2042 */
2043 static int
2044 xlog_write_calc_vec_length(
2045 struct xlog_ticket *ticket,
2046 struct xfs_log_vec *log_vector)
2047 {
2048 struct xfs_log_vec *lv;
2049 int headers = 0;
2050 int len = 0;
2051 int i;
2052
2053 /* acct for start rec of xact */
2054 if (ticket->t_flags & XLOG_TIC_INITED)
2055 headers++;
2056
2057 for (lv = log_vector; lv; lv = lv->lv_next) {
2058 /* we don't write ordered log vectors */
2059 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2060 continue;
2061
2062 headers += lv->lv_niovecs;
2063
2064 for (i = 0; i < lv->lv_niovecs; i++) {
2065 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2066
2067 len += vecp->i_len;
2068 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2069 }
2070 }
2071
2072 ticket->t_res_num_ophdrs += headers;
2073 len += headers * sizeof(struct xlog_op_header);
2074
2075 return len;
2076 }
2077
2078 /*
2079 * If first write for transaction, insert start record We can't be trying to
2080 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2081 */
2082 static int
2083 xlog_write_start_rec(
2084 struct xlog_op_header *ophdr,
2085 struct xlog_ticket *ticket)
2086 {
2087 if (!(ticket->t_flags & XLOG_TIC_INITED))
2088 return 0;
2089
2090 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2091 ophdr->oh_clientid = ticket->t_clientid;
2092 ophdr->oh_len = 0;
2093 ophdr->oh_flags = XLOG_START_TRANS;
2094 ophdr->oh_res2 = 0;
2095
2096 ticket->t_flags &= ~XLOG_TIC_INITED;
2097
2098 return sizeof(struct xlog_op_header);
2099 }
2100
2101 static xlog_op_header_t *
2102 xlog_write_setup_ophdr(
2103 struct xlog *log,
2104 struct xlog_op_header *ophdr,
2105 struct xlog_ticket *ticket,
2106 uint flags)
2107 {
2108 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2109 ophdr->oh_clientid = ticket->t_clientid;
2110 ophdr->oh_res2 = 0;
2111
2112 /* are we copying a commit or unmount record? */
2113 ophdr->oh_flags = flags;
2114
2115 /*
2116 * We've seen logs corrupted with bad transaction client ids. This
2117 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2118 * and shut down the filesystem.
2119 */
2120 switch (ophdr->oh_clientid) {
2121 case XFS_TRANSACTION:
2122 case XFS_VOLUME:
2123 case XFS_LOG:
2124 break;
2125 default:
2126 xfs_warn(log->l_mp,
2127 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2128 ophdr->oh_clientid, ticket);
2129 return NULL;
2130 }
2131
2132 return ophdr;
2133 }
2134
2135 /*
2136 * Set up the parameters of the region copy into the log. This has
2137 * to handle region write split across multiple log buffers - this
2138 * state is kept external to this function so that this code can
2139 * be written in an obvious, self documenting manner.
2140 */
2141 static int
2142 xlog_write_setup_copy(
2143 struct xlog_ticket *ticket,
2144 struct xlog_op_header *ophdr,
2145 int space_available,
2146 int space_required,
2147 int *copy_off,
2148 int *copy_len,
2149 int *last_was_partial_copy,
2150 int *bytes_consumed)
2151 {
2152 int still_to_copy;
2153
2154 still_to_copy = space_required - *bytes_consumed;
2155 *copy_off = *bytes_consumed;
2156
2157 if (still_to_copy <= space_available) {
2158 /* write of region completes here */
2159 *copy_len = still_to_copy;
2160 ophdr->oh_len = cpu_to_be32(*copy_len);
2161 if (*last_was_partial_copy)
2162 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2163 *last_was_partial_copy = 0;
2164 *bytes_consumed = 0;
2165 return 0;
2166 }
2167
2168 /* partial write of region, needs extra log op header reservation */
2169 *copy_len = space_available;
2170 ophdr->oh_len = cpu_to_be32(*copy_len);
2171 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2172 if (*last_was_partial_copy)
2173 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2174 *bytes_consumed += *copy_len;
2175 (*last_was_partial_copy)++;
2176
2177 /* account for new log op header */
2178 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2179 ticket->t_res_num_ophdrs++;
2180
2181 return sizeof(struct xlog_op_header);
2182 }
2183
2184 static int
2185 xlog_write_copy_finish(
2186 struct xlog *log,
2187 struct xlog_in_core *iclog,
2188 uint flags,
2189 int *record_cnt,
2190 int *data_cnt,
2191 int *partial_copy,
2192 int *partial_copy_len,
2193 int log_offset,
2194 struct xlog_in_core **commit_iclog)
2195 {
2196 if (*partial_copy) {
2197 /*
2198 * This iclog has already been marked WANT_SYNC by
2199 * xlog_state_get_iclog_space.
2200 */
2201 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2202 *record_cnt = 0;
2203 *data_cnt = 0;
2204 return xlog_state_release_iclog(log, iclog);
2205 }
2206
2207 *partial_copy = 0;
2208 *partial_copy_len = 0;
2209
2210 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2211 /* no more space in this iclog - push it. */
2212 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2213 *record_cnt = 0;
2214 *data_cnt = 0;
2215
2216 spin_lock(&log->l_icloglock);
2217 xlog_state_want_sync(log, iclog);
2218 spin_unlock(&log->l_icloglock);
2219
2220 if (!commit_iclog)
2221 return xlog_state_release_iclog(log, iclog);
2222 ASSERT(flags & XLOG_COMMIT_TRANS);
2223 *commit_iclog = iclog;
2224 }
2225
2226 return 0;
2227 }
2228
2229 /*
2230 * Write some region out to in-core log
2231 *
2232 * This will be called when writing externally provided regions or when
2233 * writing out a commit record for a given transaction.
2234 *
2235 * General algorithm:
2236 * 1. Find total length of this write. This may include adding to the
2237 * lengths passed in.
2238 * 2. Check whether we violate the tickets reservation.
2239 * 3. While writing to this iclog
2240 * A. Reserve as much space in this iclog as can get
2241 * B. If this is first write, save away start lsn
2242 * C. While writing this region:
2243 * 1. If first write of transaction, write start record
2244 * 2. Write log operation header (header per region)
2245 * 3. Find out if we can fit entire region into this iclog
2246 * 4. Potentially, verify destination memcpy ptr
2247 * 5. Memcpy (partial) region
2248 * 6. If partial copy, release iclog; otherwise, continue
2249 * copying more regions into current iclog
2250 * 4. Mark want sync bit (in simulation mode)
2251 * 5. Release iclog for potential flush to on-disk log.
2252 *
2253 * ERRORS:
2254 * 1. Panic if reservation is overrun. This should never happen since
2255 * reservation amounts are generated internal to the filesystem.
2256 * NOTES:
2257 * 1. Tickets are single threaded data structures.
2258 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2259 * syncing routine. When a single log_write region needs to span
2260 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2261 * on all log operation writes which don't contain the end of the
2262 * region. The XLOG_END_TRANS bit is used for the in-core log
2263 * operation which contains the end of the continued log_write region.
2264 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2265 * we don't really know exactly how much space will be used. As a result,
2266 * we don't update ic_offset until the end when we know exactly how many
2267 * bytes have been written out.
2268 */
2269 int
2270 xlog_write(
2271 struct xlog *log,
2272 struct xfs_log_vec *log_vector,
2273 struct xlog_ticket *ticket,
2274 xfs_lsn_t *start_lsn,
2275 struct xlog_in_core **commit_iclog,
2276 uint flags)
2277 {
2278 struct xlog_in_core *iclog = NULL;
2279 struct xfs_log_iovec *vecp;
2280 struct xfs_log_vec *lv;
2281 int len;
2282 int index;
2283 int partial_copy = 0;
2284 int partial_copy_len = 0;
2285 int contwr = 0;
2286 int record_cnt = 0;
2287 int data_cnt = 0;
2288 int error;
2289
2290 *start_lsn = 0;
2291
2292 len = xlog_write_calc_vec_length(ticket, log_vector);
2293
2294 /*
2295 * Region headers and bytes are already accounted for.
