]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/xfs/xfs_log_cil.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_log_cil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4 */
5
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19
20 struct workqueue_struct *xfs_discard_wq;
21
22 /*
23 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24 * recover, so we don't allow failure here. Also, we allocate in a context that
25 * we don't want to be issuing transactions from, so we need to tell the
26 * allocation code this as well.
27 *
28 * We don't reserve any space for the ticket - we are going to steal whatever
29 * space we require from transactions as they commit. To ensure we reserve all
30 * the space required, we need to set the current reservation of the ticket to
31 * zero so that we know to steal the initial transaction overhead from the
32 * first transaction commit.
33 */
34 static struct xlog_ticket *
35 xlog_cil_ticket_alloc(
36 struct xlog *log)
37 {
38 struct xlog_ticket *tic;
39
40 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0);
41
42 /*
43 * set the current reservation to zero so we know to steal the basic
44 * transaction overhead reservation from the first transaction commit.
45 */
46 tic->t_curr_res = 0;
47 return tic;
48 }
49
50 /*
51 * Unavoidable forward declaration - xlog_cil_push_work() calls
52 * xlog_cil_ctx_alloc() itself.
53 */
54 static void xlog_cil_push_work(struct work_struct *work);
55
56 static struct xfs_cil_ctx *
57 xlog_cil_ctx_alloc(void)
58 {
59 struct xfs_cil_ctx *ctx;
60
61 ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS);
62 INIT_LIST_HEAD(&ctx->committing);
63 INIT_LIST_HEAD(&ctx->busy_extents);
64 INIT_WORK(&ctx->push_work, xlog_cil_push_work);
65 return ctx;
66 }
67
68 static void
69 xlog_cil_ctx_switch(
70 struct xfs_cil *cil,
71 struct xfs_cil_ctx *ctx)
72 {
73 ctx->sequence = ++cil->xc_current_sequence;
74 ctx->cil = cil;
75 cil->xc_ctx = ctx;
76 }
77
78 /*
79 * After the first stage of log recovery is done, we know where the head and
80 * tail of the log are. We need this log initialisation done before we can
81 * initialise the first CIL checkpoint context.
82 *
83 * Here we allocate a log ticket to track space usage during a CIL push. This
84 * ticket is passed to xlog_write() directly so that we don't slowly leak log
85 * space by failing to account for space used by log headers and additional
86 * region headers for split regions.
87 */
88 void
89 xlog_cil_init_post_recovery(
90 struct xlog *log)
91 {
92 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
93 log->l_cilp->xc_ctx->sequence = 1;
94 }
95
96 static inline int
97 xlog_cil_iovec_space(
98 uint niovecs)
99 {
100 return round_up((sizeof(struct xfs_log_vec) +
101 niovecs * sizeof(struct xfs_log_iovec)),
102 sizeof(uint64_t));
103 }
104
105 /*
106 * Allocate or pin log vector buffers for CIL insertion.
107 *
108 * The CIL currently uses disposable buffers for copying a snapshot of the
109 * modified items into the log during a push. The biggest problem with this is
110 * the requirement to allocate the disposable buffer during the commit if:
111 * a) does not exist; or
112 * b) it is too small
113 *
114 * If we do this allocation within xlog_cil_insert_format_items(), it is done
115 * under the xc_ctx_lock, which means that a CIL push cannot occur during
116 * the memory allocation. This means that we have a potential deadlock situation
117 * under low memory conditions when we have lots of dirty metadata pinned in
118 * the CIL and we need a CIL commit to occur to free memory.
119 *
120 * To avoid this, we need to move the memory allocation outside the
121 * xc_ctx_lock, but because the log vector buffers are disposable, that opens
122 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
123 * vector buffers between the check and the formatting of the item into the
124 * log vector buffer within the xc_ctx_lock.
125 *
126 * Because the log vector buffer needs to be unchanged during the CIL push
127 * process, we cannot share the buffer between the transaction commit (which
128 * modifies the buffer) and the CIL push context that is writing the changes
129 * into the log. This means skipping preallocation of buffer space is
130 * unreliable, but we most definitely do not want to be allocating and freeing
131 * buffers unnecessarily during commits when overwrites can be done safely.
132 *
133 * The simplest solution to this problem is to allocate a shadow buffer when a
134 * log item is committed for the second time, and then to only use this buffer
135 * if necessary. The buffer can remain attached to the log item until such time
136 * it is needed, and this is the buffer that is reallocated to match the size of
137 * the incoming modification. Then during the formatting of the item we can swap
138 * the active buffer with the new one if we can't reuse the existing buffer. We
139 * don't free the old buffer as it may be reused on the next modification if
140 * it's size is right, otherwise we'll free and reallocate it at that point.
141 *
142 * This function builds a vector for the changes in each log item in the
143 * transaction. It then works out the length of the buffer needed for each log
144 * item, allocates them and attaches the vector to the log item in preparation
145 * for the formatting step which occurs under the xc_ctx_lock.
146 *
147 * While this means the memory footprint goes up, it avoids the repeated
148 * alloc/free pattern that repeated modifications of an item would otherwise
149 * cause, and hence minimises the CPU overhead of such behaviour.
150 */
151 static void
152 xlog_cil_alloc_shadow_bufs(
153 struct xlog *log,
154 struct xfs_trans *tp)
155 {
156 struct xfs_log_item *lip;
157
158 list_for_each_entry(lip, &tp->t_items, li_trans) {
159 struct xfs_log_vec *lv;
160 int niovecs = 0;
161 int nbytes = 0;
162 int buf_size;
163 bool ordered = false;
164
165 /* Skip items which aren't dirty in this transaction. */
166 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
167 continue;
168
169 /* get number of vecs and size of data to be stored */
170 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
171
172 /*
173 * Ordered items need to be tracked but we do not wish to write
174 * them. We need a logvec to track the object, but we do not
175 * need an iovec or buffer to be allocated for copying data.
176 */
177 if (niovecs == XFS_LOG_VEC_ORDERED) {
178 ordered = true;
179 niovecs = 0;
180 nbytes = 0;
181 }
182
183 /*
184 * We 64-bit align the length of each iovec so that the start
185 * of the next one is naturally aligned. We'll need to
186 * account for that slack space here. Then round nbytes up
187 * to 64-bit alignment so that the initial buffer alignment is
188 * easy to calculate and verify.
189 */
190 nbytes += niovecs * sizeof(uint64_t);
191 nbytes = round_up(nbytes, sizeof(uint64_t));
192
193 /*
194 * The data buffer needs to start 64-bit aligned, so round up
195 * that space to ensure we can align it appropriately and not
196 * overrun the buffer.
