]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_log_recover.c
xfs: icreate log item recovery and cancellation tracepoints
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46
47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
48
49 STATIC int
50 xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53 STATIC int
54 xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
57 #if defined(DEBUG)
58 STATIC void
59 xlog_recover_check_summary(
60 struct xlog *);
61 #else
62 #define xlog_recover_check_summary(log)
63 #endif
64
65 /*
66 * This structure is used during recovery to record the buf log items which
67 * have been canceled and should not be replayed.
68 */
69 struct xfs_buf_cancel {
70 xfs_daddr_t bc_blkno;
71 uint bc_len;
72 int bc_refcount;
73 struct list_head bc_list;
74 };
75
76 /*
77 * Sector aligned buffer routines for buffer create/read/write/access
78 */
79
80 /*
81 * Verify the given count of basic blocks is valid number of blocks
82 * to specify for an operation involving the given XFS log buffer.
83 * Returns nonzero if the count is valid, 0 otherwise.
84 */
85
86 static inline int
87 xlog_buf_bbcount_valid(
88 struct xlog *log,
89 int bbcount)
90 {
91 return bbcount > 0 && bbcount <= log->l_logBBsize;
92 }
93
94 /*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
99 STATIC xfs_buf_t *
100 xlog_get_bp(
101 struct xlog *log,
102 int nbblks)
103 {
104 struct xfs_buf *bp;
105
106 if (!xlog_buf_bbcount_valid(log, nbblks)) {
107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 nbblks);
109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 return NULL;
111 }
112
113 /*
114 * We do log I/O in units of log sectors (a power-of-2
115 * multiple of the basic block size), so we round up the
116 * requested size to accommodate the basic blocks required
117 * for complete log sectors.
118 *
119 * In addition, the buffer may be used for a non-sector-
120 * aligned block offset, in which case an I/O of the
121 * requested size could extend beyond the end of the
122 * buffer. If the requested size is only 1 basic block it
123 * will never straddle a sector boundary, so this won't be
124 * an issue. Nor will this be a problem if the log I/O is
125 * done in basic blocks (sector size 1). But otherwise we
126 * extend the buffer by one extra log sector to ensure
127 * there's space to accommodate this possibility.
128 */
129 if (nbblks > 1 && log->l_sectBBsize > 1)
130 nbblks += log->l_sectBBsize;
131 nbblks = round_up(nbblks, log->l_sectBBsize);
132
133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
134 if (bp)
135 xfs_buf_unlock(bp);
136 return bp;
137 }
138
139 STATIC void
140 xlog_put_bp(
141 xfs_buf_t *bp)
142 {
143 xfs_buf_free(bp);
144 }
145
146 /*
147 * Return the address of the start of the given block number's data
148 * in a log buffer. The buffer covers a log sector-aligned region.
149 */
150 STATIC char *
151 xlog_align(
152 struct xlog *log,
153 xfs_daddr_t blk_no,
154 int nbblks,
155 struct xfs_buf *bp)
156 {
157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
158
159 ASSERT(offset + nbblks <= bp->b_length);
160 return bp->b_addr + BBTOB(offset);
161 }
162
163
164 /*
165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
166 */
167 STATIC int
168 xlog_bread_noalign(
169 struct xlog *log,
170 xfs_daddr_t blk_no,
171 int nbblks,
172 struct xfs_buf *bp)
173 {
174 int error;
175
176 if (!xlog_buf_bbcount_valid(log, nbblks)) {
177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
178 nbblks);
179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
180 return -EFSCORRUPTED;
181 }
182
183 blk_no = round_down(blk_no, log->l_sectBBsize);
184 nbblks = round_up(nbblks, log->l_sectBBsize);
185
186 ASSERT(nbblks > 0);
187 ASSERT(nbblks <= bp->b_length);
188
189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 XFS_BUF_READ(bp);
191 bp->b_io_length = nbblks;
192 bp->b_error = 0;
193
194 error = xfs_buf_submit_wait(bp);
195 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
196 xfs_buf_ioerror_alert(bp, __func__);
197 return error;
198 }
199
200 STATIC int
201 xlog_bread(
202 struct xlog *log,
203 xfs_daddr_t blk_no,
204 int nbblks,
205 struct xfs_buf *bp,
206 char **offset)
207 {
208 int error;
209
210 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
211 if (error)
212 return error;
213
214 *offset = xlog_align(log, blk_no, nbblks, bp);
215 return 0;
216 }
217
218 /*
219 * Read at an offset into the buffer. Returns with the buffer in it's original
220 * state regardless of the result of the read.
221 */
222 STATIC int
223 xlog_bread_offset(
224 struct xlog *log,
225 xfs_daddr_t blk_no, /* block to read from */
226 int nbblks, /* blocks to read */
227 struct xfs_buf *bp,
228 char *offset)
229 {
230 char *orig_offset = bp->b_addr;
231 int orig_len = BBTOB(bp->b_length);
232 int error, error2;
233
234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
235 if (error)
236 return error;
237
238 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
239
240 /* must reset buffer pointer even on error */
241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
242 if (error)
243 return error;
244 return error2;
245 }
246
247 /*
248 * Write out the buffer at the given block for the given number of blocks.
249 * The buffer is kept locked across the write and is returned locked.
250 * This can only be used for synchronous log writes.
251 */
252 STATIC int
253 xlog_bwrite(
254 struct xlog *log,
255 xfs_daddr_t blk_no,
256 int nbblks,
257 struct xfs_buf *bp)
258 {
259 int error;
260
261 if (!xlog_buf_bbcount_valid(log, nbblks)) {
262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
263 nbblks);
264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
265 return -EFSCORRUPTED;
266 }
267
268 blk_no = round_down(blk_no, log->l_sectBBsize);
269 nbblks = round_up(nbblks, log->l_sectBBsize);
270
271 ASSERT(nbblks > 0);
272 ASSERT(nbblks <= bp->b_length);
273
274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
275 XFS_BUF_ZEROFLAGS(bp);
276 xfs_buf_hold(bp);
277 xfs_buf_lock(bp);
278 bp->b_io_length = nbblks;
279 bp->b_error = 0;
280
281 error = xfs_bwrite(bp);
282 if (error)
283 xfs_buf_ioerror_alert(bp, __func__);
284 xfs_buf_relse(bp);
285 return error;
286 }
287
288 #ifdef DEBUG
289 /*
290 * dump debug superblock and log record information
291 */
292 STATIC void
293 xlog_header_check_dump(
294 xfs_mount_t *mp,
295 xlog_rec_header_t *head)
296 {
297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
299 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
301 }
302 #else
303 #define xlog_header_check_dump(mp, head)
304 #endif
305
306 /*
307 * check log record header for recovery
308 */
309 STATIC int
310 xlog_header_check_recover(
311 xfs_mount_t *mp,
312 xlog_rec_header_t *head)
313 {
314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
315
316 /*
317 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 * a dirty log created in IRIX.
320 */
321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
322 xfs_warn(mp,
323 "dirty log written in incompatible format - can't recover");
324 xlog_header_check_dump(mp, head);
325 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 XFS_ERRLEVEL_HIGH, mp);
327 return -EFSCORRUPTED;
328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
329 xfs_warn(mp,
330 "dirty log entry has mismatched uuid - can't recover");
331 xlog_header_check_dump(mp, head);
332 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 XFS_ERRLEVEL_HIGH, mp);
334 return -EFSCORRUPTED;
335 }
336 return 0;
337 }
338
339 /*
340 * read the head block of the log and check the header
341 */
342 STATIC int
343 xlog_header_check_mount(
344 xfs_mount_t *mp,
345 xlog_rec_header_t *head)
346 {
347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
348
349 if (uuid_is_nil(&head->h_fs_uuid)) {
350 /*
351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 * h_fs_uuid is nil, we assume this log was last mounted
353 * by IRIX and continue.
354 */
355 xfs_warn(mp, "nil uuid in log - IRIX style log");
356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
357 xfs_warn(mp, "log has mismatched uuid - can't recover");
358 xlog_header_check_dump(mp, head);
359 XFS_ERROR_REPORT("xlog_header_check_mount",
360 XFS_ERRLEVEL_HIGH, mp);
361 return -EFSCORRUPTED;
362 }
363 return 0;
364 }
365
366 STATIC void
367 xlog_recover_iodone(
368 struct xfs_buf *bp)
369 {
370 if (bp->b_error) {
371 /*
372 * We're not going to bother about retrying
373 * this during recovery. One strike!
374 */
375 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
376 xfs_buf_ioerror_alert(bp, __func__);
377 xfs_force_shutdown(bp->b_target->bt_mount,
378 SHUTDOWN_META_IO_ERROR);
379 }
380 }
381 bp->b_iodone = NULL;
382 xfs_buf_ioend(bp);
383 }
384
385 /*
386 * This routine finds (to an approximation) the first block in the physical
387 * log which contains the given cycle. It uses a binary search algorithm.
388 * Note that the algorithm can not be perfect because the disk will not
389 * necessarily be perfect.
390 */
391 STATIC int
392 xlog_find_cycle_start(
393 struct xlog *log,
394 struct xfs_buf *bp,
395 xfs_daddr_t first_blk,
396 xfs_daddr_t *last_blk,
397 uint cycle)
398 {
399 char *offset;
400 xfs_daddr_t mid_blk;
401 xfs_daddr_t end_blk;
402 uint mid_cycle;
403 int error;
404
405 end_blk = *last_blk;
406 mid_blk = BLK_AVG(first_blk, end_blk);
407 while (mid_blk != first_blk && mid_blk != end_blk) {
408 error = xlog_bread(log, mid_blk, 1, bp, &offset);
409 if (error)
410 return error;
411 mid_cycle = xlog_get_cycle(offset);
412 if (mid_cycle == cycle)
413 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
414 else
415 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
416 mid_blk = BLK_AVG(first_blk, end_blk);
417 }
418 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
419 (mid_blk == end_blk && mid_blk-1 == first_blk));
420
421 *last_blk = end_blk;
422
423 return 0;
424 }
425
426 /*
427 * Check that a range of blocks does not contain stop_on_cycle_no.
428 * Fill in *new_blk with the block offset where such a block is
429 * found, or with -1 (an invalid block number) if there is no such
430 * block in the range. The scan needs to occur from front to back
431 * and the pointer into the region must be updated since a later
432 * routine will need to perform another test.
433 */
434 STATIC int
435 xlog_find_verify_cycle(
436 struct xlog *log,
437 xfs_daddr_t start_blk,
438 int nbblks,
439 uint stop_on_cycle_no,
440 xfs_daddr_t *new_blk)
441 {
442 xfs_daddr_t i, j;
443 uint cycle;
444 xfs_buf_t *bp;
445 xfs_daddr_t bufblks;
446 char *buf = NULL;
447 int error = 0;
448
449 /*
450 * Greedily allocate a buffer big enough to handle the full
451 * range of basic blocks we'll be examining. If that fails,
452 * try a smaller size. We need to be able to read at least
453 * a log sector, or we're out of luck.
454 */
455 bufblks = 1 << ffs(nbblks);
456 while (bufblks > log->l_logBBsize)
457 bufblks >>= 1;
458 while (!(bp = xlog_get_bp(log, bufblks))) {
459 bufblks >>= 1;
460 if (bufblks < log->l_sectBBsize)
461 return -ENOMEM;
462 }
463
464 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
465 int bcount;
466
467 bcount = min(bufblks, (start_blk + nbblks - i));
468
469 error = xlog_bread(log, i, bcount, bp, &buf);
470 if (error)
471 goto out;
472
473 for (j = 0; j < bcount; j++) {
474 cycle = xlog_get_cycle(buf);
475 if (cycle == stop_on_cycle_no) {
476 *new_blk = i+j;
477 goto out;
478 }
479
480 buf += BBSIZE;
481 }
482 }
483
484 *new_blk = -1;
485
486 out:
487 xlog_put_bp(bp);
488 return error;
489 }
490
491 /*
492 * Potentially backup over partial log record write.
493 *
494 * In the typical case, last_blk is the number of the block directly after
495 * a good log record. Therefore, we subtract one to get the block number
496 * of the last block in the given buffer. extra_bblks contains the number
497 * of blocks we would have read on a previous read. This happens when the
498 * last log record is split over the end of the physical log.
499 *
500 * extra_bblks is the number of blocks potentially verified on a previous
501 * call to this routine.
502 */
503 STATIC int
504 xlog_find_verify_log_record(
505 struct xlog *log,
506 xfs_daddr_t start_blk,
507 xfs_daddr_t *last_blk,
508 int extra_bblks)
509 {
510 xfs_daddr_t i;
511 xfs_buf_t *bp;
512 char *offset = NULL;
513 xlog_rec_header_t *head = NULL;
514 int error = 0;
515 int smallmem = 0;
516 int num_blks = *last_blk - start_blk;
517 int xhdrs;
518
519 ASSERT(start_blk != 0 || *last_blk != start_blk);
520
521 if (!(bp = xlog_get_bp(log, num_blks))) {
522 if (!(bp = xlog_get_bp(log, 1)))
523 return -ENOMEM;
524 smallmem = 1;
525 } else {
526 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
527 if (error)
528 goto out;
529 offset += ((num_blks - 1) << BBSHIFT);
530 }
531
532 for (i = (*last_blk) - 1; i >= 0; i--) {
533 if (i < start_blk) {
534 /* valid log record not found */
535 xfs_warn(log->l_mp,
536 "Log inconsistent (didn't find previous header)");
537 ASSERT(0);
538 error = -EIO;
539 goto out;
540 }
541
542 if (smallmem) {
543 error = xlog_bread(log, i, 1, bp, &offset);
544 if (error)
545 goto out;
546 }
547
548 head = (xlog_rec_header_t *)offset;
549
550 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
551 break;
552
553 if (!smallmem)
554 offset -= BBSIZE;
555 }
556
557 /*
558 * We hit the beginning of the physical log & still no header. Return
559 * to caller. If caller can handle a return of -1, then this routine
560 * will be called again for the end of the physical log.
561 */
562 if (i == -1) {
563 error = 1;
564 goto out;
565 }
566
567 /*
568 * We have the final block of the good log (the first block
569 * of the log record _before_ the head. So we check the uuid.
570 */
571 if ((error = xlog_header_check_mount(log->l_mp, head)))
572 goto out;
573
574 /*
575 * We may have found a log record header before we expected one.
576 * last_blk will be the 1st block # with a given cycle #. We may end
577 * up reading an entire log record. In this case, we don't want to
578 * reset last_blk. Only when last_blk points in the middle of a log
579 * record do we update last_blk.
580 */
581 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
582 uint h_size = be32_to_cpu(head->h_size);
583
584 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
585 if (h_size % XLOG_HEADER_CYCLE_SIZE)
586 xhdrs++;
587 } else {
588 xhdrs = 1;
589 }
590
591 if (*last_blk - i + extra_bblks !=
592 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
593 *last_blk = i;
594
595 out:
596 xlog_put_bp(bp);
597 return error;
598 }
599
600 /*
601 * Head is defined to be the point of the log where the next log write
602 * could go. This means that incomplete LR writes at the end are
603 * eliminated when calculating the head. We aren't guaranteed that previous
604 * LR have complete transactions. We only know that a cycle number of
605 * current cycle number -1 won't be present in the log if we start writing
606 * from our current block number.
607 *
608 * last_blk contains the block number of the first block with a given
609 * cycle number.
610 *
611 * Return: zero if normal, non-zero if error.
612 */
613 STATIC int
614 xlog_find_head(
615 struct xlog *log,
616 xfs_daddr_t *return_head_blk)
617 {
618 xfs_buf_t *bp;
619 char *offset;
620 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
621 int num_scan_bblks;
622 uint first_half_cycle, last_half_cycle;
623 uint stop_on_cycle;
624 int error, log_bbnum = log->l_logBBsize;
625
626 /* Is the end of the log device zeroed? */
627 error = xlog_find_zeroed(log, &first_blk);
628 if (error < 0) {
629 xfs_warn(log->l_mp, "empty log check failed");
630 return error;
631 }
632 if (error == 1) {
633 *return_head_blk = first_blk;
634
635 /* Is the whole lot zeroed? */
636 if (!first_blk) {
637 /* Linux XFS shouldn't generate totally zeroed logs -
638 * mkfs etc write a dummy unmount record to a fresh
639 * log so we can store the uuid in there
640 */
641 xfs_warn(log->l_mp, "totally zeroed log");
642 }
643
644 return 0;
645 }
646
647 first_blk = 0; /* get cycle # of 1st block */
648 bp = xlog_get_bp(log, 1);
649 if (!bp)
650 return -ENOMEM;
651
652 error = xlog_bread(log, 0, 1, bp, &offset);
653 if (error)
654 goto bp_err;
655
656 first_half_cycle = xlog_get_cycle(offset);
657
658 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
659 error = xlog_bread(log, last_blk, 1, bp, &offset);
660 if (error)
661 goto bp_err;
662
663 last_half_cycle = xlog_get_cycle(offset);
664 ASSERT(last_half_cycle != 0);
665
666 /*
667 * If the 1st half cycle number is equal to the last half cycle number,
668 * then the entire log is stamped with the same cycle number. In this
669 * case, head_blk can't be set to zero (which makes sense). The below
670 * math doesn't work out properly with head_blk equal to zero. Instead,
671 * we set it to log_bbnum which is an invalid block number, but this
672 * value makes the math correct. If head_blk doesn't changed through
673 * all the tests below, *head_blk is set to zero at the very end rather
674 * than log_bbnum. In a sense, log_bbnum and zero are the same block
675 * in a circular file.
676 */
677 if (first_half_cycle == last_half_cycle) {
678 /*
679 * In this case we believe that the entire log should have
680 * cycle number last_half_cycle. We need to scan backwards
681 * from the end verifying that there are no holes still
682 * containing last_half_cycle - 1. If we find such a hole,
683 * then the start of that hole will be the new head. The
684 * simple case looks like
685 * x | x ... | x - 1 | x
686 * Another case that fits this picture would be
687 * x | x + 1 | x ... | x
688 * In this case the head really is somewhere at the end of the
689 * log, as one of the latest writes at the beginning was
690 * incomplete.