2296 * We only need to take into account start records and
2297 * split regions in this function.
2298 */
2299 if (ticket->t_flags & XLOG_TIC_INITED)
2300 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2301
2302 /*
2303 * Commit record headers need to be accounted for. These
2304 * come in as separate writes so are easy to detect.
2305 */
2306 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2307 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2308
2309 if (ticket->t_curr_res < 0)
2310 xlog_print_tic_res(log->l_mp, ticket);
2311
2312 index = 0;
2313 lv = log_vector;
2314 vecp = lv->lv_iovecp;
2315 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2316 void *ptr;
2317 int log_offset;
2318
2319 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2320 &contwr, &log_offset);
2321 if (error)
2322 return error;
2323
2324 ASSERT(log_offset <= iclog->ic_size - 1);
2325 ptr = iclog->ic_datap + log_offset;
2326
2327 /* start_lsn is the first lsn written to. That's all we need. */
2328 if (!*start_lsn)
2329 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2330
2331 /*
2332 * This loop writes out as many regions as can fit in the amount
2333 * of space which was allocated by xlog_state_get_iclog_space().
2334 */
2335 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2336 struct xfs_log_iovec *reg;
2337 struct xlog_op_header *ophdr;
2338 int start_rec_copy;
2339 int copy_len;
2340 int copy_off;
2341 bool ordered = false;
2342
2343 /* ordered log vectors have no regions to write */
2344 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2345 ASSERT(lv->lv_niovecs == 0);
2346 ordered = true;
2347 goto next_lv;
2348 }
2349
2350 reg = &vecp[index];
2351 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2352 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2353
2354 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2355 if (start_rec_copy) {
2356 record_cnt++;
2357 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2358 start_rec_copy);
2359 }
2360
2361 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2362 if (!ophdr)
2363 return XFS_ERROR(EIO);
2364
2365 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2366 sizeof(struct xlog_op_header));
2367
2368 len += xlog_write_setup_copy(ticket, ophdr,
2369 iclog->ic_size-log_offset,
2370 reg->i_len,
2371 &copy_off, &copy_len,
2372 &partial_copy,
2373 &partial_copy_len);
2374 xlog_verify_dest_ptr(log, ptr);
2375
2376 /* copy region */
2377 ASSERT(copy_len >= 0);
2378 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2379 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2380
2381 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2382 record_cnt++;
2383 data_cnt += contwr ? copy_len : 0;
2384
2385 error = xlog_write_copy_finish(log, iclog, flags,
2386 &record_cnt, &data_cnt,
2387 &partial_copy,
2388 &partial_copy_len,
2389 log_offset,
2390 commit_iclog);
2391 if (error)
2392 return error;
2393
2394 /*
2395 * if we had a partial copy, we need to get more iclog
2396 * space but we don't want to increment the region
2397 * index because there is still more is this region to
2398 * write.
2399 *
2400 * If we completed writing this region, and we flushed
2401 * the iclog (indicated by resetting of the record
2402 * count), then we also need to get more log space. If
2403 * this was the last record, though, we are done and
2404 * can just return.
2405 */
2406 if (partial_copy)
2407 break;
2408
2409 if (++index == lv->lv_niovecs) {
2410 next_lv:
2411 lv = lv->lv_next;
2412 index = 0;
2413 if (lv)
2414 vecp = lv->lv_iovecp;
2415 }
2416 if (record_cnt == 0 && ordered == false) {
2417 if (!lv)
2418 return 0;
2419 break;
2420 }
2421 }
2422 }
2423
2424 ASSERT(len == 0);
2425
2426 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2427 if (!commit_iclog)
2428 return xlog_state_release_iclog(log, iclog);
2429
2430 ASSERT(flags & XLOG_COMMIT_TRANS);
2431 *commit_iclog = iclog;
2432 return 0;
2433 }
2434
2435
2436 /*****************************************************************************
2437 *
2438 * State Machine functions
2439 *
2440 *****************************************************************************
2441 */
2442
2443 /* Clean iclogs starting from the head. This ordering must be
2444 * maintained, so an iclog doesn't become ACTIVE beyond one that
2445 * is SYNCING. This is also required to maintain the notion that we use
2446 * a ordered wait queue to hold off would be writers to the log when every
2447 * iclog is trying to sync to disk.
2448 *
2449 * State Change: DIRTY -> ACTIVE
2450 */
2451 STATIC void
2452 xlog_state_clean_log(
2453 struct xlog *log)
2454 {
2455 xlog_in_core_t *iclog;
2456 int changed = 0;
2457
2458 iclog = log->l_iclog;
2459 do {
2460 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2461 iclog->ic_state = XLOG_STATE_ACTIVE;
2462 iclog->ic_offset = 0;
2463 ASSERT(iclog->ic_callback == NULL);
2464 /*
2465 * If the number of ops in this iclog indicate it just
2466 * contains the dummy transaction, we can
2467 * change state into IDLE (the second time around).
2468 * Otherwise we should change the state into
2469 * NEED a dummy.
2470 * We don't need to cover the dummy.
2471 */
2472 if (!changed &&
2473 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2474 XLOG_COVER_OPS)) {
2475 changed = 1;
2476 } else {
2477 /*
2478 * We have two dirty iclogs so start over
2479 * This could also be num of ops indicates
2480 * this is not the dummy going out.
2481 */
2482 changed = 2;
2483 }
2484 iclog->ic_header.h_num_logops = 0;
2485 memset(iclog->ic_header.h_cycle_data, 0,
2486 sizeof(iclog->ic_header.h_cycle_data));
2487 iclog->ic_header.h_lsn = 0;
2488 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2489 /* do nothing */;
2490 else
2491 break; /* stop cleaning */
2492 iclog = iclog->ic_next;
2493 } while (iclog != log->l_iclog);
2494
2495 /* log is locked when we are called */
2496 /*
2497 * Change state for the dummy log recording.
2498 * We usually go to NEED. But we go to NEED2 if the changed indicates
2499 * we are done writing the dummy record.
2500 * If we are done with the second dummy recored (DONE2), then
2501 * we go to IDLE.
2502 */
2503 if (changed) {
2504 switch (log->l_covered_state) {
2505 case XLOG_STATE_COVER_IDLE:
2506 case XLOG_STATE_COVER_NEED:
2507 case XLOG_STATE_COVER_NEED2:
2508 log->l_covered_state = XLOG_STATE_COVER_NEED;
2509 break;
2510
2511 case XLOG_STATE_COVER_DONE:
2512 if (changed == 1)
2513 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2514 else
2515 log->l_covered_state = XLOG_STATE_COVER_NEED;
2516 break;
2517
2518 case XLOG_STATE_COVER_DONE2:
2519 if (changed == 1)
2520 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2521 else
2522 log->l_covered_state = XLOG_STATE_COVER_NEED;
2523 break;
2524
2525 default:
2526 ASSERT(0);
2527 }
2528 }
2529 } /* xlog_state_clean_log */
2530
2531 STATIC xfs_lsn_t
2532 xlog_get_lowest_lsn(
2533 struct xlog *log)
2534 {
2535 xlog_in_core_t *lsn_log;
2536 xfs_lsn_t lowest_lsn, lsn;
2537
2538 lsn_log = log->l_iclog;
2539 lowest_lsn = 0;
2540 do {
2541 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2542 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2543 if ((lsn && !lowest_lsn) ||
2544 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2545 lowest_lsn = lsn;
2546 }
2547 }
2548 lsn_log = lsn_log->ic_next;
2549 } while (lsn_log != log->l_iclog);
2550 return lowest_lsn;
2551 }
2552
2553
2554 STATIC void
2555 xlog_state_do_callback(
2556 struct xlog *log,
2557 int aborted,
2558 struct xlog_in_core *ciclog)
2559 {
2560 xlog_in_core_t *iclog;
2561 xlog_in_core_t *first_iclog; /* used to know when we've
2562 * processed all iclogs once */
2563 xfs_log_callback_t *cb, *cb_next;
2564 int flushcnt = 0;
2565 xfs_lsn_t lowest_lsn;
2566 int ioerrors; /* counter: iclogs with errors */
2567 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2568 int funcdidcallbacks; /* flag: function did callbacks */
2569 int repeats; /* for issuing console warnings if
2570 * looping too many times */
2571 int wake = 0;
2572
2573 spin_lock(&log->l_icloglock);
2574 first_iclog = iclog = log->l_iclog;
2575 ioerrors = 0;
2576 funcdidcallbacks = 0;
2577 repeats = 0;
2578
2579 do {
2580 /*
2581 * Scan all iclogs starting with the one pointed to by the
2582 * log. Reset this starting point each time the log is
2583 * unlocked (during callbacks).