197 */
198 buf_size = nbytes + xlog_cil_iovec_space(niovecs);
199
200 /*
201 * if we have no shadow buffer, or it is too small, we need to
202 * reallocate it.
203 */
204 if (!lip->li_lv_shadow ||
205 buf_size > lip->li_lv_shadow->lv_size) {
206
207 /*
208 * We free and allocate here as a realloc would copy
209 * unnecessary data. We don't use kmem_zalloc() for the
210 * same reason - we don't need to zero the data area in
211 * the buffer, only the log vector header and the iovec
212 * storage.
213 */
214 kmem_free(lip->li_lv_shadow);
215
216 /*
217 * We are in transaction context, which means this
218 * allocation will pick up GFP_NOFS from the
219 * memalloc_nofs_save/restore context the transaction
220 * holds. This means we can use GFP_KERNEL here so the
221 * generic kvmalloc() code will run vmalloc on
222 * contiguous page allocation failure as we require.
223 */
224 lv = kvmalloc(buf_size, GFP_KERNEL);
225 memset(lv, 0, xlog_cil_iovec_space(niovecs));
226
227 lv->lv_item = lip;
228 lv->lv_size = buf_size;
229 if (ordered)
230 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
231 else
232 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
233 lip->li_lv_shadow = lv;
234 } else {
235 /* same or smaller, optimise common overwrite case */
236 lv = lip->li_lv_shadow;
237 if (ordered)
238 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
239 else
240 lv->lv_buf_len = 0;
241 lv->lv_bytes = 0;
242 lv->lv_next = NULL;
243 }
244
245 /* Ensure the lv is set up according to ->iop_size */
246 lv->lv_niovecs = niovecs;
247
248 /* The allocated data region lies beyond the iovec region */
249 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
250 }
251
252 }
253
254 /*
255 * Prepare the log item for insertion into the CIL. Calculate the difference in
256 * log space and vectors it will consume, and if it is a new item pin it as
257 * well.
258 */
259 STATIC void
260 xfs_cil_prepare_item(
261 struct xlog *log,
262 struct xfs_log_vec *lv,
263 struct xfs_log_vec *old_lv,
264 int *diff_len,
265 int *diff_iovecs)
266 {
267 /* Account for the new LV being passed in */
268 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
269 *diff_len += lv->lv_bytes;
270 *diff_iovecs += lv->lv_niovecs;
271 }
272
273 /*
274 * If there is no old LV, this is the first time we've seen the item in
275 * this CIL context and so we need to pin it. If we are replacing the
276 * old_lv, then remove the space it accounts for and make it the shadow
277 * buffer for later freeing. In both cases we are now switching to the
278 * shadow buffer, so update the pointer to it appropriately.
279 */
280 if (!old_lv) {
281 if (lv->lv_item->li_ops->iop_pin)
282 lv->lv_item->li_ops->iop_pin(lv->lv_item);
283 lv->lv_item->li_lv_shadow = NULL;
284 } else if (old_lv != lv) {
285 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
286
287 *diff_len -= old_lv->lv_bytes;
288 *diff_iovecs -= old_lv->lv_niovecs;
289 lv->lv_item->li_lv_shadow = old_lv;
290 }
291
292 /* attach new log vector to log item */
293 lv->lv_item->li_lv = lv;
294
295 /*
296 * If this is the first time the item is being committed to the
297 * CIL, store the sequence number on the log item so we can
298 * tell in future commits whether this is the first checkpoint
299 * the item is being committed into.
300 */
301 if (!lv->lv_item->li_seq)
302 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
303 }
304
305 /*
306 * Format log item into a flat buffers
307 *
308 * For delayed logging, we need to hold a formatted buffer containing all the
309 * changes on the log item. This enables us to relog the item in memory and
310 * write it out asynchronously without needing to relock the object that was
311 * modified at the time it gets written into the iclog.
312 *
313 * This function takes the prepared log vectors attached to each log item, and
314 * formats the changes into the log vector buffer. The buffer it uses is
315 * dependent on the current state of the vector in the CIL - the shadow lv is
316 * guaranteed to be large enough for the current modification, but we will only
317 * use that if we can't reuse the existing lv. If we can't reuse the existing
318 * lv, then simple swap it out for the shadow lv. We don't free it - that is
319 * done lazily either by th enext modification or the freeing of the log item.
320 *
321 * We don't set up region headers during this process; we simply copy the
322 * regions into the flat buffer. We can do this because we still have to do a
323 * formatting step to write the regions into the iclog buffer. Writing the
324 * ophdrs during the iclog write means that we can support splitting large
325 * regions across iclog boundares without needing a change in the format of the
326 * item/region encapsulation.
327 *
328 * Hence what we need to do now is change the rewrite the vector array to point
329 * to the copied region inside the buffer we just allocated. This allows us to
330 * format the regions into the iclog as though they are being formatted
331 * directly out of the objects themselves.
332 */
333 static void
334 xlog_cil_insert_format_items(
335 struct xlog *log,
336 struct xfs_trans *tp,
337 int *diff_len,
338 int *diff_iovecs)
339 {
340 struct xfs_log_item *lip;
341
342
343 /* Bail out if we didn't find a log item. */
344 if (list_empty(&tp->t_items)) {
345 ASSERT(0);
346 return;
347 }
348
349 list_for_each_entry(lip, &tp->t_items, li_trans) {
350 struct xfs_log_vec *lv;
351 struct xfs_log_vec *old_lv = NULL;
352 struct xfs_log_vec *shadow;
353 bool ordered = false;
354
355 /* Skip items which aren't dirty in this transaction. */
356 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
357 continue;
358
359 /*
360 * The formatting size information is already attached to
361 * the shadow lv on the log item.
362 */
363 shadow = lip->li_lv_shadow;
364 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
365 ordered = true;
366
367 /* Skip items that do not have any vectors for writing */
368 if (!shadow->lv_niovecs && !ordered)
369 continue;
370
371 /* compare to existing item size */
372 old_lv = lip->li_lv;
373 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
374 /* same or smaller, optimise common overwrite case */
375 lv = lip->li_lv;
376 lv->lv_next = NULL;
377
378 if (ordered)
379 goto insert;
380
381 /*
382 * set the item up as though it is a new insertion so
383 * that the space reservation accounting is correct.
