]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_log.c
xfs: clean up xlog_write_adv_cnt
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_buf_item.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_log_recover.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_dir2_sf.h"
39 #include "xfs_attr_sf.h"
40 #include "xfs_dinode.h"
41 #include "xfs_inode.h"
42 #include "xfs_rw.h"
43 #include "xfs_trace.h"
44
45 kmem_zone_t *xfs_log_ticket_zone;
46
47 /* Local miscellaneous function prototypes */
48 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
49 xlog_in_core_t **, xfs_lsn_t *);
50 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
51 xfs_buftarg_t *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int xlog_space_left(xlog_t *log, int cycle, int bytes);
55 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
56 STATIC void xlog_dealloc_log(xlog_t *log);
57 STATIC int xlog_write(struct log *log, struct xfs_log_vec *log_vector,
58 struct xlog_ticket *tic, xfs_lsn_t *start_lsn,
59 xlog_in_core_t **commit_iclog, uint flags);
60
61 /* local state machine functions */
62 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
63 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
64 STATIC int xlog_state_get_iclog_space(xlog_t *log,
65 int len,
66 xlog_in_core_t **iclog,
67 xlog_ticket_t *ticket,
68 int *continued_write,
69 int *logoffsetp);
70 STATIC int xlog_state_release_iclog(xlog_t *log,
71 xlog_in_core_t *iclog);
72 STATIC void xlog_state_switch_iclogs(xlog_t *log,
73 xlog_in_core_t *iclog,
74 int eventual_size);
75 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
76
77 /* local functions to manipulate grant head */
78 STATIC int xlog_grant_log_space(xlog_t *log,
79 xlog_ticket_t *xtic);
80 STATIC void xlog_grant_push_ail(xfs_mount_t *mp,
81 int need_bytes);
82 STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
83 xlog_ticket_t *ticket);
84 STATIC int xlog_regrant_write_log_space(xlog_t *log,
85 xlog_ticket_t *ticket);
86 STATIC void xlog_ungrant_log_space(xlog_t *log,
87 xlog_ticket_t *ticket);
88
89
90 /* local ticket functions */
91 STATIC xlog_ticket_t *xlog_ticket_alloc(xlog_t *log,
92 int unit_bytes,
93 int count,
94 char clientid,
95 uint flags);
96
97 #if defined(DEBUG)
98 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
99 STATIC void xlog_verify_grant_head(xlog_t *log, int equals);
100 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
101 int count, boolean_t syncing);
102 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
103 xfs_lsn_t tail_lsn);
104 #else
105 #define xlog_verify_dest_ptr(a,b)
106 #define xlog_verify_grant_head(a,b)
107 #define xlog_verify_iclog(a,b,c,d)
108 #define xlog_verify_tail_lsn(a,b,c)
109 #endif
110
111 STATIC int xlog_iclogs_empty(xlog_t *log);
112
113
114 static void
115 xlog_ins_ticketq(struct xlog_ticket **qp, struct xlog_ticket *tic)
116 {
117 if (*qp) {
118 tic->t_next = (*qp);
119 tic->t_prev = (*qp)->t_prev;
120 (*qp)->t_prev->t_next = tic;
121 (*qp)->t_prev = tic;
122 } else {
123 tic->t_prev = tic->t_next = tic;
124 *qp = tic;
125 }
126
127 tic->t_flags |= XLOG_TIC_IN_Q;
128 }
129
130 static void
131 xlog_del_ticketq(struct xlog_ticket **qp, struct xlog_ticket *tic)
132 {
133 if (tic == tic->t_next) {
134 *qp = NULL;
135 } else {
136 *qp = tic->t_next;
137 tic->t_next->t_prev = tic->t_prev;
138 tic->t_prev->t_next = tic->t_next;
139 }
140
141 tic->t_next = tic->t_prev = NULL;
142 tic->t_flags &= ~XLOG_TIC_IN_Q;
143 }
144
145 static void
146 xlog_grant_sub_space(struct log *log, int bytes)
147 {
148 log->l_grant_write_bytes -= bytes;
149 if (log->l_grant_write_bytes < 0) {
150 log->l_grant_write_bytes += log->l_logsize;
151 log->l_grant_write_cycle--;
152 }
153
154 log->l_grant_reserve_bytes -= bytes;
155 if ((log)->l_grant_reserve_bytes < 0) {
156 log->l_grant_reserve_bytes += log->l_logsize;
157 log->l_grant_reserve_cycle--;
158 }
159
160 }
161
162 static void
163 xlog_grant_add_space_write(struct log *log, int bytes)
164 {
165 int tmp = log->l_logsize - log->l_grant_write_bytes;
166 if (tmp > bytes)
167 log->l_grant_write_bytes += bytes;
168 else {
169 log->l_grant_write_cycle++;
170 log->l_grant_write_bytes = bytes - tmp;
171 }
172 }
173
174 static void
175 xlog_grant_add_space_reserve(struct log *log, int bytes)
176 {
177 int tmp = log->l_logsize - log->l_grant_reserve_bytes;
178 if (tmp > bytes)
179 log->l_grant_reserve_bytes += bytes;
180 else {
181 log->l_grant_reserve_cycle++;
182 log->l_grant_reserve_bytes = bytes - tmp;
183 }
184 }
185
186 static inline void
187 xlog_grant_add_space(struct log *log, int bytes)
188 {
189 xlog_grant_add_space_write(log, bytes);
190 xlog_grant_add_space_reserve(log, bytes);
191 }
192
193 static void
194 xlog_tic_reset_res(xlog_ticket_t *tic)
195 {
196 tic->t_res_num = 0;
197 tic->t_res_arr_sum = 0;
198 tic->t_res_num_ophdrs = 0;
199 }
200
201 static void
202 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
203 {
204 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
205 /* add to overflow and start again */
206 tic->t_res_o_flow += tic->t_res_arr_sum;
207 tic->t_res_num = 0;
208 tic->t_res_arr_sum = 0;
209 }
210
211 tic->t_res_arr[tic->t_res_num].r_len = len;
212 tic->t_res_arr[tic->t_res_num].r_type = type;
213 tic->t_res_arr_sum += len;
214 tic->t_res_num++;
215 }
216
217 /*
218 * NOTES:
219 *
220 * 1. currblock field gets updated at startup and after in-core logs
221 * marked as with WANT_SYNC.
222 */
223
224 /*
225 * This routine is called when a user of a log manager ticket is done with
226 * the reservation. If the ticket was ever used, then a commit record for
227 * the associated transaction is written out as a log operation header with
228 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
229 * a given ticket. If the ticket was one with a permanent reservation, then
230 * a few operations are done differently. Permanent reservation tickets by
231 * default don't release the reservation. They just commit the current
232 * transaction with the belief that the reservation is still needed. A flag
233 * must be passed in before permanent reservations are actually released.
234 * When these type of tickets are not released, they need to be set into
235 * the inited state again. By doing this, a start record will be written
236 * out when the next write occurs.
237 */
238 xfs_lsn_t
239 xfs_log_done(
240 struct xfs_mount *mp,
241 struct xlog_ticket *ticket,
242 struct xlog_in_core **iclog,
243 uint flags)
244 {
245 struct log *log = mp->m_log;
246 xfs_lsn_t lsn = 0;
247
248 if (XLOG_FORCED_SHUTDOWN(log) ||
249 /*
250 * If nothing was ever written, don't write out commit record.
251 * If we get an error, just continue and give back the log ticket.
252 */
253 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
254 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
255 lsn = (xfs_lsn_t) -1;
256 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
257 flags |= XFS_LOG_REL_PERM_RESERV;
258 }
259 }
260
261
262 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
263 (flags & XFS_LOG_REL_PERM_RESERV)) {
264 trace_xfs_log_done_nonperm(log, ticket);
265
266 /*
267 * Release ticket if not permanent reservation or a specific
268 * request has been made to release a permanent reservation.
269 */
270 xlog_ungrant_log_space(log, ticket);
271 xfs_log_ticket_put(ticket);
272 } else {
273 trace_xfs_log_done_perm(log, ticket);
274
275 xlog_regrant_reserve_log_space(log, ticket);
276 /* If this ticket was a permanent reservation and we aren't
277 * trying to release it, reset the inited flags; so next time
278 * we write, a start record will be written out.
279 */
280 ticket->t_flags |= XLOG_TIC_INITED;
281 }
282
283 return lsn;
284 }
285
286 /*
287 * Attaches a new iclog I/O completion callback routine during
288 * transaction commit. If the log is in error state, a non-zero
289 * return code is handed back and the caller is responsible for
290 * executing the callback at an appropriate time.
291 */
292 int
293 xfs_log_notify(
294 struct xfs_mount *mp,
295 struct xlog_in_core *iclog,
296 xfs_log_callback_t *cb)
297 {
298 int abortflg;
299
300 spin_lock(&iclog->ic_callback_lock);
301 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
302 if (!abortflg) {
303 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
304 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
305 cb->cb_next = NULL;
306 *(iclog->ic_callback_tail) = cb;
307 iclog->ic_callback_tail = &(cb->cb_next);
308 }
309 spin_unlock(&iclog->ic_callback_lock);
310 return abortflg;
311 }
312
313 int
314 xfs_log_release_iclog(
315 struct xfs_mount *mp,
316 struct xlog_in_core *iclog)
317 {
318 if (xlog_state_release_iclog(mp->m_log, iclog)) {
319 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
320 return EIO;
321 }
322
323 return 0;
324 }
325
326 /*
327 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
328 * to the reservation.
329 * 2. Potentially, push buffers at tail of log to disk.
330 *
331 * Each reservation is going to reserve extra space for a log record header.
332 * When writes happen to the on-disk log, we don't subtract the length of the
333 * log record header from any reservation. By wasting space in each
334 * reservation, we prevent over allocation problems.
335 */
336 int
337 xfs_log_reserve(
338 struct xfs_mount *mp,
339 int unit_bytes,
340 int cnt,
341 struct xlog_ticket **ticket,
342 __uint8_t client,
343 uint flags,
344 uint t_type)
345 {
346 struct log *log = mp->m_log;
347 struct xlog_ticket *internal_ticket;
348 int retval = 0;
349
350 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
351 ASSERT((flags & XFS_LOG_NOSLEEP) == 0);
352
353 if (XLOG_FORCED_SHUTDOWN(log))
354 return XFS_ERROR(EIO);
355
356 XFS_STATS_INC(xs_try_logspace);
357
358
359 if (*ticket != NULL) {
360 ASSERT(flags & XFS_LOG_PERM_RESERV);
361 internal_ticket = *ticket;
362
363 trace_xfs_log_reserve(log, internal_ticket);
364
365 xlog_grant_push_ail(mp, internal_ticket->t_unit_res);
366 retval = xlog_regrant_write_log_space(log, internal_ticket);
367 } else {
368 /* may sleep if need to allocate more tickets */
369 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
370 client, flags);
371 if (!internal_ticket)
372 return XFS_ERROR(ENOMEM);
373 internal_ticket->t_trans_type = t_type;
374 *ticket = internal_ticket;
375
376 trace_xfs_log_reserve(log, internal_ticket);
377
378 xlog_grant_push_ail(mp,
379 (internal_ticket->t_unit_res *
380 internal_ticket->t_cnt));
381 retval = xlog_grant_log_space(log, internal_ticket);
382 }
383
384 return retval;
385 } /* xfs_log_reserve */
386
387
388 /*
389 * Mount a log filesystem
390 *
391 * mp - ubiquitous xfs mount point structure
392 * log_target - buftarg of on-disk log device
393 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
394 * num_bblocks - Number of BBSIZE blocks in on-disk log
395 *
396 * Return error or zero.
397 */
398 int
399 xfs_log_mount(
400 xfs_mount_t *mp,
401 xfs_buftarg_t *log_target,
402 xfs_daddr_t blk_offset,
403 int num_bblks)
404 {
405 int error;
406
407 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
408 cmn_err(CE_NOTE, "XFS mounting filesystem %s", mp->m_fsname);
409 else {
410 cmn_err(CE_NOTE,
411 "!Mounting filesystem \"%s\" in no-recovery mode. Filesystem will be inconsistent.",
412 mp->m_fsname);
413 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
414 }
415
416 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
417 if (IS_ERR(mp->m_log)) {
418 error = -PTR_ERR(mp->m_log);
419 goto out;
420 }
421
422 /*
423 * Initialize the AIL now we have a log.
424 */
425 error = xfs_trans_ail_init(mp);
426 if (error) {
427 cmn_err(CE_WARN, "XFS: AIL initialisation failed: error %d", error);
428 goto out_free_log;
429 }
430 mp->m_log->l_ailp = mp->m_ail;
431
432 /*
433 * skip log recovery on a norecovery mount. pretend it all
434 * just worked.
435 */
436 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
437 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
438
439 if (readonly)
440 mp->m_flags &= ~XFS_MOUNT_RDONLY;
441
442 error = xlog_recover(mp->m_log);
443
444 if (readonly)
445 mp->m_flags |= XFS_MOUNT_RDONLY;
446 if (error) {
447 cmn_err(CE_WARN, "XFS: log mount/recovery failed: error %d", error);
448 goto out_destroy_ail;
449 }
450 }
451
452 /* Normal transactions can now occur */
453 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
454
455 return 0;
456
457 out_destroy_ail:
458 xfs_trans_ail_destroy(mp);
459 out_free_log:
460 xlog_dealloc_log(mp->m_log);
461 out:
462 return error;
463 }
464
465 /*
466 * Finish the recovery of the file system. This is separate from
467 * the xfs_log_mount() call, because it depends on the code in
468 * xfs_mountfs() to read in the root and real-time bitmap inodes
469 * between calling xfs_log_mount() and here.
470 *
471 * mp - ubiquitous xfs mount point structure
472 */
473 int
474 xfs_log_mount_finish(xfs_mount_t *mp)
475 {
476 int error;
477
478 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
479 error = xlog_recover_finish(mp->m_log);
480 else {
481 error = 0;
482 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
483 }
484
485 return error;
486 }
487
488 /*
489 * Final log writes as part of unmount.
490 *
491 * Mark the filesystem clean as unmount happens. Note that during relocation
492 * this routine needs to be executed as part of source-bag while the
493 * deallocation must not be done until source-end.
494 */
495
496 /*
497 * Unmount record used to have a string "Unmount filesystem--" in the
498 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
499 * We just write the magic number now since that particular field isn't
500 * currently architecture converted and "nUmount" is a bit foo.
501 * As far as I know, there weren't any dependencies on the old behaviour.
502 */
503
504 int
505 xfs_log_unmount_write(xfs_mount_t *mp)
506 {
507 xlog_t *log = mp->m_log;
508 xlog_in_core_t *iclog;
509 #ifdef DEBUG
510 xlog_in_core_t *first_iclog;
511 #endif
512 xlog_ticket_t *tic = NULL;
513 xfs_lsn_t lsn;
514 int error;
515
516 /*
517 * Don't write out unmount record on read-only mounts.
518 * Or, if we are doing a forced umount (typically because of IO errors).
