]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_log_recover.c
xfs: remove inode log format typedef
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 #include "xfs_rmap_item.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_refcount_item.h"
49 #include "xfs_bmap_item.h"
50
51 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
52
53 STATIC int
54 xlog_find_zeroed(
55 struct xlog *,
56 xfs_daddr_t *);
57 STATIC int
58 xlog_clear_stale_blocks(
59 struct xlog *,
60 xfs_lsn_t);
61 #if defined(DEBUG)
62 STATIC void
63 xlog_recover_check_summary(
64 struct xlog *);
65 #else
66 #define xlog_recover_check_summary(log)
67 #endif
68 STATIC int
69 xlog_do_recovery_pass(
70 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
71
72 /*
73 * This structure is used during recovery to record the buf log items which
74 * have been canceled and should not be replayed.
75 */
76 struct xfs_buf_cancel {
77 xfs_daddr_t bc_blkno;
78 uint bc_len;
79 int bc_refcount;
80 struct list_head bc_list;
81 };
82
83 /*
84 * Sector aligned buffer routines for buffer create/read/write/access
85 */
86
87 /*
88 * Verify the log-relative block number and length in basic blocks are valid for
89 * an operation involving the given XFS log buffer. Returns true if the fields
90 * are valid, false otherwise.
91 */
92 static inline bool
93 xlog_verify_bp(
94 struct xlog *log,
95 xfs_daddr_t blk_no,
96 int bbcount)
97 {
98 if (blk_no < 0 || blk_no >= log->l_logBBsize)
99 return false;
100 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
101 return false;
102 return true;
103 }
104
105 /*
106 * Allocate a buffer to hold log data. The buffer needs to be able
107 * to map to a range of nbblks basic blocks at any valid (basic
108 * block) offset within the log.
109 */
110 STATIC xfs_buf_t *
111 xlog_get_bp(
112 struct xlog *log,
113 int nbblks)
114 {
115 struct xfs_buf *bp;
116
117 /*
118 * Pass log block 0 since we don't have an addr yet, buffer will be
119 * verified on read.
120 */
121 if (!xlog_verify_bp(log, 0, nbblks)) {
122 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
123 nbblks);
124 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
125 return NULL;
126 }
127
128 /*
129 * We do log I/O in units of log sectors (a power-of-2
130 * multiple of the basic block size), so we round up the
131 * requested size to accommodate the basic blocks required
132 * for complete log sectors.
133 *
134 * In addition, the buffer may be used for a non-sector-
135 * aligned block offset, in which case an I/O of the
136 * requested size could extend beyond the end of the
137 * buffer. If the requested size is only 1 basic block it
138 * will never straddle a sector boundary, so this won't be
139 * an issue. Nor will this be a problem if the log I/O is
140 * done in basic blocks (sector size 1). But otherwise we
141 * extend the buffer by one extra log sector to ensure
142 * there's space to accommodate this possibility.
143 */
144 if (nbblks > 1 && log->l_sectBBsize > 1)
145 nbblks += log->l_sectBBsize;
146 nbblks = round_up(nbblks, log->l_sectBBsize);
147
148 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
149 if (bp)
150 xfs_buf_unlock(bp);
151 return bp;
152 }
153
154 STATIC void
155 xlog_put_bp(
156 xfs_buf_t *bp)
157 {
158 xfs_buf_free(bp);
159 }
160
161 /*
162 * Return the address of the start of the given block number's data
163 * in a log buffer. The buffer covers a log sector-aligned region.