384 */
385 *diff_iovecs -= lv->lv_niovecs;
386 *diff_len -= lv->lv_bytes;
387
388 /* Ensure the lv is set up according to ->iop_size */
389 lv->lv_niovecs = shadow->lv_niovecs;
390
391 /* reset the lv buffer information for new formatting */
392 lv->lv_buf_len = 0;
393 lv->lv_bytes = 0;
394 lv->lv_buf = (char *)lv +
395 xlog_cil_iovec_space(lv->lv_niovecs);
396 } else {
397 /* switch to shadow buffer! */
398 lv = shadow;
399 lv->lv_item = lip;
400 if (ordered) {
401 /* track as an ordered logvec */
402 ASSERT(lip->li_lv == NULL);
403 goto insert;
404 }
405 }
406
407 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
408 lip->li_ops->iop_format(lip, lv);
409 insert:
410 xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
411 }
412 }
413
414 /*
415 * Insert the log items into the CIL and calculate the difference in space
416 * consumed by the item. Add the space to the checkpoint ticket and calculate
417 * if the change requires additional log metadata. If it does, take that space
418 * as well. Remove the amount of space we added to the checkpoint ticket from
419 * the current transaction ticket so that the accounting works out correctly.
420 */
421 static void
422 xlog_cil_insert_items(
423 struct xlog *log,
424 struct xfs_trans *tp)
425 {
426 struct xfs_cil *cil = log->l_cilp;
427 struct xfs_cil_ctx *ctx = cil->xc_ctx;
428 struct xfs_log_item *lip;
429 int len = 0;
430 int diff_iovecs = 0;
431 int iclog_space;
432 int iovhdr_res = 0, split_res = 0, ctx_res = 0;
433
434 ASSERT(tp);
435
436 /*
437 * We can do this safely because the context can't checkpoint until we
438 * are done so it doesn't matter exactly how we update the CIL.
439 */
440 xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
441
442 spin_lock(&cil->xc_cil_lock);
443
444 /* account for space used by new iovec headers */
445 iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
446 len += iovhdr_res;
447 ctx->nvecs += diff_iovecs;
448
449 /* attach the transaction to the CIL if it has any busy extents */
450 if (!list_empty(&tp->t_busy))
451 list_splice_init(&tp->t_busy, &ctx->busy_extents);
452
453 /*
454 * Now transfer enough transaction reservation to the context ticket
455 * for the checkpoint. The context ticket is special - the unit
456 * reservation has to grow as well as the current reservation as we
457 * steal from tickets so we can correctly determine the space used
458 * during the transaction commit.
459 */
460 if (ctx->ticket->t_curr_res == 0) {
461 ctx_res = ctx->ticket->t_unit_res;
462 ctx->ticket->t_curr_res = ctx_res;
463 tp->t_ticket->t_curr_res -= ctx_res;
464 }
465
466 /* do we need space for more log record headers? */
467 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
468 if (len > 0 && (ctx->space_used / iclog_space !=
469 (ctx->space_used + len) / iclog_space)) {
470 split_res = (len + iclog_space - 1) / iclog_space;
471 /* need to take into account split region headers, too */
472 split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
473 ctx->ticket->t_unit_res += split_res;
474 ctx->ticket->t_curr_res += split_res;
475 tp->t_ticket->t_curr_res -= split_res;
476 ASSERT(tp->t_ticket->t_curr_res >= len);
477 }
478 tp->t_ticket->t_curr_res -= len;
479 ctx->space_used += len;
480
481 /*
482 * If we've overrun the reservation, dump the tx details before we move
483 * the log items. Shutdown is imminent...
484 */
485 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
486 xfs_warn(log->l_mp, "Transaction log reservation overrun:");
487 xfs_warn(log->l_mp,
488 " log items: %d bytes (iov hdrs: %d bytes)",
489 len, iovhdr_res);
490 xfs_warn(log->l_mp, " split region headers: %d bytes",
491 split_res);
492 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res);
493 xlog_print_trans(tp);
494 }
495
496 /*
497 * Now (re-)position everything modified at the tail of the CIL.
498 * We do this here so we only need to take the CIL lock once during
499 * the transaction commit.
500 */
501 list_for_each_entry(lip, &tp->t_items, li_trans) {
502
503 /* Skip items which aren't dirty in this transaction. */
504 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
505 continue;
506
507 /*
508 * Only move the item if it isn't already at the tail. This is
509 * to prevent a transient list_empty() state when reinserting
510 * an item that is already the only item in the CIL.
511 */
512 if (!list_is_last(&lip->li_cil, &cil->xc_cil))
513 list_move_tail(&lip->li_cil, &cil->xc_cil);
514 }
515
516 spin_unlock(&cil->xc_cil_lock);
517
518 if (tp->t_ticket->t_curr_res < 0)
519 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
520 }
521
522 static void
523 xlog_cil_free_logvec(
524 struct xfs_log_vec *log_vector)
525 {
526 struct xfs_log_vec *lv;
527
528 for (lv = log_vector; lv; ) {
529 struct xfs_log_vec *next = lv->lv_next;
530 kmem_free(lv);
531 lv = next;
532 }
533 }
534
535 static void
536 xlog_discard_endio_work(
537 struct work_struct *work)
538 {
539 struct xfs_cil_ctx *ctx =
540 container_of(work, struct xfs_cil_ctx, discard_endio_work);
541 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
542
543 xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
544 kmem_free(ctx);
545 }
546
547 /*
548 * Queue up the actual completion to a thread to avoid IRQ-safe locking for
549 * pagb_lock. Note that we need a unbounded workqueue, otherwise we might
550 * get the execution delayed up to 30 seconds for weird reasons.
551 */
552 static void
553 xlog_discard_endio(
554 struct bio *bio)
555 {
556 struct xfs_cil_ctx *ctx = bio->bi_private;
557
558 INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
559 queue_work(xfs_discard_wq, &ctx->discard_endio_work);
560 bio_put(bio);
561 }
562
563 static void
564 xlog_discard_busy_extents(
565 struct xfs_mount *mp,
566 struct xfs_cil_ctx *ctx)
567 {
568 struct list_head *list = &ctx->busy_extents;
569 struct xfs_extent_busy *busyp;
570 struct bio *bio = NULL;
571 struct blk_plug plug;
572 int error = 0;
573
574 ASSERT(xfs_has_discard(mp));
575
576 blk_start_plug(&plug);
577 list_for_each_entry(busyp, list, list) {
578 trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
579 busyp->length);
580
581 error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
582 XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
583 XFS_FSB_TO_BB(mp, busyp->length),
584 GFP_NOFS, 0, &bio);
585 if (error && error != -EOPNOTSUPP) {
586 xfs_info(mp,
587 "discard failed for extent [0x%llx,%u], error %d",
588 (unsigned long long)busyp->bno,
589 busyp->length,
590 error);
591 break;
592 }
593 }
594
595 if (bio) {
596 bio->bi_private = ctx;
597 bio->bi_end_io = xlog_discard_endio;
598 submit_bio(bio);
599 } else {
600 xlog_discard_endio_work(&ctx->discard_endio_work);
601 }
602 blk_finish_plug(&plug);
603 }
604
605 /*
606 * Mark all items committed and clear busy extents. We free the log vector
607 * chains in a separate pass so that we unpin the log items as quickly as
608 * possible.