519 */
520 if (mp->m_flags & XFS_MOUNT_RDONLY)
521 return 0;
522
523 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
524 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
525
526 #ifdef DEBUG
527 first_iclog = iclog = log->l_iclog;
528 do {
529 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
530 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
531 ASSERT(iclog->ic_offset == 0);
532 }
533 iclog = iclog->ic_next;
534 } while (iclog != first_iclog);
535 #endif
536 if (! (XLOG_FORCED_SHUTDOWN(log))) {
537 error = xfs_log_reserve(mp, 600, 1, &tic,
538 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
539 if (!error) {
540 /* the data section must be 32 bit size aligned */
541 struct {
542 __uint16_t magic;
543 __uint16_t pad1;
544 __uint32_t pad2; /* may as well make it 64 bits */
545 } magic = {
546 .magic = XLOG_UNMOUNT_TYPE,
547 };
548 struct xfs_log_iovec reg = {
549 .i_addr = (void *)&magic,
550 .i_len = sizeof(magic),
551 .i_type = XLOG_REG_TYPE_UNMOUNT,
552 };
553 struct xfs_log_vec vec = {
554 .lv_niovecs = 1,
555 .lv_iovecp = &reg,
556 };
557
558 /* remove inited flag */
559 tic->t_flags = 0;
560 error = xlog_write(log, &vec, tic, &lsn,
561 NULL, XLOG_UNMOUNT_TRANS);
562 /*
563 * At this point, we're umounting anyway,
564 * so there's no point in transitioning log state
565 * to IOERROR. Just continue...
566 */
567 }
568
569 if (error) {
570 xfs_fs_cmn_err(CE_ALERT, mp,
571 "xfs_log_unmount: unmount record failed");
572 }
573
574
575 spin_lock(&log->l_icloglock);
576 iclog = log->l_iclog;
577 atomic_inc(&iclog->ic_refcnt);
578 xlog_state_want_sync(log, iclog);
579 spin_unlock(&log->l_icloglock);
580 error = xlog_state_release_iclog(log, iclog);
581
582 spin_lock(&log->l_icloglock);
583 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
584 iclog->ic_state == XLOG_STATE_DIRTY)) {
585 if (!XLOG_FORCED_SHUTDOWN(log)) {
586 sv_wait(&iclog->ic_force_wait, PMEM,
587 &log->l_icloglock, s);
588 } else {
589 spin_unlock(&log->l_icloglock);
590 }
591 } else {
592 spin_unlock(&log->l_icloglock);
593 }
594 if (tic) {
595 trace_xfs_log_umount_write(log, tic);
596 xlog_ungrant_log_space(log, tic);
597 xfs_log_ticket_put(tic);
598 }
599 } else {
600 /*
601 * We're already in forced_shutdown mode, couldn't
602 * even attempt to write out the unmount transaction.
603 *
604 * Go through the motions of sync'ing and releasing
605 * the iclog, even though no I/O will actually happen,
606 * we need to wait for other log I/Os that may already
607 * be in progress. Do this as a separate section of
608 * code so we'll know if we ever get stuck here that
609 * we're in this odd situation of trying to unmount
610 * a file system that went into forced_shutdown as
611 * the result of an unmount..
612 */
613 spin_lock(&log->l_icloglock);
614 iclog = log->l_iclog;
615 atomic_inc(&iclog->ic_refcnt);
616
617 xlog_state_want_sync(log, iclog);
618 spin_unlock(&log->l_icloglock);
619 error = xlog_state_release_iclog(log, iclog);
620
621 spin_lock(&log->l_icloglock);
622
623 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
624 || iclog->ic_state == XLOG_STATE_DIRTY
625 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
626
627 sv_wait(&iclog->ic_force_wait, PMEM,
628 &log->l_icloglock, s);
629 } else {
630 spin_unlock(&log->l_icloglock);
631 }
632 }
633
634 return error;
635 } /* xfs_log_unmount_write */
636
637 /*
638 * Deallocate log structures for unmount/relocation.
639 *
640 * We need to stop the aild from running before we destroy
641 * and deallocate the log as the aild references the log.
642 */
643 void
644 xfs_log_unmount(xfs_mount_t *mp)
645 {
646 xfs_trans_ail_destroy(mp);
647 xlog_dealloc_log(mp->m_log);
648 }
649
650 void
651 xfs_log_item_init(
652 struct xfs_mount *mp,
653 struct xfs_log_item *item,
654 int type,
655 struct xfs_item_ops *ops)
656 {
657 item->li_mountp = mp;
658 item->li_ailp = mp->m_ail;
659 item->li_type = type;
660 item->li_ops = ops;
661 }
662
663 /*
664 * Write region vectors to log. The write happens using the space reservation
665 * of the ticket (tic). It is not a requirement that all writes for a given
666 * transaction occur with one call to xfs_log_write(). However, it is important
667 * to note that the transaction reservation code makes an assumption about the
668 * number of log headers a transaction requires that may be violated if you
669 * don't pass all the transaction vectors in one call....
670 */
671 int
672 xfs_log_write(
673 struct xfs_mount *mp,
674 struct xfs_log_iovec reg[],
675 int nentries,
676 struct xlog_ticket *tic,
677 xfs_lsn_t *start_lsn)
678 {
679 struct log *log = mp->m_log;
680 int error;
681 struct xfs_log_vec vec = {
682 .lv_niovecs = nentries,
683 .lv_iovecp = reg,
684 };
685
686 if (XLOG_FORCED_SHUTDOWN(log))
687 return XFS_ERROR(EIO);
688
689 error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
690 if (error)
691 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
692 return error;
693 }
694
695 void
696 xfs_log_move_tail(xfs_mount_t *mp,
697 xfs_lsn_t tail_lsn)
698 {
699 xlog_ticket_t *tic;
700 xlog_t *log = mp->m_log;
701 int need_bytes, free_bytes, cycle, bytes;
702
703 if (XLOG_FORCED_SHUTDOWN(log))
704 return;
705
706 if (tail_lsn == 0) {
707 /* needed since sync_lsn is 64 bits */
708 spin_lock(&log->l_icloglock);
709 tail_lsn = log->l_last_sync_lsn;
710 spin_unlock(&log->l_icloglock);
711 }
712
713 spin_lock(&log->l_grant_lock);
714
715 /* Also an invalid lsn. 1 implies that we aren't passing in a valid
716 * tail_lsn.
717 */
718 if (tail_lsn != 1) {
719 log->l_tail_lsn = tail_lsn;
720 }
721
722 if ((tic = log->l_write_headq)) {
723 #ifdef DEBUG
724 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
725 panic("Recovery problem");
726 #endif
727 cycle = log->l_grant_write_cycle;
728 bytes = log->l_grant_write_bytes;
729 free_bytes = xlog_space_left(log, cycle, bytes);
730 do {
731 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
732
733 if (free_bytes < tic->t_unit_res && tail_lsn != 1)
734 break;
735 tail_lsn = 0;
736 free_bytes -= tic->t_unit_res;
737 sv_signal(&tic->t_wait);
738 tic = tic->t_next;
739 } while (tic != log->l_write_headq);
740 }
741 if ((tic = log->l_reserve_headq)) {
742 #ifdef DEBUG
743 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
744 panic("Recovery problem");
745 #endif
746 cycle = log->l_grant_reserve_cycle;
747 bytes = log->l_grant_reserve_bytes;
748 free_bytes = xlog_space_left(log, cycle, bytes);
749 do {
750 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
751 need_bytes = tic->t_unit_res*tic->t_cnt;
752 else
753 need_bytes = tic->t_unit_res;
754 if (free_bytes < need_bytes && tail_lsn != 1)
755 break;
756 tail_lsn = 0;
757 free_bytes -= need_bytes;
758 sv_signal(&tic->t_wait);
759 tic = tic->t_next;
760 } while (tic != log->l_reserve_headq);
761 }
762 spin_unlock(&log->l_grant_lock);
763 } /* xfs_log_move_tail */
764
765 /*
766 * Determine if we have a transaction that has gone to disk
767 * that needs to be covered. To begin the transition to the idle state
768 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
769 * If we are then in a state where covering is needed, the caller is informed
770 * that dummy transactions are required to move the log into the idle state.
771 *
772 * Because this is called as part of the sync process, we should also indicate
773 * that dummy transactions should be issued in anything but the covered or
774 * idle states. This ensures that the log tail is accurately reflected in
775 * the log at the end of the sync, hence if a crash occurrs avoids replay
776 * of transactions where the metadata is already on disk.
777 */
778 int
779 xfs_log_need_covered(xfs_mount_t *mp)
780 {
781 int needed = 0;
782 xlog_t *log = mp->m_log;
783
784 if (!xfs_fs_writable(mp))
785 return 0;
786
787 spin_lock(&log->l_icloglock);
788 switch (log->l_covered_state) {
789 case XLOG_STATE_COVER_DONE:
790 case XLOG_STATE_COVER_DONE2:
791 case XLOG_STATE_COVER_IDLE:
792 break;
793 case XLOG_STATE_COVER_NEED:
794 case XLOG_STATE_COVER_NEED2:
795 if (!xfs_trans_ail_tail(log->l_ailp) &&
796 xlog_iclogs_empty(log)) {
797 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
798 log->l_covered_state = XLOG_STATE_COVER_DONE;
799 else
800 log->l_covered_state = XLOG_STATE_COVER_DONE2;
801 }
802 /* FALLTHRU */
803 default:
804 needed = 1;
805 break;
806 }
807 spin_unlock(&log->l_icloglock);
808 return needed;
809 }
810
811 /******************************************************************************
812 *
813 * local routines
814 *
815 ******************************************************************************
816 */
817
818 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
819 * The log manager must keep track of the last LR which was committed
820 * to disk. The lsn of this LR will become the new tail_lsn whenever
821 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
822 * the situation where stuff could be written into the log but nothing
823 * was ever in the AIL when asked. Eventually, we panic since the
824 * tail hits the head.
825 *
826 * We may be holding the log iclog lock upon entering this routine.
827 */
828 xfs_lsn_t
829 xlog_assign_tail_lsn(xfs_mount_t *mp)
830 {
831 xfs_lsn_t tail_lsn;
832 xlog_t *log = mp->m_log;
833
834 tail_lsn = xfs_trans_ail_tail(mp->m_ail);
835 spin_lock(&log->l_grant_lock);
836 if (tail_lsn != 0) {
837 log->l_tail_lsn = tail_lsn;
838 } else {
839 tail_lsn = log->l_tail_lsn = log->l_last_sync_lsn;
840 }
841 spin_unlock(&log->l_grant_lock);
842
843 return tail_lsn;
844 } /* xlog_assign_tail_lsn */
845
846
847 /*
848 * Return the space in the log between the tail and the head. The head
849 * is passed in the cycle/bytes formal parms. In the special case where
850 * the reserve head has wrapped passed the tail, this calculation is no
851 * longer valid. In this case, just return 0 which means there is no space
852 * in the log. This works for all places where this function is called
853 * with the reserve head. Of course, if the write head were to ever
854 * wrap the tail, we should blow up. Rather than catch this case here,
855 * we depend on other ASSERTions in other parts of the code. XXXmiken
856 *
857 * This code also handles the case where the reservation head is behind
858 * the tail. The details of this case are described below, but the end
859 * result is that we return the size of the log as the amount of space left.
860 */
861 STATIC int
862 xlog_space_left(xlog_t *log, int cycle, int bytes)
863 {
864 int free_bytes;
865 int tail_bytes;
866 int tail_cycle;
867
868 tail_bytes = BBTOB(BLOCK_LSN(log->l_tail_lsn));
869 tail_cycle = CYCLE_LSN(log->l_tail_lsn);
870 if ((tail_cycle == cycle) && (bytes >= tail_bytes)) {
871 free_bytes = log->l_logsize - (bytes - tail_bytes);
872 } else if ((tail_cycle + 1) < cycle) {
873 return 0;
874 } else if (tail_cycle < cycle) {
875 ASSERT(tail_cycle == (cycle - 1));
876 free_bytes = tail_bytes - bytes;
877 } else {
878 /*
879 * The reservation head is behind the tail.
880 * In this case we just want to return the size of the
881 * log as the amount of space left.
882 */
883 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
884 "xlog_space_left: head behind tail\n"
885 " tail_cycle = %d, tail_bytes = %d\n"
886 " GH cycle = %d, GH bytes = %d",
887 tail_cycle, tail_bytes, cycle, bytes);
888 ASSERT(0);
889 free_bytes = log->l_logsize;
890 }
891 return free_bytes;
892 } /* xlog_space_left */
893
894
895 /*
896 * Log function which is called when an io completes.
897 *
898 * The log manager needs its own routine, in order to control what
899 * happens with the buffer after the write completes.
900 */
901 void
902 xlog_iodone(xfs_buf_t *bp)
903 {
904 xlog_in_core_t *iclog;
905 xlog_t *l;
906 int aborted;
907
908 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
909 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2);
910 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
911 aborted = 0;
912 l = iclog->ic_log;
913
914 /*
915 * If the _XFS_BARRIER_FAILED flag was set by a lower
916 * layer, it means the underlying device no longer supports
917 * barrier I/O. Warn loudly and turn off barriers.
918 */
919 if (bp->b_flags & _XFS_BARRIER_FAILED) {
920 bp->b_flags &= ~_XFS_BARRIER_FAILED;
921 l->l_mp->m_flags &= ~XFS_MOUNT_BARRIER;
922 xfs_fs_cmn_err(CE_WARN, l->l_mp,
923 "xlog_iodone: Barriers are no longer supported"
924 " by device. Disabling barriers\n");
925 }
926
927 /*
928 * Race to shutdown the filesystem if we see an error.
929 */
930 if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
931 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
932 xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
933 XFS_BUF_STALE(bp);
934 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
935 /*
936 * This flag will be propagated to the trans-committed
937 * callback routines to let them know that the log-commit
938 * didn't succeed.
939 */
940 aborted = XFS_LI_ABORTED;
941 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
942 aborted = XFS_LI_ABORTED;
943 }
944
945 /* log I/O is always issued ASYNC */
946 ASSERT(XFS_BUF_ISASYNC(bp));
947 xlog_state_done_syncing(iclog, aborted);
948 /*
949 * do not reference the buffer (bp) here as we could race
950 * with it being freed after writing the unmount record to the
951 * log.
952 */
953
954 } /* xlog_iodone */
955
956 /*
957 * Return size of each in-core log record buffer.
958 *
959 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
960 *
961 * If the filesystem blocksize is too large, we may need to choose a
962 * larger size since the directory code currently logs entire blocks.
963 */
964
965 STATIC void
966 xlog_get_iclog_buffer_size(xfs_mount_t *mp,
967 xlog_t *log)
968 {
969 int size;
970 int xhdrs;
971
972 if (mp->m_logbufs <= 0)
973 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
974 else
975 log->l_iclog_bufs = mp->m_logbufs;
976
977 /*
978 * Buffer size passed in from mount system call.
979 */
980 if (mp->m_logbsize > 0) {
981 size = log->l_iclog_size = mp->m_logbsize;
982 log->l_iclog_size_log = 0;
983 while (size != 1) {
984 log->l_iclog_size_log++;
985 size >>= 1;
986 }
987
988 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
989 /* # headers = size / 32k
990 * one header holds cycles from 32k of data
991 */
992
993 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
994 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
995 xhdrs++;
996 log->l_iclog_hsize = xhdrs << BBSHIFT;
997 log->l_iclog_heads = xhdrs;
998 } else {
999 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1000 log->l_iclog_hsize = BBSIZE;
1001 log->l_iclog_heads = 1;
1002 }
1003 goto done;
1004 }
1005
1006 /* All machines use 32kB buffers by default. */
1007 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1008 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1009
1010 /* the default log size is 16k or 32k which is one header sector */
1011 log->l_iclog_hsize = BBSIZE;
1012 log->l_iclog_heads = 1;
1013
1014 done:
1015 /* are we being asked to make the sizes selected above visible? */
1016 if (mp->m_logbufs == 0)
1017 mp->m_logbufs = log->l_iclog_bufs;
1018 if (mp->m_logbsize == 0)
1019 mp->m_logbsize = log->l_iclog_size;
1020 } /* xlog_get_iclog_buffer_size */
1021
1022
1023 /*
1024 * This routine initializes some of the log structure for a given mount point.