691 * One more case is
692 * x | x + 1 | x ... | x - 1 | x
693 * This is really the combination of the above two cases, and
694 * the head has to end up at the start of the x-1 hole at the
695 * end of the log.
696 *
697 * In the 256k log case, we will read from the beginning to the
698 * end of the log and search for cycle numbers equal to x-1.
699 * We don't worry about the x+1 blocks that we encounter,
700 * because we know that they cannot be the head since the log
701 * started with x.
702 */
703 head_blk = log_bbnum;
704 stop_on_cycle = last_half_cycle - 1;
705 } else {
706 /*
707 * In this case we want to find the first block with cycle
708 * number matching last_half_cycle. We expect the log to be
709 * some variation on
710 * x + 1 ... | x ... | x
711 * The first block with cycle number x (last_half_cycle) will
712 * be where the new head belongs. First we do a binary search
713 * for the first occurrence of last_half_cycle. The binary
714 * search may not be totally accurate, so then we scan back
715 * from there looking for occurrences of last_half_cycle before
716 * us. If that backwards scan wraps around the beginning of
717 * the log, then we look for occurrences of last_half_cycle - 1
718 * at the end of the log. The cases we're looking for look
719 * like
720 * v binary search stopped here
721 * x + 1 ... | x | x + 1 | x ... | x
722 * ^ but we want to locate this spot
723 * or
724 * <---------> less than scan distance
725 * x + 1 ... | x ... | x - 1 | x
726 * ^ we want to locate this spot
727 */
728 stop_on_cycle = last_half_cycle;
729 if ((error = xlog_find_cycle_start(log, bp, first_blk,
730 &head_blk, last_half_cycle)))
731 goto bp_err;
732 }
733
734 /*
735 * Now validate the answer. Scan back some number of maximum possible
736 * blocks and make sure each one has the expected cycle number. The
737 * maximum is determined by the total possible amount of buffering
738 * in the in-core log. The following number can be made tighter if
739 * we actually look at the block size of the filesystem.
740 */
741 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
742 if (head_blk >= num_scan_bblks) {
743 /*
744 * We are guaranteed that the entire check can be performed
745 * in one buffer.
746 */
747 start_blk = head_blk - num_scan_bblks;
748 if ((error = xlog_find_verify_cycle(log,
749 start_blk, num_scan_bblks,
750 stop_on_cycle, &new_blk)))
751 goto bp_err;
752 if (new_blk != -1)
753 head_blk = new_blk;
754 } else { /* need to read 2 parts of log */
755 /*
756 * We are going to scan backwards in the log in two parts.
757 * First we scan the physical end of the log. In this part
758 * of the log, we are looking for blocks with cycle number
759 * last_half_cycle - 1.
760 * If we find one, then we know that the log starts there, as
761 * we've found a hole that didn't get written in going around
762 * the end of the physical log. The simple case for this is
763 * x + 1 ... | x ... | x - 1 | x
764 * <---------> less than scan distance
765 * If all of the blocks at the end of the log have cycle number
766 * last_half_cycle, then we check the blocks at the start of
767 * the log looking for occurrences of last_half_cycle. If we
768 * find one, then our current estimate for the location of the
769 * first occurrence of last_half_cycle is wrong and we move
770 * back to the hole we've found. This case looks like
771 * x + 1 ... | x | x + 1 | x ...
772 * ^ binary search stopped here
773 * Another case we need to handle that only occurs in 256k
774 * logs is
775 * x + 1 ... | x ... | x+1 | x ...
776 * ^ binary search stops here
777 * In a 256k log, the scan at the end of the log will see the
778 * x + 1 blocks. We need to skip past those since that is
779 * certainly not the head of the log. By searching for
780 * last_half_cycle-1 we accomplish that.
781 */
782 ASSERT(head_blk <= INT_MAX &&
783 (xfs_daddr_t) num_scan_bblks >= head_blk);
784 start_blk = log_bbnum - (num_scan_bblks - head_blk);
785 if ((error = xlog_find_verify_cycle(log, start_blk,
786 num_scan_bblks - (int)head_blk,
787 (stop_on_cycle - 1), &new_blk)))
788 goto bp_err;
789 if (new_blk != -1) {
790 head_blk = new_blk;
791 goto validate_head;
792 }
793
794 /*
795 * Scan beginning of log now. The last part of the physical
796 * log is good. This scan needs to verify that it doesn't find
797 * the last_half_cycle.
798 */
799 start_blk = 0;
800 ASSERT(head_blk <= INT_MAX);
801 if ((error = xlog_find_verify_cycle(log,
802 start_blk, (int)head_blk,
803 stop_on_cycle, &new_blk)))
804 goto bp_err;
805 if (new_blk != -1)
806 head_blk = new_blk;
807 }
808
809 validate_head:
810 /*
811 * Now we need to make sure head_blk is not pointing to a block in
812 * the middle of a log record.
813 */
814 num_scan_bblks = XLOG_REC_SHIFT(log);
815 if (head_blk >= num_scan_bblks) {
816 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
817
818 /* start ptr at last block ptr before head_blk */
819 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
820 if (error == 1)
821 error = -EIO;
822 if (error)
823 goto bp_err;
824 } else {
825 start_blk = 0;
826 ASSERT(head_blk <= INT_MAX);
827 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
828 if (error < 0)
829 goto bp_err;
830 if (error == 1) {
831 /* We hit the beginning of the log during our search */
832 start_blk = log_bbnum - (num_scan_bblks - head_blk);
833 new_blk = log_bbnum;
834 ASSERT(start_blk <= INT_MAX &&
835 (xfs_daddr_t) log_bbnum-start_blk >= 0);
836 ASSERT(head_blk <= INT_MAX);
837 error = xlog_find_verify_log_record(log, start_blk,
838 &new_blk, (int)head_blk);
839 if (error == 1)
840 error = -EIO;
841 if (error)
842 goto bp_err;
843 if (new_blk != log_bbnum)
844 head_blk = new_blk;
845 } else if (error)
846 goto bp_err;
847 }
848
849 xlog_put_bp(bp);
850 if (head_blk == log_bbnum)
851 *return_head_blk = 0;
852 else
853 *return_head_blk = head_blk;
854 /*
855 * When returning here, we have a good block number. Bad block
856 * means that during a previous crash, we didn't have a clean break
857 * from cycle number N to cycle number N-1. In this case, we need
858 * to find the first block with cycle number N-1.
859 */
860 return 0;
861
862 bp_err:
863 xlog_put_bp(bp);
864
865 if (error)
866 xfs_warn(log->l_mp, "failed to find log head");
867 return error;
868 }
869
870 /*
871 * Find the sync block number or the tail of the log.
872 *
873 * This will be the block number of the last record to have its
874 * associated buffers synced to disk. Every log record header has
875 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
876 * to get a sync block number. The only concern is to figure out which
877 * log record header to believe.
878 *
879 * The following algorithm uses the log record header with the largest
880 * lsn. The entire log record does not need to be valid. We only care
881 * that the header is valid.
882 *
883 * We could speed up search by using current head_blk buffer, but it is not
884 * available.
885 */
886 STATIC int
887 xlog_find_tail(
888 struct xlog *log,
889 xfs_daddr_t *head_blk,
890 xfs_daddr_t *tail_blk)
891 {
892 xlog_rec_header_t *rhead;
893 xlog_op_header_t *op_head;
894 char *offset = NULL;
895 xfs_buf_t *bp;
896 int error, i, found;
897 xfs_daddr_t umount_data_blk;
898 xfs_daddr_t after_umount_blk;
899 xfs_lsn_t tail_lsn;
900 int hblks;
901
902 found = 0;
903
904 /*
905 * Find previous log record
906 */
907 if ((error = xlog_find_head(log, head_blk)))
908 return error;
909
910 bp = xlog_get_bp(log, 1);
911 if (!bp)
912 return -ENOMEM;
913 if (*head_blk == 0) { /* special case */
914 error = xlog_bread(log, 0, 1, bp, &offset);
915 if (error)
916 goto done;
917
918 if (xlog_get_cycle(offset) == 0) {
919 *tail_blk = 0;
920 /* leave all other log inited values alone */
921 goto done;
922 }
923 }
924
925 /*
926 * Search backwards looking for log record header block
927 */
928 ASSERT(*head_blk < INT_MAX);
929 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
930 error = xlog_bread(log, i, 1, bp, &offset);
931 if (error)
932 goto done;
933
934 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
935 found = 1;
936 break;
937 }
938 }
939 /*
940 * If we haven't found the log record header block, start looking
941 * again from the end of the physical log. XXXmiken: There should be
942 * a check here to make sure we didn't search more than N blocks in
943 * the previous code.
944 */
945 if (!found) {
946 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
947 error = xlog_bread(log, i, 1, bp, &offset);
948 if (error)
949 goto done;
950
951 if (*(__be32 *)offset ==
952 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
953 found = 2;
954 break;
955 }
956 }
957 }
958 if (!found) {
959 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
960 xlog_put_bp(bp);
961 ASSERT(0);
962 return -EIO;
963 }
964
965 /* find blk_no of tail of log */
966 rhead = (xlog_rec_header_t *)offset;
967 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
968
969 /*
970 * Reset log values according to the state of the log when we
971 * crashed. In the case where head_blk == 0, we bump curr_cycle
972 * one because the next write starts a new cycle rather than
973 * continuing the cycle of the last good log record. At this
974 * point we have guaranteed that all partial log records have been
975 * accounted for. Therefore, we know that the last good log record
976 * written was complete and ended exactly on the end boundary
977 * of the physical log.
978 */
979 log->l_prev_block = i;
980 log->l_curr_block = (int)*head_blk;
981 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
982 if (found == 2)
983 log->l_curr_cycle++;
984 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
985 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
986 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
987 BBTOB(log->l_curr_block));
988 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
989 BBTOB(log->l_curr_block));
990
991 /*
992 * Look for unmount record. If we find it, then we know there
993 * was a clean unmount. Since 'i' could be the last block in
994 * the physical log, we convert to a log block before comparing
995 * to the head_blk.
996 *
997 * Save the current tail lsn to use to pass to
998 * xlog_clear_stale_blocks() below. We won't want to clear the
999 * unmount record if there is one, so we pass the lsn of the
1000 * unmount record rather than the block after it.
1001 */
1002 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1003 int h_size = be32_to_cpu(rhead->h_size);
1004 int h_version = be32_to_cpu(rhead->h_version);
1005
1006 if ((h_version & XLOG_VERSION_2) &&
1007 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1008 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1009 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1010 hblks++;
1011 } else {
1012 hblks = 1;
1013 }
1014 } else {
1015 hblks = 1;
1016 }
1017 after_umount_blk = (i + hblks + (int)
1018 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1019 tail_lsn = atomic64_read(&log->l_tail_lsn);
1020 if (*head_blk == after_umount_blk &&
1021 be32_to_cpu(rhead->h_num_logops) == 1) {
1022 umount_data_blk = (i + hblks) % log->l_logBBsize;
1023 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1024 if (error)
1025 goto done;
1026
1027 op_head = (xlog_op_header_t *)offset;
1028 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1029 /*
1030 * Set tail and last sync so that newly written
1031 * log records will point recovery to after the
1032 * current unmount record.
1033 */
1034 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1035 log->l_curr_cycle, after_umount_blk);
1036 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1037 log->l_curr_cycle, after_umount_blk);
1038 *tail_blk = after_umount_blk;
1039
1040 /*
1041 * Note that the unmount was clean. If the unmount
1042 * was not clean, we need to know this to rebuild the
1043 * superblock counters from the perag headers if we
1044 * have a filesystem using non-persistent counters.
1045 */
1046 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1047 }
1048 }
1049
1050 /*
1051 * Make sure that there are no blocks in front of the head
1052 * with the same cycle number as the head. This can happen
1053 * because we allow multiple outstanding log writes concurrently,
1054 * and the later writes might make it out before earlier ones.
1055 *
1056 * We use the lsn from before modifying it so that we'll never
1057 * overwrite the unmount record after a clean unmount.
1058 *
1059 * Do this only if we are going to recover the filesystem
1060 *
1061 * NOTE: This used to say "if (!readonly)"
1062 * However on Linux, we can & do recover a read-only filesystem.
1063 * We only skip recovery if NORECOVERY is specified on mount,
1064 * in which case we would not be here.
1065 *
1066 * But... if the -device- itself is readonly, just skip this.
1067 * We can't recover this device anyway, so it won't matter.
1068 */
1069 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1070 error = xlog_clear_stale_blocks(log, tail_lsn);
1071
1072 done:
1073 xlog_put_bp(bp);
1074
1075 if (error)
1076 xfs_warn(log->l_mp, "failed to locate log tail");
1077 return error;
1078 }
1079
1080 /*
1081 * Is the log zeroed at all?
1082 *
1083 * The last binary search should be changed to perform an X block read
1084 * once X becomes small enough. You can then search linearly through
1085 * the X blocks. This will cut down on the number of reads we need to do.
1086 *
1087 * If the log is partially zeroed, this routine will pass back the blkno
1088 * of the first block with cycle number 0. It won't have a complete LR
1089 * preceding it.
1090 *
1091 * Return:
1092 * 0 => the log is completely written to
1093 * 1 => use *blk_no as the first block of the log
1094 * <0 => error has occurred
1095 */
1096 STATIC int
1097 xlog_find_zeroed(
1098 struct xlog *log,
1099 xfs_daddr_t *blk_no)
1100 {
1101 xfs_buf_t *bp;
1102 char *offset;
1103 uint first_cycle, last_cycle;
1104 xfs_daddr_t new_blk, last_blk, start_blk;
1105 xfs_daddr_t num_scan_bblks;
1106 int error, log_bbnum = log->l_logBBsize;
1107
1108 *blk_no = 0;
1109
1110 /* check totally zeroed log */
1111 bp = xlog_get_bp(log, 1);
1112 if (!bp)
1113 return -ENOMEM;
1114 error = xlog_bread(log, 0, 1, bp, &offset);
1115 if (error)
1116 goto bp_err;
1117
1118 first_cycle = xlog_get_cycle(offset);
1119 if (first_cycle == 0) { /* completely zeroed log */
1120 *blk_no = 0;
1121 xlog_put_bp(bp);
1122 return 1;
1123 }
1124
1125 /* check partially zeroed log */
1126 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1127 if (error)
1128 goto bp_err;
1129
1130 last_cycle = xlog_get_cycle(offset);
1131 if (last_cycle != 0) { /* log completely written to */
1132 xlog_put_bp(bp);
1133 return 0;
1134 } else if (first_cycle != 1) {
1135 /*
1136 * If the cycle of the last block is zero, the cycle of
1137 * the first block must be 1. If it's not, maybe we're
1138 * not looking at a log... Bail out.
1139 */
1140 xfs_warn(log->l_mp,
1141 "Log inconsistent or not a log (last==0, first!=1)");
1142 error = -EINVAL;
1143 goto bp_err;
1144 }
1145
1146 /* we have a partially zeroed log */
1147 last_blk = log_bbnum-1;
1148 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1149 goto bp_err;
1150
1151 /*
1152 * Validate the answer. Because there is no way to guarantee that
1153 * the entire log is made up of log records which are the same size,
1154 * we scan over the defined maximum blocks. At this point, the maximum
1155 * is not chosen to mean anything special. XXXmiken
1156 */
1157 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1158 ASSERT(num_scan_bblks <= INT_MAX);
1159
1160 if (last_blk < num_scan_bblks)
1161 num_scan_bblks = last_blk;
1162 start_blk = last_blk - num_scan_bblks;
1163
1164 /*
1165 * We search for any instances of cycle number 0 that occur before
1166 * our current estimate of the head. What we're trying to detect is
1167 * 1 ... | 0 | 1 | 0...
1168 * ^ binary search ends here
1169 */
1170 if ((error = xlog_find_verify_cycle(log, start_blk,
1171 (int)num_scan_bblks, 0, &new_blk)))
1172 goto bp_err;
1173 if (new_blk != -1)
1174 last_blk = new_blk;
1175
1176 /*
1177 * Potentially backup over partial log record write. We don't need
1178 * to search the end of the log because we know it is zero.
1179 */
1180 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1181 if (error == 1)
1182 error = -EIO;
1183 if (error)
1184 goto bp_err;
1185
1186 *blk_no = last_blk;
1187 bp_err:
1188 xlog_put_bp(bp);
1189 if (error)
1190 return error;
1191 return 1;
1192 }
1193
1194 /*
1195 * These are simple subroutines used by xlog_clear_stale_blocks() below
1196 * to initialize a buffer full of empty log record headers and write
1197 * them into the log.
1198 */
1199 STATIC void
1200 xlog_add_record(
1201 struct xlog *log,
1202 char *buf,
1203 int cycle,
1204 int block,
1205 int tail_cycle,
1206 int tail_block)
1207 {
1208 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1209
1210 memset(buf, 0, BBSIZE);
1211 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1212 recp->h_cycle = cpu_to_be32(cycle);
1213 recp->h_version = cpu_to_be32(
1214 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1215 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1216 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1217 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1218 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1219 }
1220
1221 STATIC int
1222 xlog_write_log_records(
1223 struct xlog *log,
1224 int cycle,
1225 int start_block,
1226 int blocks,
1227 int tail_cycle,
1228 int tail_block)
1229 {
1230 char *offset;
1231 xfs_buf_t *bp;
1232 int balign, ealign;
1233 int sectbb = log->l_sectBBsize;
1234 int end_block = start_block + blocks;
1235 int bufblks;
1236 int error = 0;
1237 int i, j = 0;
1238
1239 /*
1240 * Greedily allocate a buffer big enough to handle the full
1241 * range of basic blocks to be written. If that fails, try
1242 * a smaller size. We need to be able to write at least a
1243 * log sector, or we're out of luck.
1244 */
1245 bufblks = 1 << ffs(blocks);
1246 while (bufblks > log->l_logBBsize)
1247 bufblks >>= 1;
1248 while (!(bp = xlog_get_bp(log, bufblks))) {
1249 bufblks >>= 1;
1250 if (bufblks < sectbb)
1251 return -ENOMEM;
1252 }
1253
1254 /* We may need to do a read at the start to fill in part of
1255 * the buffer in the starting sector not covered by the first
1256 * write below.