609 */
610 static void
611 xlog_cil_committed(
612 struct xfs_cil_ctx *ctx)
613 {
614 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
615 bool abort = xlog_is_shutdown(ctx->cil->xc_log);
616
617 /*
618 * If the I/O failed, we're aborting the commit and already shutdown.
619 * Wake any commit waiters before aborting the log items so we don't
620 * block async log pushers on callbacks. Async log pushers explicitly do
621 * not wait on log force completion because they may be holding locks
622 * required to unpin items.
623 */
624 if (abort) {
625 spin_lock(&ctx->cil->xc_push_lock);
626 wake_up_all(&ctx->cil->xc_start_wait);
627 wake_up_all(&ctx->cil->xc_commit_wait);
628 spin_unlock(&ctx->cil->xc_push_lock);
629 }
630
631 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
632 ctx->start_lsn, abort);
633
634 xfs_extent_busy_sort(&ctx->busy_extents);
635 xfs_extent_busy_clear(mp, &ctx->busy_extents,
636 xfs_has_discard(mp) && !abort);
637
638 spin_lock(&ctx->cil->xc_push_lock);
639 list_del(&ctx->committing);
640 spin_unlock(&ctx->cil->xc_push_lock);
641
642 xlog_cil_free_logvec(ctx->lv_chain);
643
644 if (!list_empty(&ctx->busy_extents))
645 xlog_discard_busy_extents(mp, ctx);
646 else
647 kmem_free(ctx);
648 }
649
650 void
651 xlog_cil_process_committed(
652 struct list_head *list)
653 {
654 struct xfs_cil_ctx *ctx;
655
656 while ((ctx = list_first_entry_or_null(list,
657 struct xfs_cil_ctx, iclog_entry))) {
658 list_del(&ctx->iclog_entry);
659 xlog_cil_committed(ctx);
660 }
661 }
662
663 /*
664 * Record the LSN of the iclog we were just granted space to start writing into.
665 * If the context doesn't have a start_lsn recorded, then this iclog will
666 * contain the start record for the checkpoint. Otherwise this write contains
667 * the commit record for the checkpoint.
668 */
669 void
670 xlog_cil_set_ctx_write_state(
671 struct xfs_cil_ctx *ctx,
672 struct xlog_in_core *iclog)
673 {
674 struct xfs_cil *cil = ctx->cil;
675 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
676
677 ASSERT(!ctx->commit_lsn);
678 if (!ctx->start_lsn) {
679 spin_lock(&cil->xc_push_lock);
680 /*
681 * The LSN we need to pass to the log items on transaction
682 * commit is the LSN reported by the first log vector write, not
683 * the commit lsn. If we use the commit record lsn then we can
684 * move the tail beyond the grant write head.
685 */
686 ctx->start_lsn = lsn;
687 wake_up_all(&cil->xc_start_wait);
688 spin_unlock(&cil->xc_push_lock);
689 return;
690 }
691
692 /*
693 * Take a reference to the iclog for the context so that we still hold
694 * it when xlog_write is done and has released it. This means the
695 * context controls when the iclog is released for IO.
696 */
697 atomic_inc(&iclog->ic_refcnt);
698
699 /*
700 * xlog_state_get_iclog_space() guarantees there is enough space in the
701 * iclog for an entire commit record, so we can attach the context
702 * callbacks now. This needs to be done before we make the commit_lsn
703 * visible to waiters so that checkpoints with commit records in the
704 * same iclog order their IO completion callbacks in the same order that
705 * the commit records appear in the iclog.
706 */
707 spin_lock(&cil->xc_log->l_icloglock);
708 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
709 spin_unlock(&cil->xc_log->l_icloglock);
710
711 /*
712 * Now we can record the commit LSN and wake anyone waiting for this
713 * sequence to have the ordered commit record assigned to a physical
714 * location in the log.
715 */
716 spin_lock(&cil->xc_push_lock);
717 ctx->commit_iclog = iclog;
718 ctx->commit_lsn = lsn;
719 wake_up_all(&cil->xc_commit_wait);
720 spin_unlock(&cil->xc_push_lock);
721 }
722
723
724 /*
725 * Ensure that the order of log writes follows checkpoint sequence order. This
726 * relies on the context LSN being zero until the log write has guaranteed the
727 * LSN that the log write will start at via xlog_state_get_iclog_space().
728 */
729 enum _record_type {
730 _START_RECORD,
731 _COMMIT_RECORD,
732 };
733
734 static int
735 xlog_cil_order_write(
736 struct xfs_cil *cil,
737 xfs_csn_t sequence,
738 enum _record_type record)
739 {
740 struct xfs_cil_ctx *ctx;
741
742 restart:
743 spin_lock(&cil->xc_push_lock);
744 list_for_each_entry(ctx, &cil->xc_committing, committing) {
745 /*
746 * Avoid getting stuck in this loop because we were woken by the
747 * shutdown, but then went back to sleep once already in the
748 * shutdown state.
749 */
750 if (xlog_is_shutdown(cil->xc_log)) {
751 spin_unlock(&cil->xc_push_lock);
752 return -EIO;
753 }
754
755 /*
756 * Higher sequences will wait for this one so skip them.
757 * Don't wait for our own sequence, either.
758 */
759 if (ctx->sequence >= sequence)
760 continue;
761
762 /* Wait until the LSN for the record has been recorded. */
763 switch (record) {
764 case _START_RECORD:
765 if (!ctx->start_lsn) {
766 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
767 goto restart;
768 }
769 break;
770 case _COMMIT_RECORD:
771 if (!ctx->commit_lsn) {
772 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
773 goto restart;
774 }
775 break;
776 }
777 }
778 spin_unlock(&cil->xc_push_lock);
779 return 0;
780 }
781
782 /*
783 * Write out the log vector change now attached to the CIL context. This will
784 * write a start record that needs to be strictly ordered in ascending CIL
785 * sequence order so that log recovery will always use in-order start LSNs when
786 * replaying checkpoints.