164 */
165 STATIC char *
166 xlog_align(
167 struct xlog *log,
168 xfs_daddr_t blk_no,
169 int nbblks,
170 struct xfs_buf *bp)
171 {
172 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
173
174 ASSERT(offset + nbblks <= bp->b_length);
175 return bp->b_addr + BBTOB(offset);
176 }
177
178
179 /*
180 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
181 */
182 STATIC int
183 xlog_bread_noalign(
184 struct xlog *log,
185 xfs_daddr_t blk_no,
186 int nbblks,
187 struct xfs_buf *bp)
188 {
189 int error;
190
191 if (!xlog_verify_bp(log, blk_no, nbblks)) {
192 xfs_warn(log->l_mp,
193 "Invalid log block/length (0x%llx, 0x%x) for buffer",
194 blk_no, nbblks);
195 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
196 return -EFSCORRUPTED;
197 }
198
199 blk_no = round_down(blk_no, log->l_sectBBsize);
200 nbblks = round_up(nbblks, log->l_sectBBsize);
201
202 ASSERT(nbblks > 0);
203 ASSERT(nbblks <= bp->b_length);
204
205 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
206 bp->b_flags |= XBF_READ;
207 bp->b_io_length = nbblks;
208 bp->b_error = 0;
209
210 error = xfs_buf_submit_wait(bp);
211 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
212 xfs_buf_ioerror_alert(bp, __func__);
213 return error;
214 }
215
216 STATIC int
217 xlog_bread(
218 struct xlog *log,
219 xfs_daddr_t blk_no,
220 int nbblks,
221 struct xfs_buf *bp,
222 char **offset)
223 {
224 int error;
225
226 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
227 if (error)
228 return error;
229
230 *offset = xlog_align(log, blk_no, nbblks, bp);
231 return 0;
232 }
233
234 /*
235 * Read at an offset into the buffer. Returns with the buffer in it's original
236 * state regardless of the result of the read.
237 */
238 STATIC int
239 xlog_bread_offset(
240 struct xlog *log,
241 xfs_daddr_t blk_no, /* block to read from */
242 int nbblks, /* blocks to read */
243 struct xfs_buf *bp,
244 char *offset)
245 {
246 char *orig_offset = bp->b_addr;
247 int orig_len = BBTOB(bp->b_length);
248 int error, error2;
249
250 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
251 if (error)
252 return error;
253
254 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
255
256 /* must reset buffer pointer even on error */
257 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
258 if (error)
259 return error;
260 return error2;
261 }
262
263 /*
264 * Write out the buffer at the given block for the given number of blocks.
265 * The buffer is kept locked across the write and is returned locked.
266 * This can only be used for synchronous log writes.
267 */
268 STATIC int
269 xlog_bwrite(
270 struct xlog *log,
271 xfs_daddr_t blk_no,
272 int nbblks,
273 struct xfs_buf *bp)
274 {
275 int error;
276
277 if (!xlog_verify_bp(log, blk_no, nbblks)) {
278 xfs_warn(log->l_mp,
279 "Invalid log block/length (0x%llx, 0x%x) for buffer",
280 blk_no, nbblks);
281 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
282 return -EFSCORRUPTED;
283 }
284
285 blk_no = round_down(blk_no, log->l_sectBBsize);
286 nbblks = round_up(nbblks, log->l_sectBBsize);
287
288 ASSERT(nbblks > 0);
289 ASSERT(nbblks <= bp->b_length);
290
291 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
292 xfs_buf_hold(bp);
293 xfs_buf_lock(bp);
294 bp->b_io_length = nbblks;
295 bp->b_error = 0;
296
297 error = xfs_bwrite(bp);
298 if (error)
299 xfs_buf_ioerror_alert(bp, __func__);
300 xfs_buf_relse(bp);
301 return error;
302 }
303
304 #ifdef DEBUG
305 /*
306 * dump debug superblock and log record information
307 */
308 STATIC void
309 xlog_header_check_dump(
310 xfs_mount_t *mp,
311 xlog_rec_header_t *head)
312 {
313 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
314 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
315 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
316 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
317 }
318 #else
319 #define xlog_header_check_dump(mp, head)
320 #endif
321
322 /*
323 * check log record header for recovery
324 */
325 STATIC int
326 xlog_header_check_recover(
327 xfs_mount_t *mp,
328 xlog_rec_header_t *head)
329 {
330 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
331
332 /*
333 * IRIX doesn't write the h_fmt field and leaves it zeroed
334 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
335 * a dirty log created in IRIX.