1025 * Its primary purpose is to fill in enough, so recovery can occur. However,
1026 * some other stuff may be filled in too.
1027 */
1028 STATIC xlog_t *
1029 xlog_alloc_log(xfs_mount_t *mp,
1030 xfs_buftarg_t *log_target,
1031 xfs_daddr_t blk_offset,
1032 int num_bblks)
1033 {
1034 xlog_t *log;
1035 xlog_rec_header_t *head;
1036 xlog_in_core_t **iclogp;
1037 xlog_in_core_t *iclog, *prev_iclog=NULL;
1038 xfs_buf_t *bp;
1039 int i;
1040 int iclogsize;
1041 int error = ENOMEM;
1042
1043 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1044 if (!log) {
1045 xlog_warn("XFS: Log allocation failed: No memory!");
1046 goto out;
1047 }
1048
1049 log->l_mp = mp;
1050 log->l_targ = log_target;
1051 log->l_logsize = BBTOB(num_bblks);
1052 log->l_logBBstart = blk_offset;
1053 log->l_logBBsize = num_bblks;
1054 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1055 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1056
1057 log->l_prev_block = -1;
1058 log->l_tail_lsn = xlog_assign_lsn(1, 0);
1059 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1060 log->l_last_sync_lsn = log->l_tail_lsn;
1061 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1062 log->l_grant_reserve_cycle = 1;
1063 log->l_grant_write_cycle = 1;
1064
1065 error = EFSCORRUPTED;
1066 if (xfs_sb_version_hassector(&mp->m_sb)) {
1067 log->l_sectbb_log = mp->m_sb.sb_logsectlog - BBSHIFT;
1068 if (log->l_sectbb_log < 0 ||
1069 log->l_sectbb_log > mp->m_sectbb_log) {
1070 xlog_warn("XFS: Log sector size (0x%x) out of range.",
1071 log->l_sectbb_log);
1072 goto out_free_log;
1073 }
1074
1075 /* for larger sector sizes, must have v2 or external log */
1076 if (log->l_sectbb_log != 0 &&
1077 (log->l_logBBstart != 0 &&
1078 !xfs_sb_version_haslogv2(&mp->m_sb))) {
1079 xlog_warn("XFS: log sector size (0x%x) invalid "
1080 "for configuration.", log->l_sectbb_log);
1081 goto out_free_log;
1082 }
1083 if (mp->m_sb.sb_logsectlog < BBSHIFT) {
1084 xlog_warn("XFS: Log sector log (0x%x) too small.",
1085 mp->m_sb.sb_logsectlog);
1086 goto out_free_log;
1087 }
1088 }
1089 log->l_sectbb_mask = (1 << log->l_sectbb_log) - 1;
1090
1091 xlog_get_iclog_buffer_size(mp, log);
1092
1093 error = ENOMEM;
1094 bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1095 if (!bp)
1096 goto out_free_log;
1097 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1098 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1099 ASSERT(XFS_BUF_ISBUSY(bp));
1100 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
1101 log->l_xbuf = bp;
1102
1103 spin_lock_init(&log->l_icloglock);
1104 spin_lock_init(&log->l_grant_lock);
1105 sv_init(&log->l_flush_wait, 0, "flush_wait");
1106
1107 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1108 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1109
1110 iclogp = &log->l_iclog;
1111 /*
1112 * The amount of memory to allocate for the iclog structure is
1113 * rather funky due to the way the structure is defined. It is
1114 * done this way so that we can use different sizes for machines
1115 * with different amounts of memory. See the definition of
1116 * xlog_in_core_t in xfs_log_priv.h for details.
1117 */
1118 iclogsize = log->l_iclog_size;
1119 ASSERT(log->l_iclog_size >= 4096);
1120 for (i=0; i < log->l_iclog_bufs; i++) {
1121 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1122 if (!*iclogp)
1123 goto out_free_iclog;
1124
1125 iclog = *iclogp;
1126 iclog->ic_prev = prev_iclog;
1127 prev_iclog = iclog;
1128
1129 bp = xfs_buf_get_noaddr(log->l_iclog_size, mp->m_logdev_targp);
1130 if (!bp)
1131 goto out_free_iclog;
1132 if (!XFS_BUF_CPSEMA(bp))
1133 ASSERT(0);
1134 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1135 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1136 iclog->ic_bp = bp;
1137 iclog->ic_data = bp->b_addr;
1138 #ifdef DEBUG
1139 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1140 #endif
1141 head = &iclog->ic_header;
1142 memset(head, 0, sizeof(xlog_rec_header_t));
1143 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1144 head->h_version = cpu_to_be32(
1145 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1146 head->h_size = cpu_to_be32(log->l_iclog_size);
1147 /* new fields */
1148 head->h_fmt = cpu_to_be32(XLOG_FMT);
1149 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1150
1151 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1152 iclog->ic_state = XLOG_STATE_ACTIVE;
1153 iclog->ic_log = log;
1154 atomic_set(&iclog->ic_refcnt, 0);
1155 spin_lock_init(&iclog->ic_callback_lock);
1156 iclog->ic_callback_tail = &(iclog->ic_callback);
1157 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1158
1159 ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
1160 ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0);
1161 sv_init(&iclog->ic_force_wait, SV_DEFAULT, "iclog-force");
1162 sv_init(&iclog->ic_write_wait, SV_DEFAULT, "iclog-write");
1163
1164 iclogp = &iclog->ic_next;
1165 }
1166 *iclogp = log->l_iclog; /* complete ring */
1167 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1168
1169 return log;
1170
1171 out_free_iclog:
1172 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1173 prev_iclog = iclog->ic_next;
1174 if (iclog->ic_bp) {
1175 sv_destroy(&iclog->ic_force_wait);
1176 sv_destroy(&iclog->ic_write_wait);
1177 xfs_buf_free(iclog->ic_bp);
1178 }
1179 kmem_free(iclog);
1180 }
1181 spinlock_destroy(&log->l_icloglock);
1182 spinlock_destroy(&log->l_grant_lock);
1183 xfs_buf_free(log->l_xbuf);
1184 out_free_log:
1185 kmem_free(log);
1186 out:
1187 return ERR_PTR(-error);
1188 } /* xlog_alloc_log */
1189
1190
1191 /*
1192 * Write out the commit record of a transaction associated with the given
1193 * ticket. Return the lsn of the commit record.
1194 */
1195 STATIC int
1196 xlog_commit_record(
1197 struct log *log,
1198 struct xlog_ticket *ticket,
1199 struct xlog_in_core **iclog,
1200 xfs_lsn_t *commitlsnp)
1201 {
1202 struct xfs_mount *mp = log->l_mp;
1203 int error;
1204 struct xfs_log_iovec reg = {
1205 .i_addr = NULL,
1206 .i_len = 0,
1207 .i_type = XLOG_REG_TYPE_COMMIT,
1208 };
1209 struct xfs_log_vec vec = {
1210 .lv_niovecs = 1,
1211 .lv_iovecp = &reg,
1212 };
1213
1214 ASSERT_ALWAYS(iclog);
1215 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1216 XLOG_COMMIT_TRANS);
1217 if (error)
1218 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1219 return error;
1220 }
1221
1222 /*
1223 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1224 * log space. This code pushes on the lsn which would supposedly free up
1225 * the 25% which we want to leave free. We may need to adopt a policy which
1226 * pushes on an lsn which is further along in the log once we reach the high
1227 * water mark. In this manner, we would be creating a low water mark.
1228 */
1229 STATIC void
1230 xlog_grant_push_ail(xfs_mount_t *mp,
1231 int need_bytes)
1232 {
1233 xlog_t *log = mp->m_log; /* pointer to the log */
1234 xfs_lsn_t tail_lsn; /* lsn of the log tail */
1235 xfs_lsn_t threshold_lsn = 0; /* lsn we'd like to be at */
1236 int free_blocks; /* free blocks left to write to */
1237 int free_bytes; /* free bytes left to write to */
1238 int threshold_block; /* block in lsn we'd like to be at */
1239 int threshold_cycle; /* lsn cycle we'd like to be at */
1240 int free_threshold;
1241
1242 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1243
1244 spin_lock(&log->l_grant_lock);
1245 free_bytes = xlog_space_left(log,
1246 log->l_grant_reserve_cycle,
1247 log->l_grant_reserve_bytes);
1248 tail_lsn = log->l_tail_lsn;
1249 free_blocks = BTOBBT(free_bytes);
1250
1251 /*
1252 * Set the threshold for the minimum number of free blocks in the
1253 * log to the maximum of what the caller needs, one quarter of the
1254 * log, and 256 blocks.
1255 */
1256 free_threshold = BTOBB(need_bytes);
1257 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1258 free_threshold = MAX(free_threshold, 256);
1259 if (free_blocks < free_threshold) {
1260 threshold_block = BLOCK_LSN(tail_lsn) + free_threshold;
1261 threshold_cycle = CYCLE_LSN(tail_lsn);
1262 if (threshold_block >= log->l_logBBsize) {
1263 threshold_block -= log->l_logBBsize;
1264 threshold_cycle += 1;
1265 }
1266 threshold_lsn = xlog_assign_lsn(threshold_cycle, threshold_block);
1267
1268 /* Don't pass in an lsn greater than the lsn of the last
1269 * log record known to be on disk.
1270 */
1271 if (XFS_LSN_CMP(threshold_lsn, log->l_last_sync_lsn) > 0)
1272 threshold_lsn = log->l_last_sync_lsn;
1273 }
1274 spin_unlock(&log->l_grant_lock);
1275
1276 /*
1277 * Get the transaction layer to kick the dirty buffers out to
1278 * disk asynchronously. No point in trying to do this if
1279 * the filesystem is shutting down.
1280 */
1281 if (threshold_lsn &&
1282 !XLOG_FORCED_SHUTDOWN(log))
1283 xfs_trans_ail_push(log->l_ailp, threshold_lsn);
1284 } /* xlog_grant_push_ail */
1285
1286 /*
1287 * The bdstrat callback function for log bufs. This gives us a central
1288 * place to trap bufs in case we get hit by a log I/O error and need to
1289 * shutdown. Actually, in practice, even when we didn't get a log error,
1290 * we transition the iclogs to IOERROR state *after* flushing all existing
1291 * iclogs to disk. This is because we don't want anymore new transactions to be
1292 * started or completed afterwards.
1293 */
1294 STATIC int
1295 xlog_bdstrat(
1296 struct xfs_buf *bp)
1297 {
1298 struct xlog_in_core *iclog;
1299
1300 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
1301 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1302 XFS_BUF_ERROR(bp, EIO);
1303 XFS_BUF_STALE(bp);
1304 xfs_biodone(bp);
1305 /*
1306 * It would seem logical to return EIO here, but we rely on
1307 * the log state machine to propagate I/O errors instead of
1308 * doing it here.
1309 */
1310 return 0;
1311 }
1312
1313 bp->b_flags |= _XBF_RUN_QUEUES;
1314 xfs_buf_iorequest(bp);
1315 return 0;
1316 }
1317
1318 /*
1319 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1320 * fashion. Previously, we should have moved the current iclog
1321 * ptr in the log to point to the next available iclog. This allows further
1322 * write to continue while this code syncs out an iclog ready to go.
1323 * Before an in-core log can be written out, the data section must be scanned
1324 * to save away the 1st word of each BBSIZE block into the header. We replace
1325 * it with the current cycle count. Each BBSIZE block is tagged with the
1326 * cycle count because there in an implicit assumption that drives will
1327 * guarantee that entire 512 byte blocks get written at once. In other words,
1328 * we can't have part of a 512 byte block written and part not written. By
1329 * tagging each block, we will know which blocks are valid when recovering
1330 * after an unclean shutdown.
1331 *
1332 * This routine is single threaded on the iclog. No other thread can be in
1333 * this routine with the same iclog. Changing contents of iclog can there-
1334 * fore be done without grabbing the state machine lock. Updating the global
1335 * log will require grabbing the lock though.
1336 *
1337 * The entire log manager uses a logical block numbering scheme. Only
1338 * log_sync (and then only bwrite()) know about the fact that the log may
1339 * not start with block zero on a given device. The log block start offset
1340 * is added immediately before calling bwrite().
1341 */
1342
1343 STATIC int
1344 xlog_sync(xlog_t *log,
1345 xlog_in_core_t *iclog)
1346 {
1347 xfs_caddr_t dptr; /* pointer to byte sized element */
1348 xfs_buf_t *bp;
1349 int i;
1350 uint count; /* byte count of bwrite */
1351 uint count_init; /* initial count before roundup */
1352 int roundoff; /* roundoff to BB or stripe */
1353 int split = 0; /* split write into two regions */
1354 int error;
1355 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1356
1357 XFS_STATS_INC(xs_log_writes);
1358 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1359
1360 /* Add for LR header */
1361 count_init = log->l_iclog_hsize + iclog->ic_offset;
1362
1363 /* Round out the log write size */
1364 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1365 /* we have a v2 stripe unit to use */
1366 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1367 } else {
1368 count = BBTOB(BTOBB(count_init));
1369 }
1370 roundoff = count - count_init;
1371 ASSERT(roundoff >= 0);
1372 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1373 roundoff < log->l_mp->m_sb.sb_logsunit)
1374 ||
1375 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1376 roundoff < BBTOB(1)));
1377
1378 /* move grant heads by roundoff in sync */
1379 spin_lock(&log->l_grant_lock);
1380 xlog_grant_add_space(log, roundoff);
1381 spin_unlock(&log->l_grant_lock);
1382
1383 /* put cycle number in every block */
1384 xlog_pack_data(log, iclog, roundoff);
1385
1386 /* real byte length */
1387 if (v2) {
1388 iclog->ic_header.h_len =
1389 cpu_to_be32(iclog->ic_offset + roundoff);
1390 } else {
1391 iclog->ic_header.h_len =
1392 cpu_to_be32(iclog->ic_offset);
1393 }
1394
1395 bp = iclog->ic_bp;
1396 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1);
1397 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1398 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1399
1400 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1401
1402 /* Do we need to split this write into 2 parts? */
1403 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1404 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1405 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1406 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1407 } else {
1408 iclog->ic_bwritecnt = 1;
1409 }
1410 XFS_BUF_SET_COUNT(bp, count);
1411 XFS_BUF_SET_FSPRIVATE(bp, iclog); /* save for later */
1412 XFS_BUF_ZEROFLAGS(bp);
1413 XFS_BUF_BUSY(bp);
1414 XFS_BUF_ASYNC(bp);
1415 bp->b_flags |= XBF_LOG_BUFFER;
1416 /*
1417 * Do an ordered write for the log block.
1418 * Its unnecessary to flush the first split block in the log wrap case.
1419 */
1420 if (!split && (log->l_mp->m_flags & XFS_MOUNT_BARRIER))
1421 XFS_BUF_ORDERED(bp);
1422
1423 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1424 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1425
1426 xlog_verify_iclog(log, iclog, count, B_TRUE);
1427
1428 /* account for log which doesn't start at block #0 */
1429 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1430 /*
1431 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1432 * is shutting down.