787 */
788 static int
789 xlog_cil_write_chain(
790 struct xfs_cil_ctx *ctx,
791 struct xfs_log_vec *chain)
792 {
793 struct xlog *log = ctx->cil->xc_log;
794 int error;
795
796 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
797 if (error)
798 return error;
799 return xlog_write(log, ctx, chain, ctx->ticket, XLOG_START_TRANS);
800 }
801
802 /*
803 * Write out the commit record of a checkpoint transaction to close off a
804 * running log write. These commit records are strictly ordered in ascending CIL
805 * sequence order so that log recovery will always replay the checkpoints in the
806 * correct order.
807 */
808 static int
809 xlog_cil_write_commit_record(
810 struct xfs_cil_ctx *ctx)
811 {
812 struct xlog *log = ctx->cil->xc_log;
813 struct xfs_log_iovec reg = {
814 .i_addr = NULL,
815 .i_len = 0,
816 .i_type = XLOG_REG_TYPE_COMMIT,
817 };
818 struct xfs_log_vec vec = {
819 .lv_niovecs = 1,
820 .lv_iovecp = &reg,
821 };
822 int error;
823
824 if (xlog_is_shutdown(log))
825 return -EIO;
826
827 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
828 if (error)
829 return error;
830
831 error = xlog_write(log, ctx, &vec, ctx->ticket, XLOG_COMMIT_TRANS);
832 if (error)
833 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
834 return error;
835 }
836
837 /*
838 * Push the Committed Item List to the log.
839 *
840 * If the current sequence is the same as xc_push_seq we need to do a flush. If
841 * xc_push_seq is less than the current sequence, then it has already been
842 * flushed and we don't need to do anything - the caller will wait for it to
843 * complete if necessary.
844 *
845 * xc_push_seq is checked unlocked against the sequence number for a match.
846 * Hence we can allow log forces to run racily and not issue pushes for the
847 * same sequence twice. If we get a race between multiple pushes for the same
848 * sequence they will block on the first one and then abort, hence avoiding
849 * needless pushes.
850 */
851 static void
852 xlog_cil_push_work(
853 struct work_struct *work)
854 {
855 struct xfs_cil_ctx *ctx =
856 container_of(work, struct xfs_cil_ctx, push_work);
857 struct xfs_cil *cil = ctx->cil;
858 struct xlog *log = cil->xc_log;
859 struct xfs_log_vec *lv;
860 struct xfs_cil_ctx *new_ctx;
861 struct xlog_ticket *tic;
862 int num_iovecs;
863 int error = 0;
864 struct xfs_trans_header thdr;
865 struct xfs_log_iovec lhdr;
866 struct xfs_log_vec lvhdr = { NULL };
867 xfs_lsn_t preflush_tail_lsn;
868 xfs_csn_t push_seq;
869 struct bio bio;
870 DECLARE_COMPLETION_ONSTACK(bdev_flush);
871 bool push_commit_stable;
872
873 new_ctx = xlog_cil_ctx_alloc();
874 new_ctx->ticket = xlog_cil_ticket_alloc(log);
875
876 down_write(&cil->xc_ctx_lock);
877
878 spin_lock(&cil->xc_push_lock);
879 push_seq = cil->xc_push_seq;
880 ASSERT(push_seq <= ctx->sequence);
881 push_commit_stable = cil->xc_push_commit_stable;
882 cil->xc_push_commit_stable = false;
883
884 /*
885 * As we are about to switch to a new, empty CIL context, we no longer
886 * need to throttle tasks on CIL space overruns. Wake any waiters that
887 * the hard push throttle may have caught so they can start committing
888 * to the new context. The ctx->xc_push_lock provides the serialisation
889 * necessary for safely using the lockless waitqueue_active() check in
890 * this context.
891 */
892 if (waitqueue_active(&cil->xc_push_wait))
893 wake_up_all(&cil->xc_push_wait);
894
895 /*
896 * Check if we've anything to push. If there is nothing, then we don't
897 * move on to a new sequence number and so we have to be able to push
898 * this sequence again later.
899 */
900 if (list_empty(&cil->xc_cil)) {
901 cil->xc_push_seq = 0;
902 spin_unlock(&cil->xc_push_lock);
903 goto out_skip;
904 }
905
906
907 /* check for a previously pushed sequence */
908 if (push_seq < ctx->sequence) {
909 spin_unlock(&cil->xc_push_lock);
910 goto out_skip;
911 }
912
913 /*
914 * We are now going to push this context, so add it to the committing
915 * list before we do anything else. This ensures that anyone waiting on
916 * this push can easily detect the difference between a "push in
917 * progress" and "CIL is empty, nothing to do".
918 *
919 * IOWs, a wait loop can now check for:
920 * the current sequence not being found on the committing list;
921 * an empty CIL; and
922 * an unchanged sequence number
923 * to detect a push that had nothing to do and therefore does not need
924 * waiting on. If the CIL is not empty, we get put on the committing
925 * list before emptying the CIL and bumping the sequence number. Hence
926 * an empty CIL and an unchanged sequence number means we jumped out
927 * above after doing nothing.
928 *
929 * Hence the waiter will either find the commit sequence on the
930 * committing list or the sequence number will be unchanged and the CIL
931 * still dirty. In that latter case, the push has not yet started, and
932 * so the waiter will have to continue trying to check the CIL
933 * committing list until it is found. In extreme cases of delay, the
934 * sequence may fully commit between the attempts the wait makes to wait
935 * on the commit sequence.
936 */
937 list_add(&ctx->committing, &cil->xc_committing);
938 spin_unlock(&cil->xc_push_lock);
939
940 /*
941 * The CIL is stable at this point - nothing new will be added to it
942 * because we hold the flush lock exclusively. Hence we can now issue
943 * a cache flush to ensure all the completed metadata in the journal we
944 * are about to overwrite is on stable storage.
945 *
946 * Because we are issuing this cache flush before we've written the
947 * tail lsn to the iclog, we can have metadata IO completions move the
948 * tail forwards between the completion of this flush and the iclog
949 * being written. In this case, we need to re-issue the cache flush
950 * before the iclog write. To detect whether the log tail moves, sample
951 * the tail LSN *before* we issue the flush.
952 */
953 preflush_tail_lsn = atomic64_read(&log->l_tail_lsn);
954 xfs_flush_bdev_async(&bio, log->l_mp->m_ddev_targp->bt_bdev,
955 &bdev_flush);
956
957 /*
958 * Pull all the log vectors off the items in the CIL, and remove the
959 * items from the CIL. We don't need the CIL lock here because it's only
960 * needed on the transaction commit side which is currently locked out
961 * by the flush lock.