336 */
337 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
338 xfs_warn(mp,
339 "dirty log written in incompatible format - can't recover");
340 xlog_header_check_dump(mp, head);
341 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
342 XFS_ERRLEVEL_HIGH, mp);
343 return -EFSCORRUPTED;
344 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
345 xfs_warn(mp,
346 "dirty log entry has mismatched uuid - can't recover");
347 xlog_header_check_dump(mp, head);
348 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
349 XFS_ERRLEVEL_HIGH, mp);
350 return -EFSCORRUPTED;
351 }
352 return 0;
353 }
354
355 /*
356 * read the head block of the log and check the header
357 */
358 STATIC int
359 xlog_header_check_mount(
360 xfs_mount_t *mp,
361 xlog_rec_header_t *head)
362 {
363 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
364
365 if (uuid_is_null(&head->h_fs_uuid)) {
366 /*
367 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
368 * h_fs_uuid is null, we assume this log was last mounted
369 * by IRIX and continue.
370 */
371 xfs_warn(mp, "null uuid in log - IRIX style log");
372 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
373 xfs_warn(mp, "log has mismatched uuid - can't recover");
374 xlog_header_check_dump(mp, head);
375 XFS_ERROR_REPORT("xlog_header_check_mount",
376 XFS_ERRLEVEL_HIGH, mp);
377 return -EFSCORRUPTED;
378 }
379 return 0;
380 }
381
382 STATIC void
383 xlog_recover_iodone(
384 struct xfs_buf *bp)
385 {
386 if (bp->b_error) {
387 /*
388 * We're not going to bother about retrying
389 * this during recovery. One strike!
390 */
391 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
392 xfs_buf_ioerror_alert(bp, __func__);
393 xfs_force_shutdown(bp->b_target->bt_mount,
394 SHUTDOWN_META_IO_ERROR);
395 }
396 }
397
398 /*
399 * On v5 supers, a bli could be attached to update the metadata LSN.
400 * Clean it up.
401 */
402 if (bp->b_fspriv)
403 xfs_buf_item_relse(bp);
404 ASSERT(bp->b_fspriv == NULL);
405
406 bp->b_iodone = NULL;
407 xfs_buf_ioend(bp);
408 }
409
410 /*
411 * This routine finds (to an approximation) the first block in the physical
412 * log which contains the given cycle. It uses a binary search algorithm.
413 * Note that the algorithm can not be perfect because the disk will not
414 * necessarily be perfect.
415 */
416 STATIC int
417 xlog_find_cycle_start(
418 struct xlog *log,
419 struct xfs_buf *bp,
420 xfs_daddr_t first_blk,
421 xfs_daddr_t *last_blk,
422 uint cycle)
423 {
424 char *offset;
425 xfs_daddr_t mid_blk;
426 xfs_daddr_t end_blk;
427 uint mid_cycle;
428 int error;
429
430 end_blk = *last_blk;
431 mid_blk = BLK_AVG(first_blk, end_blk);
432 while (mid_blk != first_blk && mid_blk != end_blk) {
433 error = xlog_bread(log, mid_blk, 1, bp, &offset);
434 if (error)
435 return error;
436 mid_cycle = xlog_get_cycle(offset);
437 if (mid_cycle == cycle)
438 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
439 else
440 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
441 mid_blk = BLK_AVG(first_blk, end_blk);
442 }
443 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
444 (mid_blk == end_blk && mid_blk-1 == first_blk));
445
446 *last_blk = end_blk;
447
448 return 0;
449 }
450
451 /*
452 * Check that a range of blocks does not contain stop_on_cycle_no.
453 * Fill in *new_blk with the block offset where such a block is
454 * found, or with -1 (an invalid block number) if there is no such
455 * block in the range. The scan needs to occur from front to back
456 * and the pointer into the region must be updated since a later
457 * routine will need to perform another test.