1433 */
1434 XFS_BUF_WRITE(bp);
1435
1436 if ((error = xlog_bdstrat(bp))) {
1437 xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1438 XFS_BUF_ADDR(bp));
1439 return error;
1440 }
1441 if (split) {
1442 bp = iclog->ic_log->l_xbuf;
1443 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) ==
1444 (unsigned long)1);
1445 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1446 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1447 XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
1448 (__psint_t)count), split);
1449 XFS_BUF_SET_FSPRIVATE(bp, iclog);
1450 XFS_BUF_ZEROFLAGS(bp);
1451 XFS_BUF_BUSY(bp);
1452 XFS_BUF_ASYNC(bp);
1453 bp->b_flags |= XBF_LOG_BUFFER;
1454 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1455 XFS_BUF_ORDERED(bp);
1456 dptr = XFS_BUF_PTR(bp);
1457 /*
1458 * Bump the cycle numbers at the start of each block
1459 * since this part of the buffer is at the start of
1460 * a new cycle. Watch out for the header magic number
1461 * case, though.
1462 */
1463 for (i = 0; i < split; i += BBSIZE) {
1464 be32_add_cpu((__be32 *)dptr, 1);
1465 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1466 be32_add_cpu((__be32 *)dptr, 1);
1467 dptr += BBSIZE;
1468 }
1469
1470 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1471 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1472
1473 /* account for internal log which doesn't start at block #0 */
1474 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1475 XFS_BUF_WRITE(bp);
1476 if ((error = xlog_bdstrat(bp))) {
1477 xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1478 bp, XFS_BUF_ADDR(bp));
1479 return error;
1480 }
1481 }
1482 return 0;
1483 } /* xlog_sync */
1484
1485
1486 /*
1487 * Deallocate a log structure
1488 */
1489 STATIC void
1490 xlog_dealloc_log(xlog_t *log)
1491 {
1492 xlog_in_core_t *iclog, *next_iclog;
1493 int i;
1494
1495 iclog = log->l_iclog;
1496 for (i=0; i<log->l_iclog_bufs; i++) {
1497 sv_destroy(&iclog->ic_force_wait);
1498 sv_destroy(&iclog->ic_write_wait);
1499 xfs_buf_free(iclog->ic_bp);
1500 next_iclog = iclog->ic_next;
1501 kmem_free(iclog);
1502 iclog = next_iclog;
1503 }
1504 spinlock_destroy(&log->l_icloglock);
1505 spinlock_destroy(&log->l_grant_lock);
1506
1507 xfs_buf_free(log->l_xbuf);
1508 log->l_mp->m_log = NULL;
1509 kmem_free(log);
1510 } /* xlog_dealloc_log */
1511
1512 /*
1513 * Update counters atomically now that memcpy is done.
1514 */
1515 /* ARGSUSED */
1516 static inline void
1517 xlog_state_finish_copy(xlog_t *log,
1518 xlog_in_core_t *iclog,
1519 int record_cnt,
1520 int copy_bytes)
1521 {
1522 spin_lock(&log->l_icloglock);
1523
1524 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1525 iclog->ic_offset += copy_bytes;
1526
1527 spin_unlock(&log->l_icloglock);
1528 } /* xlog_state_finish_copy */
1529
1530
1531
1532
1533 /*
1534 * print out info relating to regions written which consume
1535 * the reservation
1536 */
1537 STATIC void
1538 xlog_print_tic_res(xfs_mount_t *mp, xlog_ticket_t *ticket)
1539 {
1540 uint i;
1541 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1542
1543 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1544 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1545 "bformat",
1546 "bchunk",
1547 "efi_format",
1548 "efd_format",
1549 "iformat",
1550 "icore",
1551 "iext",
1552 "ibroot",
1553 "ilocal",
1554 "iattr_ext",
1555 "iattr_broot",
1556 "iattr_local",
1557 "qformat",
1558 "dquot",
1559 "quotaoff",
1560 "LR header",
1561 "unmount",
1562 "commit",
1563 "trans header"
1564 };
1565 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1566 "SETATTR_NOT_SIZE",
1567 "SETATTR_SIZE",
1568 "INACTIVE",
1569 "CREATE",
1570 "CREATE_TRUNC",
1571 "TRUNCATE_FILE",
1572 "REMOVE",
1573 "LINK",
1574 "RENAME",
1575 "MKDIR",
1576 "RMDIR",
1577 "SYMLINK",
1578 "SET_DMATTRS",
1579 "GROWFS",
1580 "STRAT_WRITE",
1581 "DIOSTRAT",
1582 "WRITE_SYNC",
1583 "WRITEID",
1584 "ADDAFORK",
1585 "ATTRINVAL",
1586 "ATRUNCATE",
1587 "ATTR_SET",
1588 "ATTR_RM",
1589 "ATTR_FLAG",
1590 "CLEAR_AGI_BUCKET",
1591 "QM_SBCHANGE",
1592 "DUMMY1",
1593 "DUMMY2",
1594 "QM_QUOTAOFF",
1595 "QM_DQALLOC",
1596 "QM_SETQLIM",
1597 "QM_DQCLUSTER",
1598 "QM_QINOCREATE",
1599 "QM_QUOTAOFF_END",
1600 "SB_UNIT",
1601 "FSYNC_TS",
1602 "GROWFSRT_ALLOC",
1603 "GROWFSRT_ZERO",
1604 "GROWFSRT_FREE",
1605 "SWAPEXT"
1606 };
1607
1608 xfs_fs_cmn_err(CE_WARN, mp,
1609 "xfs_log_write: reservation summary:\n"
1610 " trans type = %s (%u)\n"
1611 " unit res = %d bytes\n"
1612 " current res = %d bytes\n"
1613 " total reg = %u bytes (o/flow = %u bytes)\n"
1614 " ophdrs = %u (ophdr space = %u bytes)\n"
1615 " ophdr + reg = %u bytes\n"
1616 " num regions = %u\n",
1617 ((ticket->t_trans_type <= 0 ||
1618 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1619 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1620 ticket->t_trans_type,
1621 ticket->t_unit_res,
1622 ticket->t_curr_res,
1623 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1624 ticket->t_res_num_ophdrs, ophdr_spc,
1625 ticket->t_res_arr_sum +
1626 ticket->t_res_o_flow + ophdr_spc,
1627 ticket->t_res_num);
1628
1629 for (i = 0; i < ticket->t_res_num; i++) {
1630 uint r_type = ticket->t_res_arr[i].r_type;
1631 cmn_err(CE_WARN,
1632 "region[%u]: %s - %u bytes\n",
1633 i,
1634 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1635 "bad-rtype" : res_type_str[r_type-1]),
1636 ticket->t_res_arr[i].r_len);
1637 }
1638 }
1639
1640 /*
1641 * Calculate the potential space needed by the log vector. Each region gets
1642 * its own xlog_op_header_t and may need to be double word aligned.
1643 */
1644 static int
1645 xlog_write_calc_vec_length(
1646 struct xlog_ticket *ticket,
1647 struct xfs_log_vec *log_vector)
1648 {
1649 struct xfs_log_vec *lv;
1650 int headers = 0;
1651 int len = 0;
1652 int i;
1653
1654 /* acct for start rec of xact */
1655 if (ticket->t_flags & XLOG_TIC_INITED)
1656 headers++;
1657
1658 for (lv = log_vector; lv; lv = lv->lv_next) {
1659 headers += lv->lv_niovecs;
1660
1661 for (i = 0; i < lv->lv_niovecs; i++) {
1662 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1663
1664 len += vecp->i_len;
1665 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1666 }
1667 }
1668
1669 ticket->t_res_num_ophdrs += headers;
1670 len += headers * sizeof(struct xlog_op_header);
1671
1672 return len;
1673 }
1674
1675 /*
1676 * If first write for transaction, insert start record We can't be trying to
1677 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1678 */
1679 static int
1680 xlog_write_start_rec(
1681 struct xlog_op_header *ophdr,
1682 struct xlog_ticket *ticket)
1683 {
1684 if (!(ticket->t_flags & XLOG_TIC_INITED))
1685 return 0;
1686
1687 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1688 ophdr->oh_clientid = ticket->t_clientid;
1689 ophdr->oh_len = 0;
1690 ophdr->oh_flags = XLOG_START_TRANS;
1691 ophdr->oh_res2 = 0;
1692
1693 ticket->t_flags &= ~XLOG_TIC_INITED;
1694
1695 return sizeof(struct xlog_op_header);
1696 }
1697
1698 static xlog_op_header_t *
1699 xlog_write_setup_ophdr(
1700 struct log *log,
1701 struct xlog_op_header *ophdr,
1702 struct xlog_ticket *ticket,
1703 uint flags)
1704 {
1705 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1706 ophdr->oh_clientid = ticket->t_clientid;
1707 ophdr->oh_res2 = 0;
1708
1709 /* are we copying a commit or unmount record? */
1710 ophdr->oh_flags = flags;
1711
1712 /*
1713 * We've seen logs corrupted with bad transaction client ids. This
1714 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1715 * and shut down the filesystem.
1716 */
1717 switch (ophdr->oh_clientid) {
1718 case XFS_TRANSACTION:
1719 case XFS_VOLUME:
1720 case XFS_LOG:
1721 break;
1722 default:
1723 xfs_fs_cmn_err(CE_WARN, log->l_mp,
1724 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1725 ophdr->oh_clientid, ticket);
1726 return NULL;
1727 }
1728
1729 return ophdr;
1730 }
1731
1732 /*
1733 * Set up the parameters of the region copy into the log. This has
1734 * to handle region write split across multiple log buffers - this
1735 * state is kept external to this function so that this code can
1736 * can be written in an obvious, self documenting manner.
1737 */
1738 static int
1739 xlog_write_setup_copy(
1740 struct xlog_ticket *ticket,
1741 struct xlog_op_header *ophdr,
1742 int space_available,
1743 int space_required,
1744 int *copy_off,
1745 int *copy_len,
1746 int *last_was_partial_copy,
1747 int *bytes_consumed)
1748 {
1749 int still_to_copy;
1750
1751 still_to_copy = space_required - *bytes_consumed;
1752 *copy_off = *bytes_consumed;
1753
1754 if (still_to_copy <= space_available) {
1755 /* write of region completes here */
1756 *copy_len = still_to_copy;
1757 ophdr->oh_len = cpu_to_be32(*copy_len);
1758 if (*last_was_partial_copy)
1759 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1760 *last_was_partial_copy = 0;
1761 *bytes_consumed = 0;
1762 return 0;
1763 }
1764
1765 /* partial write of region, needs extra log op header reservation */
1766 *copy_len = space_available;
1767 ophdr->oh_len = cpu_to_be32(*copy_len);
1768 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1769 if (*last_was_partial_copy)
1770 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1771 *bytes_consumed += *copy_len;
1772 (*last_was_partial_copy)++;
1773
1774 /* account for new log op header */
1775 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1776 ticket->t_res_num_ophdrs++;
1777
1778 return sizeof(struct xlog_op_header);
1779 }
1780
1781 static int
1782 xlog_write_copy_finish(
1783 struct log *log,
1784 struct xlog_in_core *iclog,
1785 uint flags,
1786 int *record_cnt,
1787 int *data_cnt,
1788 int *partial_copy,
1789 int *partial_copy_len,
1790 int log_offset,
1791 struct xlog_in_core **commit_iclog)
1792 {
1793 if (*partial_copy) {
1794 /*
1795 * This iclog has already been marked WANT_SYNC by
1796 * xlog_state_get_iclog_space.
1797 */
1798 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1799 *record_cnt = 0;
1800 *data_cnt = 0;
1801 return xlog_state_release_iclog(log, iclog);
1802 }
1803
1804 *partial_copy = 0;
1805 *partial_copy_len = 0;
1806
1807 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1808 /* no more space in this iclog - push it. */
1809 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1810 *record_cnt = 0;
1811 *data_cnt = 0;
1812
1813 spin_lock(&log->l_icloglock);
1814 xlog_state_want_sync(log, iclog);
1815 spin_unlock(&log->l_icloglock);
1816
1817 if (!commit_iclog)
1818 return xlog_state_release_iclog(log, iclog);
1819 ASSERT(flags & XLOG_COMMIT_TRANS);
1820 *commit_iclog = iclog;
1821 }
1822
1823 return 0;
1824 }
1825
1826 /*
1827 * Write some region out to in-core log
1828 *
1829 * This will be called when writing externally provided regions or when
1830 * writing out a commit record for a given transaction.
1831 *
1832 * General algorithm:
1833 * 1. Find total length of this write. This may include adding to the
1834 * lengths passed in.
1835 * 2. Check whether we violate the tickets reservation.
1836 * 3. While writing to this iclog
1837 * A. Reserve as much space in this iclog as can get
1838 * B. If this is first write, save away start lsn
1839 * C. While writing this region:
1840 * 1. If first write of transaction, write start record
1841 * 2. Write log operation header (header per region)
1842 * 3. Find out if we can fit entire region into this iclog
1843 * 4. Potentially, verify destination memcpy ptr
1844 * 5. Memcpy (partial) region
1845 * 6. If partial copy, release iclog; otherwise, continue
1846 * copying more regions into current iclog
1847 * 4. Mark want sync bit (in simulation mode)
1848 * 5. Release iclog for potential flush to on-disk log.
1849 *
1850 * ERRORS:
1851 * 1. Panic if reservation is overrun. This should never happen since
1852 * reservation amounts are generated internal to the filesystem.
1853 * NOTES:
1854 * 1. Tickets are single threaded data structures.
1855 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1856 * syncing routine. When a single log_write region needs to span
1857 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1858 * on all log operation writes which don't contain the end of the
1859 * region. The XLOG_END_TRANS bit is used for the in-core log
1860 * operation which contains the end of the continued log_write region.
1861 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1862 * we don't really know exactly how much space will be used. As a result,
1863 * we don't update ic_offset until the end when we know exactly how many
1864 * bytes have been written out.
1865 */
1866 STATIC int
1867 xlog_write(
1868 struct log *log,
1869 struct xfs_log_vec *log_vector,
1870 struct xlog_ticket *ticket,
1871 xfs_lsn_t *start_lsn,
1872 struct xlog_in_core **commit_iclog,
1873 uint flags)
1874 {
1875 struct xlog_in_core *iclog = NULL;
1876 struct xfs_log_iovec *vecp;
1877 struct xfs_log_vec *lv;
1878 int len;
1879 int index;
1880 int partial_copy = 0;
1881 int partial_copy_len = 0;
1882 int contwr = 0;
1883 int record_cnt = 0;
1884 int data_cnt = 0;
1885 int error;
1886
1887 *start_lsn = 0;
1888
1889 len = xlog_write_calc_vec_length(ticket, log_vector);
1890 if (ticket->t_curr_res < len) {
1891 xlog_print_tic_res(log->l_mp, ticket);
1892 #ifdef DEBUG
1893 xlog_panic(
1894 "xfs_log_write: reservation ran out. Need to up reservation");
1895 #else
1896 /* Customer configurable panic */
1897 xfs_cmn_err(XFS_PTAG_LOGRES, CE_ALERT, log->l_mp,
1898 "xfs_log_write: reservation ran out. Need to up reservation");
1899
1900 /* If we did not panic, shutdown the filesystem */
1901 xfs_force_shutdown(log->l_mp, SHUTDOWN_CORRUPT_INCORE);
1902 #endif
1903 }
1904
1905 ticket->t_curr_res -= len;
1906
1907 index = 0;
1908 lv = log_vector;
1909 vecp = lv->lv_iovecp;
1910 while (lv && index < lv->lv_niovecs) {
1911 void *ptr;
1912 int log_offset;
1913
1914 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1915 &contwr, &log_offset);
1916 if (error)
1917 return error;
1918
1919 ASSERT(log_offset <= iclog->ic_size - 1);
1920 ptr = iclog->ic_datap + log_offset;
1921
1922 /* start_lsn is the first lsn written to. That's all we need. */
1923 if (!*start_lsn)
1924 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1925
1926 /*
1927 * This loop writes out as many regions as can fit in the amount
1928 * of space which was allocated by xlog_state_get_iclog_space().