962 */
963 lv = NULL;
964 num_iovecs = 0;
965 while (!list_empty(&cil->xc_cil)) {
966 struct xfs_log_item *item;
967
968 item = list_first_entry(&cil->xc_cil,
969 struct xfs_log_item, li_cil);
970 list_del_init(&item->li_cil);
971 if (!ctx->lv_chain)
972 ctx->lv_chain = item->li_lv;
973 else
974 lv->lv_next = item->li_lv;
975 lv = item->li_lv;
976 item->li_lv = NULL;
977 num_iovecs += lv->lv_niovecs;
978 }
979
980 /*
981 * Switch the contexts so we can drop the context lock and move out
982 * of a shared context. We can't just go straight to the commit record,
983 * though - we need to synchronise with previous and future commits so
984 * that the commit records are correctly ordered in the log to ensure
985 * that we process items during log IO completion in the correct order.
986 *
987 * For example, if we get an EFI in one checkpoint and the EFD in the
988 * next (e.g. due to log forces), we do not want the checkpoint with
989 * the EFD to be committed before the checkpoint with the EFI. Hence
990 * we must strictly order the commit records of the checkpoints so
991 * that: a) the checkpoint callbacks are attached to the iclogs in the
992 * correct order; and b) the checkpoints are replayed in correct order
993 * in log recovery.
994 *
995 * Hence we need to add this context to the committing context list so
996 * that higher sequences will wait for us to write out a commit record
997 * before they do.
998 *
999 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1000 * structure atomically with the addition of this sequence to the
1001 * committing list. This also ensures that we can do unlocked checks
1002 * against the current sequence in log forces without risking
1003 * deferencing a freed context pointer.
1004 */
1005 spin_lock(&cil->xc_push_lock);
1006 xlog_cil_ctx_switch(cil, new_ctx);
1007 spin_unlock(&cil->xc_push_lock);
1008 up_write(&cil->xc_ctx_lock);
1009
1010 /*
1011 * Build a checkpoint transaction header and write it to the log to
1012 * begin the transaction. We need to account for the space used by the
1013 * transaction header here as it is not accounted for in xlog_write().
1014 *
1015 * The LSN we need to pass to the log items on transaction commit is
1016 * the LSN reported by the first log vector write. If we use the commit
1017 * record lsn then we can move the tail beyond the grant write head.
1018 */
1019 tic = ctx->ticket;
1020 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1021 thdr.th_type = XFS_TRANS_CHECKPOINT;
1022 thdr.th_tid = tic->t_tid;
1023 thdr.th_num_items = num_iovecs;
1024 lhdr.i_addr = &thdr;
1025 lhdr.i_len = sizeof(xfs_trans_header_t);
1026 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
1027 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
1028
1029 lvhdr.lv_niovecs = 1;
1030 lvhdr.lv_iovecp = &lhdr;
1031 lvhdr.lv_next = ctx->lv_chain;
1032
1033 /*
1034 * Before we format and submit the first iclog, we have to ensure that
1035 * the metadata writeback ordering cache flush is complete.
1036 */
1037 wait_for_completion(&bdev_flush);
1038
1039 error = xlog_cil_write_chain(ctx, &lvhdr);
1040 if (error)
1041 goto out_abort_free_ticket;
1042
1043 error = xlog_cil_write_commit_record(ctx);
1044 if (error)
1045 goto out_abort_free_ticket;
1046
1047 xfs_log_ticket_ungrant(log, tic);
1048
1049 /*
1050 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1051 * to complete before we submit the commit_iclog. We can't use state
1052 * checks for this - ACTIVE can be either a past completed iclog or a
1053 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1054 * past or future iclog awaiting IO or ordered IO completion to be run.
1055 * In the latter case, if it's a future iclog and we wait on it, the we
1056 * will hang because it won't get processed through to ic_force_wait
1057 * wakeup until this commit_iclog is written to disk. Hence we use the
1058 * iclog header lsn and compare it to the commit lsn to determine if we
1059 * need to wait on iclogs or not.
1060 */
1061 spin_lock(&log->l_icloglock);
1062 if (ctx->start_lsn != ctx->commit_lsn) {
1063 xfs_lsn_t plsn;
1064
1065 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1066 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1067 /*
1068 * Waiting on ic_force_wait orders the completion of
1069 * iclogs older than ic_prev. Hence we only need to wait
1070 * on the most recent older iclog here.
1071 */
1072 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1073 spin_lock(&log->l_icloglock);
1074 }
1075
1076 /*
1077 * We need to issue a pre-flush so that the ordering for this
1078 * checkpoint is correctly preserved down to stable storage.
1079 */
1080 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1081 }
1082
1083 /*
1084 * The commit iclog must be written to stable storage to guarantee
1085 * journal IO vs metadata writeback IO is correctly ordered on stable
1086 * storage.
1087 *
1088 * If the push caller needs the commit to be immediately stable and the
1089 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1090 * will be written when released, switch it's state to WANT_SYNC right
1091 * now.
1092 */
1093 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1094 if (push_commit_stable &&
1095 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1096 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1097 xlog_state_release_iclog(log, ctx->commit_iclog, preflush_tail_lsn);
1098
1099 /* Not safe to reference ctx now! */
1100
1101 spin_unlock(&log->l_icloglock);
1102 return;
1103
1104 out_skip:
1105 up_write(&cil->xc_ctx_lock);
1106 xfs_log_ticket_put(new_ctx->ticket);
1107 kmem_free(new_ctx);
1108 return;
1109
1110 out_abort_free_ticket:
1111 xfs_log_ticket_ungrant(log, tic);
1112 ASSERT(xlog_is_shutdown(log));
1113 if (!ctx->commit_iclog) {
1114 xlog_cil_committed(ctx);
1115 return;
1116 }
1117 spin_lock(&log->l_icloglock);
1118 xlog_state_release_iclog(log, ctx->commit_iclog, 0);
1119 /* Not safe to reference ctx now! */
1120 spin_unlock(&log->l_icloglock);
1121 }
1122
1123 /*
1124 * We need to push CIL every so often so we don't cache more than we can fit in
1125 * the log. The limit really is that a checkpoint can't be more than half the
1126 * log (the current checkpoint is not allowed to overwrite the previous
1127 * checkpoint), but commit latency and memory usage limit this to a smaller
1128 * size.
1129 */
1130 static void
1131 xlog_cil_push_background(
1132 struct xlog *log) __releases(cil->xc_ctx_lock)
1133 {
1134 struct xfs_cil *cil = log->l_cilp;
1135
1136 /*
1137 * The cil won't be empty because we are called while holding the
1138 * context lock so whatever we added to the CIL will still be there
1139 */
1140 ASSERT(!list_empty(&cil->xc_cil));
1141
1142 /*
1143 * Don't do a background push if we haven't used up all the
1144 * space available yet.