458 */
459 STATIC int
460 xlog_find_verify_cycle(
461 struct xlog *log,
462 xfs_daddr_t start_blk,
463 int nbblks,
464 uint stop_on_cycle_no,
465 xfs_daddr_t *new_blk)
466 {
467 xfs_daddr_t i, j;
468 uint cycle;
469 xfs_buf_t *bp;
470 xfs_daddr_t bufblks;
471 char *buf = NULL;
472 int error = 0;
473
474 /*
475 * Greedily allocate a buffer big enough to handle the full
476 * range of basic blocks we'll be examining. If that fails,
477 * try a smaller size. We need to be able to read at least
478 * a log sector, or we're out of luck.
479 */
480 bufblks = 1 << ffs(nbblks);
481 while (bufblks > log->l_logBBsize)
482 bufblks >>= 1;
483 while (!(bp = xlog_get_bp(log, bufblks))) {
484 bufblks >>= 1;
485 if (bufblks < log->l_sectBBsize)
486 return -ENOMEM;
487 }
488
489 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
490 int bcount;
491
492 bcount = min(bufblks, (start_blk + nbblks - i));
493
494 error = xlog_bread(log, i, bcount, bp, &buf);
495 if (error)
496 goto out;
497
498 for (j = 0; j < bcount; j++) {
499 cycle = xlog_get_cycle(buf);
500 if (cycle == stop_on_cycle_no) {
501 *new_blk = i+j;
502 goto out;
503 }
504
505 buf += BBSIZE;
506 }
507 }
508
509 *new_blk = -1;
510
511 out:
512 xlog_put_bp(bp);
513 return error;
514 }
515
516 /*
517 * Potentially backup over partial log record write.
518 *
519 * In the typical case, last_blk is the number of the block directly after
520 * a good log record. Therefore, we subtract one to get the block number
521 * of the last block in the given buffer. extra_bblks contains the number
522 * of blocks we would have read on a previous read. This happens when the
523 * last log record is split over the end of the physical log.
524 *
525 * extra_bblks is the number of blocks potentially verified on a previous
526 * call to this routine.
527 */
528 STATIC int
529 xlog_find_verify_log_record(
530 struct xlog *log,
531 xfs_daddr_t start_blk,
532 xfs_daddr_t *last_blk,
533 int extra_bblks)
534 {
535 xfs_daddr_t i;
536 xfs_buf_t *bp;
537 char *offset = NULL;
538 xlog_rec_header_t *head = NULL;
539 int error = 0;
540 int smallmem = 0;
541 int num_blks = *last_blk - start_blk;
542 int xhdrs;
543
544 ASSERT(start_blk != 0 || *last_blk != start_blk);
545
546 if (!(bp = xlog_get_bp(log, num_blks))) {
547 if (!(bp = xlog_get_bp(log, 1)))
548 return -ENOMEM;
549 smallmem = 1;
550 } else {
551 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
552 if (error)
553 goto out;
554 offset += ((num_blks - 1) << BBSHIFT);
555 }
556
557 for (i = (*last_blk) - 1; i >= 0; i--) {
558 if (i < start_blk) {
559 /* valid log record not found */
560 xfs_warn(log->l_mp,
561 "Log inconsistent (didn't find previous header)");
562 ASSERT(0);
563 error = -EIO;
564 goto out;
565 }
566
567 if (smallmem) {
568 error = xlog_bread(log, i, 1, bp, &offset);
569 if (error)
570 goto out;
571 }
572
573 head = (xlog_rec_header_t *)offset;
574
575 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
576 break;
577
578 if (!smallmem)
579 offset -= BBSIZE;
580 }
581
582 /*
583 * We hit the beginning of the physical log & still no header. Return
584 * to caller. If caller can handle a return of -1, then this routine
585 * will be called again for the end of the physical log.
586 */
587 if (i == -1) {
588 error = 1;
589 goto out;
590 }
591
592 /*
593 * We have the final block of the good log (the first block
594 * of the log record _before_ the head. So we check the uuid.