1257 */
1258 balign = round_down(start_block, sectbb);
1259 if (balign != start_block) {
1260 error = xlog_bread_noalign(log, start_block, 1, bp);
1261 if (error)
1262 goto out_put_bp;
1263
1264 j = start_block - balign;
1265 }
1266
1267 for (i = start_block; i < end_block; i += bufblks) {
1268 int bcount, endcount;
1269
1270 bcount = min(bufblks, end_block - start_block);
1271 endcount = bcount - j;
1272
1273 /* We may need to do a read at the end to fill in part of
1274 * the buffer in the final sector not covered by the write.
1275 * If this is the same sector as the above read, skip it.
1276 */
1277 ealign = round_down(end_block, sectbb);
1278 if (j == 0 && (start_block + endcount > ealign)) {
1279 offset = bp->b_addr + BBTOB(ealign - start_block);
1280 error = xlog_bread_offset(log, ealign, sectbb,
1281 bp, offset);
1282 if (error)
1283 break;
1284
1285 }
1286
1287 offset = xlog_align(log, start_block, endcount, bp);
1288 for (; j < endcount; j++) {
1289 xlog_add_record(log, offset, cycle, i+j,
1290 tail_cycle, tail_block);
1291 offset += BBSIZE;
1292 }
1293 error = xlog_bwrite(log, start_block, endcount, bp);
1294 if (error)
1295 break;
1296 start_block += endcount;
1297 j = 0;
1298 }
1299
1300 out_put_bp:
1301 xlog_put_bp(bp);
1302 return error;
1303 }
1304
1305 /*
1306 * This routine is called to blow away any incomplete log writes out
1307 * in front of the log head. We do this so that we won't become confused
1308 * if we come up, write only a little bit more, and then crash again.
1309 * If we leave the partial log records out there, this situation could
1310 * cause us to think those partial writes are valid blocks since they
1311 * have the current cycle number. We get rid of them by overwriting them
1312 * with empty log records with the old cycle number rather than the
1313 * current one.
1314 *
1315 * The tail lsn is passed in rather than taken from
1316 * the log so that we will not write over the unmount record after a
1317 * clean unmount in a 512 block log. Doing so would leave the log without
1318 * any valid log records in it until a new one was written. If we crashed
1319 * during that time we would not be able to recover.
1320 */
1321 STATIC int
1322 xlog_clear_stale_blocks(
1323 struct xlog *log,
1324 xfs_lsn_t tail_lsn)
1325 {
1326 int tail_cycle, head_cycle;
1327 int tail_block, head_block;
1328 int tail_distance, max_distance;
1329 int distance;
1330 int error;
1331
1332 tail_cycle = CYCLE_LSN(tail_lsn);
1333 tail_block = BLOCK_LSN(tail_lsn);
1334 head_cycle = log->l_curr_cycle;
1335 head_block = log->l_curr_block;
1336
1337 /*
1338 * Figure out the distance between the new head of the log
1339 * and the tail. We want to write over any blocks beyond the
1340 * head that we may have written just before the crash, but
1341 * we don't want to overwrite the tail of the log.
1342 */
1343 if (head_cycle == tail_cycle) {
1344 /*
1345 * The tail is behind the head in the physical log,
1346 * so the distance from the head to the tail is the
1347 * distance from the head to the end of the log plus
1348 * the distance from the beginning of the log to the
1349 * tail.
1350 */
1351 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1352 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1353 XFS_ERRLEVEL_LOW, log->l_mp);
1354 return -EFSCORRUPTED;
1355 }
1356 tail_distance = tail_block + (log->l_logBBsize - head_block);
1357 } else {
1358 /*
1359 * The head is behind the tail in the physical log,
1360 * so the distance from the head to the tail is just
1361 * the tail block minus the head block.
1362 */
1363 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1364 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1365 XFS_ERRLEVEL_LOW, log->l_mp);
1366 return -EFSCORRUPTED;
1367 }
1368 tail_distance = tail_block - head_block;
1369 }
1370
1371 /*
1372 * If the head is right up against the tail, we can't clear
1373 * anything.
1374 */
1375 if (tail_distance <= 0) {
1376 ASSERT(tail_distance == 0);
1377 return 0;
1378 }
1379
1380 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1381 /*
1382 * Take the smaller of the maximum amount of outstanding I/O
1383 * we could have and the distance to the tail to clear out.
1384 * We take the smaller so that we don't overwrite the tail and
1385 * we don't waste all day writing from the head to the tail
1386 * for no reason.
1387 */
1388 max_distance = MIN(max_distance, tail_distance);
1389
1390 if ((head_block + max_distance) <= log->l_logBBsize) {
1391 /*
1392 * We can stomp all the blocks we need to without
1393 * wrapping around the end of the log. Just do it
1394 * in a single write. Use the cycle number of the
1395 * current cycle minus one so that the log will look like:
1396 * n ... | n - 1 ...
1397 */
1398 error = xlog_write_log_records(log, (head_cycle - 1),
1399 head_block, max_distance, tail_cycle,
1400 tail_block);
1401 if (error)
1402 return error;
1403 } else {
1404 /*
1405 * We need to wrap around the end of the physical log in
1406 * order to clear all the blocks. Do it in two separate
1407 * I/Os. The first write should be from the head to the
1408 * end of the physical log, and it should use the current
1409 * cycle number minus one just like above.
1410 */
1411 distance = log->l_logBBsize - head_block;
1412 error = xlog_write_log_records(log, (head_cycle - 1),
1413 head_block, distance, tail_cycle,
1414 tail_block);
1415
1416 if (error)
1417 return error;
1418
1419 /*
1420 * Now write the blocks at the start of the physical log.
1421 * This writes the remainder of the blocks we want to clear.
1422 * It uses the current cycle number since we're now on the
1423 * same cycle as the head so that we get:
1424 * n ... n ... | n - 1 ...
1425 * ^^^^^ blocks we're writing
1426 */
1427 distance = max_distance - (log->l_logBBsize - head_block);
1428 error = xlog_write_log_records(log, head_cycle, 0, distance,
1429 tail_cycle, tail_block);
1430 if (error)
1431 return error;
1432 }
1433
1434 return 0;
1435 }
1436
1437 /******************************************************************************
1438 *
1439 * Log recover routines
1440 *
1441 ******************************************************************************
1442 */
1443
1444 /*
1445 * Sort the log items in the transaction.
1446 *
1447 * The ordering constraints are defined by the inode allocation and unlink
1448 * behaviour. The rules are:
1449 *
1450 * 1. Every item is only logged once in a given transaction. Hence it
1451 * represents the last logged state of the item. Hence ordering is
1452 * dependent on the order in which operations need to be performed so
1453 * required initial conditions are always met.
1454 *
1455 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1456 * there's nothing to replay from them so we can simply cull them
1457 * from the transaction. However, we can't do that until after we've
1458 * replayed all the other items because they may be dependent on the
1459 * cancelled buffer and replaying the cancelled buffer can remove it
1460 * form the cancelled buffer table. Hence they have tobe done last.
1461 *
1462 * 3. Inode allocation buffers must be replayed before inode items that
1463 * read the buffer and replay changes into it. For filesystems using the
1464 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1465 * treated the same as inode allocation buffers as they create and
1466 * initialise the buffers directly.
1467 *
1468 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1469 * This ensures that inodes are completely flushed to the inode buffer
1470 * in a "free" state before we remove the unlinked inode list pointer.
1471 *
1472 * Hence the ordering needs to be inode allocation buffers first, inode items
1473 * second, inode unlink buffers third and cancelled buffers last.
1474 *
1475 * But there's a problem with that - we can't tell an inode allocation buffer
1476 * apart from a regular buffer, so we can't separate them. We can, however,
1477 * tell an inode unlink buffer from the others, and so we can separate them out
1478 * from all the other buffers and move them to last.
1479 *
1480 * Hence, 4 lists, in order from head to tail:
1481 * - buffer_list for all buffers except cancelled/inode unlink buffers
1482 * - item_list for all non-buffer items
1483 * - inode_buffer_list for inode unlink buffers
1484 * - cancel_list for the cancelled buffers
1485 *
1486 * Note that we add objects to the tail of the lists so that first-to-last
1487 * ordering is preserved within the lists. Adding objects to the head of the
1488 * list means when we traverse from the head we walk them in last-to-first
1489 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1490 * but for all other items there may be specific ordering that we need to
1491 * preserve.
1492 */
1493 STATIC int
1494 xlog_recover_reorder_trans(
1495 struct xlog *log,
1496 struct xlog_recover *trans,
1497 int pass)
1498 {
1499 xlog_recover_item_t *item, *n;
1500 int error = 0;
1501 LIST_HEAD(sort_list);
1502 LIST_HEAD(cancel_list);
1503 LIST_HEAD(buffer_list);
1504 LIST_HEAD(inode_buffer_list);
1505 LIST_HEAD(inode_list);
1506
1507 list_splice_init(&trans->r_itemq, &sort_list);
1508 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1509 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1510
1511 switch (ITEM_TYPE(item)) {
1512 case XFS_LI_ICREATE:
1513 list_move_tail(&item->ri_list, &buffer_list);
1514 break;
1515 case XFS_LI_BUF:
1516 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1517 trace_xfs_log_recover_item_reorder_head(log,
1518 trans, item, pass);
1519 list_move(&item->ri_list, &cancel_list);
1520 break;
1521 }
1522 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1523 list_move(&item->ri_list, &inode_buffer_list);
1524 break;
1525 }
1526 list_move_tail(&item->ri_list, &buffer_list);
1527 break;
1528 case XFS_LI_INODE:
1529 case XFS_LI_DQUOT:
1530 case XFS_LI_QUOTAOFF:
1531 case XFS_LI_EFD:
1532 case XFS_LI_EFI:
1533 trace_xfs_log_recover_item_reorder_tail(log,
1534 trans, item, pass);
1535 list_move_tail(&item->ri_list, &inode_list);
1536 break;
1537 default:
1538 xfs_warn(log->l_mp,
1539 "%s: unrecognized type of log operation",
1540 __func__);
1541 ASSERT(0);
1542 /*
1543 * return the remaining items back to the transaction
1544 * item list so they can be freed in caller.
1545 */
1546 if (!list_empty(&sort_list))
1547 list_splice_init(&sort_list, &trans->r_itemq);
1548 error = -EIO;
1549 goto out;
1550 }
1551 }
1552 out:
1553 ASSERT(list_empty(&sort_list));
1554 if (!list_empty(&buffer_list))
1555 list_splice(&buffer_list, &trans->r_itemq);
1556 if (!list_empty(&inode_list))
1557 list_splice_tail(&inode_list, &trans->r_itemq);
1558 if (!list_empty(&inode_buffer_list))
1559 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1560 if (!list_empty(&cancel_list))
1561 list_splice_tail(&cancel_list, &trans->r_itemq);
1562 return error;
1563 }
1564
1565 /*
1566 * Build up the table of buf cancel records so that we don't replay
1567 * cancelled data in the second pass. For buffer records that are
1568 * not cancel records, there is nothing to do here so we just return.
1569 *
1570 * If we get a cancel record which is already in the table, this indicates
1571 * that the buffer was cancelled multiple times. In order to ensure
1572 * that during pass 2 we keep the record in the table until we reach its
1573 * last occurrence in the log, we keep a reference count in the cancel
1574 * record in the table to tell us how many times we expect to see this
1575 * record during the second pass.
1576 */
1577 STATIC int
1578 xlog_recover_buffer_pass1(
1579 struct xlog *log,
1580 struct xlog_recover_item *item)
1581 {
1582 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1583 struct list_head *bucket;
1584 struct xfs_buf_cancel *bcp;
1585
1586 /*
1587 * If this isn't a cancel buffer item, then just return.
1588 */
1589 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1590 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1591 return 0;
1592 }
1593
1594 /*
1595 * Insert an xfs_buf_cancel record into the hash table of them.
1596 * If there is already an identical record, bump its reference count.
1597 */
1598 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1599 list_for_each_entry(bcp, bucket, bc_list) {
1600 if (bcp->bc_blkno == buf_f->blf_blkno &&
1601 bcp->bc_len == buf_f->blf_len) {
1602 bcp->bc_refcount++;
1603 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1604 return 0;
1605 }
1606 }
1607
1608 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1609 bcp->bc_blkno = buf_f->blf_blkno;
1610 bcp->bc_len = buf_f->blf_len;
1611 bcp->bc_refcount = 1;
1612 list_add_tail(&bcp->bc_list, bucket);
1613
1614 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1615 return 0;
1616 }
1617
1618 /*
1619 * Check to see whether the buffer being recovered has a corresponding
1620 * entry in the buffer cancel record table. If it is, return the cancel
1621 * buffer structure to the caller.
1622 */
1623 STATIC struct xfs_buf_cancel *
1624 xlog_peek_buffer_cancelled(
1625 struct xlog *log,
1626 xfs_daddr_t blkno,
1627 uint len,
1628 ushort flags)
1629 {
1630 struct list_head *bucket;
1631 struct xfs_buf_cancel *bcp;
1632
1633 if (!log->l_buf_cancel_table) {
1634 /* empty table means no cancelled buffers in the log */
1635 ASSERT(!(flags & XFS_BLF_CANCEL));
1636 return NULL;
1637 }
1638
1639 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1640 list_for_each_entry(bcp, bucket, bc_list) {
1641 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1642 return bcp;
1643 }
1644
1645 /*
1646 * We didn't find a corresponding entry in the table, so return 0 so
1647 * that the buffer is NOT cancelled.
1648 */
1649 ASSERT(!(flags & XFS_BLF_CANCEL));
1650 return NULL;
1651 }
1652
1653 /*
1654 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1655 * otherwise return 0. If the buffer is actually a buffer cancel item
1656 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1657 * table and remove it from the table if this is the last reference.
1658 *
1659 * We remove the cancel record from the table when we encounter its last
1660 * occurrence in the log so that if the same buffer is re-used again after its
1661 * last cancellation we actually replay the changes made at that point.
1662 */
1663 STATIC int
1664 xlog_check_buffer_cancelled(
1665 struct xlog *log,
1666 xfs_daddr_t blkno,
1667 uint len,
1668 ushort flags)
1669 {
1670 struct xfs_buf_cancel *bcp;
1671
1672 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1673 if (!bcp)
1674 return 0;
1675
1676 /*
1677 * We've go a match, so return 1 so that the recovery of this buffer
1678 * is cancelled. If this buffer is actually a buffer cancel log
1679 * item, then decrement the refcount on the one in the table and
1680 * remove it if this is the last reference.
1681 */
1682 if (flags & XFS_BLF_CANCEL) {
1683 if (--bcp->bc_refcount == 0) {
1684 list_del(&bcp->bc_list);
1685 kmem_free(bcp);
1686 }
1687 }
1688 return 1;
1689 }
1690
1691 /*
1692 * Perform recovery for a buffer full of inodes. In these buffers, the only
1693 * data which should be recovered is that which corresponds to the
1694 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1695 * data for the inodes is always logged through the inodes themselves rather
1696 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1697 *
1698 * The only time when buffers full of inodes are fully recovered is when the
1699 * buffer is full of newly allocated inodes. In this case the buffer will
1700 * not be marked as an inode buffer and so will be sent to
1701 * xlog_recover_do_reg_buffer() below during recovery.
1702 */
1703 STATIC int
1704 xlog_recover_do_inode_buffer(
1705 struct xfs_mount *mp,
1706 xlog_recover_item_t *item,
1707 struct xfs_buf *bp,
1708 xfs_buf_log_format_t *buf_f)
1709 {
1710 int i;
1711 int item_index = 0;
1712 int bit = 0;
1713 int nbits = 0;
1714 int reg_buf_offset = 0;
1715 int reg_buf_bytes = 0;
1716 int next_unlinked_offset;
1717 int inodes_per_buf;
1718 xfs_agino_t *logged_nextp;
1719 xfs_agino_t *buffer_nextp;
1720
1721 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1722
1723 /*
1724 * Post recovery validation only works properly on CRC enabled
1725 * filesystems.
1726 */
1727 if (xfs_sb_version_hascrc(&mp->m_sb))
1728 bp->b_ops = &xfs_inode_buf_ops;
1729
1730 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1731 for (i = 0; i < inodes_per_buf; i++) {
1732 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1733 offsetof(xfs_dinode_t, di_next_unlinked);
1734
1735 while (next_unlinked_offset >=
1736 (reg_buf_offset + reg_buf_bytes)) {
1737 /*
1738 * The next di_next_unlinked field is beyond
1739 * the current logged region. Find the next
1740 * logged region that contains or is beyond
1741 * the current di_next_unlinked field.
1742 */
1743 bit += nbits;
1744 bit = xfs_next_bit(buf_f->blf_data_map,
1745 buf_f->blf_map_size, bit);
1746
1747 /*
1748 * If there are no more logged regions in the
1749 * buffer, then we're done.
1750 */
1751 if (bit == -1)
1752 return 0;
1753
1754 nbits = xfs_contig_bits(buf_f->blf_data_map,
1755 buf_f->blf_map_size, bit);
1756 ASSERT(nbits > 0);
1757 reg_buf_offset = bit << XFS_BLF_SHIFT;
1758 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1759 item_index++;
1760 }
1761
1762 /*
1763 * If the current logged region starts after the current
1764 * di_next_unlinked field, then move on to the next
1765 * di_next_unlinked field.
1766 */
1767 if (next_unlinked_offset < reg_buf_offset)
1768 continue;
1769
1770 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1771 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1772 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1773 BBTOB(bp->b_io_length));
1774
1775 /*
1776 * The current logged region contains a copy of the
1777 * current di_next_unlinked field. Extract its value
1778 * and copy it to the buffer copy.
1779 */
1780 logged_nextp = item->ri_buf[item_index].i_addr +
1781 next_unlinked_offset - reg_buf_offset;
1782 if (unlikely(*logged_nextp == 0)) {
1783 xfs_alert(mp,
1784 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1785 "Trying to replay bad (0) inode di_next_unlinked field.",
1786 item, bp);
1787 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1788 XFS_ERRLEVEL_LOW, mp);
1789 return -EFSCORRUPTED;
1790 }
1791
1792 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
1793 *buffer_nextp = *logged_nextp;
1794
1795 /*
1796 * If necessary, recalculate the CRC in the on-disk inode. We
1797 * have to leave the inode in a consistent state for whoever
1798 * reads it next....