2584 *
2585 * Keep looping through iclogs until one full pass is made
2586 * without running any callbacks.
2587 */
2588 first_iclog = log->l_iclog;
2589 iclog = log->l_iclog;
2590 loopdidcallbacks = 0;
2591 repeats++;
2592
2593 do {
2594
2595 /* skip all iclogs in the ACTIVE & DIRTY states */
2596 if (iclog->ic_state &
2597 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2598 iclog = iclog->ic_next;
2599 continue;
2600 }
2601
2602 /*
2603 * Between marking a filesystem SHUTDOWN and stopping
2604 * the log, we do flush all iclogs to disk (if there
2605 * wasn't a log I/O error). So, we do want things to
2606 * go smoothly in case of just a SHUTDOWN w/o a
2607 * LOG_IO_ERROR.
2608 */
2609 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2610 /*
2611 * Can only perform callbacks in order. Since
2612 * this iclog is not in the DONE_SYNC/
2613 * DO_CALLBACK state, we skip the rest and
2614 * just try to clean up. If we set our iclog
2615 * to DO_CALLBACK, we will not process it when
2616 * we retry since a previous iclog is in the
2617 * CALLBACK and the state cannot change since
2618 * we are holding the l_icloglock.
2619 */
2620 if (!(iclog->ic_state &
2621 (XLOG_STATE_DONE_SYNC |
2622 XLOG_STATE_DO_CALLBACK))) {
2623 if (ciclog && (ciclog->ic_state ==
2624 XLOG_STATE_DONE_SYNC)) {
2625 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2626 }
2627 break;
2628 }
2629 /*
2630 * We now have an iclog that is in either the
2631 * DO_CALLBACK or DONE_SYNC states. The other
2632 * states (WANT_SYNC, SYNCING, or CALLBACK were
2633 * caught by the above if and are going to
2634 * clean (i.e. we aren't doing their callbacks)
2635 * see the above if.
2636 */
2637
2638 /*
2639 * We will do one more check here to see if we
2640 * have chased our tail around.
2641 */
2642
2643 lowest_lsn = xlog_get_lowest_lsn(log);
2644 if (lowest_lsn &&
2645 XFS_LSN_CMP(lowest_lsn,
2646 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2647 iclog = iclog->ic_next;
2648 continue; /* Leave this iclog for
2649 * another thread */
2650 }
2651
2652 iclog->ic_state = XLOG_STATE_CALLBACK;
2653
2654
2655 /*
2656 * Completion of a iclog IO does not imply that
2657 * a transaction has completed, as transactions
2658 * can be large enough to span many iclogs. We
2659 * cannot change the tail of the log half way
2660 * through a transaction as this may be the only
2661 * transaction in the log and moving th etail to
2662 * point to the middle of it will prevent
2663 * recovery from finding the start of the
2664 * transaction. Hence we should only update the
2665 * last_sync_lsn if this iclog contains
2666 * transaction completion callbacks on it.
2667 *
2668 * We have to do this before we drop the
2669 * icloglock to ensure we are the only one that
2670 * can update it.
2671 */
2672 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2673 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2674 if (iclog->ic_callback)
2675 atomic64_set(&log->l_last_sync_lsn,
2676 be64_to_cpu(iclog->ic_header.h_lsn));
2677
2678 } else
2679 ioerrors++;
2680
2681 spin_unlock(&log->l_icloglock);
2682
2683 /*
2684 * Keep processing entries in the callback list until
2685 * we come around and it is empty. We need to
2686 * atomically see that the list is empty and change the
2687 * state to DIRTY so that we don't miss any more
2688 * callbacks being added.
2689 */
2690 spin_lock(&iclog->ic_callback_lock);
2691 cb = iclog->ic_callback;
2692 while (cb) {
2693 iclog->ic_callback_tail = &(iclog->ic_callback);
2694 iclog->ic_callback = NULL;
2695 spin_unlock(&iclog->ic_callback_lock);
2696
2697 /* perform callbacks in the order given */
2698 for (; cb; cb = cb_next) {
2699 cb_next = cb->cb_next;
2700 cb->cb_func(cb->cb_arg, aborted);
2701 }
2702 spin_lock(&iclog->ic_callback_lock);
2703 cb = iclog->ic_callback;
2704 }
2705
2706 loopdidcallbacks++;
2707 funcdidcallbacks++;
2708
2709 spin_lock(&log->l_icloglock);
2710 ASSERT(iclog->ic_callback == NULL);
2711 spin_unlock(&iclog->ic_callback_lock);
2712 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2713 iclog->ic_state = XLOG_STATE_DIRTY;
2714
2715 /*
2716 * Transition from DIRTY to ACTIVE if applicable.
2717 * NOP if STATE_IOERROR.
2718 */
2719 xlog_state_clean_log(log);
2720
2721 /* wake up threads waiting in xfs_log_force() */
2722 wake_up_all(&iclog->ic_force_wait);
2723
2724 iclog = iclog->ic_next;
2725 } while (first_iclog != iclog);
2726
2727 if (repeats > 5000) {
2728 flushcnt += repeats;
2729 repeats = 0;
2730 xfs_warn(log->l_mp,
2731 "%s: possible infinite loop (%d iterations)",
2732 __func__, flushcnt);
2733 }
2734 } while (!ioerrors && loopdidcallbacks);
2735
2736 /*
2737 * make one last gasp attempt to see if iclogs are being left in
2738 * limbo..
2739 */
2740 #ifdef DEBUG
2741 if (funcdidcallbacks) {
2742 first_iclog = iclog = log->l_iclog;
2743 do {
2744 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2745 /*
2746 * Terminate the loop if iclogs are found in states
2747 * which will cause other threads to clean up iclogs.
2748 *
2749 * SYNCING - i/o completion will go through logs
2750 * DONE_SYNC - interrupt thread should be waiting for
2751 * l_icloglock
2752 * IOERROR - give up hope all ye who enter here
2753 */
2754 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2755 iclog->ic_state == XLOG_STATE_SYNCING ||
2756 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2757 iclog->ic_state == XLOG_STATE_IOERROR )
2758 break;
2759 iclog = iclog->ic_next;
2760 } while (first_iclog != iclog);
2761 }
2762 #endif
2763
2764 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2765 wake = 1;
2766 spin_unlock(&log->l_icloglock);
2767
2768 if (wake)
2769 wake_up_all(&log->l_flush_wait);
2770 }
2771
2772
2773 /*
2774 * Finish transitioning this iclog to the dirty state.