1929 */
1930 while (lv && index < lv->lv_niovecs) {
1931 struct xfs_log_iovec *reg = &vecp[index];
1932 struct xlog_op_header *ophdr;
1933 int start_rec_copy;
1934 int copy_len;
1935 int copy_off;
1936
1937 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1938 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1939
1940 start_rec_copy = xlog_write_start_rec(ptr, ticket);
1941 if (start_rec_copy) {
1942 record_cnt++;
1943 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1944 start_rec_copy);
1945 }
1946
1947 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1948 if (!ophdr)
1949 return XFS_ERROR(EIO);
1950
1951 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1952 sizeof(struct xlog_op_header));
1953
1954 len += xlog_write_setup_copy(ticket, ophdr,
1955 iclog->ic_size-log_offset,
1956 reg->i_len,
1957 &copy_off, &copy_len,
1958 &partial_copy,
1959 &partial_copy_len);
1960 xlog_verify_dest_ptr(log, ptr);
1961
1962 /* copy region */
1963 ASSERT(copy_len >= 0);
1964 memcpy(ptr, reg->i_addr + copy_off, copy_len);
1965 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1966
1967 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1968 record_cnt++;
1969 data_cnt += contwr ? copy_len : 0;
1970
1971 error = xlog_write_copy_finish(log, iclog, flags,
1972 &record_cnt, &data_cnt,
1973 &partial_copy,
1974 &partial_copy_len,
1975 log_offset,
1976 commit_iclog);
1977 if (error)
1978 return error;
1979
1980 /*
1981 * if we had a partial copy, we need to get more iclog
1982 * space but we don't want to increment the region
1983 * index because there is still more is this region to
1984 * write.
1985 *
1986 * If we completed writing this region, and we flushed
1987 * the iclog (indicated by resetting of the record
1988 * count), then we also need to get more log space. If
1989 * this was the last record, though, we are done and
1990 * can just return.
1991 */
1992 if (partial_copy)
1993 break;
1994
1995 if (++index == lv->lv_niovecs) {
1996 lv = lv->lv_next;
1997 index = 0;
1998 if (lv)
1999 vecp = lv->lv_iovecp;
2000 }
2001 if (record_cnt == 0) {
2002 if (!lv)
2003 return 0;
2004 break;
2005 }
2006 }
2007 }
2008
2009 ASSERT(len == 0);
2010
2011 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2012 if (!commit_iclog)
2013 return xlog_state_release_iclog(log, iclog);
2014
2015 ASSERT(flags & XLOG_COMMIT_TRANS);
2016 *commit_iclog = iclog;
2017 return 0;
2018 }
2019
2020
2021 /*****************************************************************************
2022 *
2023 * State Machine functions
2024 *
2025 *****************************************************************************
2026 */
2027
2028 /* Clean iclogs starting from the head. This ordering must be
2029 * maintained, so an iclog doesn't become ACTIVE beyond one that
2030 * is SYNCING. This is also required to maintain the notion that we use
2031 * a ordered wait queue to hold off would be writers to the log when every
2032 * iclog is trying to sync to disk.
2033 *
2034 * State Change: DIRTY -> ACTIVE
2035 */
2036 STATIC void
2037 xlog_state_clean_log(xlog_t *log)
2038 {
2039 xlog_in_core_t *iclog;
2040 int changed = 0;
2041
2042 iclog = log->l_iclog;
2043 do {
2044 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2045 iclog->ic_state = XLOG_STATE_ACTIVE;
2046 iclog->ic_offset = 0;
2047 ASSERT(iclog->ic_callback == NULL);
2048 /*
2049 * If the number of ops in this iclog indicate it just
2050 * contains the dummy transaction, we can
2051 * change state into IDLE (the second time around).
2052 * Otherwise we should change the state into
2053 * NEED a dummy.
2054 * We don't need to cover the dummy.
2055 */
2056 if (!changed &&
2057 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2058 XLOG_COVER_OPS)) {
2059 changed = 1;
2060 } else {
2061 /*
2062 * We have two dirty iclogs so start over
2063 * This could also be num of ops indicates
2064 * this is not the dummy going out.
2065 */
2066 changed = 2;
2067 }
2068 iclog->ic_header.h_num_logops = 0;
2069 memset(iclog->ic_header.h_cycle_data, 0,
2070 sizeof(iclog->ic_header.h_cycle_data));
2071 iclog->ic_header.h_lsn = 0;
2072 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2073 /* do nothing */;
2074 else
2075 break; /* stop cleaning */
2076 iclog = iclog->ic_next;
2077 } while (iclog != log->l_iclog);
2078
2079 /* log is locked when we are called */
2080 /*
2081 * Change state for the dummy log recording.
2082 * We usually go to NEED. But we go to NEED2 if the changed indicates
2083 * we are done writing the dummy record.
2084 * If we are done with the second dummy recored (DONE2), then
2085 * we go to IDLE.
2086 */
2087 if (changed) {
2088 switch (log->l_covered_state) {
2089 case XLOG_STATE_COVER_IDLE:
2090 case XLOG_STATE_COVER_NEED:
2091 case XLOG_STATE_COVER_NEED2:
2092 log->l_covered_state = XLOG_STATE_COVER_NEED;
2093 break;
2094
2095 case XLOG_STATE_COVER_DONE:
2096 if (changed == 1)
2097 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2098 else
2099 log->l_covered_state = XLOG_STATE_COVER_NEED;
2100 break;
2101
2102 case XLOG_STATE_COVER_DONE2:
2103 if (changed == 1)
2104 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2105 else
2106 log->l_covered_state = XLOG_STATE_COVER_NEED;
2107 break;
2108
2109 default:
2110 ASSERT(0);
2111 }
2112 }
2113 } /* xlog_state_clean_log */
2114
2115 STATIC xfs_lsn_t
2116 xlog_get_lowest_lsn(
2117 xlog_t *log)
2118 {
2119 xlog_in_core_t *lsn_log;
2120 xfs_lsn_t lowest_lsn, lsn;
2121
2122 lsn_log = log->l_iclog;
2123 lowest_lsn = 0;
2124 do {
2125 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2126 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2127 if ((lsn && !lowest_lsn) ||
2128 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2129 lowest_lsn = lsn;
2130 }
2131 }
2132 lsn_log = lsn_log->ic_next;
2133 } while (lsn_log != log->l_iclog);
2134 return lowest_lsn;
2135 }
2136
2137
2138 STATIC void
2139 xlog_state_do_callback(
2140 xlog_t *log,
2141 int aborted,
2142 xlog_in_core_t *ciclog)
2143 {
2144 xlog_in_core_t *iclog;
2145 xlog_in_core_t *first_iclog; /* used to know when we've
2146 * processed all iclogs once */
2147 xfs_log_callback_t *cb, *cb_next;
2148 int flushcnt = 0;
2149 xfs_lsn_t lowest_lsn;
2150 int ioerrors; /* counter: iclogs with errors */
2151 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2152 int funcdidcallbacks; /* flag: function did callbacks */
2153 int repeats; /* for issuing console warnings if
2154 * looping too many times */
2155 int wake = 0;
2156
2157 spin_lock(&log->l_icloglock);
2158 first_iclog = iclog = log->l_iclog;
2159 ioerrors = 0;
2160 funcdidcallbacks = 0;
2161 repeats = 0;
2162
2163 do {
2164 /*
2165 * Scan all iclogs starting with the one pointed to by the
2166 * log. Reset this starting point each time the log is
2167 * unlocked (during callbacks).
2168 *
2169 * Keep looping through iclogs until one full pass is made
2170 * without running any callbacks.
2171 */
2172 first_iclog = log->l_iclog;
2173 iclog = log->l_iclog;
2174 loopdidcallbacks = 0;
2175 repeats++;
2176
2177 do {
2178
2179 /* skip all iclogs in the ACTIVE & DIRTY states */
2180 if (iclog->ic_state &
2181 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2182 iclog = iclog->ic_next;
2183 continue;
2184 }
2185
2186 /*
2187 * Between marking a filesystem SHUTDOWN and stopping
2188 * the log, we do flush all iclogs to disk (if there
2189 * wasn't a log I/O error). So, we do want things to
2190 * go smoothly in case of just a SHUTDOWN w/o a
2191 * LOG_IO_ERROR.
2192 */
2193 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2194 /*
2195 * Can only perform callbacks in order. Since
2196 * this iclog is not in the DONE_SYNC/
2197 * DO_CALLBACK state, we skip the rest and
2198 * just try to clean up. If we set our iclog
2199 * to DO_CALLBACK, we will not process it when
2200 * we retry since a previous iclog is in the
2201 * CALLBACK and the state cannot change since
2202 * we are holding the l_icloglock.
2203 */
2204 if (!(iclog->ic_state &
2205 (XLOG_STATE_DONE_SYNC |
2206 XLOG_STATE_DO_CALLBACK))) {
2207 if (ciclog && (ciclog->ic_state ==
2208 XLOG_STATE_DONE_SYNC)) {
2209 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2210 }
2211 break;
2212 }
2213 /*
2214 * We now have an iclog that is in either the
2215 * DO_CALLBACK or DONE_SYNC states. The other
2216 * states (WANT_SYNC, SYNCING, or CALLBACK were
2217 * caught by the above if and are going to
2218 * clean (i.e. we aren't doing their callbacks)
2219 * see the above if.
2220 */
2221
2222 /*
2223 * We will do one more check here to see if we
2224 * have chased our tail around.
2225 */
2226
2227 lowest_lsn = xlog_get_lowest_lsn(log);
2228 if (lowest_lsn &&
2229 XFS_LSN_CMP(lowest_lsn,
2230 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2231 iclog = iclog->ic_next;
2232 continue; /* Leave this iclog for
2233 * another thread */
2234 }
2235
2236 iclog->ic_state = XLOG_STATE_CALLBACK;
2237
2238 spin_unlock(&log->l_icloglock);
2239
2240 /* l_last_sync_lsn field protected by
2241 * l_grant_lock. Don't worry about iclog's lsn.
2242 * No one else can be here except us.
2243 */
2244 spin_lock(&log->l_grant_lock);
2245 ASSERT(XFS_LSN_CMP(log->l_last_sync_lsn,
2246 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2247 log->l_last_sync_lsn =
2248 be64_to_cpu(iclog->ic_header.h_lsn);
2249 spin_unlock(&log->l_grant_lock);
2250
2251 } else {
2252 spin_unlock(&log->l_icloglock);
2253 ioerrors++;
2254 }
2255
2256 /*
2257 * Keep processing entries in the callback list until
2258 * we come around and it is empty. We need to
2259 * atomically see that the list is empty and change the
2260 * state to DIRTY so that we don't miss any more
2261 * callbacks being added.
2262 */
2263 spin_lock(&iclog->ic_callback_lock);
2264 cb = iclog->ic_callback;
2265 while (cb) {
2266 iclog->ic_callback_tail = &(iclog->ic_callback);
2267 iclog->ic_callback = NULL;
2268 spin_unlock(&iclog->ic_callback_lock);
2269
2270 /* perform callbacks in the order given */
2271 for (; cb; cb = cb_next) {
2272 cb_next = cb->cb_next;
2273 cb->cb_func(cb->cb_arg, aborted);
2274 }
2275 spin_lock(&iclog->ic_callback_lock);
2276 cb = iclog->ic_callback;
2277 }
2278
2279 loopdidcallbacks++;
2280 funcdidcallbacks++;
2281
2282 spin_lock(&log->l_icloglock);
2283 ASSERT(iclog->ic_callback == NULL);
2284 spin_unlock(&iclog->ic_callback_lock);
2285 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2286 iclog->ic_state = XLOG_STATE_DIRTY;
2287
2288 /*
2289 * Transition from DIRTY to ACTIVE if applicable.
2290 * NOP if STATE_IOERROR.
2291 */
2292 xlog_state_clean_log(log);
2293
2294 /* wake up threads waiting in xfs_log_force() */
2295 sv_broadcast(&iclog->ic_force_wait);
2296
2297 iclog = iclog->ic_next;
2298 } while (first_iclog != iclog);
2299
2300 if (repeats > 5000) {
2301 flushcnt += repeats;
2302 repeats = 0;
2303 xfs_fs_cmn_err(CE_WARN, log->l_mp,
2304 "%s: possible infinite loop (%d iterations)",
2305 __func__, flushcnt);
2306 }
2307 } while (!ioerrors && loopdidcallbacks);
2308
2309 /*
2310 * make one last gasp attempt to see if iclogs are being left in
2311 * limbo..
2312 */
2313 #ifdef DEBUG
2314 if (funcdidcallbacks) {
2315 first_iclog = iclog = log->l_iclog;
2316 do {
2317 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2318 /*
2319 * Terminate the loop if iclogs are found in states
2320 * which will cause other threads to clean up iclogs.
2321 *
2322 * SYNCING - i/o completion will go through logs
2323 * DONE_SYNC - interrupt thread should be waiting for
2324 * l_icloglock
2325 * IOERROR - give up hope all ye who enter here
2326 */
2327 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2328 iclog->ic_state == XLOG_STATE_SYNCING ||
2329 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2330 iclog->ic_state == XLOG_STATE_IOERROR )
2331 break;
2332 iclog = iclog->ic_next;
2333 } while (first_iclog != iclog);
2334 }
2335 #endif
2336
2337 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2338 wake = 1;
2339 spin_unlock(&log->l_icloglock);
2340
2341 if (wake)
2342 sv_broadcast(&log->l_flush_wait);
2343 }
2344
2345
2346 /*
2347 * Finish transitioning this iclog to the dirty state.
2348 *
2349 * Make sure that we completely execute this routine only when this is
2350 * the last call to the iclog. There is a good chance that iclog flushes,
2351 * when we reach the end of the physical log, get turned into 2 separate
2352 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2353 * routine. By using the reference count bwritecnt, we guarantee that only
2354 * the second completion goes through.
2355 *
2356 * Callbacks could take time, so they are done outside the scope of the
2357 * global state machine log lock.
2358 */
2359 STATIC void
2360 xlog_state_done_syncing(
2361 xlog_in_core_t *iclog,
2362 int aborted)
2363 {
2364 xlog_t *log = iclog->ic_log;
2365
2366 spin_lock(&log->l_icloglock);
2367
2368 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2369 iclog->ic_state == XLOG_STATE_IOERROR);
2370 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2371 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2372
2373
2374 /*
2375 * If we got an error, either on the first buffer, or in the case of
2376 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2377 * and none should ever be attempted to be written to disk
2378 * again.
2379 */
2380 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2381 if (--iclog->ic_bwritecnt == 1) {
2382 spin_unlock(&log->l_icloglock);
2383 return;
2384 }
2385 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2386 }
2387
2388 /*
2389 * Someone could be sleeping prior to writing out the next
2390 * iclog buffer, we wake them all, one will get to do the
2391 * I/O, the others get to wait for the result.
2392 */
2393 sv_broadcast(&iclog->ic_write_wait);
2394 spin_unlock(&log->l_icloglock);
2395 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2396 } /* xlog_state_done_syncing */
2397
2398
2399 /*
2400 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2401 * sleep. We wait on the flush queue on the head iclog as that should be
2402 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2403 * we will wait here and all new writes will sleep until a sync completes.
2404 *
2405 * The in-core logs are used in a circular fashion. They are not used
2406 * out-of-order even when an iclog past the head is free.
2407 *
2408 * return:
2409 * * log_offset where xlog_write() can start writing into the in-core
2410 * log's data space.
2411 * * in-core log pointer to which xlog_write() should write.