1799 */
1800 xfs_dinode_calc_crc(mp,
1801 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1802
1803 }
1804
1805 return 0;
1806 }
1807
1808 /*
1809 * V5 filesystems know the age of the buffer on disk being recovered. We can
1810 * have newer objects on disk than we are replaying, and so for these cases we
1811 * don't want to replay the current change as that will make the buffer contents
1812 * temporarily invalid on disk.
1813 *
1814 * The magic number might not match the buffer type we are going to recover
1815 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1816 * extract the LSN of the existing object in the buffer based on it's current
1817 * magic number. If we don't recognise the magic number in the buffer, then
1818 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1819 * so can recover the buffer.
1820 *
1821 * Note: we cannot rely solely on magic number matches to determine that the
1822 * buffer has a valid LSN - we also need to verify that it belongs to this
1823 * filesystem, so we need to extract the object's LSN and compare it to that
1824 * which we read from the superblock. If the UUIDs don't match, then we've got a
1825 * stale metadata block from an old filesystem instance that we need to recover
1826 * over the top of.
1827 */
1828 static xfs_lsn_t
1829 xlog_recover_get_buf_lsn(
1830 struct xfs_mount *mp,
1831 struct xfs_buf *bp)
1832 {
1833 __uint32_t magic32;
1834 __uint16_t magic16;
1835 __uint16_t magicda;
1836 void *blk = bp->b_addr;
1837 uuid_t *uuid;
1838 xfs_lsn_t lsn = -1;
1839
1840 /* v4 filesystems always recover immediately */
1841 if (!xfs_sb_version_hascrc(&mp->m_sb))
1842 goto recover_immediately;
1843
1844 magic32 = be32_to_cpu(*(__be32 *)blk);
1845 switch (magic32) {
1846 case XFS_ABTB_CRC_MAGIC:
1847 case XFS_ABTC_CRC_MAGIC:
1848 case XFS_ABTB_MAGIC:
1849 case XFS_ABTC_MAGIC:
1850 case XFS_IBT_CRC_MAGIC:
1851 case XFS_IBT_MAGIC: {
1852 struct xfs_btree_block *btb = blk;
1853
1854 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
1855 uuid = &btb->bb_u.s.bb_uuid;
1856 break;
1857 }
1858 case XFS_BMAP_CRC_MAGIC:
1859 case XFS_BMAP_MAGIC: {
1860 struct xfs_btree_block *btb = blk;
1861
1862 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
1863 uuid = &btb->bb_u.l.bb_uuid;
1864 break;
1865 }
1866 case XFS_AGF_MAGIC:
1867 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
1868 uuid = &((struct xfs_agf *)blk)->agf_uuid;
1869 break;
1870 case XFS_AGFL_MAGIC:
1871 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
1872 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
1873 break;
1874 case XFS_AGI_MAGIC:
1875 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
1876 uuid = &((struct xfs_agi *)blk)->agi_uuid;
1877 break;
1878 case XFS_SYMLINK_MAGIC:
1879 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
1880 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
1881 break;
1882 case XFS_DIR3_BLOCK_MAGIC:
1883 case XFS_DIR3_DATA_MAGIC:
1884 case XFS_DIR3_FREE_MAGIC:
1885 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
1886 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
1887 break;
1888 case XFS_ATTR3_RMT_MAGIC:
1889 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
1890 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
1891 break;
1892 case XFS_SB_MAGIC:
1893 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
1894 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
1895 break;
1896 default:
1897 break;
1898 }
1899
1900 if (lsn != (xfs_lsn_t)-1) {
1901 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1902 goto recover_immediately;
1903 return lsn;
1904 }
1905
1906 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
1907 switch (magicda) {
1908 case XFS_DIR3_LEAF1_MAGIC:
1909 case XFS_DIR3_LEAFN_MAGIC:
1910 case XFS_DA3_NODE_MAGIC:
1911 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
1912 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
1913 break;
1914 default:
1915 break;
1916 }
1917
1918 if (lsn != (xfs_lsn_t)-1) {
1919 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1920 goto recover_immediately;
1921 return lsn;
1922 }
1923
1924 /*
1925 * We do individual object checks on dquot and inode buffers as they
1926 * have their own individual LSN records. Also, we could have a stale
1927 * buffer here, so we have to at least recognise these buffer types.
1928 *
1929 * A notd complexity here is inode unlinked list processing - it logs
1930 * the inode directly in the buffer, but we don't know which inodes have
1931 * been modified, and there is no global buffer LSN. Hence we need to
1932 * recover all inode buffer types immediately. This problem will be
1933 * fixed by logical logging of the unlinked list modifications.
1934 */
1935 magic16 = be16_to_cpu(*(__be16 *)blk);
1936 switch (magic16) {
1937 case XFS_DQUOT_MAGIC:
1938 case XFS_DINODE_MAGIC:
1939 goto recover_immediately;
1940 default:
1941 break;
1942 }
1943
1944 /* unknown buffer contents, recover immediately */
1945
1946 recover_immediately:
1947 return (xfs_lsn_t)-1;
1948
1949 }
1950
1951 /*
1952 * Validate the recovered buffer is of the correct type and attach the
1953 * appropriate buffer operations to them for writeback. Magic numbers are in a
1954 * few places:
1955 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1956 * the first 32 bits of the buffer (most blocks),
1957 * inside a struct xfs_da_blkinfo at the start of the buffer.
1958 */
1959 static void
1960 xlog_recover_validate_buf_type(
1961 struct xfs_mount *mp,
1962 struct xfs_buf *bp,
1963 xfs_buf_log_format_t *buf_f)
1964 {
1965 struct xfs_da_blkinfo *info = bp->b_addr;
1966 __uint32_t magic32;
1967 __uint16_t magic16;
1968 __uint16_t magicda;
1969
1970 /*
1971 * We can only do post recovery validation on items on CRC enabled
1972 * fielsystems as we need to know when the buffer was written to be able
1973 * to determine if we should have replayed the item. If we replay old
1974 * metadata over a newer buffer, then it will enter a temporarily
1975 * inconsistent state resulting in verification failures. Hence for now
1976 * just avoid the verification stage for non-crc filesystems
1977 */
1978 if (!xfs_sb_version_hascrc(&mp->m_sb))
1979 return;
1980
1981 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1982 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1983 magicda = be16_to_cpu(info->magic);
1984 switch (xfs_blft_from_flags(buf_f)) {
1985 case XFS_BLFT_BTREE_BUF:
1986 switch (magic32) {
1987 case XFS_ABTB_CRC_MAGIC:
1988 case XFS_ABTC_CRC_MAGIC:
1989 case XFS_ABTB_MAGIC:
1990 case XFS_ABTC_MAGIC:
1991 bp->b_ops = &xfs_allocbt_buf_ops;
1992 break;
1993 case XFS_IBT_CRC_MAGIC:
1994 case XFS_FIBT_CRC_MAGIC:
1995 case XFS_IBT_MAGIC:
1996 case XFS_FIBT_MAGIC:
1997 bp->b_ops = &xfs_inobt_buf_ops;
1998 break;
1999 case XFS_BMAP_CRC_MAGIC:
2000 case XFS_BMAP_MAGIC:
2001 bp->b_ops = &xfs_bmbt_buf_ops;
2002 break;
2003 default:
2004 xfs_warn(mp, "Bad btree block magic!");
2005 ASSERT(0);
2006 break;
2007 }
2008 break;
2009 case XFS_BLFT_AGF_BUF:
2010 if (magic32 != XFS_AGF_MAGIC) {
2011 xfs_warn(mp, "Bad AGF block magic!");
2012 ASSERT(0);
2013 break;
2014 }
2015 bp->b_ops = &xfs_agf_buf_ops;
2016 break;
2017 case XFS_BLFT_AGFL_BUF:
2018 if (magic32 != XFS_AGFL_MAGIC) {
2019 xfs_warn(mp, "Bad AGFL block magic!");
2020 ASSERT(0);
2021 break;
2022 }
2023 bp->b_ops = &xfs_agfl_buf_ops;
2024 break;
2025 case XFS_BLFT_AGI_BUF:
2026 if (magic32 != XFS_AGI_MAGIC) {
2027 xfs_warn(mp, "Bad AGI block magic!");
2028 ASSERT(0);
2029 break;
2030 }
2031 bp->b_ops = &xfs_agi_buf_ops;
2032 break;
2033 case XFS_BLFT_UDQUOT_BUF:
2034 case XFS_BLFT_PDQUOT_BUF:
2035 case XFS_BLFT_GDQUOT_BUF:
2036 #ifdef CONFIG_XFS_QUOTA
2037 if (magic16 != XFS_DQUOT_MAGIC) {
2038 xfs_warn(mp, "Bad DQUOT block magic!");
2039 ASSERT(0);
2040 break;
2041 }
2042 bp->b_ops = &xfs_dquot_buf_ops;
2043 #else
2044 xfs_alert(mp,
2045 "Trying to recover dquots without QUOTA support built in!");
2046 ASSERT(0);
2047 #endif
2048 break;
2049 case XFS_BLFT_DINO_BUF:
2050 if (magic16 != XFS_DINODE_MAGIC) {
2051 xfs_warn(mp, "Bad INODE block magic!");
2052 ASSERT(0);
2053 break;
2054 }
2055 bp->b_ops = &xfs_inode_buf_ops;
2056 break;
2057 case XFS_BLFT_SYMLINK_BUF:
2058 if (magic32 != XFS_SYMLINK_MAGIC) {
2059 xfs_warn(mp, "Bad symlink block magic!");
2060 ASSERT(0);
2061 break;
2062 }
2063 bp->b_ops = &xfs_symlink_buf_ops;
2064 break;
2065 case XFS_BLFT_DIR_BLOCK_BUF:
2066 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2067 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2068 xfs_warn(mp, "Bad dir block magic!");
2069 ASSERT(0);
2070 break;
2071 }
2072 bp->b_ops = &xfs_dir3_block_buf_ops;
2073 break;
2074 case XFS_BLFT_DIR_DATA_BUF:
2075 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2076 magic32 != XFS_DIR3_DATA_MAGIC) {
2077 xfs_warn(mp, "Bad dir data magic!");
2078 ASSERT(0);
2079 break;
2080 }
2081 bp->b_ops = &xfs_dir3_data_buf_ops;
2082 break;
2083 case XFS_BLFT_DIR_FREE_BUF:
2084 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2085 magic32 != XFS_DIR3_FREE_MAGIC) {
2086 xfs_warn(mp, "Bad dir3 free magic!");
2087 ASSERT(0);
2088 break;
2089 }
2090 bp->b_ops = &xfs_dir3_free_buf_ops;
2091 break;
2092 case XFS_BLFT_DIR_LEAF1_BUF:
2093 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2094 magicda != XFS_DIR3_LEAF1_MAGIC) {
2095 xfs_warn(mp, "Bad dir leaf1 magic!");
2096 ASSERT(0);
2097 break;
2098 }
2099 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2100 break;
2101 case XFS_BLFT_DIR_LEAFN_BUF:
2102 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2103 magicda != XFS_DIR3_LEAFN_MAGIC) {
2104 xfs_warn(mp, "Bad dir leafn magic!");
2105 ASSERT(0);
2106 break;
2107 }
2108 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2109 break;
2110 case XFS_BLFT_DA_NODE_BUF:
2111 if (magicda != XFS_DA_NODE_MAGIC &&
2112 magicda != XFS_DA3_NODE_MAGIC) {
2113 xfs_warn(mp, "Bad da node magic!");
2114 ASSERT(0);
2115 break;
2116 }
2117 bp->b_ops = &xfs_da3_node_buf_ops;
2118 break;
2119 case XFS_BLFT_ATTR_LEAF_BUF:
2120 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2121 magicda != XFS_ATTR3_LEAF_MAGIC) {
2122 xfs_warn(mp, "Bad attr leaf magic!");
2123 ASSERT(0);
2124 break;
2125 }
2126 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2127 break;
2128 case XFS_BLFT_ATTR_RMT_BUF:
2129 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2130 xfs_warn(mp, "Bad attr remote magic!");
2131 ASSERT(0);
2132 break;
2133 }
2134 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2135 break;
2136 case XFS_BLFT_SB_BUF:
2137 if (magic32 != XFS_SB_MAGIC) {
2138 xfs_warn(mp, "Bad SB block magic!");
2139 ASSERT(0);
2140 break;
2141 }
2142 bp->b_ops = &xfs_sb_buf_ops;
2143 break;
2144 default:
2145 xfs_warn(mp, "Unknown buffer type %d!",
2146 xfs_blft_from_flags(buf_f));
2147 break;
2148 }
2149 }
2150
2151 /*
2152 * Perform a 'normal' buffer recovery. Each logged region of the
2153 * buffer should be copied over the corresponding region in the
2154 * given buffer. The bitmap in the buf log format structure indicates
2155 * where to place the logged data.
2156 */
2157 STATIC void
2158 xlog_recover_do_reg_buffer(
2159 struct xfs_mount *mp,
2160 xlog_recover_item_t *item,
2161 struct xfs_buf *bp,
2162 xfs_buf_log_format_t *buf_f)
2163 {
2164 int i;
2165 int bit;
2166 int nbits;
2167 int error;
2168
2169 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2170
2171 bit = 0;
2172 i = 1; /* 0 is the buf format structure */
2173 while (1) {
2174 bit = xfs_next_bit(buf_f->blf_data_map,
2175 buf_f->blf_map_size, bit);
2176 if (bit == -1)
2177 break;
2178 nbits = xfs_contig_bits(buf_f->blf_data_map,
2179 buf_f->blf_map_size, bit);
2180 ASSERT(nbits > 0);
2181 ASSERT(item->ri_buf[i].i_addr != NULL);
2182 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2183 ASSERT(BBTOB(bp->b_io_length) >=
2184 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2185
2186 /*
2187 * The dirty regions logged in the buffer, even though
2188 * contiguous, may span multiple chunks. This is because the
2189 * dirty region may span a physical page boundary in a buffer
2190 * and hence be split into two separate vectors for writing into
2191 * the log. Hence we need to trim nbits back to the length of
2192 * the current region being copied out of the log.
2193 */
2194 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2195 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2196
2197 /*
2198 * Do a sanity check if this is a dquot buffer. Just checking
2199 * the first dquot in the buffer should do. XXXThis is
2200 * probably a good thing to do for other buf types also.
2201 */
2202 error = 0;
2203 if (buf_f->blf_flags &
2204 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2205 if (item->ri_buf[i].i_addr == NULL) {
2206 xfs_alert(mp,
2207 "XFS: NULL dquot in %s.", __func__);
2208 goto next;
2209 }
2210 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2211 xfs_alert(mp,
2212 "XFS: dquot too small (%d) in %s.",
2213 item->ri_buf[i].i_len, __func__);
2214 goto next;
2215 }
2216 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2217 -1, 0, XFS_QMOPT_DOWARN,
2218 "dquot_buf_recover");
2219 if (error)
2220 goto next;
2221 }
2222
2223 memcpy(xfs_buf_offset(bp,
2224 (uint)bit << XFS_BLF_SHIFT), /* dest */
2225 item->ri_buf[i].i_addr, /* source */
2226 nbits<<XFS_BLF_SHIFT); /* length */
2227 next:
2228 i++;
2229 bit += nbits;
2230 }
2231
2232 /* Shouldn't be any more regions */
2233 ASSERT(i == item->ri_total);
2234
2235 xlog_recover_validate_buf_type(mp, bp, buf_f);
2236 }
2237
2238 /*
2239 * Perform a dquot buffer recovery.
2240 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2241 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2242 * Else, treat it as a regular buffer and do recovery.
2243 *
2244 * Return false if the buffer was tossed and true if we recovered the buffer to
2245 * indicate to the caller if the buffer needs writing.
2246 */
2247 STATIC bool
2248 xlog_recover_do_dquot_buffer(
2249 struct xfs_mount *mp,
2250 struct xlog *log,
2251 struct xlog_recover_item *item,
2252 struct xfs_buf *bp,
2253 struct xfs_buf_log_format *buf_f)
2254 {
2255 uint type;
2256
2257 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2258
2259 /*
2260 * Filesystems are required to send in quota flags at mount time.
2261 */
2262 if (!mp->m_qflags)
2263 return false;
2264
2265 type = 0;
2266 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2267 type |= XFS_DQ_USER;
2268 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2269 type |= XFS_DQ_PROJ;
2270 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2271 type |= XFS_DQ_GROUP;
2272 /*
2273 * This type of quotas was turned off, so ignore this buffer
2274 */
2275 if (log->l_quotaoffs_flag & type)
2276 return false;
2277
2278 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2279 return true;
2280 }
2281
2282 /*
2283 * This routine replays a modification made to a buffer at runtime.
2284 * There are actually two types of buffer, regular and inode, which
2285 * are handled differently. Inode buffers are handled differently
2286 * in that we only recover a specific set of data from them, namely
2287 * the inode di_next_unlinked fields. This is because all other inode
2288 * data is actually logged via inode records and any data we replay
2289 * here which overlaps that may be stale.
2290 *
2291 * When meta-data buffers are freed at run time we log a buffer item
2292 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2293 * of the buffer in the log should not be replayed at recovery time.
2294 * This is so that if the blocks covered by the buffer are reused for
2295 * file data before we crash we don't end up replaying old, freed
2296 * meta-data into a user's file.
2297 *
2298 * To handle the cancellation of buffer log items, we make two passes
2299 * over the log during recovery. During the first we build a table of
2300 * those buffers which have been cancelled, and during the second we
2301 * only replay those buffers which do not have corresponding cancel
2302 * records in the table. See xlog_recover_buffer_pass[1,2] above
2303 * for more details on the implementation of the table of cancel records.
2304 */
2305 STATIC int
2306 xlog_recover_buffer_pass2(
2307 struct xlog *log,
2308 struct list_head *buffer_list,
2309 struct xlog_recover_item *item,
2310 xfs_lsn_t current_lsn)
2311 {
2312 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2313 xfs_mount_t *mp = log->l_mp;
2314 xfs_buf_t *bp;
2315 int error;
2316 uint buf_flags;
2317 xfs_lsn_t lsn;
2318
2319 /*
2320 * In this pass we only want to recover all the buffers which have
2321 * not been cancelled and are not cancellation buffers themselves.