2775 *
2776 * Make sure that we completely execute this routine only when this is
2777 * the last call to the iclog. There is a good chance that iclog flushes,
2778 * when we reach the end of the physical log, get turned into 2 separate
2779 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2780 * routine. By using the reference count bwritecnt, we guarantee that only
2781 * the second completion goes through.
2782 *
2783 * Callbacks could take time, so they are done outside the scope of the
2784 * global state machine log lock.
2785 */
2786 STATIC void
2787 xlog_state_done_syncing(
2788 xlog_in_core_t *iclog,
2789 int aborted)
2790 {
2791 struct xlog *log = iclog->ic_log;
2792
2793 spin_lock(&log->l_icloglock);
2794
2795 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2796 iclog->ic_state == XLOG_STATE_IOERROR);
2797 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2798 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2799
2800
2801 /*
2802 * If we got an error, either on the first buffer, or in the case of
2803 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2804 * and none should ever be attempted to be written to disk
2805 * again.
2806 */
2807 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2808 if (--iclog->ic_bwritecnt == 1) {
2809 spin_unlock(&log->l_icloglock);
2810 return;
2811 }
2812 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2813 }
2814
2815 /*
2816 * Someone could be sleeping prior to writing out the next
2817 * iclog buffer, we wake them all, one will get to do the
2818 * I/O, the others get to wait for the result.
2819 */
2820 wake_up_all(&iclog->ic_write_wait);
2821 spin_unlock(&log->l_icloglock);
2822 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2823 } /* xlog_state_done_syncing */
2824
2825
2826 /*
2827 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2828 * sleep. We wait on the flush queue on the head iclog as that should be
2829 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2830 * we will wait here and all new writes will sleep until a sync completes.
2831 *
2832 * The in-core logs are used in a circular fashion. They are not used
2833 * out-of-order even when an iclog past the head is free.
2834 *
2835 * return:
2836 * * log_offset where xlog_write() can start writing into the in-core
2837 * log's data space.
2838 * * in-core log pointer to which xlog_write() should write.
2839 * * boolean indicating this is a continued write to an in-core log.
2840 * If this is the last write, then the in-core log's offset field
2841 * needs to be incremented, depending on the amount of data which
2842 * is copied.
2843 */
2844 STATIC int
2845 xlog_state_get_iclog_space(
2846 struct xlog *log,
2847 int len,
2848 struct xlog_in_core **iclogp,
2849 struct xlog_ticket *ticket,
2850 int *continued_write,
2851 int *logoffsetp)
2852 {
2853 int log_offset;
2854 xlog_rec_header_t *head;
2855 xlog_in_core_t *iclog;
2856 int error;
2857
2858 restart:
2859 spin_lock(&log->l_icloglock);
2860 if (XLOG_FORCED_SHUTDOWN(log)) {
2861 spin_unlock(&log->l_icloglock);
2862 return XFS_ERROR(EIO);
2863 }
2864
2865 iclog = log->l_iclog;
2866 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2867 XFS_STATS_INC(xs_log_noiclogs);
2868
2869 /* Wait for log writes to have flushed */
2870 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2871 goto restart;
2872 }
2873
2874 head = &iclog->ic_header;
2875
2876 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2877 log_offset = iclog->ic_offset;
2878
2879 /* On the 1st write to an iclog, figure out lsn. This works
2880 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2881 * committing to. If the offset is set, that's how many blocks
2882 * must be written.
2883 */
2884 if (log_offset == 0) {
2885 ticket->t_curr_res -= log->l_iclog_hsize;
2886 xlog_tic_add_region(ticket,
2887 log->l_iclog_hsize,
2888 XLOG_REG_TYPE_LRHEADER);
2889 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2890 head->h_lsn = cpu_to_be64(
2891 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2892 ASSERT(log->l_curr_block >= 0);
2893 }
2894
2895 /* If there is enough room to write everything, then do it. Otherwise,
2896 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2897 * bit is on, so this will get flushed out. Don't update ic_offset
2898 * until you know exactly how many bytes get copied. Therefore, wait
2899 * until later to update ic_offset.
2900 *
2901 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2902 * can fit into remaining data section.
2903 */
2904 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2905 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2906
2907 /*
2908 * If I'm the only one writing to this iclog, sync it to disk.
2909 * We need to do an atomic compare and decrement here to avoid
2910 * racing with concurrent atomic_dec_and_lock() calls in
2911 * xlog_state_release_iclog() when there is more than one
2912 * reference to the iclog.
2913 */
2914 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2915 /* we are the only one */
2916 spin_unlock(&log->l_icloglock);
2917 error = xlog_state_release_iclog(log, iclog);
2918 if (error)
2919 return error;
2920 } else {
2921 spin_unlock(&log->l_icloglock);
2922 }
2923 goto restart;
2924 }
2925
2926 /* Do we have enough room to write the full amount in the remainder
2927 * of this iclog? Or must we continue a write on the next iclog and
2928 * mark this iclog as completely taken? In the case where we switch
2929 * iclogs (to mark it taken), this particular iclog will release/sync
2930 * to disk in xlog_write().
2931 */
2932 if (len <= iclog->ic_size - iclog->ic_offset) {
2933 *continued_write = 0;
2934 iclog->ic_offset += len;
2935 } else {
2936 *continued_write = 1;
2937 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2938 }
2939 *iclogp = iclog;
2940
2941 ASSERT(iclog->ic_offset <= iclog->ic_size);
2942 spin_unlock(&log->l_icloglock);
2943
2944 *logoffsetp = log_offset;
2945 return 0;
2946 } /* xlog_state_get_iclog_space */
2947
2948 /* The first cnt-1 times through here we don't need to
2949 * move the grant write head because the permanent
2950 * reservation has reserved cnt times the unit amount.
2951 * Release part of current permanent unit reservation and
2952 * reset current reservation to be one units worth. Also
2953 * move grant reservation head forward.
2954 */
2955 STATIC void
2956 xlog_regrant_reserve_log_space(
2957 struct xlog *log,
2958 struct xlog_ticket *ticket)
2959 {
2960 trace_xfs_log_regrant_reserve_enter(log, ticket);
2961
2962 if (ticket->t_cnt > 0)
2963 ticket->t_cnt--;
2964
2965 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2966 ticket->t_curr_res);
2967 xlog_grant_sub_space(log, &log->l_write_head.grant,
2968 ticket->t_curr_res);
2969 ticket->t_curr_res = ticket->t_unit_res;
2970 xlog_tic_reset_res(ticket);
2971
2972 trace_xfs_log_regrant_reserve_sub(log, ticket);
2973
2974 /* just return if we still have some of the pre-reserved space */
2975 if (ticket->t_cnt > 0)
2976 return;
2977
2978 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2979 ticket->t_unit_res);
2980
2981 trace_xfs_log_regrant_reserve_exit(log, ticket);
2982
2983 ticket->t_curr_res = ticket->t_unit_res;
2984 xlog_tic_reset_res(ticket);
2985 } /* xlog_regrant_reserve_log_space */
2986
2987
2988 /*
2989 * Give back the space left from a reservation.
2990 *
2991 * All the information we need to make a correct determination of space left
2992 * is present. For non-permanent reservations, things are quite easy. The
2993 * count should have been decremented to zero. We only need to deal with the
2994 * space remaining in the current reservation part of the ticket. If the
2995 * ticket contains a permanent reservation, there may be left over space which
2996 * needs to be released. A count of N means that N-1 refills of the current
2997 * reservation can be done before we need to ask for more space. The first
2998 * one goes to fill up the first current reservation. Once we run out of
2999 * space, the count will stay at zero and the only space remaining will be
3000 * in the current reservation field.