2412 * * boolean indicating this is a continued write to an in-core log.
2413 * If this is the last write, then the in-core log's offset field
2414 * needs to be incremented, depending on the amount of data which
2415 * is copied.
2416 */
2417 STATIC int
2418 xlog_state_get_iclog_space(xlog_t *log,
2419 int len,
2420 xlog_in_core_t **iclogp,
2421 xlog_ticket_t *ticket,
2422 int *continued_write,
2423 int *logoffsetp)
2424 {
2425 int log_offset;
2426 xlog_rec_header_t *head;
2427 xlog_in_core_t *iclog;
2428 int error;
2429
2430 restart:
2431 spin_lock(&log->l_icloglock);
2432 if (XLOG_FORCED_SHUTDOWN(log)) {
2433 spin_unlock(&log->l_icloglock);
2434 return XFS_ERROR(EIO);
2435 }
2436
2437 iclog = log->l_iclog;
2438 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2439 XFS_STATS_INC(xs_log_noiclogs);
2440
2441 /* Wait for log writes to have flushed */
2442 sv_wait(&log->l_flush_wait, 0, &log->l_icloglock, 0);
2443 goto restart;
2444 }
2445
2446 head = &iclog->ic_header;
2447
2448 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2449 log_offset = iclog->ic_offset;
2450
2451 /* On the 1st write to an iclog, figure out lsn. This works
2452 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2453 * committing to. If the offset is set, that's how many blocks
2454 * must be written.
2455 */
2456 if (log_offset == 0) {
2457 ticket->t_curr_res -= log->l_iclog_hsize;
2458 xlog_tic_add_region(ticket,
2459 log->l_iclog_hsize,
2460 XLOG_REG_TYPE_LRHEADER);
2461 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2462 head->h_lsn = cpu_to_be64(
2463 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2464 ASSERT(log->l_curr_block >= 0);
2465 }
2466
2467 /* If there is enough room to write everything, then do it. Otherwise,
2468 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2469 * bit is on, so this will get flushed out. Don't update ic_offset
2470 * until you know exactly how many bytes get copied. Therefore, wait
2471 * until later to update ic_offset.
2472 *
2473 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2474 * can fit into remaining data section.
2475 */
2476 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2477 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2478
2479 /*
2480 * If I'm the only one writing to this iclog, sync it to disk.
2481 * We need to do an atomic compare and decrement here to avoid
2482 * racing with concurrent atomic_dec_and_lock() calls in
2483 * xlog_state_release_iclog() when there is more than one
2484 * reference to the iclog.
2485 */
2486 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2487 /* we are the only one */
2488 spin_unlock(&log->l_icloglock);
2489 error = xlog_state_release_iclog(log, iclog);
2490 if (error)
2491 return error;
2492 } else {
2493 spin_unlock(&log->l_icloglock);
2494 }
2495 goto restart;
2496 }
2497
2498 /* Do we have enough room to write the full amount in the remainder
2499 * of this iclog? Or must we continue a write on the next iclog and
2500 * mark this iclog as completely taken? In the case where we switch
2501 * iclogs (to mark it taken), this particular iclog will release/sync
2502 * to disk in xlog_write().
2503 */
2504 if (len <= iclog->ic_size - iclog->ic_offset) {
2505 *continued_write = 0;
2506 iclog->ic_offset += len;
2507 } else {
2508 *continued_write = 1;
2509 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2510 }
2511 *iclogp = iclog;
2512
2513 ASSERT(iclog->ic_offset <= iclog->ic_size);
2514 spin_unlock(&log->l_icloglock);
2515
2516 *logoffsetp = log_offset;
2517 return 0;
2518 } /* xlog_state_get_iclog_space */
2519
2520 /*
2521 * Atomically get the log space required for a log ticket.
2522 *
2523 * Once a ticket gets put onto the reserveq, it will only return after
2524 * the needed reservation is satisfied.
2525 */
2526 STATIC int
2527 xlog_grant_log_space(xlog_t *log,
2528 xlog_ticket_t *tic)
2529 {
2530 int free_bytes;
2531 int need_bytes;
2532 #ifdef DEBUG
2533 xfs_lsn_t tail_lsn;
2534 #endif
2535
2536
2537 #ifdef DEBUG
2538 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2539 panic("grant Recovery problem");
2540 #endif
2541
2542 /* Is there space or do we need to sleep? */
2543 spin_lock(&log->l_grant_lock);
2544
2545 trace_xfs_log_grant_enter(log, tic);
2546
2547 /* something is already sleeping; insert new transaction at end */
2548 if (log->l_reserve_headq) {
2549 xlog_ins_ticketq(&log->l_reserve_headq, tic);
2550
2551 trace_xfs_log_grant_sleep1(log, tic);
2552
2553 /*
2554 * Gotta check this before going to sleep, while we're
2555 * holding the grant lock.
2556 */
2557 if (XLOG_FORCED_SHUTDOWN(log))
2558 goto error_return;
2559
2560 XFS_STATS_INC(xs_sleep_logspace);
2561 sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s);
2562 /*
2563 * If we got an error, and the filesystem is shutting down,
2564 * we'll catch it down below. So just continue...
2565 */
2566 trace_xfs_log_grant_wake1(log, tic);
2567 spin_lock(&log->l_grant_lock);
2568 }
2569 if (tic->t_flags & XFS_LOG_PERM_RESERV)
2570 need_bytes = tic->t_unit_res*tic->t_ocnt;
2571 else
2572 need_bytes = tic->t_unit_res;
2573
2574 redo:
2575 if (XLOG_FORCED_SHUTDOWN(log))
2576 goto error_return;
2577
2578 free_bytes = xlog_space_left(log, log->l_grant_reserve_cycle,
2579 log->l_grant_reserve_bytes);
2580 if (free_bytes < need_bytes) {
2581 if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
2582 xlog_ins_ticketq(&log->l_reserve_headq, tic);
2583
2584 trace_xfs_log_grant_sleep2(log, tic);
2585
2586 spin_unlock(&log->l_grant_lock);
2587 xlog_grant_push_ail(log->l_mp, need_bytes);
2588 spin_lock(&log->l_grant_lock);
2589
2590 XFS_STATS_INC(xs_sleep_logspace);
2591 sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s);
2592
2593 spin_lock(&log->l_grant_lock);
2594 if (XLOG_FORCED_SHUTDOWN(log))
2595 goto error_return;
2596
2597 trace_xfs_log_grant_wake2(log, tic);
2598
2599 goto redo;
2600 } else if (tic->t_flags & XLOG_TIC_IN_Q)
2601 xlog_del_ticketq(&log->l_reserve_headq, tic);
2602
2603 /* we've got enough space */
2604 xlog_grant_add_space(log, need_bytes);
2605 #ifdef DEBUG
2606 tail_lsn = log->l_tail_lsn;
2607 /*
2608 * Check to make sure the grant write head didn't just over lap the
2609 * tail. If the cycles are the same, we can't be overlapping.
2610 * Otherwise, make sure that the cycles differ by exactly one and
2611 * check the byte count.
2612 */
2613 if (CYCLE_LSN(tail_lsn) != log->l_grant_write_cycle) {
2614 ASSERT(log->l_grant_write_cycle-1 == CYCLE_LSN(tail_lsn));
2615 ASSERT(log->l_grant_write_bytes <= BBTOB(BLOCK_LSN(tail_lsn)));
2616 }
2617 #endif
2618 trace_xfs_log_grant_exit(log, tic);
2619 xlog_verify_grant_head(log, 1);
2620 spin_unlock(&log->l_grant_lock);
2621 return 0;
2622
2623 error_return:
2624 if (tic->t_flags & XLOG_TIC_IN_Q)
2625 xlog_del_ticketq(&log->l_reserve_headq, tic);
2626
2627 trace_xfs_log_grant_error(log, tic);
2628
2629 /*
2630 * If we are failing, make sure the ticket doesn't have any
2631 * current reservations. We don't want to add this back when
2632 * the ticket/transaction gets cancelled.
2633 */
2634 tic->t_curr_res = 0;
2635 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2636 spin_unlock(&log->l_grant_lock);
2637 return XFS_ERROR(EIO);
2638 } /* xlog_grant_log_space */
2639
2640
2641 /*
2642 * Replenish the byte reservation required by moving the grant write head.
2643 *
2644 *
2645 */
2646 STATIC int
2647 xlog_regrant_write_log_space(xlog_t *log,
2648 xlog_ticket_t *tic)
2649 {
2650 int free_bytes, need_bytes;
2651 xlog_ticket_t *ntic;
2652 #ifdef DEBUG
2653 xfs_lsn_t tail_lsn;
2654 #endif
2655
2656 tic->t_curr_res = tic->t_unit_res;
2657 xlog_tic_reset_res(tic);
2658
2659 if (tic->t_cnt > 0)
2660 return 0;
2661
2662 #ifdef DEBUG
2663 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2664 panic("regrant Recovery problem");
2665 #endif
2666
2667 spin_lock(&log->l_grant_lock);
2668
2669 trace_xfs_log_regrant_write_enter(log, tic);
2670
2671 if (XLOG_FORCED_SHUTDOWN(log))
2672 goto error_return;
2673
2674 /* If there are other waiters on the queue then give them a
2675 * chance at logspace before us. Wake up the first waiters,
2676 * if we do not wake up all the waiters then go to sleep waiting
2677 * for more free space, otherwise try to get some space for
2678 * this transaction.
2679 */
2680 need_bytes = tic->t_unit_res;
2681 if ((ntic = log->l_write_headq)) {
2682 free_bytes = xlog_space_left(log, log->l_grant_write_cycle,
2683 log->l_grant_write_bytes);
2684 do {
2685 ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2686
2687 if (free_bytes < ntic->t_unit_res)
2688 break;
2689 free_bytes -= ntic->t_unit_res;
2690 sv_signal(&ntic->t_wait);
2691 ntic = ntic->t_next;
2692 } while (ntic != log->l_write_headq);
2693
2694 if (ntic != log->l_write_headq) {
2695 if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
2696 xlog_ins_ticketq(&log->l_write_headq, tic);
2697
2698 trace_xfs_log_regrant_write_sleep1(log, tic);
2699
2700 spin_unlock(&log->l_grant_lock);
2701 xlog_grant_push_ail(log->l_mp, need_bytes);
2702 spin_lock(&log->l_grant_lock);
2703
2704 XFS_STATS_INC(xs_sleep_logspace);
2705 sv_wait(&tic->t_wait, PINOD|PLTWAIT,
2706 &log->l_grant_lock, s);
2707
2708 /* If we're shutting down, this tic is already
2709 * off the queue */
2710 spin_lock(&log->l_grant_lock);
2711 if (XLOG_FORCED_SHUTDOWN(log))
2712 goto error_return;
2713
2714 trace_xfs_log_regrant_write_wake1(log, tic);
2715 }
2716 }
2717
2718 redo:
2719 if (XLOG_FORCED_SHUTDOWN(log))
2720 goto error_return;
2721
2722 free_bytes = xlog_space_left(log, log->l_grant_write_cycle,
2723 log->l_grant_write_bytes);
2724 if (free_bytes < need_bytes) {
2725 if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
2726 xlog_ins_ticketq(&log->l_write_headq, tic);
2727 spin_unlock(&log->l_grant_lock);
2728 xlog_grant_push_ail(log->l_mp, need_bytes);
2729 spin_lock(&log->l_grant_lock);
2730
2731 XFS_STATS_INC(xs_sleep_logspace);
2732 trace_xfs_log_regrant_write_sleep2(log, tic);
2733
2734 sv_wait(&tic->t_wait, PINOD|PLTWAIT, &log->l_grant_lock, s);
2735
2736 /* If we're shutting down, this tic is already off the queue */
2737 spin_lock(&log->l_grant_lock);
2738 if (XLOG_FORCED_SHUTDOWN(log))
2739 goto error_return;
2740
2741 trace_xfs_log_regrant_write_wake2(log, tic);
2742 goto redo;
2743 } else if (tic->t_flags & XLOG_TIC_IN_Q)
2744 xlog_del_ticketq(&log->l_write_headq, tic);
2745
2746 /* we've got enough space */
2747 xlog_grant_add_space_write(log, need_bytes);
2748 #ifdef DEBUG
2749 tail_lsn = log->l_tail_lsn;
2750 if (CYCLE_LSN(tail_lsn) != log->l_grant_write_cycle) {
2751 ASSERT(log->l_grant_write_cycle-1 == CYCLE_LSN(tail_lsn));
2752 ASSERT(log->l_grant_write_bytes <= BBTOB(BLOCK_LSN(tail_lsn)));
2753 }
2754 #endif
2755
2756 trace_xfs_log_regrant_write_exit(log, tic);
2757
2758 xlog_verify_grant_head(log, 1);
2759 spin_unlock(&log->l_grant_lock);
2760 return 0;
2761
2762
2763 error_return:
2764 if (tic->t_flags & XLOG_TIC_IN_Q)
2765 xlog_del_ticketq(&log->l_reserve_headq, tic);
2766
2767 trace_xfs_log_regrant_write_error(log, tic);
2768
2769 /*
2770 * If we are failing, make sure the ticket doesn't have any
2771 * current reservations. We don't want to add this back when
2772 * the ticket/transaction gets cancelled.
2773 */
2774 tic->t_curr_res = 0;
2775 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2776 spin_unlock(&log->l_grant_lock);
2777 return XFS_ERROR(EIO);
2778 } /* xlog_regrant_write_log_space */
2779
2780
2781 /* The first cnt-1 times through here we don't need to
2782 * move the grant write head because the permanent
2783 * reservation has reserved cnt times the unit amount.
2784 * Release part of current permanent unit reservation and
2785 * reset current reservation to be one units worth. Also
2786 * move grant reservation head forward.
2787 */
2788 STATIC void
2789 xlog_regrant_reserve_log_space(xlog_t *log,
2790 xlog_ticket_t *ticket)
2791 {
2792 trace_xfs_log_regrant_reserve_enter(log, ticket);
2793
2794 if (ticket->t_cnt > 0)
2795 ticket->t_cnt--;
2796
2797 spin_lock(&log->l_grant_lock);
2798 xlog_grant_sub_space(log, ticket->t_curr_res);
2799 ticket->t_curr_res = ticket->t_unit_res;
2800 xlog_tic_reset_res(ticket);
2801
2802 trace_xfs_log_regrant_reserve_sub(log, ticket);
2803
2804 xlog_verify_grant_head(log, 1);
2805
2806 /* just return if we still have some of the pre-reserved space */
2807 if (ticket->t_cnt > 0) {
2808 spin_unlock(&log->l_grant_lock);
2809 return;
2810 }
2811
2812 xlog_grant_add_space_reserve(log, ticket->t_unit_res);
2813
2814 trace_xfs_log_regrant_reserve_exit(log, ticket);
2815
2816 xlog_verify_grant_head(log, 0);
2817 spin_unlock(&log->l_grant_lock);
2818 ticket->t_curr_res = ticket->t_unit_res;
2819 xlog_tic_reset_res(ticket);
2820 } /* xlog_regrant_reserve_log_space */
2821
2822
2823 /*
2824 * Give back the space left from a reservation.
2825 *
2826 * All the information we need to make a correct determination of space left
2827 * is present. For non-permanent reservations, things are quite easy. The
2828 * count should have been decremented to zero. We only need to deal with the
2829 * space remaining in the current reservation part of the ticket. If the
2830 * ticket contains a permanent reservation, there may be left over space which
2831 * needs to be released. A count of N means that N-1 refills of the current
2832 * reservation can be done before we need to ask for more space. The first
2833 * one goes to fill up the first current reservation. Once we run out of
2834 * space, the count will stay at zero and the only space remaining will be
2835 * in the current reservation field.