2322 */
2323 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2324 buf_f->blf_len, buf_f->blf_flags)) {
2325 trace_xfs_log_recover_buf_cancel(log, buf_f);
2326 return 0;
2327 }
2328
2329 trace_xfs_log_recover_buf_recover(log, buf_f);
2330
2331 buf_flags = 0;
2332 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2333 buf_flags |= XBF_UNMAPPED;
2334
2335 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2336 buf_flags, NULL);
2337 if (!bp)
2338 return -ENOMEM;
2339 error = bp->b_error;
2340 if (error) {
2341 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2342 goto out_release;
2343 }
2344
2345 /*
2346 * Recover the buffer only if we get an LSN from it and it's less than
2347 * the lsn of the transaction we are replaying.
2348 *
2349 * Note that we have to be extremely careful of readahead here.
2350 * Readahead does not attach verfiers to the buffers so if we don't
2351 * actually do any replay after readahead because of the LSN we found
2352 * in the buffer if more recent than that current transaction then we
2353 * need to attach the verifier directly. Failure to do so can lead to
2354 * future recovery actions (e.g. EFI and unlinked list recovery) can
2355 * operate on the buffers and they won't get the verifier attached. This
2356 * can lead to blocks on disk having the correct content but a stale
2357 * CRC.
2358 *
2359 * It is safe to assume these clean buffers are currently up to date.
2360 * If the buffer is dirtied by a later transaction being replayed, then
2361 * the verifier will be reset to match whatever recover turns that
2362 * buffer into.
2363 */
2364 lsn = xlog_recover_get_buf_lsn(mp, bp);
2365 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2366 xlog_recover_validate_buf_type(mp, bp, buf_f);
2367 goto out_release;
2368 }
2369
2370 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2371 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2372 if (error)
2373 goto out_release;
2374 } else if (buf_f->blf_flags &
2375 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2376 bool dirty;
2377
2378 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2379 if (!dirty)
2380 goto out_release;
2381 } else {
2382 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2383 }
2384
2385 /*
2386 * Perform delayed write on the buffer. Asynchronous writes will be
2387 * slower when taking into account all the buffers to be flushed.
2388 *
2389 * Also make sure that only inode buffers with good sizes stay in
2390 * the buffer cache. The kernel moves inodes in buffers of 1 block
2391 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2392 * buffers in the log can be a different size if the log was generated
2393 * by an older kernel using unclustered inode buffers or a newer kernel
2394 * running with a different inode cluster size. Regardless, if the
2395 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2396 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2397 * the buffer out of the buffer cache so that the buffer won't
2398 * overlap with future reads of those inodes.
2399 */
2400 if (XFS_DINODE_MAGIC ==
2401 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2402 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2403 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2404 xfs_buf_stale(bp);
2405 error = xfs_bwrite(bp);
2406 } else {
2407 ASSERT(bp->b_target->bt_mount == mp);
2408 bp->b_iodone = xlog_recover_iodone;
2409 xfs_buf_delwri_queue(bp, buffer_list);
2410 }
2411
2412 out_release:
2413 xfs_buf_relse(bp);
2414 return error;
2415 }
2416
2417 /*
2418 * Inode fork owner changes
2419 *
2420 * If we have been told that we have to reparent the inode fork, it's because an
2421 * extent swap operation on a CRC enabled filesystem has been done and we are
2422 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2423 * owners of it.
2424 *
2425 * The complexity here is that we don't have an inode context to work with, so
2426 * after we've replayed the inode we need to instantiate one. This is where the
2427 * fun begins.
2428 *
2429 * We are in the middle of log recovery, so we can't run transactions. That
2430 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2431 * that will result in the corresponding iput() running the inode through
2432 * xfs_inactive(). If we've just replayed an inode core that changes the link
2433 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2434 * transactions (bad!).
2435 *
2436 * So, to avoid this, we instantiate an inode directly from the inode core we've
2437 * just recovered. We have the buffer still locked, and all we really need to
2438 * instantiate is the inode core and the forks being modified. We can do this
2439 * manually, then run the inode btree owner change, and then tear down the
2440 * xfs_inode without having to run any transactions at all.
2441 *
2442 * Also, because we don't have a transaction context available here but need to
2443 * gather all the buffers we modify for writeback so we pass the buffer_list
2444 * instead for the operation to use.
2445 */
2446
2447 STATIC int
2448 xfs_recover_inode_owner_change(
2449 struct xfs_mount *mp,
2450 struct xfs_dinode *dip,
2451 struct xfs_inode_log_format *in_f,
2452 struct list_head *buffer_list)
2453 {
2454 struct xfs_inode *ip;
2455 int error;
2456
2457 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2458
2459 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2460 if (!ip)
2461 return -ENOMEM;
2462
2463 /* instantiate the inode */
2464 xfs_dinode_from_disk(&ip->i_d, dip);
2465 ASSERT(ip->i_d.di_version >= 3);
2466
2467 error = xfs_iformat_fork(ip, dip);
2468 if (error)
2469 goto out_free_ip;
2470
2471
2472 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2473 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2474 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2475 ip->i_ino, buffer_list);
2476 if (error)
2477 goto out_free_ip;
2478 }
2479
2480 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2481 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2482 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2483 ip->i_ino, buffer_list);
2484 if (error)
2485 goto out_free_ip;
2486 }
2487
2488 out_free_ip:
2489 xfs_inode_free(ip);
2490 return error;
2491 }
2492
2493 STATIC int
2494 xlog_recover_inode_pass2(
2495 struct xlog *log,
2496 struct list_head *buffer_list,
2497 struct xlog_recover_item *item,
2498 xfs_lsn_t current_lsn)
2499 {
2500 xfs_inode_log_format_t *in_f;
2501 xfs_mount_t *mp = log->l_mp;
2502 xfs_buf_t *bp;
2503 xfs_dinode_t *dip;
2504 int len;
2505 char *src;
2506 char *dest;
2507 int error;
2508 int attr_index;
2509 uint fields;
2510 xfs_icdinode_t *dicp;
2511 uint isize;
2512 int need_free = 0;
2513
2514 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2515 in_f = item->ri_buf[0].i_addr;
2516 } else {
2517 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2518 need_free = 1;
2519 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2520 if (error)
2521 goto error;
2522 }
2523
2524 /*
2525 * Inode buffers can be freed, look out for it,
2526 * and do not replay the inode.
2527 */
2528 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2529 in_f->ilf_len, 0)) {
2530 error = 0;
2531 trace_xfs_log_recover_inode_cancel(log, in_f);
2532 goto error;
2533 }
2534 trace_xfs_log_recover_inode_recover(log, in_f);
2535
2536 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2537 &xfs_inode_buf_ops);
2538 if (!bp) {
2539 error = -ENOMEM;
2540 goto error;
2541 }
2542 error = bp->b_error;
2543 if (error) {
2544 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2545 goto out_release;
2546 }
2547 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2548 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2549
2550 /*
2551 * Make sure the place we're flushing out to really looks
2552 * like an inode!
2553 */
2554 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2555 xfs_alert(mp,
2556 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2557 __func__, dip, bp, in_f->ilf_ino);
2558 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2559 XFS_ERRLEVEL_LOW, mp);
2560 error = -EFSCORRUPTED;
2561 goto out_release;
2562 }
2563 dicp = item->ri_buf[1].i_addr;
2564 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2565 xfs_alert(mp,
2566 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2567 __func__, item, in_f->ilf_ino);
2568 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2569 XFS_ERRLEVEL_LOW, mp);
2570 error = -EFSCORRUPTED;
2571 goto out_release;
2572 }
2573
2574 /*
2575 * If the inode has an LSN in it, recover the inode only if it's less
2576 * than the lsn of the transaction we are replaying. Note: we still
2577 * need to replay an owner change even though the inode is more recent
2578 * than the transaction as there is no guarantee that all the btree
2579 * blocks are more recent than this transaction, too.
2580 */
2581 if (dip->di_version >= 3) {
2582 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2583
2584 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2585 trace_xfs_log_recover_inode_skip(log, in_f);
2586 error = 0;
2587 goto out_owner_change;
2588 }
2589 }
2590
2591 /*
2592 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2593 * are transactional and if ordering is necessary we can determine that
2594 * more accurately by the LSN field in the V3 inode core. Don't trust
2595 * the inode versions we might be changing them here - use the
2596 * superblock flag to determine whether we need to look at di_flushiter
2597 * to skip replay when the on disk inode is newer than the log one
2598 */
2599 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2600 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2601 /*
2602 * Deal with the wrap case, DI_MAX_FLUSH is less
2603 * than smaller numbers
2604 */
2605 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2606 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2607 /* do nothing */
2608 } else {
2609 trace_xfs_log_recover_inode_skip(log, in_f);
2610 error = 0;
2611 goto out_release;
2612 }
2613 }
2614
2615 /* Take the opportunity to reset the flush iteration count */
2616 dicp->di_flushiter = 0;
2617
2618 if (unlikely(S_ISREG(dicp->di_mode))) {
2619 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2620 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2621 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2622 XFS_ERRLEVEL_LOW, mp, dicp);
2623 xfs_alert(mp,
2624 "%s: Bad regular inode log record, rec ptr 0x%p, "
2625 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2626 __func__, item, dip, bp, in_f->ilf_ino);
2627 error = -EFSCORRUPTED;
2628 goto out_release;
2629 }
2630 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2631 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2632 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2633 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2634 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2635 XFS_ERRLEVEL_LOW, mp, dicp);
2636 xfs_alert(mp,
2637 "%s: Bad dir inode log record, rec ptr 0x%p, "
2638 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2639 __func__, item, dip, bp, in_f->ilf_ino);
2640 error = -EFSCORRUPTED;
2641 goto out_release;
2642 }
2643 }
2644 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2645 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2646 XFS_ERRLEVEL_LOW, mp, dicp);
2647 xfs_alert(mp,
2648 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2649 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2650 __func__, item, dip, bp, in_f->ilf_ino,
2651 dicp->di_nextents + dicp->di_anextents,
2652 dicp->di_nblocks);
2653 error = -EFSCORRUPTED;
2654 goto out_release;
2655 }
2656 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2657 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2658 XFS_ERRLEVEL_LOW, mp, dicp);
2659 xfs_alert(mp,
2660 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2661 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2662 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2663 error = -EFSCORRUPTED;
2664 goto out_release;
2665 }
2666 isize = xfs_icdinode_size(dicp->di_version);
2667 if (unlikely(item->ri_buf[1].i_len > isize)) {
2668 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2669 XFS_ERRLEVEL_LOW, mp, dicp);
2670 xfs_alert(mp,
2671 "%s: Bad inode log record length %d, rec ptr 0x%p",
2672 __func__, item->ri_buf[1].i_len, item);
2673 error = -EFSCORRUPTED;
2674 goto out_release;
2675 }
2676
2677 /* The core is in in-core format */
2678 xfs_dinode_to_disk(dip, dicp);
2679
2680 /* the rest is in on-disk format */
2681 if (item->ri_buf[1].i_len > isize) {
2682 memcpy((char *)dip + isize,
2683 item->ri_buf[1].i_addr + isize,
2684 item->ri_buf[1].i_len - isize);
2685 }
2686
2687 fields = in_f->ilf_fields;
2688 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2689 case XFS_ILOG_DEV:
2690 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2691 break;
2692 case XFS_ILOG_UUID:
2693 memcpy(XFS_DFORK_DPTR(dip),
2694 &in_f->ilf_u.ilfu_uuid,
2695 sizeof(uuid_t));
2696 break;
2697 }
2698
2699 if (in_f->ilf_size == 2)
2700 goto out_owner_change;
2701 len = item->ri_buf[2].i_len;
2702 src = item->ri_buf[2].i_addr;
2703 ASSERT(in_f->ilf_size <= 4);
2704 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2705 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2706 (len == in_f->ilf_dsize));
2707
2708 switch (fields & XFS_ILOG_DFORK) {
2709 case XFS_ILOG_DDATA:
2710 case XFS_ILOG_DEXT:
2711 memcpy(XFS_DFORK_DPTR(dip), src, len);
2712 break;
2713
2714 case XFS_ILOG_DBROOT:
2715 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2716 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2717 XFS_DFORK_DSIZE(dip, mp));
2718 break;
2719
2720 default:
2721 /*
2722 * There are no data fork flags set.
2723 */
2724 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2725 break;
2726 }
2727
2728 /*
2729 * If we logged any attribute data, recover it. There may or
2730 * may not have been any other non-core data logged in this
2731 * transaction.
2732 */
2733 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2734 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2735 attr_index = 3;
2736 } else {
2737 attr_index = 2;
2738 }
2739 len = item->ri_buf[attr_index].i_len;
2740 src = item->ri_buf[attr_index].i_addr;
2741 ASSERT(len == in_f->ilf_asize);
2742
2743 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2744 case XFS_ILOG_ADATA:
2745 case XFS_ILOG_AEXT:
2746 dest = XFS_DFORK_APTR(dip);
2747 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2748 memcpy(dest, src, len);
2749 break;
2750
2751 case XFS_ILOG_ABROOT:
2752 dest = XFS_DFORK_APTR(dip);
2753 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2754 len, (xfs_bmdr_block_t*)dest,
2755 XFS_DFORK_ASIZE(dip, mp));
2756 break;
2757
2758 default:
2759 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2760 ASSERT(0);
2761 error = -EIO;
2762 goto out_release;
2763 }
2764 }
2765
2766 out_owner_change:
2767 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2768 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2769 buffer_list);
2770 /* re-generate the checksum. */
2771 xfs_dinode_calc_crc(log->l_mp, dip);
2772
2773 ASSERT(bp->b_target->bt_mount == mp);
2774 bp->b_iodone = xlog_recover_iodone;
2775 xfs_buf_delwri_queue(bp, buffer_list);
2776
2777 out_release:
2778 xfs_buf_relse(bp);
2779 error:
2780 if (need_free)
2781 kmem_free(in_f);
2782 return error;
2783 }
2784
2785 /*
2786 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2787 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2788 * of that type.
2789 */
2790 STATIC int
2791 xlog_recover_quotaoff_pass1(
2792 struct xlog *log,
2793 struct xlog_recover_item *item)
2794 {
2795 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2796 ASSERT(qoff_f);
2797
2798 /*
2799 * The logitem format's flag tells us if this was user quotaoff,
2800 * group/project quotaoff or both.
2801 */
2802 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2803 log->l_quotaoffs_flag |= XFS_DQ_USER;
2804 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2805 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2806 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2807 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2808
2809 return 0;
2810 }
2811
2812 /*
2813 * Recover a dquot record
2814 */
2815 STATIC int
2816 xlog_recover_dquot_pass2(
2817 struct xlog *log,
2818 struct list_head *buffer_list,
2819 struct xlog_recover_item *item,
2820 xfs_lsn_t current_lsn)
2821 {
2822 xfs_mount_t *mp = log->l_mp;
2823 xfs_buf_t *bp;
2824 struct xfs_disk_dquot *ddq, *recddq;
2825 int error;
2826 xfs_dq_logformat_t *dq_f;
2827 uint type;
2828
2829
2830 /*
2831 * Filesystems are required to send in quota flags at mount time.
2832 */
2833 if (mp->m_qflags == 0)
2834 return 0;
2835
2836 recddq = item->ri_buf[1].i_addr;
2837 if (recddq == NULL) {
2838 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2839 return -EIO;
2840 }
2841 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2842 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2843 item->ri_buf[1].i_len, __func__);
2844 return -EIO;
2845 }
2846
2847 /*
2848 * This type of quotas was turned off, so ignore this record.
2849 */
2850 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2851 ASSERT(type);
2852 if (log->l_quotaoffs_flag & type)
2853 return 0;
2854
2855 /*
2856 * At this point we know that quota was _not_ turned off.
2857 * Since the mount flags are not indicating to us otherwise, this
2858 * must mean that quota is on, and the dquot needs to be replayed.
2859 * Remember that we may not have fully recovered the superblock yet,
2860 * so we can't do the usual trick of looking at the SB quota bits.
2861 *
2862 * The other possibility, of course, is that the quota subsystem was
2863 * removed since the last mount - ENOSYS.
2864 */
2865 dq_f = item->ri_buf[0].i_addr;
2866 ASSERT(dq_f);
2867 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2868 "xlog_recover_dquot_pass2 (log copy)");
2869 if (error)
2870 return -EIO;
2871 ASSERT(dq_f->qlf_len == 1);
2872
2873 /*
2874 * At this point we are assuming that the dquots have been allocated
2875 * and hence the buffer has valid dquots stamped in it. It should,
2876 * therefore, pass verifier validation. If the dquot is bad, then the
2877 * we'll return an error here, so we don't need to specifically check
2878 * the dquot in the buffer after the verifier has run.
2879 */
2880 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2881 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2882 &xfs_dquot_buf_ops);
2883 if (error)
2884 return error;
2885
2886 ASSERT(bp);
2887 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
2888
2889 /*
2890 * If the dquot has an LSN in it, recover the dquot only if it's less
2891 * than the lsn of the transaction we are replaying.
2892 */
2893 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2894 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
2895 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
2896
2897 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2898 goto out_release;
2899 }
2900 }
2901
2902 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2903 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2904 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2905 XFS_DQUOT_CRC_OFF);
2906 }
2907
2908 ASSERT(dq_f->qlf_size == 2);
2909 ASSERT(bp->b_target->bt_mount == mp);
2910 bp->b_iodone = xlog_recover_iodone;
2911 xfs_buf_delwri_queue(bp, buffer_list);
2912
2913 out_release:
2914 xfs_buf_relse(bp);
2915 return 0;
2916 }
2917
2918 /*
2919 * This routine is called to create an in-core extent free intent
2920 * item from the efi format structure which was logged on disk.
2921 * It allocates an in-core efi, copies the extents from the format
2922 * structure into it, and adds the efi to the AIL with the given
2923 * LSN.