595 */
596 if ((error = xlog_header_check_mount(log->l_mp, head)))
597 goto out;
598
599 /*
600 * We may have found a log record header before we expected one.
601 * last_blk will be the 1st block # with a given cycle #. We may end
602 * up reading an entire log record. In this case, we don't want to
603 * reset last_blk. Only when last_blk points in the middle of a log
604 * record do we update last_blk.
605 */
606 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
607 uint h_size = be32_to_cpu(head->h_size);
608
609 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
610 if (h_size % XLOG_HEADER_CYCLE_SIZE)
611 xhdrs++;
612 } else {
613 xhdrs = 1;
614 }
615
616 if (*last_blk - i + extra_bblks !=
617 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
618 *last_blk = i;
619
620 out:
621 xlog_put_bp(bp);
622 return error;
623 }
624
625 /*
626 * Head is defined to be the point of the log where the next log write
627 * could go. This means that incomplete LR writes at the end are
628 * eliminated when calculating the head. We aren't guaranteed that previous
629 * LR have complete transactions. We only know that a cycle number of
630 * current cycle number -1 won't be present in the log if we start writing
631 * from our current block number.
632 *
633 * last_blk contains the block number of the first block with a given
634 * cycle number.
635 *
636 * Return: zero if normal, non-zero if error.
637 */
638 STATIC int
639 xlog_find_head(
640 struct xlog *log,
641 xfs_daddr_t *return_head_blk)
642 {
643 xfs_buf_t *bp;
644 char *offset;
645 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
646 int num_scan_bblks;
647 uint first_half_cycle, last_half_cycle;
648 uint stop_on_cycle;
649 int error, log_bbnum = log->l_logBBsize;
650
651 /* Is the end of the log device zeroed? */
652 error = xlog_find_zeroed(log, &first_blk);
653 if (error < 0) {
654 xfs_warn(log->l_mp, "empty log check failed");
655 return error;
656 }
657 if (error == 1) {
658 *return_head_blk = first_blk;
659
660 /* Is the whole lot zeroed? */
661 if (!first_blk) {
662 /* Linux XFS shouldn't generate totally zeroed logs -
663 * mkfs etc write a dummy unmount record to a fresh
664 * log so we can store the uuid in there
665 */
666 xfs_warn(log->l_mp, "totally zeroed log");
667 }
668
669 return 0;
670 }
671
672 first_blk = 0; /* get cycle # of 1st block */
673 bp = xlog_get_bp(log, 1);
674 if (!bp)
675 return -ENOMEM;
676
677 error = xlog_bread(log, 0, 1, bp, &offset);
678 if (error)
679 goto bp_err;
680
681 first_half_cycle = xlog_get_cycle(offset);
682
683 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
684 error = xlog_bread(log, last_blk, 1, bp, &offset);
685 if (error)
686 goto bp_err;
687
688 last_half_cycle = xlog_get_cycle(offset);
689 ASSERT(last_half_cycle != 0);
690
691 /*
692 * If the 1st half cycle number is equal to the last half cycle number,
693 * then the entire log is stamped with the same cycle number. In this
694 * case, head_blk can't be set to zero (which makes sense). The below
695 * math doesn't work out properly with head_blk equal to zero. Instead,
696 * we set it to log_bbnum which is an invalid block number, but this
697 * value makes the math correct. If head_blk doesn't changed through
698 * all the tests below, *head_blk is set to zero at the very end rather
699 * than log_bbnum. In a sense, log_bbnum and zero are the same block
700 * in a circular file.
701 */
702 if (first_half_cycle == last_half_cycle) {
703 /*
704 * In this case we believe that the entire log should have
705 * cycle number last_half_cycle. We need to scan backwards
706 * from the end verifying that there are no holes still
707 * containing last_half_cycle - 1. If we find such a hole,
708 * then the start of that hole will be the new head. The
709 * simple case looks like
710 * x | x ... | x - 1 | x
711 * Another case that fits this picture would be
712 * x | x + 1 | x ... | x
713 * In this case the head really is somewhere at the end of the
714 * log, as one of the latest writes at the beginning was
715 * incomplete.