1145 */
1146 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) {
1147 up_read(&cil->xc_ctx_lock);
1148 return;
1149 }
1150
1151 spin_lock(&cil->xc_push_lock);
1152 if (cil->xc_push_seq < cil->xc_current_sequence) {
1153 cil->xc_push_seq = cil->xc_current_sequence;
1154 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1155 }
1156
1157 /*
1158 * Drop the context lock now, we can't hold that if we need to sleep
1159 * because we are over the blocking threshold. The push_lock is still
1160 * held, so blocking threshold sleep/wakeup is still correctly
1161 * serialised here.
1162 */
1163 up_read(&cil->xc_ctx_lock);
1164
1165 /*
1166 * If we are well over the space limit, throttle the work that is being
1167 * done until the push work on this context has begun. Enforce the hard
1168 * throttle on all transaction commits once it has been activated, even
1169 * if the committing transactions have resulted in the space usage
1170 * dipping back down under the hard limit.
1171 *
1172 * The ctx->xc_push_lock provides the serialisation necessary for safely
1173 * using the lockless waitqueue_active() check in this context.
1174 */
1175 if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) ||
1176 waitqueue_active(&cil->xc_push_wait)) {
1177 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1178 ASSERT(cil->xc_ctx->space_used < log->l_logsize);
1179 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1180 return;
1181 }
1182
1183 spin_unlock(&cil->xc_push_lock);
1184
1185 }
1186
1187 /*
1188 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1189 * number that is passed. When it returns, the work will be queued for
1190 * @push_seq, but it won't be completed.
1191 *
1192 * If the caller is performing a synchronous force, we will flush the workqueue
1193 * to get previously queued work moving to minimise the wait time they will
1194 * undergo waiting for all outstanding pushes to complete. The caller is
1195 * expected to do the required waiting for push_seq to complete.
1196 *
1197 * If the caller is performing an async push, we need to ensure that the
1198 * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1199 * don't do this, then the commit record may remain sitting in memory in an
1200 * ACTIVE iclog. This then requires another full log force to push to disk,
1201 * which defeats the purpose of having an async, non-blocking CIL force
1202 * mechanism. Hence in this case we need to pass a flag to the push work to
1203 * indicate it needs to flush the commit record itself.
1204 */
1205 static void
1206 xlog_cil_push_now(
1207 struct xlog *log,
1208 xfs_lsn_t push_seq,
1209 bool async)
1210 {
1211 struct xfs_cil *cil = log->l_cilp;
1212
1213 if (!cil)
1214 return;
1215
1216 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1217
1218 /* start on any pending background push to minimise wait time on it */
1219 if (!async)
1220 flush_workqueue(cil->xc_push_wq);
1221
1222 /*
1223 * If the CIL is empty or we've already pushed the sequence then
1224 * there's no work we need to do.
1225 */
1226 spin_lock(&cil->xc_push_lock);
1227 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
1228 spin_unlock(&cil->xc_push_lock);
1229 return;
1230 }
1231
1232 cil->xc_push_seq = push_seq;
1233 cil->xc_push_commit_stable = async;
1234 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1235 spin_unlock(&cil->xc_push_lock);
1236 }
1237
1238 bool
1239 xlog_cil_empty(
1240 struct xlog *log)
1241 {
1242 struct xfs_cil *cil = log->l_cilp;
1243 bool empty = false;
1244
1245 spin_lock(&cil->xc_push_lock);
1246 if (list_empty(&cil->xc_cil))
1247 empty = true;
1248 spin_unlock(&cil->xc_push_lock);
1249 return empty;
1250 }
1251
1252 /*
1253 * Commit a transaction with the given vector to the Committed Item List.
1254 *
1255 * To do this, we need to format the item, pin it in memory if required and
1256 * account for the space used by the transaction. Once we have done that we
1257 * need to release the unused reservation for the transaction, attach the
1258 * transaction to the checkpoint context so we carry the busy extents through
1259 * to checkpoint completion, and then unlock all the items in the transaction.
1260 *
1261 * Called with the context lock already held in read mode to lock out
1262 * background commit, returns without it held once background commits are
1263 * allowed again.
1264 */
1265 void
1266 xlog_cil_commit(
1267 struct xlog *log,
1268 struct xfs_trans *tp,
1269 xfs_csn_t *commit_seq,
1270 bool regrant)
1271 {
1272 struct xfs_cil *cil = log->l_cilp;
1273 struct xfs_log_item *lip, *next;
1274
1275 /*
1276 * Do all necessary memory allocation before we lock the CIL.
1277 * This ensures the allocation does not deadlock with a CIL
1278 * push in memory reclaim (e.g. from kswapd).
1279 */
1280 xlog_cil_alloc_shadow_bufs(log, tp);
1281
1282 /* lock out background commit */
1283 down_read(&cil->xc_ctx_lock);
1284
1285 xlog_cil_insert_items(log, tp);
1286
1287 if (regrant && !xlog_is_shutdown(log))
1288 xfs_log_ticket_regrant(log, tp->t_ticket);
1289 else
1290 xfs_log_ticket_ungrant(log, tp->t_ticket);
1291 tp->t_ticket = NULL;
1292 xfs_trans_unreserve_and_mod_sb(tp);
1293
1294 /*
1295 * Once all the items of the transaction have been copied to the CIL,
1296 * the items can be unlocked and possibly freed.
1297 *
1298 * This needs to be done before we drop the CIL context lock because we
1299 * have to update state in the log items and unlock them before they go
1300 * to disk. If we don't, then the CIL checkpoint can race with us and
1301 * we can run checkpoint completion before we've updated and unlocked
1302 * the log items. This affects (at least) processing of stale buffers,
1303 * inodes and EFIs.
1304 */
1305 trace_xfs_trans_commit_items(tp, _RET_IP_);
1306 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1307 xfs_trans_del_item(lip);
1308 if (lip->li_ops->iop_committing)
1309 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1310 }
1311 if (commit_seq)
1312 *commit_seq = cil->xc_ctx->sequence;
1313
1314 /* xlog_cil_push_background() releases cil->xc_ctx_lock */
1315 xlog_cil_push_background(log);
1316 }
1317
1318 /*
1319 * Flush the CIL to stable storage but don't wait for it to complete. This
1320 * requires the CIL push to ensure the commit record for the push hits the disk,
1321 * but otherwise is no different to a push done from a log force.