3001 */
3002 STATIC void
3003 xlog_ungrant_log_space(
3004 struct xlog *log,
3005 struct xlog_ticket *ticket)
3006 {
3007 int bytes;
3008
3009 if (ticket->t_cnt > 0)
3010 ticket->t_cnt--;
3011
3012 trace_xfs_log_ungrant_enter(log, ticket);
3013 trace_xfs_log_ungrant_sub(log, ticket);
3014
3015 /*
3016 * If this is a permanent reservation ticket, we may be able to free
3017 * up more space based on the remaining count.
3018 */
3019 bytes = ticket->t_curr_res;
3020 if (ticket->t_cnt > 0) {
3021 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3022 bytes += ticket->t_unit_res*ticket->t_cnt;
3023 }
3024
3025 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3026 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3027
3028 trace_xfs_log_ungrant_exit(log, ticket);
3029
3030 xfs_log_space_wake(log->l_mp);
3031 }
3032
3033 /*
3034 * Flush iclog to disk if this is the last reference to the given iclog and
3035 * the WANT_SYNC bit is set.
3036 *
3037 * When this function is entered, the iclog is not necessarily in the
3038 * WANT_SYNC state. It may be sitting around waiting to get filled.
3039 *
3040 *
3041 */
3042 STATIC int
3043 xlog_state_release_iclog(
3044 struct xlog *log,
3045 struct xlog_in_core *iclog)
3046 {
3047 int sync = 0; /* do we sync? */
3048
3049 if (iclog->ic_state & XLOG_STATE_IOERROR)
3050 return XFS_ERROR(EIO);
3051
3052 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3053 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3054 return 0;
3055
3056 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3057 spin_unlock(&log->l_icloglock);
3058 return XFS_ERROR(EIO);
3059 }
3060 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3061 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3062
3063 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3064 /* update tail before writing to iclog */
3065 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3066 sync++;
3067 iclog->ic_state = XLOG_STATE_SYNCING;
3068 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3069 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3070 /* cycle incremented when incrementing curr_block */
3071 }
3072 spin_unlock(&log->l_icloglock);
3073
3074 /*
3075 * We let the log lock go, so it's possible that we hit a log I/O
3076 * error or some other SHUTDOWN condition that marks the iclog
3077 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3078 * this iclog has consistent data, so we ignore IOERROR
3079 * flags after this point.
3080 */
3081 if (sync)
3082 return xlog_sync(log, iclog);
3083 return 0;
3084 } /* xlog_state_release_iclog */
3085
3086
3087 /*
3088 * This routine will mark the current iclog in the ring as WANT_SYNC
3089 * and move the current iclog pointer to the next iclog in the ring.
3090 * When this routine is called from xlog_state_get_iclog_space(), the
3091 * exact size of the iclog has not yet been determined. All we know is
3092 * that every data block. We have run out of space in this log record.
3093 */
3094 STATIC void
3095 xlog_state_switch_iclogs(
3096 struct xlog *log,
3097 struct xlog_in_core *iclog,
3098 int eventual_size)
3099 {
3100 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3101 if (!eventual_size)
3102 eventual_size = iclog->ic_offset;
3103 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3104 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3105 log->l_prev_block = log->l_curr_block;
3106 log->l_prev_cycle = log->l_curr_cycle;
3107
3108 /* roll log?: ic_offset changed later */
3109 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3110
3111 /* Round up to next log-sunit */
3112 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3113 log->l_mp->m_sb.sb_logsunit > 1) {
3114 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3115 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3116 }
3117
3118 if (log->l_curr_block >= log->l_logBBsize) {
3119 log->l_curr_cycle++;
3120 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3121 log->l_curr_cycle++;
3122 log->l_curr_block -= log->l_logBBsize;
3123 ASSERT(log->l_curr_block >= 0);
3124 }
3125 ASSERT(iclog == log->l_iclog);
3126 log->l_iclog = iclog->ic_next;
3127 } /* xlog_state_switch_iclogs */
3128
3129 /*
3130 * Write out all data in the in-core log as of this exact moment in time.
3131 *
3132 * Data may be written to the in-core log during this call. However,
3133 * we don't guarantee this data will be written out. A change from past
3134 * implementation means this routine will *not* write out zero length LRs.
3135 *
3136 * Basically, we try and perform an intelligent scan of the in-core logs.
3137 * If we determine there is no flushable data, we just return. There is no
3138 * flushable data if:
3139 *
3140 * 1. the current iclog is active and has no data; the previous iclog
3141 * is in the active or dirty state.
3142 * 2. the current iclog is drity, and the previous iclog is in the
3143 * active or dirty state.
3144 *
3145 * We may sleep if:
3146 *
3147 * 1. the current iclog is not in the active nor dirty state.
3148 * 2. the current iclog dirty, and the previous iclog is not in the
3149 * active nor dirty state.
3150 * 3. the current iclog is active, and there is another thread writing
3151 * to this particular iclog.
3152 * 4. a) the current iclog is active and has no other writers
3153 * b) when we return from flushing out this iclog, it is still
3154 * not in the active nor dirty state.
3155 */
3156 int
3157 _xfs_log_force(
3158 struct xfs_mount *mp,
3159 uint flags,
3160 int *log_flushed)
3161 {
3162 struct xlog *log = mp->m_log;
3163 struct xlog_in_core *iclog;
3164 xfs_lsn_t lsn;
3165
3166 XFS_STATS_INC(xs_log_force);
3167
3168 xlog_cil_force(log);
3169
3170 spin_lock(&log->l_icloglock);
3171
3172 iclog = log->l_iclog;
3173 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3174 spin_unlock(&log->l_icloglock);
3175 return XFS_ERROR(EIO);
3176 }
3177
3178 /* If the head iclog is not active nor dirty, we just attach
3179 * ourselves to the head and go to sleep.
3180 */
3181 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3182 iclog->ic_state == XLOG_STATE_DIRTY) {
3183 /*
3184 * If the head is dirty or (active and empty), then
3185 * we need to look at the previous iclog. If the previous
3186 * iclog is active or dirty we are done. There is nothing
3187 * to sync out. Otherwise, we attach ourselves to the
3188 * previous iclog and go to sleep.
3189 */
3190 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3191 (atomic_read(&iclog->ic_refcnt) == 0
3192 && iclog->ic_offset == 0)) {
3193 iclog = iclog->ic_prev;
3194 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3195 iclog->ic_state == XLOG_STATE_DIRTY)
3196 goto no_sleep;
3197 else
3198 goto maybe_sleep;
3199 } else {
3200 if (atomic_read(&iclog->ic_refcnt) == 0) {
3201 /* We are the only one with access to this
3202 * iclog. Flush it out now. There should
3203 * be a roundoff of zero to show that someone
3204 * has already taken care of the roundoff from
3205 * the previous sync.
3206 */
3207 atomic_inc(&iclog->ic_refcnt);
3208 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3209 xlog_state_switch_iclogs(log, iclog, 0);
3210 spin_unlock(&log->l_icloglock);
3211
3212 if (xlog_state_release_iclog(log, iclog))
3213 return XFS_ERROR(EIO);
3214
3215 if (log_flushed)
3216 *log_flushed = 1;
3217 spin_lock(&log->l_icloglock);
3218 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3219 iclog->ic_state != XLOG_STATE_DIRTY)
3220 goto maybe_sleep;
3221 else
3222 goto no_sleep;
3223 } else {
3224 /* Someone else is writing to this iclog.
3225 * Use its call to flush out the data. However,
3226 * the other thread may not force out this LR,
3227 * so we mark it WANT_SYNC.
3228 */
3229 xlog_state_switch_iclogs(log, iclog, 0);
3230 goto maybe_sleep;
3231 }
3232 }
3233 }
3234
3235 /* By the time we come around again, the iclog could've been filled
3236 * which would give it another lsn. If we have a new lsn, just
3237 * return because the relevant data has been flushed.