716 * One more case is
717 * x | x + 1 | x ... | x - 1 | x
718 * This is really the combination of the above two cases, and
719 * the head has to end up at the start of the x-1 hole at the
720 * end of the log.
721 *
722 * In the 256k log case, we will read from the beginning to the
723 * end of the log and search for cycle numbers equal to x-1.
724 * We don't worry about the x+1 blocks that we encounter,
725 * because we know that they cannot be the head since the log
726 * started with x.
727 */
728 head_blk = log_bbnum;
729 stop_on_cycle = last_half_cycle - 1;
730 } else {
731 /*
732 * In this case we want to find the first block with cycle
733 * number matching last_half_cycle. We expect the log to be
734 * some variation on
735 * x + 1 ... | x ... | x
736 * The first block with cycle number x (last_half_cycle) will
737 * be where the new head belongs. First we do a binary search
738 * for the first occurrence of last_half_cycle. The binary
739 * search may not be totally accurate, so then we scan back
740 * from there looking for occurrences of last_half_cycle before
741 * us. If that backwards scan wraps around the beginning of
742 * the log, then we look for occurrences of last_half_cycle - 1
743 * at the end of the log. The cases we're looking for look
744 * like
745 * v binary search stopped here
746 * x + 1 ... | x | x + 1 | x ... | x
747 * ^ but we want to locate this spot
748 * or
749 * <---------> less than scan distance
750 * x + 1 ... | x ... | x - 1 | x
751 * ^ we want to locate this spot
752 */
753 stop_on_cycle = last_half_cycle;
754 if ((error = xlog_find_cycle_start(log, bp, first_blk,
755 &head_blk, last_half_cycle)))
756 goto bp_err;
757 }
758
759 /*
760 * Now validate the answer. Scan back some number of maximum possible
761 * blocks and make sure each one has the expected cycle number. The
762 * maximum is determined by the total possible amount of buffering
763 * in the in-core log. The following number can be made tighter if
764 * we actually look at the block size of the filesystem.
765 */
766 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
767 if (head_blk >= num_scan_bblks) {
768 /*
769 * We are guaranteed that the entire check can be performed
770 * in one buffer.
771 */
772 start_blk = head_blk - num_scan_bblks;
773 if ((error = xlog_find_verify_cycle(log,
774 start_blk, num_scan_bblks,
775 stop_on_cycle, &new_blk)))
776 goto bp_err;
777 if (new_blk != -1)
778 head_blk = new_blk;
779 } else { /* need to read 2 parts of log */
780 /*
781 * We are going to scan backwards in the log in two parts.
782 * First we scan the physical end of the log. In this part
783 * of the log, we are looking for blocks with cycle number
784 * last_half_cycle - 1.
785 * If we find one, then we know that the log starts there, as
786 * we've found a hole that didn't get written in going around
787 * the end of the physical log. The simple case for this is
788 * x + 1 ... | x ... | x - 1 | x
789 * <---------> less than scan distance
790 * If all of the blocks at the end of the log have cycle number
791 * last_half_cycle, then we check the blocks at the start of
792 * the log looking for occurrences of last_half_cycle. If we
793 * find one, then our current estimate for the location of the
794 * first occurrence of last_half_cycle is wrong and we move
795 * back to the hole we've found. This case looks like
796 * x + 1 ... | x | x + 1 | x ...
797 * ^ binary search stopped here
798 * Another case we need to handle that only occurs in 256k
799 * logs is
800 * x + 1 ... | x ... | x+1 | x ...
801 * ^ binary search stops here
802 * In a 256k log, the scan at the end of the log will see the
803 * x + 1 blocks. We need to skip past those since that is
804 * certainly not the head of the log. By searching for
805 * last_half_cycle-1 we accomplish that.