2836 */
2837 STATIC void
2838 xlog_ungrant_log_space(xlog_t *log,
2839 xlog_ticket_t *ticket)
2840 {
2841 if (ticket->t_cnt > 0)
2842 ticket->t_cnt--;
2843
2844 spin_lock(&log->l_grant_lock);
2845 trace_xfs_log_ungrant_enter(log, ticket);
2846
2847 xlog_grant_sub_space(log, ticket->t_curr_res);
2848
2849 trace_xfs_log_ungrant_sub(log, ticket);
2850
2851 /* If this is a permanent reservation ticket, we may be able to free
2852 * up more space based on the remaining count.
2853 */
2854 if (ticket->t_cnt > 0) {
2855 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2856 xlog_grant_sub_space(log, ticket->t_unit_res*ticket->t_cnt);
2857 }
2858
2859 trace_xfs_log_ungrant_exit(log, ticket);
2860
2861 xlog_verify_grant_head(log, 1);
2862 spin_unlock(&log->l_grant_lock);
2863 xfs_log_move_tail(log->l_mp, 1);
2864 } /* xlog_ungrant_log_space */
2865
2866
2867 /*
2868 * Flush iclog to disk if this is the last reference to the given iclog and
2869 * the WANT_SYNC bit is set.
2870 *
2871 * When this function is entered, the iclog is not necessarily in the
2872 * WANT_SYNC state. It may be sitting around waiting to get filled.
2873 *
2874 *
2875 */
2876 STATIC int
2877 xlog_state_release_iclog(
2878 xlog_t *log,
2879 xlog_in_core_t *iclog)
2880 {
2881 int sync = 0; /* do we sync? */
2882
2883 if (iclog->ic_state & XLOG_STATE_IOERROR)
2884 return XFS_ERROR(EIO);
2885
2886 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2887 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2888 return 0;
2889
2890 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2891 spin_unlock(&log->l_icloglock);
2892 return XFS_ERROR(EIO);
2893 }
2894 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2895 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2896
2897 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2898 /* update tail before writing to iclog */
2899 xlog_assign_tail_lsn(log->l_mp);
2900 sync++;
2901 iclog->ic_state = XLOG_STATE_SYNCING;
2902 iclog->ic_header.h_tail_lsn = cpu_to_be64(log->l_tail_lsn);
2903 xlog_verify_tail_lsn(log, iclog, log->l_tail_lsn);
2904 /* cycle incremented when incrementing curr_block */
2905 }
2906 spin_unlock(&log->l_icloglock);
2907
2908 /*
2909 * We let the log lock go, so it's possible that we hit a log I/O
2910 * error or some other SHUTDOWN condition that marks the iclog
2911 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2912 * this iclog has consistent data, so we ignore IOERROR
2913 * flags after this point.
2914 */
2915 if (sync)
2916 return xlog_sync(log, iclog);
2917 return 0;
2918 } /* xlog_state_release_iclog */
2919
2920
2921 /*
2922 * This routine will mark the current iclog in the ring as WANT_SYNC
2923 * and move the current iclog pointer to the next iclog in the ring.
2924 * When this routine is called from xlog_state_get_iclog_space(), the
2925 * exact size of the iclog has not yet been determined. All we know is
2926 * that every data block. We have run out of space in this log record.
2927 */
2928 STATIC void
2929 xlog_state_switch_iclogs(xlog_t *log,
2930 xlog_in_core_t *iclog,
2931 int eventual_size)
2932 {
2933 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2934 if (!eventual_size)
2935 eventual_size = iclog->ic_offset;
2936 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2937 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2938 log->l_prev_block = log->l_curr_block;
2939 log->l_prev_cycle = log->l_curr_cycle;
2940
2941 /* roll log?: ic_offset changed later */
2942 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2943
2944 /* Round up to next log-sunit */
2945 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2946 log->l_mp->m_sb.sb_logsunit > 1) {
2947 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2948 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2949 }
2950
2951 if (log->l_curr_block >= log->l_logBBsize) {
2952 log->l_curr_cycle++;
2953 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2954 log->l_curr_cycle++;
2955 log->l_curr_block -= log->l_logBBsize;
2956 ASSERT(log->l_curr_block >= 0);
2957 }
2958 ASSERT(iclog == log->l_iclog);
2959 log->l_iclog = iclog->ic_next;
2960 } /* xlog_state_switch_iclogs */
2961
2962 /*
2963 * Write out all data in the in-core log as of this exact moment in time.
2964 *
2965 * Data may be written to the in-core log during this call. However,
2966 * we don't guarantee this data will be written out. A change from past
2967 * implementation means this routine will *not* write out zero length LRs.
2968 *
2969 * Basically, we try and perform an intelligent scan of the in-core logs.
2970 * If we determine there is no flushable data, we just return. There is no
2971 * flushable data if:
2972 *
2973 * 1. the current iclog is active and has no data; the previous iclog
2974 * is in the active or dirty state.
2975 * 2. the current iclog is drity, and the previous iclog is in the
2976 * active or dirty state.
2977 *
2978 * We may sleep if:
2979 *
2980 * 1. the current iclog is not in the active nor dirty state.
2981 * 2. the current iclog dirty, and the previous iclog is not in the
2982 * active nor dirty state.
2983 * 3. the current iclog is active, and there is another thread writing
2984 * to this particular iclog.
2985 * 4. a) the current iclog is active and has no other writers
2986 * b) when we return from flushing out this iclog, it is still
2987 * not in the active nor dirty state.
2988 */
2989 int
2990 _xfs_log_force(
2991 struct xfs_mount *mp,
2992 uint flags,
2993 int *log_flushed)
2994 {
2995 struct log *log = mp->m_log;
2996 struct xlog_in_core *iclog;
2997 xfs_lsn_t lsn;
2998
2999 XFS_STATS_INC(xs_log_force);
3000
3001 spin_lock(&log->l_icloglock);
3002
3003 iclog = log->l_iclog;
3004 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3005 spin_unlock(&log->l_icloglock);
3006 return XFS_ERROR(EIO);
3007 }
3008
3009 /* If the head iclog is not active nor dirty, we just attach
3010 * ourselves to the head and go to sleep.
3011 */
3012 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3013 iclog->ic_state == XLOG_STATE_DIRTY) {
3014 /*
3015 * If the head is dirty or (active and empty), then
3016 * we need to look at the previous iclog. If the previous
3017 * iclog is active or dirty we are done. There is nothing
3018 * to sync out. Otherwise, we attach ourselves to the
3019 * previous iclog and go to sleep.
3020 */
3021 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3022 (atomic_read(&iclog->ic_refcnt) == 0
3023 && iclog->ic_offset == 0)) {
3024 iclog = iclog->ic_prev;
3025 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3026 iclog->ic_state == XLOG_STATE_DIRTY)
3027 goto no_sleep;
3028 else
3029 goto maybe_sleep;
3030 } else {
3031 if (atomic_read(&iclog->ic_refcnt) == 0) {
3032 /* We are the only one with access to this
3033 * iclog. Flush it out now. There should
3034 * be a roundoff of zero to show that someone
3035 * has already taken care of the roundoff from
3036 * the previous sync.
3037 */
3038 atomic_inc(&iclog->ic_refcnt);
3039 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3040 xlog_state_switch_iclogs(log, iclog, 0);
3041 spin_unlock(&log->l_icloglock);
3042
3043 if (xlog_state_release_iclog(log, iclog))
3044 return XFS_ERROR(EIO);
3045
3046 if (log_flushed)
3047 *log_flushed = 1;
3048 spin_lock(&log->l_icloglock);
3049 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3050 iclog->ic_state != XLOG_STATE_DIRTY)
3051 goto maybe_sleep;
3052 else
3053 goto no_sleep;
3054 } else {
3055 /* Someone else is writing to this iclog.
3056 * Use its call to flush out the data. However,
3057 * the other thread may not force out this LR,
3058 * so we mark it WANT_SYNC.
3059 */
3060 xlog_state_switch_iclogs(log, iclog, 0);
3061 goto maybe_sleep;
3062 }
3063 }
3064 }
3065
3066 /* By the time we come around again, the iclog could've been filled
3067 * which would give it another lsn. If we have a new lsn, just
3068 * return because the relevant data has been flushed.
3069 */
3070 maybe_sleep:
3071 if (flags & XFS_LOG_SYNC) {
3072 /*
3073 * We must check if we're shutting down here, before
3074 * we wait, while we're holding the l_icloglock.
3075 * Then we check again after waking up, in case our
3076 * sleep was disturbed by a bad news.
3077 */
3078 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3079 spin_unlock(&log->l_icloglock);
3080 return XFS_ERROR(EIO);
3081 }
3082 XFS_STATS_INC(xs_log_force_sleep);
3083 sv_wait(&iclog->ic_force_wait, PINOD, &log->l_icloglock, s);
3084 /*
3085 * No need to grab the log lock here since we're
3086 * only deciding whether or not to return EIO
3087 * and the memory read should be atomic.
3088 */
3089 if (iclog->ic_state & XLOG_STATE_IOERROR)
3090 return XFS_ERROR(EIO);
3091 if (log_flushed)
3092 *log_flushed = 1;
3093 } else {
3094
3095 no_sleep:
3096 spin_unlock(&log->l_icloglock);
3097 }
3098 return 0;
3099 }
3100
3101 /*
3102 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3103 * about errors or whether the log was flushed or not. This is the normal
3104 * interface to use when trying to unpin items or move the log forward.
3105 */
3106 void
3107 xfs_log_force(
3108 xfs_mount_t *mp,
3109 uint flags)
3110 {
3111 int error;
3112
3113 error = _xfs_log_force(mp, flags, NULL);
3114 if (error) {
3115 xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: "
3116 "error %d returned.", error);
3117 }
3118 }
3119
3120 /*
3121 * Force the in-core log to disk for a specific LSN.
3122 *
3123 * Find in-core log with lsn.
3124 * If it is in the DIRTY state, just return.
3125 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3126 * state and go to sleep or return.
3127 * If it is in any other state, go to sleep or return.
3128 *
3129 * Synchronous forces are implemented with a signal variable. All callers
3130 * to force a given lsn to disk will wait on a the sv attached to the
3131 * specific in-core log. When given in-core log finally completes its
3132 * write to disk, that thread will wake up all threads waiting on the
3133 * sv.
3134 */
3135 int
3136 _xfs_log_force_lsn(
3137 struct xfs_mount *mp,
3138 xfs_lsn_t lsn,
3139 uint flags,
3140 int *log_flushed)
3141 {
3142 struct log *log = mp->m_log;
3143 struct xlog_in_core *iclog;
3144 int already_slept = 0;
3145
3146 ASSERT(lsn != 0);
3147
3148 XFS_STATS_INC(xs_log_force);
3149
3150 try_again:
3151 spin_lock(&log->l_icloglock);
3152 iclog = log->l_iclog;
3153 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3154 spin_unlock(&log->l_icloglock);
3155 return XFS_ERROR(EIO);
3156 }
3157
3158 do {
3159 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3160 iclog = iclog->ic_next;
3161 continue;
3162 }
3163
3164 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3165 spin_unlock(&log->l_icloglock);
3166 return 0;
3167 }
3168
3169 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3170 /*
3171 * We sleep here if we haven't already slept (e.g.
3172 * this is the first time we've looked at the correct
3173 * iclog buf) and the buffer before us is going to
3174 * be sync'ed. The reason for this is that if we
3175 * are doing sync transactions here, by waiting for
3176 * the previous I/O to complete, we can allow a few
3177 * more transactions into this iclog before we close
3178 * it down.
3179 *
3180 * Otherwise, we mark the buffer WANT_SYNC, and bump
3181 * up the refcnt so we can release the log (which
3182 * drops the ref count). The state switch keeps new
3183 * transaction commits from using this buffer. When
3184 * the current commits finish writing into the buffer,
3185 * the refcount will drop to zero and the buffer will
3186 * go out then.
3187 */
3188 if (!already_slept &&
3189 (iclog->ic_prev->ic_state &
3190 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3191 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3192
3193 XFS_STATS_INC(xs_log_force_sleep);
3194
3195 sv_wait(&iclog->ic_prev->ic_write_wait,
3196 PSWP, &log->l_icloglock, s);
3197 if (log_flushed)
3198 *log_flushed = 1;
3199 already_slept = 1;
3200 goto try_again;
3201 }
3202 atomic_inc(&iclog->ic_refcnt);
3203 xlog_state_switch_iclogs(log, iclog, 0);
3204 spin_unlock(&log->l_icloglock);
3205 if (xlog_state_release_iclog(log, iclog))
3206 return XFS_ERROR(EIO);
3207 if (log_flushed)
3208 *log_flushed = 1;
3209 spin_lock(&log->l_icloglock);
3210 }
3211
3212 if ((flags & XFS_LOG_SYNC) && /* sleep */
3213 !(iclog->ic_state &
3214 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3215 /*
3216 * Don't wait on completion if we know that we've
3217 * gotten a log write error.
3218 */
3219 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3220 spin_unlock(&log->l_icloglock);
3221 return XFS_ERROR(EIO);
3222 }
3223 XFS_STATS_INC(xs_log_force_sleep);
3224 sv_wait(&iclog->ic_force_wait, PSWP, &log->l_icloglock, s);
3225 /*
3226 * No need to grab the log lock here since we're
3227 * only deciding whether or not to return EIO
3228 * and the memory read should be atomic.
3229 */
3230 if (iclog->ic_state & XLOG_STATE_IOERROR)
3231 return XFS_ERROR(EIO);
3232
3233 if (log_flushed)
3234 *log_flushed = 1;
3235 } else { /* just return */
3236 spin_unlock(&log->l_icloglock);
3237 }
3238
3239 return 0;
3240 } while (iclog != log->l_iclog);
3241
3242 spin_unlock(&log->l_icloglock);
3243 return 0;
3244 }
3245
3246 /*
3247 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3248 * about errors or whether the log was flushed or not. This is the normal
3249 * interface to use when trying to unpin items or move the log forward.
3250 */
3251 void
3252 xfs_log_force_lsn(
3253 xfs_mount_t *mp,
3254 xfs_lsn_t lsn,
3255 uint flags)
3256 {
3257 int error;
3258
3259 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3260 if (error) {
3261 xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: "
3262 "error %d returned.", error);
3263 }
3264 }
3265
3266 /*
3267 * Called when we want to mark the current iclog as being ready to sync to
3268 * disk.
3269 */
3270 STATIC void
3271 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3272 {
3273 assert_spin_locked(&log->l_icloglock);
3274
3275 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3276 xlog_state_switch_iclogs(log, iclog, 0);
3277 } else {
3278 ASSERT(iclog->ic_state &
3279 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3280 }
3281 }
3282
3283
3284 /*****************************************************************************
3285 *
3286 * TICKET functions
3287 *
3288 *****************************************************************************
3289 */
3290
3291 /*
3292 * Free a used ticket when its refcount falls to zero.
3293 */
3294 void
3295 xfs_log_ticket_put(
3296 xlog_ticket_t *ticket)
3297 {
3298 ASSERT(atomic_read(&ticket->t_ref) > 0);
3299 if (atomic_dec_and_test(&ticket->t_ref)) {
3300 sv_destroy(&ticket->t_wait);
3301 kmem_zone_free(xfs_log_ticket_zone, ticket);
3302 }
3303 }
3304
3305 xlog_ticket_t *
3306 xfs_log_ticket_get(
3307 xlog_ticket_t *ticket)
3308 {
3309 ASSERT(atomic_read(&ticket->t_ref) > 0);
3310 atomic_inc(&ticket->t_ref);
3311 return ticket;
3312 }
3313
3314 /*
3315 * Allocate and initialise a new log ticket.