2924 */
2925 STATIC int
2926 xlog_recover_efi_pass2(
2927 struct xlog *log,
2928 struct xlog_recover_item *item,
2929 xfs_lsn_t lsn)
2930 {
2931 int error;
2932 struct xfs_mount *mp = log->l_mp;
2933 struct xfs_efi_log_item *efip;
2934 struct xfs_efi_log_format *efi_formatp;
2935
2936 efi_formatp = item->ri_buf[0].i_addr;
2937
2938 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2939 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
2940 if (error) {
2941 xfs_efi_item_free(efip);
2942 return error;
2943 }
2944 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2945
2946 spin_lock(&log->l_ailp->xa_lock);
2947 /*
2948 * The EFI has two references. One for the EFD and one for EFI to ensure
2949 * it makes it into the AIL. Insert the EFI into the AIL directly and
2950 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
2951 * AIL lock.
2952 */
2953 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2954 xfs_efi_release(efip);
2955 return 0;
2956 }
2957
2958
2959 /*
2960 * This routine is called when an EFD format structure is found in a committed
2961 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
2962 * was still in the log. To do this it searches the AIL for the EFI with an id
2963 * equal to that in the EFD format structure. If we find it we drop the EFD
2964 * reference, which removes the EFI from the AIL and frees it.
2965 */
2966 STATIC int
2967 xlog_recover_efd_pass2(
2968 struct xlog *log,
2969 struct xlog_recover_item *item)
2970 {
2971 xfs_efd_log_format_t *efd_formatp;
2972 xfs_efi_log_item_t *efip = NULL;
2973 xfs_log_item_t *lip;
2974 __uint64_t efi_id;
2975 struct xfs_ail_cursor cur;
2976 struct xfs_ail *ailp = log->l_ailp;
2977
2978 efd_formatp = item->ri_buf[0].i_addr;
2979 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2980 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2981 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2982 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2983 efi_id = efd_formatp->efd_efi_id;
2984
2985 /*
2986 * Search for the EFI with the id in the EFD format structure in the
2987 * AIL.
2988 */
2989 spin_lock(&ailp->xa_lock);
2990 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2991 while (lip != NULL) {
2992 if (lip->li_type == XFS_LI_EFI) {
2993 efip = (xfs_efi_log_item_t *)lip;
2994 if (efip->efi_format.efi_id == efi_id) {
2995 /*
2996 * Drop the EFD reference to the EFI. This
2997 * removes the EFI from the AIL and frees it.
2998 */
2999 spin_unlock(&ailp->xa_lock);
3000 xfs_efi_release(efip);
3001 spin_lock(&ailp->xa_lock);
3002 break;
3003 }
3004 }
3005 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3006 }
3007
3008 xfs_trans_ail_cursor_done(&cur);
3009 spin_unlock(&ailp->xa_lock);
3010
3011 return 0;
3012 }
3013
3014 /*
3015 * This routine is called when an inode create format structure is found in a
3016 * committed transaction in the log. It's purpose is to initialise the inodes
3017 * being allocated on disk. This requires us to get inode cluster buffers that
3018 * match the range to be intialised, stamped with inode templates and written
3019 * by delayed write so that subsequent modifications will hit the cached buffer
3020 * and only need writing out at the end of recovery.
3021 */
3022 STATIC int
3023 xlog_recover_do_icreate_pass2(
3024 struct xlog *log,
3025 struct list_head *buffer_list,
3026 xlog_recover_item_t *item)
3027 {
3028 struct xfs_mount *mp = log->l_mp;
3029 struct xfs_icreate_log *icl;
3030 xfs_agnumber_t agno;
3031 xfs_agblock_t agbno;
3032 unsigned int count;
3033 unsigned int isize;
3034 xfs_agblock_t length;
3035
3036 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3037 if (icl->icl_type != XFS_LI_ICREATE) {
3038 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3039 return -EINVAL;
3040 }
3041
3042 if (icl->icl_size != 1) {
3043 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3044 return -EINVAL;
3045 }
3046
3047 agno = be32_to_cpu(icl->icl_ag);
3048 if (agno >= mp->m_sb.sb_agcount) {
3049 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3050 return -EINVAL;
3051 }
3052 agbno = be32_to_cpu(icl->icl_agbno);
3053 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3054 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3055 return -EINVAL;
3056 }
3057 isize = be32_to_cpu(icl->icl_isize);
3058 if (isize != mp->m_sb.sb_inodesize) {
3059 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3060 return -EINVAL;
3061 }
3062 count = be32_to_cpu(icl->icl_count);
3063 if (!count) {
3064 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3065 return -EINVAL;
3066 }
3067 length = be32_to_cpu(icl->icl_length);
3068 if (!length || length >= mp->m_sb.sb_agblocks) {
3069 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3070 return -EINVAL;
3071 }
3072
3073 /*
3074 * The inode chunk is either full or sparse and we only support
3075 * m_ialloc_min_blks sized sparse allocations at this time.
3076 */
3077 if (length != mp->m_ialloc_blks &&
3078 length != mp->m_ialloc_min_blks) {
3079 xfs_warn(log->l_mp,
3080 "%s: unsupported chunk length", __FUNCTION__);
3081 return -EINVAL;
3082 }
3083
3084 /* verify inode count is consistent with extent length */
3085 if ((count >> mp->m_sb.sb_inopblog) != length) {
3086 xfs_warn(log->l_mp,
3087 "%s: inconsistent inode count and chunk length",
3088 __FUNCTION__);
3089 return -EINVAL;
3090 }
3091
3092 /*
3093 * Inode buffers can be freed. Do not replay the inode initialisation as
3094 * we could be overwriting something written after this inode buffer was
3095 * cancelled.
3096 *
3097 * XXX: we need to iterate all buffers and only init those that are not
3098 * cancelled. I think that a more fine grained factoring of
3099 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3100 * done easily.
3101 */
3102 if (xlog_check_buffer_cancelled(log,
3103 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0)) {
3104 trace_xfs_log_recover_icreate_cancel(log, icl);
3105 return 0;
3106 }
3107
3108 trace_xfs_log_recover_icreate_recover(log, icl);
3109 xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, length,
3110 be32_to_cpu(icl->icl_gen));
3111 return 0;
3112 }
3113
3114 STATIC void
3115 xlog_recover_buffer_ra_pass2(
3116 struct xlog *log,
3117 struct xlog_recover_item *item)
3118 {
3119 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3120 struct xfs_mount *mp = log->l_mp;
3121
3122 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3123 buf_f->blf_len, buf_f->blf_flags)) {
3124 return;
3125 }
3126
3127 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3128 buf_f->blf_len, NULL);
3129 }
3130
3131 STATIC void
3132 xlog_recover_inode_ra_pass2(
3133 struct xlog *log,
3134 struct xlog_recover_item *item)
3135 {
3136 struct xfs_inode_log_format ilf_buf;
3137 struct xfs_inode_log_format *ilfp;
3138 struct xfs_mount *mp = log->l_mp;
3139 int error;
3140
3141 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3142 ilfp = item->ri_buf[0].i_addr;
3143 } else {
3144 ilfp = &ilf_buf;
3145 memset(ilfp, 0, sizeof(*ilfp));
3146 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3147 if (error)
3148 return;
3149 }
3150
3151 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3152 return;
3153
3154 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3155 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3156 }
3157
3158 STATIC void
3159 xlog_recover_dquot_ra_pass2(
3160 struct xlog *log,
3161 struct xlog_recover_item *item)
3162 {
3163 struct xfs_mount *mp = log->l_mp;
3164 struct xfs_disk_dquot *recddq;
3165 struct xfs_dq_logformat *dq_f;
3166 uint type;
3167
3168
3169 if (mp->m_qflags == 0)
3170 return;
3171
3172 recddq = item->ri_buf[1].i_addr;
3173 if (recddq == NULL)
3174 return;
3175 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3176 return;
3177
3178 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3179 ASSERT(type);
3180 if (log->l_quotaoffs_flag & type)
3181 return;
3182
3183 dq_f = item->ri_buf[0].i_addr;
3184 ASSERT(dq_f);
3185 ASSERT(dq_f->qlf_len == 1);
3186
3187 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3188 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3189 }
3190
3191 STATIC void
3192 xlog_recover_ra_pass2(
3193 struct xlog *log,
3194 struct xlog_recover_item *item)
3195 {
3196 switch (ITEM_TYPE(item)) {
3197 case XFS_LI_BUF:
3198 xlog_recover_buffer_ra_pass2(log, item);
3199 break;
3200 case XFS_LI_INODE:
3201 xlog_recover_inode_ra_pass2(log, item);
3202 break;
3203 case XFS_LI_DQUOT:
3204 xlog_recover_dquot_ra_pass2(log, item);
3205 break;
3206 case XFS_LI_EFI:
3207 case XFS_LI_EFD:
3208 case XFS_LI_QUOTAOFF:
3209 default:
3210 break;
3211 }
3212 }
3213
3214 STATIC int
3215 xlog_recover_commit_pass1(
3216 struct xlog *log,
3217 struct xlog_recover *trans,
3218 struct xlog_recover_item *item)
3219 {
3220 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3221
3222 switch (ITEM_TYPE(item)) {
3223 case XFS_LI_BUF:
3224 return xlog_recover_buffer_pass1(log, item);
3225 case XFS_LI_QUOTAOFF:
3226 return xlog_recover_quotaoff_pass1(log, item);
3227 case XFS_LI_INODE:
3228 case XFS_LI_EFI:
3229 case XFS_LI_EFD:
3230 case XFS_LI_DQUOT:
3231 case XFS_LI_ICREATE:
3232 /* nothing to do in pass 1 */
3233 return 0;
3234 default:
3235 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3236 __func__, ITEM_TYPE(item));
3237 ASSERT(0);
3238 return -EIO;
3239 }
3240 }
3241
3242 STATIC int
3243 xlog_recover_commit_pass2(
3244 struct xlog *log,
3245 struct xlog_recover *trans,
3246 struct list_head *buffer_list,
3247 struct xlog_recover_item *item)
3248 {
3249 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3250
3251 switch (ITEM_TYPE(item)) {
3252 case XFS_LI_BUF:
3253 return xlog_recover_buffer_pass2(log, buffer_list, item,
3254 trans->r_lsn);
3255 case XFS_LI_INODE:
3256 return xlog_recover_inode_pass2(log, buffer_list, item,
3257 trans->r_lsn);
3258 case XFS_LI_EFI:
3259 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3260 case XFS_LI_EFD:
3261 return xlog_recover_efd_pass2(log, item);
3262 case XFS_LI_DQUOT:
3263 return xlog_recover_dquot_pass2(log, buffer_list, item,
3264 trans->r_lsn);
3265 case XFS_LI_ICREATE:
3266 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3267 case XFS_LI_QUOTAOFF:
3268 /* nothing to do in pass2 */
3269 return 0;
3270 default:
3271 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3272 __func__, ITEM_TYPE(item));
3273 ASSERT(0);
3274 return -EIO;
3275 }
3276 }
3277
3278 STATIC int
3279 xlog_recover_items_pass2(
3280 struct xlog *log,
3281 struct xlog_recover *trans,
3282 struct list_head *buffer_list,
3283 struct list_head *item_list)
3284 {
3285 struct xlog_recover_item *item;
3286 int error = 0;
3287
3288 list_for_each_entry(item, item_list, ri_list) {
3289 error = xlog_recover_commit_pass2(log, trans,
3290 buffer_list, item);
3291 if (error)
3292 return error;
3293 }
3294
3295 return error;
3296 }
3297
3298 /*
3299 * Perform the transaction.
3300 *
3301 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3302 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3303 */
3304 STATIC int
3305 xlog_recover_commit_trans(
3306 struct xlog *log,
3307 struct xlog_recover *trans,
3308 int pass)
3309 {
3310 int error = 0;
3311 int error2;
3312 int items_queued = 0;
3313 struct xlog_recover_item *item;
3314 struct xlog_recover_item *next;
3315 LIST_HEAD (buffer_list);
3316 LIST_HEAD (ra_list);
3317 LIST_HEAD (done_list);
3318
3319 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3320
3321 hlist_del(&trans->r_list);
3322
3323 error = xlog_recover_reorder_trans(log, trans, pass);
3324 if (error)
3325 return error;
3326
3327 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3328 switch (pass) {
3329 case XLOG_RECOVER_PASS1:
3330 error = xlog_recover_commit_pass1(log, trans, item);
3331 break;
3332 case XLOG_RECOVER_PASS2:
3333 xlog_recover_ra_pass2(log, item);
3334 list_move_tail(&item->ri_list, &ra_list);
3335 items_queued++;
3336 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3337 error = xlog_recover_items_pass2(log, trans,
3338 &buffer_list, &ra_list);
3339 list_splice_tail_init(&ra_list, &done_list);
3340 items_queued = 0;
3341 }
3342
3343 break;
3344 default:
3345 ASSERT(0);
3346 }
3347
3348 if (error)
3349 goto out;
3350 }
3351
3352 out:
3353 if (!list_empty(&ra_list)) {
3354 if (!error)
3355 error = xlog_recover_items_pass2(log, trans,
3356 &buffer_list, &ra_list);
3357 list_splice_tail_init(&ra_list, &done_list);
3358 }
3359
3360 if (!list_empty(&done_list))
3361 list_splice_init(&done_list, &trans->r_itemq);
3362
3363 error2 = xfs_buf_delwri_submit(&buffer_list);
3364 return error ? error : error2;
3365 }
3366
3367 STATIC void
3368 xlog_recover_add_item(
3369 struct list_head *head)
3370 {
3371 xlog_recover_item_t *item;
3372
3373 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3374 INIT_LIST_HEAD(&item->ri_list);
3375 list_add_tail(&item->ri_list, head);
3376 }
3377
3378 STATIC int
3379 xlog_recover_add_to_cont_trans(
3380 struct xlog *log,
3381 struct xlog_recover *trans,
3382 char *dp,
3383 int len)
3384 {
3385 xlog_recover_item_t *item;
3386 char *ptr, *old_ptr;
3387 int old_len;
3388
3389 if (list_empty(&trans->r_itemq)) {
3390 /* finish copying rest of trans header */
3391 xlog_recover_add_item(&trans->r_itemq);
3392 ptr = (char *)&trans->r_theader +
3393 sizeof(xfs_trans_header_t) - len;
3394 memcpy(ptr, dp, len);
3395 return 0;
3396 }
3397 /* take the tail entry */
3398 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3399
3400 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3401 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3402
3403 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3404 memcpy(&ptr[old_len], dp, len);
3405 item->ri_buf[item->ri_cnt-1].i_len += len;
3406 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3407 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3408 return 0;
3409 }
3410
3411 /*
3412 * The next region to add is the start of a new region. It could be
3413 * a whole region or it could be the first part of a new region. Because
3414 * of this, the assumption here is that the type and size fields of all
3415 * format structures fit into the first 32 bits of the structure.
3416 *
3417 * This works because all regions must be 32 bit aligned. Therefore, we
3418 * either have both fields or we have neither field. In the case we have
3419 * neither field, the data part of the region is zero length. We only have
3420 * a log_op_header and can throw away the header since a new one will appear
3421 * later. If we have at least 4 bytes, then we can determine how many regions
3422 * will appear in the current log item.
3423 */
3424 STATIC int
3425 xlog_recover_add_to_trans(
3426 struct xlog *log,
3427 struct xlog_recover *trans,
3428 char *dp,
3429 int len)
3430 {
3431 xfs_inode_log_format_t *in_f; /* any will do */
3432 xlog_recover_item_t *item;
3433 char *ptr;
3434
3435 if (!len)
3436 return 0;
3437 if (list_empty(&trans->r_itemq)) {
3438 /* we need to catch log corruptions here */
3439 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3440 xfs_warn(log->l_mp, "%s: bad header magic number",
3441 __func__);
3442 ASSERT(0);
3443 return -EIO;
3444 }
3445 if (len == sizeof(xfs_trans_header_t))
3446 xlog_recover_add_item(&trans->r_itemq);
3447 memcpy(&trans->r_theader, dp, len);
3448 return 0;
3449 }
3450
3451 ptr = kmem_alloc(len, KM_SLEEP);
3452 memcpy(ptr, dp, len);
3453 in_f = (xfs_inode_log_format_t *)ptr;
3454
3455 /* take the tail entry */
3456 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3457 if (item->ri_total != 0 &&
3458 item->ri_total == item->ri_cnt) {
3459 /* tail item is in use, get a new one */
3460 xlog_recover_add_item(&trans->r_itemq);
3461 item = list_entry(trans->r_itemq.prev,
3462 xlog_recover_item_t, ri_list);
3463 }
3464
3465 if (item->ri_total == 0) { /* first region to be added */
3466 if (in_f->ilf_size == 0 ||
3467 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3468 xfs_warn(log->l_mp,
3469 "bad number of regions (%d) in inode log format",
3470 in_f->ilf_size);
3471 ASSERT(0);
3472 kmem_free(ptr);
3473 return -EIO;
3474 }
3475
3476 item->ri_total = in_f->ilf_size;
3477 item->ri_buf =
3478 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3479 KM_SLEEP);
3480 }
3481 ASSERT(item->ri_total > item->ri_cnt);
3482 /* Description region is ri_buf[0] */
3483 item->ri_buf[item->ri_cnt].i_addr = ptr;
3484 item->ri_buf[item->ri_cnt].i_len = len;
3485 item->ri_cnt++;
3486 trace_xfs_log_recover_item_add(log, trans, item, 0);
3487 return 0;
3488 }
3489
3490 /*
3491 * Free up any resources allocated by the transaction
3492 *
3493 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3494 */
3495 STATIC void
3496 xlog_recover_free_trans(
3497 struct xlog_recover *trans)
3498 {
3499 xlog_recover_item_t *item, *n;
3500 int i;
3501
3502 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3503 /* Free the regions in the item. */
3504 list_del(&item->ri_list);
3505 for (i = 0; i < item->ri_cnt; i++)
3506 kmem_free(item->ri_buf[i].i_addr);
3507 /* Free the item itself */
3508 kmem_free(item->ri_buf);
3509 kmem_free(item);
3510 }
3511 /* Free the transaction recover structure */
3512 kmem_free(trans);
3513 }
3514
3515 /*
3516 * On error or completion, trans is freed.