3238 */
3239 maybe_sleep:
3240 if (flags & XFS_LOG_SYNC) {
3241 /*
3242 * We must check if we're shutting down here, before
3243 * we wait, while we're holding the l_icloglock.
3244 * Then we check again after waking up, in case our
3245 * sleep was disturbed by a bad news.
3246 */
3247 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3248 spin_unlock(&log->l_icloglock);
3249 return XFS_ERROR(EIO);
3250 }
3251 XFS_STATS_INC(xs_log_force_sleep);
3252 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3253 /*
3254 * No need to grab the log lock here since we're
3255 * only deciding whether or not to return EIO
3256 * and the memory read should be atomic.
3257 */
3258 if (iclog->ic_state & XLOG_STATE_IOERROR)
3259 return XFS_ERROR(EIO);
3260 if (log_flushed)
3261 *log_flushed = 1;
3262 } else {
3263
3264 no_sleep:
3265 spin_unlock(&log->l_icloglock);
3266 }
3267 return 0;
3268 }
3269
3270 /*
3271 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3272 * about errors or whether the log was flushed or not. This is the normal
3273 * interface to use when trying to unpin items or move the log forward.
3274 */
3275 void
3276 xfs_log_force(
3277 xfs_mount_t *mp,
3278 uint flags)
3279 {
3280 int error;
3281
3282 trace_xfs_log_force(mp, 0);
3283 error = _xfs_log_force(mp, flags, NULL);
3284 if (error)
3285 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3286 }
3287
3288 /*
3289 * Force the in-core log to disk for a specific LSN.
3290 *
3291 * Find in-core log with lsn.
3292 * If it is in the DIRTY state, just return.
3293 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3294 * state and go to sleep or return.
3295 * If it is in any other state, go to sleep or return.
3296 *
3297 * Synchronous forces are implemented with a signal variable. All callers
3298 * to force a given lsn to disk will wait on a the sv attached to the
3299 * specific in-core log. When given in-core log finally completes its
3300 * write to disk, that thread will wake up all threads waiting on the
3301 * sv.
3302 */
3303 int
3304 _xfs_log_force_lsn(
3305 struct xfs_mount *mp,
3306 xfs_lsn_t lsn,
3307 uint flags,
3308 int *log_flushed)
3309 {
3310 struct xlog *log = mp->m_log;
3311 struct xlog_in_core *iclog;
3312 int already_slept = 0;
3313
3314 ASSERT(lsn != 0);
3315
3316 XFS_STATS_INC(xs_log_force);
3317
3318 lsn = xlog_cil_force_lsn(log, lsn);
3319 if (lsn == NULLCOMMITLSN)
3320 return 0;
3321
3322 try_again:
3323 spin_lock(&log->l_icloglock);
3324 iclog = log->l_iclog;
3325 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3326 spin_unlock(&log->l_icloglock);
3327 return XFS_ERROR(EIO);
3328 }
3329
3330 do {
3331 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3332 iclog = iclog->ic_next;
3333 continue;
3334 }
3335
3336 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3337 spin_unlock(&log->l_icloglock);
3338 return 0;
3339 }
3340
3341 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3342 /*
3343 * We sleep here if we haven't already slept (e.g.
3344 * this is the first time we've looked at the correct
3345 * iclog buf) and the buffer before us is going to
3346 * be sync'ed. The reason for this is that if we
3347 * are doing sync transactions here, by waiting for
3348 * the previous I/O to complete, we can allow a few
3349 * more transactions into this iclog before we close
3350 * it down.
3351 *
3352 * Otherwise, we mark the buffer WANT_SYNC, and bump
3353 * up the refcnt so we can release the log (which
3354 * drops the ref count). The state switch keeps new
3355 * transaction commits from using this buffer. When
3356 * the current commits finish writing into the buffer,
3357 * the refcount will drop to zero and the buffer will
3358 * go out then.
3359 */
3360 if (!already_slept &&
3361 (iclog->ic_prev->ic_state &
3362 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3363 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3364
3365 XFS_STATS_INC(xs_log_force_sleep);
3366
3367 xlog_wait(&iclog->ic_prev->ic_write_wait,
3368 &log->l_icloglock);
3369 if (log_flushed)
3370 *log_flushed = 1;
3371 already_slept = 1;
3372 goto try_again;
3373 }
3374 atomic_inc(&iclog->ic_refcnt);
3375 xlog_state_switch_iclogs(log, iclog, 0);
3376 spin_unlock(&log->l_icloglock);
3377 if (xlog_state_release_iclog(log, iclog))
3378 return XFS_ERROR(EIO);
3379 if (log_flushed)
3380 *log_flushed = 1;
3381 spin_lock(&log->l_icloglock);
3382 }
3383
3384 if ((flags & XFS_LOG_SYNC) && /* sleep */
3385 !(iclog->ic_state &
3386 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3387 /*
3388 * Don't wait on completion if we know that we've
3389 * gotten a log write error.
3390 */
3391 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3392 spin_unlock(&log->l_icloglock);
3393 return XFS_ERROR(EIO);
3394 }
3395 XFS_STATS_INC(xs_log_force_sleep);
3396 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3397 /*
3398 * No need to grab the log lock here since we're
3399 * only deciding whether or not to return EIO
3400 * and the memory read should be atomic.
3401 */
3402 if (iclog->ic_state & XLOG_STATE_IOERROR)
3403 return XFS_ERROR(EIO);
3404
3405 if (log_flushed)
3406 *log_flushed = 1;
3407 } else { /* just return */
3408 spin_unlock(&log->l_icloglock);
3409 }
3410
3411 return 0;
3412 } while (iclog != log->l_iclog);
3413
3414 spin_unlock(&log->l_icloglock);
3415 return 0;
3416 }
3417
3418 /*
3419 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3420 * about errors or whether the log was flushed or not. This is the normal
3421 * interface to use when trying to unpin items or move the log forward.
3422 */
3423 void
3424 xfs_log_force_lsn(
3425 xfs_mount_t *mp,
3426 xfs_lsn_t lsn,
3427 uint flags)
3428 {
3429 int error;
3430
3431 trace_xfs_log_force(mp, lsn);
3432 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3433 if (error)
3434 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3435 }
3436
3437 /*
3438 * Called when we want to mark the current iclog as being ready to sync to
3439 * disk.
3440 */
3441 STATIC void
3442 xlog_state_want_sync(
3443 struct xlog *log,
3444 struct xlog_in_core *iclog)
3445 {
3446 assert_spin_locked(&log->l_icloglock);
3447
3448 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3449 xlog_state_switch_iclogs(log, iclog, 0);
3450 } else {
3451 ASSERT(iclog->ic_state &
3452 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3453 }
3454 }
3455
3456
3457 /*****************************************************************************
3458 *
3459 * TICKET functions
3460 *
3461 *****************************************************************************
3462 */
3463
3464 /*
3465 * Free a used ticket when its refcount falls to zero.
3466 */
3467 void
3468 xfs_log_ticket_put(
3469 xlog_ticket_t *ticket)
3470 {
3471 ASSERT(atomic_read(&ticket->t_ref) > 0);
3472 if (atomic_dec_and_test(&ticket->t_ref))
3473 kmem_zone_free(xfs_log_ticket_zone, ticket);
3474 }
3475
3476 xlog_ticket_t *
3477 xfs_log_ticket_get(
3478 xlog_ticket_t *ticket)
3479 {
3480 ASSERT(atomic_read(&ticket->t_ref) > 0);
3481 atomic_inc(&ticket->t_ref);
3482 return ticket;
3483 }
3484
3485 /*
3486 * Figure out the total log space unit (in bytes) that would be
3487 * required for a log ticket.