3316 */
3317 STATIC xlog_ticket_t *
3318 xlog_ticket_alloc(
3319 struct log *log,
3320 int unit_bytes,
3321 int cnt,
3322 char client,
3323 uint xflags)
3324 {
3325 struct xlog_ticket *tic;
3326 uint num_headers;
3327 int iclog_space;
3328
3329 tic = kmem_zone_zalloc(xfs_log_ticket_zone, KM_SLEEP|KM_MAYFAIL);
3330 if (!tic)
3331 return NULL;
3332
3333 /*
3334 * Permanent reservations have up to 'cnt'-1 active log operations
3335 * in the log. A unit in this case is the amount of space for one
3336 * of these log operations. Normal reservations have a cnt of 1
3337 * and their unit amount is the total amount of space required.
3338 *
3339 * The following lines of code account for non-transaction data
3340 * which occupy space in the on-disk log.
3341 *
3342 * Normal form of a transaction is:
3343 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3344 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3345 *
3346 * We need to account for all the leadup data and trailer data
3347 * around the transaction data.
3348 * And then we need to account for the worst case in terms of using
3349 * more space.
3350 * The worst case will happen if:
3351 * - the placement of the transaction happens to be such that the
3352 * roundoff is at its maximum
3353 * - the transaction data is synced before the commit record is synced
3354 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3355 * Therefore the commit record is in its own Log Record.
3356 * This can happen as the commit record is called with its
3357 * own region to xlog_write().
3358 * This then means that in the worst case, roundoff can happen for
3359 * the commit-rec as well.
3360 * The commit-rec is smaller than padding in this scenario and so it is
3361 * not added separately.
3362 */
3363
3364 /* for trans header */
3365 unit_bytes += sizeof(xlog_op_header_t);
3366 unit_bytes += sizeof(xfs_trans_header_t);
3367
3368 /* for start-rec */
3369 unit_bytes += sizeof(xlog_op_header_t);
3370
3371 /*
3372 * for LR headers - the space for data in an iclog is the size minus
3373 * the space used for the headers. If we use the iclog size, then we
3374 * undercalculate the number of headers required.
3375 *
3376 * Furthermore - the addition of op headers for split-recs might
3377 * increase the space required enough to require more log and op
3378 * headers, so take that into account too.
3379 *
3380 * IMPORTANT: This reservation makes the assumption that if this
3381 * transaction is the first in an iclog and hence has the LR headers
3382 * accounted to it, then the remaining space in the iclog is
3383 * exclusively for this transaction. i.e. if the transaction is larger
3384 * than the iclog, it will be the only thing in that iclog.
3385 * Fundamentally, this means we must pass the entire log vector to
3386 * xlog_write to guarantee this.
3387 */
3388 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3389 num_headers = howmany(unit_bytes, iclog_space);
3390
3391 /* for split-recs - ophdrs added when data split over LRs */
3392 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3393
3394 /* add extra header reservations if we overrun */
3395 while (!num_headers ||
3396 howmany(unit_bytes, iclog_space) > num_headers) {
3397 unit_bytes += sizeof(xlog_op_header_t);
3398 num_headers++;
3399 }
3400 unit_bytes += log->l_iclog_hsize * num_headers;
3401
3402 /* for commit-rec LR header - note: padding will subsume the ophdr */
3403 unit_bytes += log->l_iclog_hsize;
3404
3405 /* for roundoff padding for transaction data and one for commit record */
3406 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3407 log->l_mp->m_sb.sb_logsunit > 1) {
3408 /* log su roundoff */
3409 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3410 } else {
3411 /* BB roundoff */
3412 unit_bytes += 2*BBSIZE;
3413 }
3414
3415 atomic_set(&tic->t_ref, 1);
3416 tic->t_unit_res = unit_bytes;
3417 tic->t_curr_res = unit_bytes;
3418 tic->t_cnt = cnt;
3419 tic->t_ocnt = cnt;
3420 tic->t_tid = (xlog_tid_t)((__psint_t)tic & 0xffffffff);
3421 tic->t_clientid = client;
3422 tic->t_flags = XLOG_TIC_INITED;
3423 tic->t_trans_type = 0;
3424 if (xflags & XFS_LOG_PERM_RESERV)
3425 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3426 sv_init(&tic->t_wait, SV_DEFAULT, "logtick");
3427
3428 xlog_tic_reset_res(tic);
3429
3430 return tic;
3431 }
3432
3433
3434 /******************************************************************************
3435 *
3436 * Log debug routines
3437 *
3438 ******************************************************************************
3439 */
3440 #if defined(DEBUG)
3441 /*
3442 * Make sure that the destination ptr is within the valid data region of
3443 * one of the iclogs. This uses backup pointers stored in a different
3444 * part of the log in case we trash the log structure.
3445 */
3446 void
3447 xlog_verify_dest_ptr(
3448 struct log *log,
3449 char *ptr)
3450 {
3451 int i;
3452 int good_ptr = 0;
3453
3454 for (i = 0; i < log->l_iclog_bufs; i++) {
3455 if (ptr >= log->l_iclog_bak[i] &&
3456 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3457 good_ptr++;
3458 }
3459
3460 if (!good_ptr)
3461 xlog_panic("xlog_verify_dest_ptr: invalid ptr");
3462 }
3463
3464 STATIC void
3465 xlog_verify_grant_head(xlog_t *log, int equals)
3466 {
3467 if (log->l_grant_reserve_cycle == log->l_grant_write_cycle) {
3468 if (equals)
3469 ASSERT(log->l_grant_reserve_bytes >= log->l_grant_write_bytes);
3470 else
3471 ASSERT(log->l_grant_reserve_bytes > log->l_grant_write_bytes);
3472 } else {
3473 ASSERT(log->l_grant_reserve_cycle-1 == log->l_grant_write_cycle);
3474 ASSERT(log->l_grant_write_bytes >= log->l_grant_reserve_bytes);
3475 }
3476 } /* xlog_verify_grant_head */
3477
3478 /* check if it will fit */
3479 STATIC void
3480 xlog_verify_tail_lsn(xlog_t *log,
3481 xlog_in_core_t *iclog,
3482 xfs_lsn_t tail_lsn)
3483 {
3484 int blocks;
3485
3486 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3487 blocks =
3488 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3489 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3490 xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3491 } else {
3492 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3493
3494 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3495 xlog_panic("xlog_verify_tail_lsn: tail wrapped");
3496
3497 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3498 if (blocks < BTOBB(iclog->ic_offset) + 1)
3499 xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3500 }
3501 } /* xlog_verify_tail_lsn */
3502
3503 /*
3504 * Perform a number of checks on the iclog before writing to disk.
3505 *
3506 * 1. Make sure the iclogs are still circular
3507 * 2. Make sure we have a good magic number
3508 * 3. Make sure we don't have magic numbers in the data
3509 * 4. Check fields of each log operation header for:
3510 * A. Valid client identifier
3511 * B. tid ptr value falls in valid ptr space (user space code)
3512 * C. Length in log record header is correct according to the
3513 * individual operation headers within record.
3514 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3515 * log, check the preceding blocks of the physical log to make sure all
3516 * the cycle numbers agree with the current cycle number.
3517 */
3518 STATIC void
3519 xlog_verify_iclog(xlog_t *log,
3520 xlog_in_core_t *iclog,
3521 int count,
3522 boolean_t syncing)
3523 {
3524 xlog_op_header_t *ophead;
3525 xlog_in_core_t *icptr;
3526 xlog_in_core_2_t *xhdr;
3527 xfs_caddr_t ptr;
3528 xfs_caddr_t base_ptr;
3529 __psint_t field_offset;
3530 __uint8_t clientid;
3531 int len, i, j, k, op_len;
3532 int idx;
3533
3534 /* check validity of iclog pointers */
3535 spin_lock(&log->l_icloglock);
3536 icptr = log->l_iclog;
3537 for (i=0; i < log->l_iclog_bufs; i++) {
3538 if (icptr == NULL)
3539 xlog_panic("xlog_verify_iclog: invalid ptr");
3540 icptr = icptr->ic_next;
3541 }
3542 if (icptr != log->l_iclog)
3543 xlog_panic("xlog_verify_iclog: corrupt iclog ring");
3544 spin_unlock(&log->l_icloglock);
3545
3546 /* check log magic numbers */
3547 if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM)
3548 xlog_panic("xlog_verify_iclog: invalid magic num");
3549
3550 ptr = (xfs_caddr_t) &iclog->ic_header;
3551 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3552 ptr += BBSIZE) {
3553 if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM)
3554 xlog_panic("xlog_verify_iclog: unexpected magic num");
3555 }
3556
3557 /* check fields */
3558 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3559 ptr = iclog->ic_datap;
3560 base_ptr = ptr;
3561 ophead = (xlog_op_header_t *)ptr;
3562 xhdr = iclog->ic_data;
3563 for (i = 0; i < len; i++) {
3564 ophead = (xlog_op_header_t *)ptr;
3565
3566 /* clientid is only 1 byte */
3567 field_offset = (__psint_t)
3568 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3569 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3570 clientid = ophead->oh_clientid;
3571 } else {
3572 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3573 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3574 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3575 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3576 clientid = xlog_get_client_id(
3577 xhdr[j].hic_xheader.xh_cycle_data[k]);
3578 } else {
3579 clientid = xlog_get_client_id(
3580 iclog->ic_header.h_cycle_data[idx]);
3581 }
3582 }
3583 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3584 cmn_err(CE_WARN, "xlog_verify_iclog: "
3585 "invalid clientid %d op 0x%p offset 0x%lx",
3586 clientid, ophead, (unsigned long)field_offset);
3587
3588 /* check length */
3589 field_offset = (__psint_t)
3590 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3591 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3592 op_len = be32_to_cpu(ophead->oh_len);
3593 } else {
3594 idx = BTOBBT((__psint_t)&ophead->oh_len -
3595 (__psint_t)iclog->ic_datap);
3596 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3597 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3598 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3599 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3600 } else {
3601 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3602 }
3603 }
3604 ptr += sizeof(xlog_op_header_t) + op_len;
3605 }
3606 } /* xlog_verify_iclog */
3607 #endif
3608
3609 /*
3610 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3611 */
3612 STATIC int
3613 xlog_state_ioerror(
3614 xlog_t *log)
3615 {
3616 xlog_in_core_t *iclog, *ic;
3617
3618 iclog = log->l_iclog;
3619 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3620 /*
3621 * Mark all the incore logs IOERROR.
3622 * From now on, no log flushes will result.
3623 */
3624 ic = iclog;
3625 do {
3626 ic->ic_state = XLOG_STATE_IOERROR;
3627 ic = ic->ic_next;
3628 } while (ic != iclog);
3629 return 0;
3630 }
3631 /*
3632 * Return non-zero, if state transition has already happened.
3633 */
3634 return 1;
3635 }
3636
3637 /*
3638 * This is called from xfs_force_shutdown, when we're forcibly
3639 * shutting down the filesystem, typically because of an IO error.
3640 * Our main objectives here are to make sure that:
3641 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3642 * parties to find out, 'atomically'.
3643 * b. those who're sleeping on log reservations, pinned objects and
3644 * other resources get woken up, and be told the bad news.
3645 * c. nothing new gets queued up after (a) and (b) are done.
3646 * d. if !logerror, flush the iclogs to disk, then seal them off
3647 * for business.
3648 */
3649 int
3650 xfs_log_force_umount(
3651 struct xfs_mount *mp,
3652 int logerror)
3653 {
3654 xlog_ticket_t *tic;
3655 xlog_t *log;
3656 int retval;
3657
3658 log = mp->m_log;
3659
3660 /*
3661 * If this happens during log recovery, don't worry about
3662 * locking; the log isn't open for business yet.
3663 */
3664 if (!log ||
3665 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3666 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3667 if (mp->m_sb_bp)
3668 XFS_BUF_DONE(mp->m_sb_bp);
3669 return 0;
3670 }
3671
3672 /*
3673 * Somebody could've already done the hard work for us.
3674 * No need to get locks for this.
3675 */
3676 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3677 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3678 return 1;
3679 }
3680 retval = 0;
3681 /*
3682 * We must hold both the GRANT lock and the LOG lock,
3683 * before we mark the filesystem SHUTDOWN and wake
3684 * everybody up to tell the bad news.
3685 */
3686 spin_lock(&log->l_icloglock);
3687 spin_lock(&log->l_grant_lock);
3688 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3689 if (mp->m_sb_bp)
3690 XFS_BUF_DONE(mp->m_sb_bp);
3691
3692 /*
3693 * This flag is sort of redundant because of the mount flag, but
3694 * it's good to maintain the separation between the log and the rest
3695 * of XFS.
3696 */
3697 log->l_flags |= XLOG_IO_ERROR;
3698
3699 /*
3700 * If we hit a log error, we want to mark all the iclogs IOERROR
3701 * while we're still holding the loglock.
3702 */
3703 if (logerror)
3704 retval = xlog_state_ioerror(log);
3705 spin_unlock(&log->l_icloglock);
3706
3707 /*
3708 * We don't want anybody waiting for log reservations
3709 * after this. That means we have to wake up everybody
3710 * queued up on reserve_headq as well as write_headq.
3711 * In addition, we make sure in xlog_{re}grant_log_space
3712 * that we don't enqueue anything once the SHUTDOWN flag
3713 * is set, and this action is protected by the GRANTLOCK.
3714 */
3715 if ((tic = log->l_reserve_headq)) {
3716 do {
3717 sv_signal(&tic->t_wait);
3718 tic = tic->t_next;
3719 } while (tic != log->l_reserve_headq);
3720 }
3721
3722 if ((tic = log->l_write_headq)) {
3723 do {
3724 sv_signal(&tic->t_wait);
3725 tic = tic->t_next;
3726 } while (tic != log->l_write_headq);
3727 }
3728 spin_unlock(&log->l_grant_lock);
3729
3730 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3731 ASSERT(!logerror);
3732 /*
3733 * Force the incore logs to disk before shutting the
3734 * log down completely.
3735 */
3736 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3737
3738 spin_lock(&log->l_icloglock);
3739 retval = xlog_state_ioerror(log);
3740 spin_unlock(&log->l_icloglock);
3741 }
3742 /*
3743 * Wake up everybody waiting on xfs_log_force.
3744 * Callback all log item committed functions as if the
3745 * log writes were completed.
3746 */
3747 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3748
3749 #ifdef XFSERRORDEBUG
3750 {
3751 xlog_in_core_t *iclog;
3752
3753 spin_lock(&log->l_icloglock);
3754 iclog = log->l_iclog;
3755 do {
3756 ASSERT(iclog->ic_callback == 0);
3757 iclog = iclog->ic_next;
3758 } while (iclog != log->l_iclog);
3759 spin_unlock(&log->l_icloglock);
3760 }
3761 #endif
3762 /* return non-zero if log IOERROR transition had already happened */
3763 return retval;
3764 }
3765
3766 STATIC int
3767 xlog_iclogs_empty(xlog_t *log)
3768 {
3769 xlog_in_core_t *iclog;
3770
3771 iclog = log->l_iclog;
3772 do {
3773 /* endianness does not matter here, zero is zero in
3774 * any language.
3775 */
3776 if (iclog->ic_header.h_num_logops)
3777 return 0;
3778 iclog = iclog->ic_next;
3779 } while (iclog != log->l_iclog);
3780 return 1;
3781 }