3517 */
3518 STATIC int
3519 xlog_recovery_process_trans(
3520 struct xlog *log,
3521 struct xlog_recover *trans,
3522 char *dp,
3523 unsigned int len,
3524 unsigned int flags,
3525 int pass)
3526 {
3527 int error = 0;
3528 bool freeit = false;
3529
3530 /* mask off ophdr transaction container flags */
3531 flags &= ~XLOG_END_TRANS;
3532 if (flags & XLOG_WAS_CONT_TRANS)
3533 flags &= ~XLOG_CONTINUE_TRANS;
3534
3535 /*
3536 * Callees must not free the trans structure. We'll decide if we need to
3537 * free it or not based on the operation being done and it's result.
3538 */
3539 switch (flags) {
3540 /* expected flag values */
3541 case 0:
3542 case XLOG_CONTINUE_TRANS:
3543 error = xlog_recover_add_to_trans(log, trans, dp, len);
3544 break;
3545 case XLOG_WAS_CONT_TRANS:
3546 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3547 break;
3548 case XLOG_COMMIT_TRANS:
3549 error = xlog_recover_commit_trans(log, trans, pass);
3550 /* success or fail, we are now done with this transaction. */
3551 freeit = true;
3552 break;
3553
3554 /* unexpected flag values */
3555 case XLOG_UNMOUNT_TRANS:
3556 /* just skip trans */
3557 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3558 freeit = true;
3559 break;
3560 case XLOG_START_TRANS:
3561 default:
3562 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3563 ASSERT(0);
3564 error = -EIO;
3565 break;
3566 }
3567 if (error || freeit)
3568 xlog_recover_free_trans(trans);
3569 return error;
3570 }
3571
3572 /*
3573 * Lookup the transaction recovery structure associated with the ID in the
3574 * current ophdr. If the transaction doesn't exist and the start flag is set in
3575 * the ophdr, then allocate a new transaction for future ID matches to find.
3576 * Either way, return what we found during the lookup - an existing transaction
3577 * or nothing.
3578 */
3579 STATIC struct xlog_recover *
3580 xlog_recover_ophdr_to_trans(
3581 struct hlist_head rhash[],
3582 struct xlog_rec_header *rhead,
3583 struct xlog_op_header *ohead)
3584 {
3585 struct xlog_recover *trans;
3586 xlog_tid_t tid;
3587 struct hlist_head *rhp;
3588
3589 tid = be32_to_cpu(ohead->oh_tid);
3590 rhp = &rhash[XLOG_RHASH(tid)];
3591 hlist_for_each_entry(trans, rhp, r_list) {
3592 if (trans->r_log_tid == tid)
3593 return trans;
3594 }
3595
3596 /*
3597 * skip over non-start transaction headers - we could be
3598 * processing slack space before the next transaction starts
3599 */
3600 if (!(ohead->oh_flags & XLOG_START_TRANS))
3601 return NULL;
3602
3603 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
3604
3605 /*
3606 * This is a new transaction so allocate a new recovery container to
3607 * hold the recovery ops that will follow.
3608 */
3609 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
3610 trans->r_log_tid = tid;
3611 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
3612 INIT_LIST_HEAD(&trans->r_itemq);
3613 INIT_HLIST_NODE(&trans->r_list);
3614 hlist_add_head(&trans->r_list, rhp);
3615
3616 /*
3617 * Nothing more to do for this ophdr. Items to be added to this new
3618 * transaction will be in subsequent ophdr containers.
3619 */
3620 return NULL;
3621 }
3622
3623 STATIC int
3624 xlog_recover_process_ophdr(
3625 struct xlog *log,
3626 struct hlist_head rhash[],
3627 struct xlog_rec_header *rhead,
3628 struct xlog_op_header *ohead,
3629 char *dp,
3630 char *end,
3631 int pass)
3632 {
3633 struct xlog_recover *trans;
3634 unsigned int len;
3635
3636 /* Do we understand who wrote this op? */
3637 if (ohead->oh_clientid != XFS_TRANSACTION &&
3638 ohead->oh_clientid != XFS_LOG) {
3639 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3640 __func__, ohead->oh_clientid);
3641 ASSERT(0);
3642 return -EIO;
3643 }
3644
3645 /*
3646 * Check the ophdr contains all the data it is supposed to contain.
3647 */
3648 len = be32_to_cpu(ohead->oh_len);
3649 if (dp + len > end) {
3650 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
3651 WARN_ON(1);
3652 return -EIO;
3653 }
3654
3655 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
3656 if (!trans) {
3657 /* nothing to do, so skip over this ophdr */
3658 return 0;
3659 }
3660
3661 return xlog_recovery_process_trans(log, trans, dp, len,
3662 ohead->oh_flags, pass);
3663 }
3664
3665 /*
3666 * There are two valid states of the r_state field. 0 indicates that the
3667 * transaction structure is in a normal state. We have either seen the
3668 * start of the transaction or the last operation we added was not a partial
3669 * operation. If the last operation we added to the transaction was a
3670 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3671 *
3672 * NOTE: skip LRs with 0 data length.
3673 */
3674 STATIC int
3675 xlog_recover_process_data(
3676 struct xlog *log,
3677 struct hlist_head rhash[],
3678 struct xlog_rec_header *rhead,
3679 char *dp,
3680 int pass)
3681 {
3682 struct xlog_op_header *ohead;
3683 char *end;
3684 int num_logops;
3685 int error;
3686
3687 end = dp + be32_to_cpu(rhead->h_len);
3688 num_logops = be32_to_cpu(rhead->h_num_logops);
3689
3690 /* check the log format matches our own - else we can't recover */
3691 if (xlog_header_check_recover(log->l_mp, rhead))
3692 return -EIO;
3693
3694 while ((dp < end) && num_logops) {
3695
3696 ohead = (struct xlog_op_header *)dp;
3697 dp += sizeof(*ohead);
3698 ASSERT(dp <= end);
3699
3700 /* errors will abort recovery */
3701 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
3702 dp, end, pass);
3703 if (error)
3704 return error;
3705
3706 dp += be32_to_cpu(ohead->oh_len);
3707 num_logops--;
3708 }
3709 return 0;
3710 }
3711
3712 /*
3713 * Process an extent free intent item that was recovered from
3714 * the log. We need to free the extents that it describes.
3715 */
3716 STATIC int
3717 xlog_recover_process_efi(
3718 xfs_mount_t *mp,
3719 xfs_efi_log_item_t *efip)
3720 {
3721 xfs_efd_log_item_t *efdp;
3722 xfs_trans_t *tp;
3723 int i;
3724 int error = 0;
3725 xfs_extent_t *extp;
3726 xfs_fsblock_t startblock_fsb;
3727
3728 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3729
3730 /*
3731 * First check the validity of the extents described by the
3732 * EFI. If any are bad, then assume that all are bad and
3733 * just toss the EFI.
3734 */
3735 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3736 extp = &(efip->efi_format.efi_extents[i]);
3737 startblock_fsb = XFS_BB_TO_FSB(mp,
3738 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3739 if ((startblock_fsb == 0) ||
3740 (extp->ext_len == 0) ||
3741 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3742 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3743 /*
3744 * This will pull the EFI from the AIL and
3745 * free the memory associated with it.
3746 */
3747 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3748 xfs_efi_release(efip);
3749 return -EIO;
3750 }
3751 }
3752
3753 tp = xfs_trans_alloc(mp, 0);
3754 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3755 if (error)
3756 goto abort_error;
3757 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3758
3759 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3760 extp = &(efip->efi_format.efi_extents[i]);
3761 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
3762 extp->ext_len);
3763 if (error)
3764 goto abort_error;
3765
3766 }
3767
3768 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3769 error = xfs_trans_commit(tp);
3770 return error;
3771
3772 abort_error:
3773 xfs_trans_cancel(tp);
3774 return error;
3775 }
3776
3777 /*
3778 * When this is called, all of the EFIs which did not have
3779 * corresponding EFDs should be in the AIL. What we do now
3780 * is free the extents associated with each one.
3781 *
3782 * Since we process the EFIs in normal transactions, they
3783 * will be removed at some point after the commit. This prevents
3784 * us from just walking down the list processing each one.
3785 * We'll use a flag in the EFI to skip those that we've already
3786 * processed and use the AIL iteration mechanism's generation
3787 * count to try to speed this up at least a bit.
3788 *
3789 * When we start, we know that the EFIs are the only things in
3790 * the AIL. As we process them, however, other items are added
3791 * to the AIL. Since everything added to the AIL must come after
3792 * everything already in the AIL, we stop processing as soon as
3793 * we see something other than an EFI in the AIL.
3794 */
3795 STATIC int
3796 xlog_recover_process_efis(
3797 struct xlog *log)
3798 {
3799 struct xfs_log_item *lip;
3800 struct xfs_efi_log_item *efip;
3801 int error = 0;
3802 struct xfs_ail_cursor cur;
3803 struct xfs_ail *ailp;
3804
3805 ailp = log->l_ailp;
3806 spin_lock(&ailp->xa_lock);
3807 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3808 while (lip != NULL) {
3809 /*
3810 * We're done when we see something other than an EFI.
3811 * There should be no EFIs left in the AIL now.
3812 */
3813 if (lip->li_type != XFS_LI_EFI) {
3814 #ifdef DEBUG
3815 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3816 ASSERT(lip->li_type != XFS_LI_EFI);
3817 #endif
3818 break;
3819 }
3820
3821 /*
3822 * Skip EFIs that we've already processed.
3823 */
3824 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
3825 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3826 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3827 continue;
3828 }
3829
3830 spin_unlock(&ailp->xa_lock);
3831 error = xlog_recover_process_efi(log->l_mp, efip);
3832 spin_lock(&ailp->xa_lock);
3833 if (error)
3834 goto out;
3835 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3836 }
3837 out:
3838 xfs_trans_ail_cursor_done(&cur);
3839 spin_unlock(&ailp->xa_lock);
3840 return error;
3841 }
3842
3843 /*
3844 * A cancel occurs when the mount has failed and we're bailing out. Release all
3845 * pending EFIs so they don't pin the AIL.
3846 */
3847 STATIC int
3848 xlog_recover_cancel_efis(
3849 struct xlog *log)
3850 {
3851 struct xfs_log_item *lip;
3852 struct xfs_efi_log_item *efip;
3853 int error = 0;
3854 struct xfs_ail_cursor cur;
3855 struct xfs_ail *ailp;
3856
3857 ailp = log->l_ailp;
3858 spin_lock(&ailp->xa_lock);
3859 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3860 while (lip != NULL) {
3861 /*
3862 * We're done when we see something other than an EFI.
3863 * There should be no EFIs left in the AIL now.
3864 */
3865 if (lip->li_type != XFS_LI_EFI) {
3866 #ifdef DEBUG
3867 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3868 ASSERT(lip->li_type != XFS_LI_EFI);
3869 #endif
3870 break;
3871 }
3872
3873 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
3874
3875 spin_unlock(&ailp->xa_lock);
3876 xfs_efi_release(efip);
3877 spin_lock(&ailp->xa_lock);
3878
3879 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3880 }
3881
3882 xfs_trans_ail_cursor_done(&cur);
3883 spin_unlock(&ailp->xa_lock);
3884 return error;
3885 }
3886
3887 /*
3888 * This routine performs a transaction to null out a bad inode pointer
3889 * in an agi unlinked inode hash bucket.
3890 */
3891 STATIC void
3892 xlog_recover_clear_agi_bucket(
3893 xfs_mount_t *mp,
3894 xfs_agnumber_t agno,
3895 int bucket)
3896 {
3897 xfs_trans_t *tp;
3898 xfs_agi_t *agi;
3899 xfs_buf_t *agibp;
3900 int offset;
3901 int error;
3902
3903 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3904 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3905 if (error)
3906 goto out_abort;
3907
3908 error = xfs_read_agi(mp, tp, agno, &agibp);
3909 if (error)
3910 goto out_abort;
3911
3912 agi = XFS_BUF_TO_AGI(agibp);
3913 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3914 offset = offsetof(xfs_agi_t, agi_unlinked) +
3915 (sizeof(xfs_agino_t) * bucket);
3916 xfs_trans_log_buf(tp, agibp, offset,
3917 (offset + sizeof(xfs_agino_t) - 1));
3918
3919 error = xfs_trans_commit(tp);
3920 if (error)
3921 goto out_error;
3922 return;
3923
3924 out_abort:
3925 xfs_trans_cancel(tp);
3926 out_error:
3927 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3928 return;
3929 }
3930
3931 STATIC xfs_agino_t
3932 xlog_recover_process_one_iunlink(
3933 struct xfs_mount *mp,
3934 xfs_agnumber_t agno,
3935 xfs_agino_t agino,
3936 int bucket)
3937 {
3938 struct xfs_buf *ibp;
3939 struct xfs_dinode *dip;
3940 struct xfs_inode *ip;
3941 xfs_ino_t ino;
3942 int error;
3943
3944 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3945 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3946 if (error)
3947 goto fail;
3948
3949 /*
3950 * Get the on disk inode to find the next inode in the bucket.
3951 */
3952 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3953 if (error)
3954 goto fail_iput;
3955
3956 ASSERT(ip->i_d.di_nlink == 0);
3957 ASSERT(ip->i_d.di_mode != 0);
3958
3959 /* setup for the next pass */
3960 agino = be32_to_cpu(dip->di_next_unlinked);
3961 xfs_buf_relse(ibp);
3962
3963 /*
3964 * Prevent any DMAPI event from being sent when the reference on
3965 * the inode is dropped.
3966 */
3967 ip->i_d.di_dmevmask = 0;
3968
3969 IRELE(ip);
3970 return agino;
3971
3972 fail_iput:
3973 IRELE(ip);
3974 fail:
3975 /*
3976 * We can't read in the inode this bucket points to, or this inode
3977 * is messed up. Just ditch this bucket of inodes. We will lose
3978 * some inodes and space, but at least we won't hang.
3979 *
3980 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3981 * clear the inode pointer in the bucket.
3982 */
3983 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3984 return NULLAGINO;
3985 }
3986
3987 /*
3988 * xlog_iunlink_recover
3989 *
3990 * This is called during recovery to process any inodes which
3991 * we unlinked but not freed when the system crashed. These
3992 * inodes will be on the lists in the AGI blocks. What we do
3993 * here is scan all the AGIs and fully truncate and free any
3994 * inodes found on the lists. Each inode is removed from the
3995 * lists when it has been fully truncated and is freed. The
3996 * freeing of the inode and its removal from the list must be
3997 * atomic.
3998 */
3999 STATIC void
4000 xlog_recover_process_iunlinks(
4001 struct xlog *log)
4002 {
4003 xfs_mount_t *mp;
4004 xfs_agnumber_t agno;
4005 xfs_agi_t *agi;
4006 xfs_buf_t *agibp;
4007 xfs_agino_t agino;
4008 int bucket;
4009 int error;
4010 uint mp_dmevmask;
4011
4012 mp = log->l_mp;
4013
4014 /*
4015 * Prevent any DMAPI event from being sent while in this function.
4016 */
4017 mp_dmevmask = mp->m_dmevmask;
4018 mp->m_dmevmask = 0;
4019
4020 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4021 /*
4022 * Find the agi for this ag.
4023 */
4024 error = xfs_read_agi(mp, NULL, agno, &agibp);
4025 if (error) {
4026 /*
4027 * AGI is b0rked. Don't process it.
4028 *
4029 * We should probably mark the filesystem as corrupt
4030 * after we've recovered all the ag's we can....
4031 */
4032 continue;
4033 }
4034 /*
4035 * Unlock the buffer so that it can be acquired in the normal
4036 * course of the transaction to truncate and free each inode.
4037 * Because we are not racing with anyone else here for the AGI
4038 * buffer, we don't even need to hold it locked to read the
4039 * initial unlinked bucket entries out of the buffer. We keep
4040 * buffer reference though, so that it stays pinned in memory
4041 * while we need the buffer.
4042 */
4043 agi = XFS_BUF_TO_AGI(agibp);
4044 xfs_buf_unlock(agibp);
4045
4046 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4047 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4048 while (agino != NULLAGINO) {
4049 agino = xlog_recover_process_one_iunlink(mp,
4050 agno, agino, bucket);
4051 }
4052 }
4053 xfs_buf_rele(agibp);
4054 }
4055
4056 mp->m_dmevmask = mp_dmevmask;
4057 }
4058
4059 /*
4060 * Upack the log buffer data and crc check it. If the check fails, issue a
4061 * warning if and only if the CRC in the header is non-zero. This makes the
4062 * check an advisory warning, and the zero CRC check will prevent failure
4063 * warnings from being emitted when upgrading the kernel from one that does not
4064 * add CRCs by default.
4065 *
4066 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4067 * corruption failure
4068 */
4069 STATIC int
4070 xlog_unpack_data_crc(
4071 struct xlog_rec_header *rhead,
4072 char *dp,
4073 struct xlog *log)
4074 {
4075 __le32 crc;
4076
4077 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4078 if (crc != rhead->h_crc) {
4079 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4080 xfs_alert(log->l_mp,
4081 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4082 le32_to_cpu(rhead->h_crc),
4083 le32_to_cpu(crc));
4084 xfs_hex_dump(dp, 32);
4085 }
4086
4087 /*
4088 * If we've detected a log record corruption, then we can't
4089 * recover past this point. Abort recovery if we are enforcing
4090 * CRC protection by punting an error back up the stack.