3488 */
3489 int
3490 xfs_log_calc_unit_res(
3491 struct xfs_mount *mp,
3492 int unit_bytes)
3493 {
3494 struct xlog *log = mp->m_log;
3495 int iclog_space;
3496 uint num_headers;
3497
3498 /*
3499 * Permanent reservations have up to 'cnt'-1 active log operations
3500 * in the log. A unit in this case is the amount of space for one
3501 * of these log operations. Normal reservations have a cnt of 1
3502 * and their unit amount is the total amount of space required.
3503 *
3504 * The following lines of code account for non-transaction data
3505 * which occupy space in the on-disk log.
3506 *
3507 * Normal form of a transaction is:
3508 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3509 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3510 *
3511 * We need to account for all the leadup data and trailer data
3512 * around the transaction data.
3513 * And then we need to account for the worst case in terms of using
3514 * more space.
3515 * The worst case will happen if:
3516 * - the placement of the transaction happens to be such that the
3517 * roundoff is at its maximum
3518 * - the transaction data is synced before the commit record is synced
3519 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3520 * Therefore the commit record is in its own Log Record.
3521 * This can happen as the commit record is called with its
3522 * own region to xlog_write().
3523 * This then means that in the worst case, roundoff can happen for
3524 * the commit-rec as well.
3525 * The commit-rec is smaller than padding in this scenario and so it is
3526 * not added separately.
3527 */
3528
3529 /* for trans header */
3530 unit_bytes += sizeof(xlog_op_header_t);
3531 unit_bytes += sizeof(xfs_trans_header_t);
3532
3533 /* for start-rec */
3534 unit_bytes += sizeof(xlog_op_header_t);
3535
3536 /*
3537 * for LR headers - the space for data in an iclog is the size minus
3538 * the space used for the headers. If we use the iclog size, then we
3539 * undercalculate the number of headers required.
3540 *
3541 * Furthermore - the addition of op headers for split-recs might
3542 * increase the space required enough to require more log and op
3543 * headers, so take that into account too.
3544 *
3545 * IMPORTANT: This reservation makes the assumption that if this
3546 * transaction is the first in an iclog and hence has the LR headers
3547 * accounted to it, then the remaining space in the iclog is
3548 * exclusively for this transaction. i.e. if the transaction is larger
3549 * than the iclog, it will be the only thing in that iclog.
3550 * Fundamentally, this means we must pass the entire log vector to
3551 * xlog_write to guarantee this.
3552 */
3553 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3554 num_headers = howmany(unit_bytes, iclog_space);
3555
3556 /* for split-recs - ophdrs added when data split over LRs */
3557 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3558
3559 /* add extra header reservations if we overrun */
3560 while (!num_headers ||
3561 howmany(unit_bytes, iclog_space) > num_headers) {
3562 unit_bytes += sizeof(xlog_op_header_t);
3563 num_headers++;
3564 }
3565 unit_bytes += log->l_iclog_hsize * num_headers;
3566
3567 /* for commit-rec LR header - note: padding will subsume the ophdr */
3568 unit_bytes += log->l_iclog_hsize;
3569
3570 /* for roundoff padding for transaction data and one for commit record */
3571 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3572 /* log su roundoff */
3573 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3574 } else {
3575 /* BB roundoff */
3576 unit_bytes += 2 * BBSIZE;
3577 }
3578
3579 return unit_bytes;
3580 }
3581
3582 /*
3583 * Allocate and initialise a new log ticket.
3584 */
3585 struct xlog_ticket *
3586 xlog_ticket_alloc(
3587 struct xlog *log,
3588 int unit_bytes,
3589 int cnt,
3590 char client,
3591 bool permanent,
3592 xfs_km_flags_t alloc_flags)
3593 {
3594 struct xlog_ticket *tic;
3595 int unit_res;
3596
3597 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3598 if (!tic)
3599 return NULL;
3600
3601 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3602
3603 atomic_set(&tic->t_ref, 1);
3604 tic->t_task = current;
3605 INIT_LIST_HEAD(&tic->t_queue);
3606 tic->t_unit_res = unit_res;
3607 tic->t_curr_res = unit_res;
3608 tic->t_cnt = cnt;
3609 tic->t_ocnt = cnt;
3610 tic->t_tid = prandom_u32();
3611 tic->t_clientid = client;
3612 tic->t_flags = XLOG_TIC_INITED;
3613 tic->t_trans_type = 0;
3614 if (permanent)
3615 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3616
3617 xlog_tic_reset_res(tic);
3618
3619 return tic;
3620 }
3621
3622
3623 /******************************************************************************
3624 *
3625 * Log debug routines
3626 *
3627 ******************************************************************************
3628 */
3629 #if defined(DEBUG)
3630 /*
3631 * Make sure that the destination ptr is within the valid data region of
3632 * one of the iclogs. This uses backup pointers stored in a different
3633 * part of the log in case we trash the log structure.
3634 */
3635 void
3636 xlog_verify_dest_ptr(
3637 struct xlog *log,
3638 char *ptr)
3639 {
3640 int i;
3641 int good_ptr = 0;
3642
3643 for (i = 0; i < log->l_iclog_bufs; i++) {
3644 if (ptr >= log->l_iclog_bak[i] &&
3645 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3646 good_ptr++;
3647 }
3648
3649 if (!good_ptr)
3650 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3651 }
3652
3653 /*
3654 * Check to make sure the grant write head didn't just over lap the tail. If
3655 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3656 * the cycles differ by exactly one and check the byte count.
3657 *
3658 * This check is run unlocked, so can give false positives. Rather than assert
3659 * on failures, use a warn-once flag and a panic tag to allow the admin to
3660 * determine if they want to panic the machine when such an error occurs. For
3661 * debug kernels this will have the same effect as using an assert but, unlinke
3662 * an assert, it can be turned off at runtime.
3663 */
3664 STATIC void
3665 xlog_verify_grant_tail(
3666 struct xlog *log)
3667 {
3668 int tail_cycle, tail_blocks;
3669 int cycle, space;
3670
3671 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3672 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3673 if (tail_cycle != cycle) {
3674 if (cycle - 1 != tail_cycle &&
3675 !(log->l_flags & XLOG_TAIL_WARN)) {
3676 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3677 "%s: cycle - 1 != tail_cycle", __func__);
3678 log->l_flags |= XLOG_TAIL_WARN;
3679 }
3680
3681 if (space > BBTOB(tail_blocks) &&
3682 !(log->l_flags & XLOG_TAIL_WARN)) {
3683 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3684 "%s: space > BBTOB(tail_blocks)", __func__);
3685 log->l_flags |= XLOG_TAIL_WARN;
3686 }
3687 }
3688 }
3689
3690 /* check if it will fit */
3691 STATIC void
3692 xlog_verify_tail_lsn(
3693 struct xlog *log,
3694 struct xlog_in_core *iclog,
3695 xfs_lsn_t tail_lsn)
3696 {
3697 int blocks;
3698
3699 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3700 blocks =
3701 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3702 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3703 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3704 } else {
3705 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3706
3707 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3708 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3709
3710 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3711 if (blocks < BTOBB(iclog->ic_offset) + 1)
3712 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3713 }
3714 } /* xlog_verify_tail_lsn */
3715
3716 /*
3717 * Perform a number of checks on the iclog before writing to disk.
3718 *
3719 * 1. Make sure the iclogs are still circular
3720 * 2. Make sure we have a good magic number
3721 * 3. Make sure we don't have magic numbers in the data
3722 * 4. Check fields of each log operation header for:
3723 * A. Valid client identifier
3724 * B. tid ptr value falls in valid ptr space (user space code)
3725 * C. Length in log record header is correct according to the
3726 * individual operation headers within record.
3727 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3728 * log, check the preceding blocks of the physical log to make sure all
3729 * the cycle numbers agree with the current cycle number.