1322 */
1323 void
1324 xlog_cil_flush(
1325 struct xlog *log)
1326 {
1327 xfs_csn_t seq = log->l_cilp->xc_current_sequence;
1328
1329 trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1330 xlog_cil_push_now(log, seq, true);
1331 }
1332
1333 /*
1334 * Conditionally push the CIL based on the sequence passed in.
1335 *
1336 * We only need to push if we haven't already pushed the sequence number given.
1337 * Hence the only time we will trigger a push here is if the push sequence is
1338 * the same as the current context.
1339 *
1340 * We return the current commit lsn to allow the callers to determine if a
1341 * iclog flush is necessary following this call.
1342 */
1343 xfs_lsn_t
1344 xlog_cil_force_seq(
1345 struct xlog *log,
1346 xfs_csn_t sequence)
1347 {
1348 struct xfs_cil *cil = log->l_cilp;
1349 struct xfs_cil_ctx *ctx;
1350 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
1351
1352 ASSERT(sequence <= cil->xc_current_sequence);
1353
1354 if (!sequence)
1355 sequence = cil->xc_current_sequence;
1356 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1357
1358 /*
1359 * check to see if we need to force out the current context.
1360 * xlog_cil_push() handles racing pushes for the same sequence,
1361 * so no need to deal with it here.
1362 */
1363 restart:
1364 xlog_cil_push_now(log, sequence, false);
1365
1366 /*
1367 * See if we can find a previous sequence still committing.
1368 * We need to wait for all previous sequence commits to complete
1369 * before allowing the force of push_seq to go ahead. Hence block
1370 * on commits for those as well.
1371 */
1372 spin_lock(&cil->xc_push_lock);
1373 list_for_each_entry(ctx, &cil->xc_committing, committing) {
1374 /*
1375 * Avoid getting stuck in this loop because we were woken by the
1376 * shutdown, but then went back to sleep once already in the
1377 * shutdown state.
1378 */
1379 if (xlog_is_shutdown(log))
1380 goto out_shutdown;
1381 if (ctx->sequence > sequence)
1382 continue;
1383 if (!ctx->commit_lsn) {
1384 /*
1385 * It is still being pushed! Wait for the push to
1386 * complete, then start again from the beginning.
1387 */
1388 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1389 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1390 goto restart;
1391 }
1392 if (ctx->sequence != sequence)
1393 continue;
1394 /* found it! */
1395 commit_lsn = ctx->commit_lsn;
1396 }
1397
1398 /*
1399 * The call to xlog_cil_push_now() executes the push in the background.
1400 * Hence by the time we have got here it our sequence may not have been
1401 * pushed yet. This is true if the current sequence still matches the
1402 * push sequence after the above wait loop and the CIL still contains
1403 * dirty objects. This is guaranteed by the push code first adding the
1404 * context to the committing list before emptying the CIL.
1405 *
1406 * Hence if we don't find the context in the committing list and the
1407 * current sequence number is unchanged then the CIL contents are
1408 * significant. If the CIL is empty, if means there was nothing to push
1409 * and that means there is nothing to wait for. If the CIL is not empty,
1410 * it means we haven't yet started the push, because if it had started
1411 * we would have found the context on the committing list.
1412 */
1413 if (sequence == cil->xc_current_sequence &&
1414 !list_empty(&cil->xc_cil)) {
1415 spin_unlock(&cil->xc_push_lock);
1416 goto restart;
1417 }
1418
1419 spin_unlock(&cil->xc_push_lock);
1420 return commit_lsn;
1421
1422 /*
1423 * We detected a shutdown in progress. We need to trigger the log force
1424 * to pass through it's iclog state machine error handling, even though
1425 * we are already in a shutdown state. Hence we can't return
1426 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1427 * LSN is already stable), so we return a zero LSN instead.
1428 */
1429 out_shutdown:
1430 spin_unlock(&cil->xc_push_lock);
1431 return 0;
1432 }
1433
1434 /*
1435 * Check if the current log item was first committed in this sequence.
1436 * We can't rely on just the log item being in the CIL, we have to check
1437 * the recorded commit sequence number.
1438 *
1439 * Note: for this to be used in a non-racy manner, it has to be called with
1440 * CIL flushing locked out. As a result, it should only be used during the
1441 * transaction commit process when deciding what to format into the item.
1442 */
1443 bool
1444 xfs_log_item_in_current_chkpt(
1445 struct xfs_log_item *lip)
1446 {
1447 struct xfs_cil_ctx *ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1448
1449 if (list_empty(&lip->li_cil))
1450 return false;
1451
1452 /*
1453 * li_seq is written on the first commit of a log item to record the
1454 * first checkpoint it is written to. Hence if it is different to the
1455 * current sequence, we're in a new checkpoint.
1456 */
1457 return lip->li_seq == ctx->sequence;
1458 }
1459
1460 /*
1461 * Perform initial CIL structure initialisation.
1462 */
1463 int
1464 xlog_cil_init(
1465 struct xlog *log)
1466 {
1467 struct xfs_cil *cil;
1468 struct xfs_cil_ctx *ctx;
1469
1470 cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1471 if (!cil)
1472 return -ENOMEM;
1473 /*
1474 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1475 * concurrency the log spinlocks will be exposed to.
1476 */
1477 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1478 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1479 4, log->l_mp->m_super->s_id);
1480 if (!cil->xc_push_wq)
1481 goto out_destroy_cil;
1482
1483 INIT_LIST_HEAD(&cil->xc_cil);
1484 INIT_LIST_HEAD(&cil->xc_committing);
1485 spin_lock_init(&cil->xc_cil_lock);
1486 spin_lock_init(&cil->xc_push_lock);
1487 init_waitqueue_head(&cil->xc_push_wait);
1488 init_rwsem(&cil->xc_ctx_lock);
1489 init_waitqueue_head(&cil->xc_start_wait);
1490 init_waitqueue_head(&cil->xc_commit_wait);
1491 cil->xc_log = log;
1492 log->l_cilp = cil;
1493
1494 ctx = xlog_cil_ctx_alloc();
1495 xlog_cil_ctx_switch(cil, ctx);
1496
1497 return 0;
1498
1499 out_destroy_cil:
1500 kmem_free(cil);
1501 return -ENOMEM;
1502 }
1503
1504 void
1505 xlog_cil_destroy(
1506 struct xlog *log)
1507 {
1508 if (log->l_cilp->xc_ctx) {
1509 if (log->l_cilp->xc_ctx->ticket)
1510 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1511 kmem_free(log->l_cilp->xc_ctx);
1512 }
1513
1514 ASSERT(list_empty(&log->l_cilp->xc_cil));
1515 destroy_workqueue(log->l_cilp->xc_push_wq);
1516 kmem_free(log->l_cilp);
1517 }
1518