4091 */
4092 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4093 return -EFSCORRUPTED;
4094 }
4095
4096 return 0;
4097 }
4098
4099 STATIC int
4100 xlog_unpack_data(
4101 struct xlog_rec_header *rhead,
4102 char *dp,
4103 struct xlog *log)
4104 {
4105 int i, j, k;
4106 int error;
4107
4108 error = xlog_unpack_data_crc(rhead, dp, log);
4109 if (error)
4110 return error;
4111
4112 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4113 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4114 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4115 dp += BBSIZE;
4116 }
4117
4118 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4119 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4120 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4121 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4122 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4123 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4124 dp += BBSIZE;
4125 }
4126 }
4127
4128 return 0;
4129 }
4130
4131 STATIC int
4132 xlog_valid_rec_header(
4133 struct xlog *log,
4134 struct xlog_rec_header *rhead,
4135 xfs_daddr_t blkno)
4136 {
4137 int hlen;
4138
4139 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4140 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4141 XFS_ERRLEVEL_LOW, log->l_mp);
4142 return -EFSCORRUPTED;
4143 }
4144 if (unlikely(
4145 (!rhead->h_version ||
4146 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4147 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4148 __func__, be32_to_cpu(rhead->h_version));
4149 return -EIO;
4150 }
4151
4152 /* LR body must have data or it wouldn't have been written */
4153 hlen = be32_to_cpu(rhead->h_len);
4154 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4155 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4156 XFS_ERRLEVEL_LOW, log->l_mp);
4157 return -EFSCORRUPTED;
4158 }
4159 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4160 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4161 XFS_ERRLEVEL_LOW, log->l_mp);
4162 return -EFSCORRUPTED;
4163 }
4164 return 0;
4165 }
4166
4167 /*
4168 * Read the log from tail to head and process the log records found.
4169 * Handle the two cases where the tail and head are in the same cycle
4170 * and where the active portion of the log wraps around the end of
4171 * the physical log separately. The pass parameter is passed through
4172 * to the routines called to process the data and is not looked at
4173 * here.
4174 */
4175 STATIC int
4176 xlog_do_recovery_pass(
4177 struct xlog *log,
4178 xfs_daddr_t head_blk,
4179 xfs_daddr_t tail_blk,
4180 int pass)
4181 {
4182 xlog_rec_header_t *rhead;
4183 xfs_daddr_t blk_no;
4184 char *offset;
4185 xfs_buf_t *hbp, *dbp;
4186 int error = 0, h_size;
4187 int bblks, split_bblks;
4188 int hblks, split_hblks, wrapped_hblks;
4189 struct hlist_head rhash[XLOG_RHASH_SIZE];
4190
4191 ASSERT(head_blk != tail_blk);
4192
4193 /*
4194 * Read the header of the tail block and get the iclog buffer size from
4195 * h_size. Use this to tell how many sectors make up the log header.
4196 */
4197 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4198 /*
4199 * When using variable length iclogs, read first sector of
4200 * iclog header and extract the header size from it. Get a
4201 * new hbp that is the correct size.
4202 */
4203 hbp = xlog_get_bp(log, 1);
4204 if (!hbp)
4205 return -ENOMEM;
4206
4207 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4208 if (error)
4209 goto bread_err1;
4210
4211 rhead = (xlog_rec_header_t *)offset;
4212 error = xlog_valid_rec_header(log, rhead, tail_blk);
4213 if (error)
4214 goto bread_err1;
4215 h_size = be32_to_cpu(rhead->h_size);
4216 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4217 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4218 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4219 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4220 hblks++;
4221 xlog_put_bp(hbp);
4222 hbp = xlog_get_bp(log, hblks);
4223 } else {
4224 hblks = 1;
4225 }
4226 } else {
4227 ASSERT(log->l_sectBBsize == 1);
4228 hblks = 1;
4229 hbp = xlog_get_bp(log, 1);
4230 h_size = XLOG_BIG_RECORD_BSIZE;
4231 }
4232
4233 if (!hbp)
4234 return -ENOMEM;
4235 dbp = xlog_get_bp(log, BTOBB(h_size));
4236 if (!dbp) {
4237 xlog_put_bp(hbp);
4238 return -ENOMEM;
4239 }
4240
4241 memset(rhash, 0, sizeof(rhash));
4242 blk_no = tail_blk;
4243 if (tail_blk > head_blk) {
4244 /*
4245 * Perform recovery around the end of the physical log.
4246 * When the head is not on the same cycle number as the tail,
4247 * we can't do a sequential recovery.
4248 */
4249 while (blk_no < log->l_logBBsize) {
4250 /*
4251 * Check for header wrapping around physical end-of-log
4252 */
4253 offset = hbp->b_addr;
4254 split_hblks = 0;
4255 wrapped_hblks = 0;
4256 if (blk_no + hblks <= log->l_logBBsize) {
4257 /* Read header in one read */
4258 error = xlog_bread(log, blk_no, hblks, hbp,
4259 &offset);
4260 if (error)
4261 goto bread_err2;
4262 } else {
4263 /* This LR is split across physical log end */
4264 if (blk_no != log->l_logBBsize) {
4265 /* some data before physical log end */
4266 ASSERT(blk_no <= INT_MAX);
4267 split_hblks = log->l_logBBsize - (int)blk_no;
4268 ASSERT(split_hblks > 0);
4269 error = xlog_bread(log, blk_no,
4270 split_hblks, hbp,
4271 &offset);
4272 if (error)
4273 goto bread_err2;
4274 }
4275
4276 /*
4277 * Note: this black magic still works with
4278 * large sector sizes (non-512) only because:
4279 * - we increased the buffer size originally
4280 * by 1 sector giving us enough extra space
4281 * for the second read;
4282 * - the log start is guaranteed to be sector
4283 * aligned;
4284 * - we read the log end (LR header start)
4285 * _first_, then the log start (LR header end)
4286 * - order is important.
4287 */
4288 wrapped_hblks = hblks - split_hblks;
4289 error = xlog_bread_offset(log, 0,
4290 wrapped_hblks, hbp,
4291 offset + BBTOB(split_hblks));
4292 if (error)
4293 goto bread_err2;
4294 }
4295 rhead = (xlog_rec_header_t *)offset;
4296 error = xlog_valid_rec_header(log, rhead,
4297 split_hblks ? blk_no : 0);
4298 if (error)
4299 goto bread_err2;
4300
4301 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4302 blk_no += hblks;
4303
4304 /* Read in data for log record */
4305 if (blk_no + bblks <= log->l_logBBsize) {
4306 error = xlog_bread(log, blk_no, bblks, dbp,
4307 &offset);
4308 if (error)
4309 goto bread_err2;
4310 } else {
4311 /* This log record is split across the
4312 * physical end of log */
4313 offset = dbp->b_addr;
4314 split_bblks = 0;
4315 if (blk_no != log->l_logBBsize) {
4316 /* some data is before the physical
4317 * end of log */
4318 ASSERT(!wrapped_hblks);
4319 ASSERT(blk_no <= INT_MAX);
4320 split_bblks =
4321 log->l_logBBsize - (int)blk_no;
4322 ASSERT(split_bblks > 0);
4323 error = xlog_bread(log, blk_no,
4324 split_bblks, dbp,
4325 &offset);
4326 if (error)
4327 goto bread_err2;
4328 }
4329
4330 /*
4331 * Note: this black magic still works with
4332 * large sector sizes (non-512) only because:
4333 * - we increased the buffer size originally
4334 * by 1 sector giving us enough extra space
4335 * for the second read;
4336 * - the log start is guaranteed to be sector
4337 * aligned;
4338 * - we read the log end (LR header start)
4339 * _first_, then the log start (LR header end)
4340 * - order is important.
4341 */
4342 error = xlog_bread_offset(log, 0,
4343 bblks - split_bblks, dbp,
4344 offset + BBTOB(split_bblks));
4345 if (error)
4346 goto bread_err2;
4347 }
4348
4349 error = xlog_unpack_data(rhead, offset, log);
4350 if (error)
4351 goto bread_err2;
4352
4353 error = xlog_recover_process_data(log, rhash,
4354 rhead, offset, pass);
4355 if (error)
4356 goto bread_err2;
4357 blk_no += bblks;
4358 }
4359
4360 ASSERT(blk_no >= log->l_logBBsize);
4361 blk_no -= log->l_logBBsize;
4362 }
4363
4364 /* read first part of physical log */
4365 while (blk_no < head_blk) {
4366 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4367 if (error)
4368 goto bread_err2;
4369
4370 rhead = (xlog_rec_header_t *)offset;
4371 error = xlog_valid_rec_header(log, rhead, blk_no);
4372 if (error)
4373 goto bread_err2;
4374
4375 /* blocks in data section */
4376 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4377 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4378 &offset);
4379 if (error)
4380 goto bread_err2;
4381
4382 error = xlog_unpack_data(rhead, offset, log);
4383 if (error)
4384 goto bread_err2;
4385
4386 error = xlog_recover_process_data(log, rhash,
4387 rhead, offset, pass);
4388 if (error)
4389 goto bread_err2;
4390 blk_no += bblks + hblks;
4391 }
4392
4393 bread_err2:
4394 xlog_put_bp(dbp);
4395 bread_err1:
4396 xlog_put_bp(hbp);
4397 return error;
4398 }
4399
4400 /*
4401 * Do the recovery of the log. We actually do this in two phases.
4402 * The two passes are necessary in order to implement the function
4403 * of cancelling a record written into the log. The first pass
4404 * determines those things which have been cancelled, and the
4405 * second pass replays log items normally except for those which
4406 * have been cancelled. The handling of the replay and cancellations
4407 * takes place in the log item type specific routines.
4408 *
4409 * The table of items which have cancel records in the log is allocated
4410 * and freed at this level, since only here do we know when all of
4411 * the log recovery has been completed.
4412 */
4413 STATIC int
4414 xlog_do_log_recovery(
4415 struct xlog *log,
4416 xfs_daddr_t head_blk,
4417 xfs_daddr_t tail_blk)
4418 {
4419 int error, i;
4420
4421 ASSERT(head_blk != tail_blk);
4422
4423 /*
4424 * First do a pass to find all of the cancelled buf log items.
4425 * Store them in the buf_cancel_table for use in the second pass.
4426 */
4427 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4428 sizeof(struct list_head),
4429 KM_SLEEP);
4430 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4431 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4432
4433 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4434 XLOG_RECOVER_PASS1);
4435 if (error != 0) {
4436 kmem_free(log->l_buf_cancel_table);
4437 log->l_buf_cancel_table = NULL;
4438 return error;
4439 }
4440 /*
4441 * Then do a second pass to actually recover the items in the log.
4442 * When it is complete free the table of buf cancel items.
4443 */
4444 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4445 XLOG_RECOVER_PASS2);
4446 #ifdef DEBUG
4447 if (!error) {
4448 int i;
4449
4450 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4451 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4452 }
4453 #endif /* DEBUG */
4454
4455 kmem_free(log->l_buf_cancel_table);
4456 log->l_buf_cancel_table = NULL;
4457
4458 return error;
4459 }
4460
4461 /*
4462 * Do the actual recovery
4463 */
4464 STATIC int
4465 xlog_do_recover(
4466 struct xlog *log,
4467 xfs_daddr_t head_blk,
4468 xfs_daddr_t tail_blk)
4469 {
4470 int error;
4471 xfs_buf_t *bp;
4472 xfs_sb_t *sbp;
4473
4474 /*
4475 * First replay the images in the log.
4476 */
4477 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4478 if (error)
4479 return error;
4480
4481 /*
4482 * If IO errors happened during recovery, bail out.
4483 */
4484 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4485 return -EIO;
4486 }
4487
4488 /*
4489 * We now update the tail_lsn since much of the recovery has completed
4490 * and there may be space available to use. If there were no extent
4491 * or iunlinks, we can free up the entire log and set the tail_lsn to
4492 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4493 * lsn of the last known good LR on disk. If there are extent frees
4494 * or iunlinks they will have some entries in the AIL; so we look at
4495 * the AIL to determine how to set the tail_lsn.
4496 */
4497 xlog_assign_tail_lsn(log->l_mp);
4498
4499 /*
4500 * Now that we've finished replaying all buffer and inode
4501 * updates, re-read in the superblock and reverify it.
4502 */
4503 bp = xfs_getsb(log->l_mp, 0);
4504 XFS_BUF_UNDONE(bp);
4505 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4506 XFS_BUF_READ(bp);
4507 XFS_BUF_UNASYNC(bp);
4508 bp->b_ops = &xfs_sb_buf_ops;
4509
4510 error = xfs_buf_submit_wait(bp);
4511 if (error) {
4512 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
4513 xfs_buf_ioerror_alert(bp, __func__);
4514 ASSERT(0);
4515 }
4516 xfs_buf_relse(bp);
4517 return error;
4518 }
4519
4520 /* Convert superblock from on-disk format */
4521 sbp = &log->l_mp->m_sb;
4522 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4523 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4524 ASSERT(xfs_sb_good_version(sbp));
4525 xfs_reinit_percpu_counters(log->l_mp);
4526
4527 xfs_buf_relse(bp);
4528
4529
4530 xlog_recover_check_summary(log);
4531
4532 /* Normal transactions can now occur */
4533 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4534 return 0;
4535 }
4536
4537 /*
4538 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4539 *
4540 * Return error or zero.
4541 */
4542 int
4543 xlog_recover(
4544 struct xlog *log)
4545 {
4546 xfs_daddr_t head_blk, tail_blk;
4547 int error;
4548
4549 /* find the tail of the log */
4550 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4551 return error;
4552
4553 if (tail_blk != head_blk) {
4554 /* There used to be a comment here:
4555 *
4556 * disallow recovery on read-only mounts. note -- mount
4557 * checks for ENOSPC and turns it into an intelligent
4558 * error message.
4559 * ...but this is no longer true. Now, unless you specify
4560 * NORECOVERY (in which case this function would never be
4561 * called), we just go ahead and recover. We do this all
4562 * under the vfs layer, so we can get away with it unless
4563 * the device itself is read-only, in which case we fail.
4564 */
4565 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4566 return error;
4567 }
4568
4569 /*
4570 * Version 5 superblock log feature mask validation. We know the
4571 * log is dirty so check if there are any unknown log features
4572 * in what we need to recover. If there are unknown features
4573 * (e.g. unsupported transactions, then simply reject the
4574 * attempt at recovery before touching anything.
4575 */
4576 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4577 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4578 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4579 xfs_warn(log->l_mp,
4580 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4581 "The log can not be fully and/or safely recovered by this kernel.\n"
4582 "Please recover the log on a kernel that supports the unknown features.",
4583 (log->l_mp->m_sb.sb_features_log_incompat &
4584 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4585 return -EINVAL;
4586 }
4587
4588 /*
4589 * Delay log recovery if the debug hook is set. This is debug
4590 * instrumention to coordinate simulation of I/O failures with
4591 * log recovery.
4592 */
4593 if (xfs_globals.log_recovery_delay) {
4594 xfs_notice(log->l_mp,
4595 "Delaying log recovery for %d seconds.",
4596 xfs_globals.log_recovery_delay);
4597 msleep(xfs_globals.log_recovery_delay * 1000);
4598 }
4599
4600 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4601 log->l_mp->m_logname ? log->l_mp->m_logname
4602 : "internal");
4603
4604 error = xlog_do_recover(log, head_blk, tail_blk);
4605 log->l_flags |= XLOG_RECOVERY_NEEDED;
4606 }
4607 return error;
4608 }
4609
4610 /*
4611 * In the first part of recovery we replay inodes and buffers and build
4612 * up the list of extent free items which need to be processed. Here
4613 * we process the extent free items and clean up the on disk unlinked
4614 * inode lists. This is separated from the first part of recovery so
4615 * that the root and real-time bitmap inodes can be read in from disk in
4616 * between the two stages. This is necessary so that we can free space
4617 * in the real-time portion of the file system.
4618 */
4619 int
4620 xlog_recover_finish(
4621 struct xlog *log)
4622 {
4623 /*
4624 * Now we're ready to do the transactions needed for the
4625 * rest of recovery. Start with completing all the extent
4626 * free intent records and then process the unlinked inode
4627 * lists. At this point, we essentially run in normal mode
4628 * except that we're still performing recovery actions
4629 * rather than accepting new requests.
4630 */
4631 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4632 int error;
4633 error = xlog_recover_process_efis(log);
4634 if (error) {
4635 xfs_alert(log->l_mp, "Failed to recover EFIs");
4636 return error;
4637 }
4638 /*
4639 * Sync the log to get all the EFIs out of the AIL.
4640 * This isn't absolutely necessary, but it helps in
4641 * case the unlink transactions would have problems
4642 * pushing the EFIs out of the way.
4643 */
4644 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4645
4646 xlog_recover_process_iunlinks(log);
4647
4648 xlog_recover_check_summary(log);
4649
4650 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4651 log->l_mp->m_logname ? log->l_mp->m_logname
4652 : "internal");
4653 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4654 } else {
4655 xfs_info(log->l_mp, "Ending clean mount");
4656 }
4657 return 0;
4658 }
4659
4660 int
4661 xlog_recover_cancel(
4662 struct xlog *log)
4663 {
4664 int error = 0;
4665
4666 if (log->l_flags & XLOG_RECOVERY_NEEDED)
4667 error = xlog_recover_cancel_efis(log);
4668
4669 return error;
4670 }
4671
4672 #if defined(DEBUG)
4673 /*
4674 * Read all of the agf and agi counters and check that they
4675 * are consistent with the superblock counters.
4676 */
4677 void
4678 xlog_recover_check_summary(
4679 struct xlog *log)
4680 {
4681 xfs_mount_t *mp;
4682 xfs_agf_t *agfp;
4683 xfs_buf_t *agfbp;
4684 xfs_buf_t *agibp;
4685 xfs_agnumber_t agno;
4686 __uint64_t freeblks;
4687 __uint64_t itotal;
4688 __uint64_t ifree;
4689 int error;
4690
4691 mp = log->l_mp;
4692
4693 freeblks = 0LL;
4694 itotal = 0LL;
4695 ifree = 0LL;
4696 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4697 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4698 if (error) {
4699 xfs_alert(mp, "%s agf read failed agno %d error %d",
4700 __func__, agno, error);
4701 } else {
4702 agfp = XFS_BUF_TO_AGF(agfbp);
4703 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4704 be32_to_cpu(agfp->agf_flcount);
4705 xfs_buf_relse(agfbp);
4706 }
4707
4708 error = xfs_read_agi(mp, NULL, agno, &agibp);
4709 if (error) {
4710 xfs_alert(mp, "%s agi read failed agno %d error %d",
4711 __func__, agno, error);
4712 } else {
4713 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4714
4715 itotal += be32_to_cpu(agi->agi_count);
4716 ifree += be32_to_cpu(agi->agi_freecount);
4717 xfs_buf_relse(agibp);
4718 }
4719 }
4720 }
4721 #endif /* DEBUG */