3730 */
3731 STATIC void
3732 xlog_verify_iclog(
3733 struct xlog *log,
3734 struct xlog_in_core *iclog,
3735 int count,
3736 bool syncing)
3737 {
3738 xlog_op_header_t *ophead;
3739 xlog_in_core_t *icptr;
3740 xlog_in_core_2_t *xhdr;
3741 xfs_caddr_t ptr;
3742 xfs_caddr_t base_ptr;
3743 __psint_t field_offset;
3744 __uint8_t clientid;
3745 int len, i, j, k, op_len;
3746 int idx;
3747
3748 /* check validity of iclog pointers */
3749 spin_lock(&log->l_icloglock);
3750 icptr = log->l_iclog;
3751 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3752 ASSERT(icptr);
3753
3754 if (icptr != log->l_iclog)
3755 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3756 spin_unlock(&log->l_icloglock);
3757
3758 /* check log magic numbers */
3759 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3760 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3761
3762 ptr = (xfs_caddr_t) &iclog->ic_header;
3763 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3764 ptr += BBSIZE) {
3765 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3766 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3767 __func__);
3768 }
3769
3770 /* check fields */
3771 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3772 ptr = iclog->ic_datap;
3773 base_ptr = ptr;
3774 ophead = (xlog_op_header_t *)ptr;
3775 xhdr = iclog->ic_data;
3776 for (i = 0; i < len; i++) {
3777 ophead = (xlog_op_header_t *)ptr;
3778
3779 /* clientid is only 1 byte */
3780 field_offset = (__psint_t)
3781 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3782 if (!syncing || (field_offset & 0x1ff)) {
3783 clientid = ophead->oh_clientid;
3784 } else {
3785 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3786 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3787 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3788 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3789 clientid = xlog_get_client_id(
3790 xhdr[j].hic_xheader.xh_cycle_data[k]);
3791 } else {
3792 clientid = xlog_get_client_id(
3793 iclog->ic_header.h_cycle_data[idx]);
3794 }
3795 }
3796 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3797 xfs_warn(log->l_mp,
3798 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3799 __func__, clientid, ophead,
3800 (unsigned long)field_offset);
3801
3802 /* check length */
3803 field_offset = (__psint_t)
3804 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3805 if (!syncing || (field_offset & 0x1ff)) {
3806 op_len = be32_to_cpu(ophead->oh_len);
3807 } else {
3808 idx = BTOBBT((__psint_t)&ophead->oh_len -
3809 (__psint_t)iclog->ic_datap);
3810 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3811 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3812 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3813 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3814 } else {
3815 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3816 }
3817 }
3818 ptr += sizeof(xlog_op_header_t) + op_len;
3819 }
3820 } /* xlog_verify_iclog */
3821 #endif
3822
3823 /*
3824 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3825 */
3826 STATIC int
3827 xlog_state_ioerror(
3828 struct xlog *log)
3829 {
3830 xlog_in_core_t *iclog, *ic;
3831
3832 iclog = log->l_iclog;
3833 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3834 /*
3835 * Mark all the incore logs IOERROR.
3836 * From now on, no log flushes will result.
3837 */
3838 ic = iclog;
3839 do {
3840 ic->ic_state = XLOG_STATE_IOERROR;
3841 ic = ic->ic_next;
3842 } while (ic != iclog);
3843 return 0;
3844 }
3845 /*
3846 * Return non-zero, if state transition has already happened.
3847 */
3848 return 1;
3849 }
3850
3851 /*
3852 * This is called from xfs_force_shutdown, when we're forcibly
3853 * shutting down the filesystem, typically because of an IO error.
3854 * Our main objectives here are to make sure that:
3855 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3856 * parties to find out, 'atomically'.
3857 * b. those who're sleeping on log reservations, pinned objects and
3858 * other resources get woken up, and be told the bad news.
3859 * c. nothing new gets queued up after (a) and (b) are done.
3860 * d. if !logerror, flush the iclogs to disk, then seal them off
3861 * for business.
3862 *
3863 * Note: for delayed logging the !logerror case needs to flush the regions
3864 * held in memory out to the iclogs before flushing them to disk. This needs
3865 * to be done before the log is marked as shutdown, otherwise the flush to the
3866 * iclogs will fail.
3867 */
3868 int
3869 xfs_log_force_umount(
3870 struct xfs_mount *mp,
3871 int logerror)
3872 {
3873 struct xlog *log;
3874 int retval;
3875
3876 log = mp->m_log;
3877
3878 /*
3879 * If this happens during log recovery, don't worry about
3880 * locking; the log isn't open for business yet.
3881 */
3882 if (!log ||
3883 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3884 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3885 if (mp->m_sb_bp)
3886 XFS_BUF_DONE(mp->m_sb_bp);
3887 return 0;
3888 }
3889
3890 /*
3891 * Somebody could've already done the hard work for us.
3892 * No need to get locks for this.
3893 */
3894 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3895 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3896 return 1;
3897 }
3898 retval = 0;
3899
3900 /*
3901 * Flush the in memory commit item list before marking the log as
3902 * being shut down. We need to do it in this order to ensure all the
3903 * completed transactions are flushed to disk with the xfs_log_force()
3904 * call below.
3905 */
3906 if (!logerror)
3907 xlog_cil_force(log);
3908
3909 /*
3910 * mark the filesystem and the as in a shutdown state and wake
3911 * everybody up to tell them the bad news.
3912 */
3913 spin_lock(&log->l_icloglock);
3914 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3915 if (mp->m_sb_bp)
3916 XFS_BUF_DONE(mp->m_sb_bp);
3917
3918 /*
3919 * This flag is sort of redundant because of the mount flag, but
3920 * it's good to maintain the separation between the log and the rest
3921 * of XFS.
3922 */
3923 log->l_flags |= XLOG_IO_ERROR;
3924
3925 /*
3926 * If we hit a log error, we want to mark all the iclogs IOERROR
3927 * while we're still holding the loglock.
3928 */
3929 if (logerror)
3930 retval = xlog_state_ioerror(log);
3931 spin_unlock(&log->l_icloglock);
3932
3933 /*
3934 * We don't want anybody waiting for log reservations after this. That
3935 * means we have to wake up everybody queued up on reserveq as well as
3936 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3937 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3938 * action is protected by the grant locks.
3939 */
3940 xlog_grant_head_wake_all(&log->l_reserve_head);
3941 xlog_grant_head_wake_all(&log->l_write_head);
3942
3943 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3944 ASSERT(!logerror);
3945 /*
3946 * Force the incore logs to disk before shutting the
3947 * log down completely.
3948 */
3949 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3950
3951 spin_lock(&log->l_icloglock);
3952 retval = xlog_state_ioerror(log);
3953 spin_unlock(&log->l_icloglock);
3954 }
3955 /*
3956 * Wake up everybody waiting on xfs_log_force.
3957 * Callback all log item committed functions as if the
3958 * log writes were completed.
3959 */
3960 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3961
3962 #ifdef XFSERRORDEBUG
3963 {
3964 xlog_in_core_t *iclog;
3965
3966 spin_lock(&log->l_icloglock);
3967 iclog = log->l_iclog;
3968 do {
3969 ASSERT(iclog->ic_callback == 0);
3970 iclog = iclog->ic_next;
3971 } while (iclog != log->l_iclog);
3972 spin_unlock(&log->l_icloglock);
3973 }
3974 #endif
3975 /* return non-zero if log IOERROR transition had already happened */
3976 return retval;
3977 }
3978
3979 STATIC int
3980 xlog_iclogs_empty(
3981 struct xlog *log)
3982 {
3983 xlog_in_core_t *iclog;
3984
3985 iclog = log->l_iclog;
3986 do {
3987 /* endianness does not matter here, zero is zero in
3988 * any language.
3989 */
3990 if (iclog->ic_header.h_num_logops)
3991 return 0;
3992 iclog = iclog->ic_next;
3993 } while (iclog != log->l_iclog);
3994 return 1;
3995 }
3996