806 */
807 ASSERT(head_blk <= INT_MAX &&
808 (xfs_daddr_t) num_scan_bblks >= head_blk);
809 start_blk = log_bbnum - (num_scan_bblks - head_blk);
810 if ((error = xlog_find_verify_cycle(log, start_blk,
811 num_scan_bblks - (int)head_blk,
812 (stop_on_cycle - 1), &new_blk)))
813 goto bp_err;
814 if (new_blk != -1) {
815 head_blk = new_blk;
816 goto validate_head;
817 }
818
819 /*
820 * Scan beginning of log now. The last part of the physical
821 * log is good. This scan needs to verify that it doesn't find
822 * the last_half_cycle.
823 */
824 start_blk = 0;
825 ASSERT(head_blk <= INT_MAX);
826 if ((error = xlog_find_verify_cycle(log,
827 start_blk, (int)head_blk,
828 stop_on_cycle, &new_blk)))
829 goto bp_err;
830 if (new_blk != -1)
831 head_blk = new_blk;
832 }
833
834 validate_head:
835 /*
836 * Now we need to make sure head_blk is not pointing to a block in
837 * the middle of a log record.
838 */
839 num_scan_bblks = XLOG_REC_SHIFT(log);
840 if (head_blk >= num_scan_bblks) {
841 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
842
843 /* start ptr at last block ptr before head_blk */
844 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
845 if (error == 1)
846 error = -EIO;
847 if (error)
848 goto bp_err;
849 } else {
850 start_blk = 0;
851 ASSERT(head_blk <= INT_MAX);
852 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
853 if (error < 0)
854 goto bp_err;
855 if (error == 1) {
856 /* We hit the beginning of the log during our search */
857 start_blk = log_bbnum - (num_scan_bblks - head_blk);
858 new_blk = log_bbnum;
859 ASSERT(start_blk <= INT_MAX &&
860 (xfs_daddr_t) log_bbnum-start_blk >= 0);
861 ASSERT(head_blk <= INT_MAX);
862 error = xlog_find_verify_log_record(log, start_blk,
863 &new_blk, (int)head_blk);
864 if (error == 1)
865 error = -EIO;
866 if (error)
867 goto bp_err;
868 if (new_blk != log_bbnum)
869 head_blk = new_blk;
870 } else if (error)
871 goto bp_err;
872 }
873
874 xlog_put_bp(bp);
875 if (head_blk == log_bbnum)
876 *return_head_blk = 0;
877 else
878 *return_head_blk = head_blk;
879 /*
880 * When returning here, we have a good block number. Bad block
881 * means that during a previous crash, we didn't have a clean break
882 * from cycle number N to cycle number N-1. In this case, we need
883 * to find the first block with cycle number N-1.
884 */
885 return 0;
886
887 bp_err:
888 xlog_put_bp(bp);
889
890 if (error)
891 xfs_warn(log->l_mp, "failed to find log head");
892 return error;
893 }
894
895 /*
896 * Seek backwards in the log for log record headers.
897 *
898 * Given a starting log block, walk backwards until we find the provided number
899 * of records or hit the provided tail block. The return value is the number of
900 * records encountered or a negative error code. The log block and buffer
901 * pointer of the last record seen are returned in rblk and rhead respectively.
902 */
903 STATIC int
904 xlog_rseek_logrec_hdr(
905 struct xlog *log,
906 xfs_daddr_t head_blk,
907 xfs_daddr_t tail_blk,
908 int count,
909 struct xfs_buf *bp,
910 xfs_daddr_t *rblk,
911 struct xlog_rec_header **rhead,
912 bool *wrapped)
913 {
914 int i;
915 int error;
916 int found = 0;
917 char *offset = NULL;
918 xfs_daddr_t end_blk;
919
920 *wrapped = false;
921
922 /*
923 * Walk backwards from the head block until we hit the tail or the first
924 * block in the log.
925 */
926 end_blk = head_blk > tail_blk ? tail_blk : 0;
927 for (i = (int) head_blk - 1; i >= end_blk; i--) {
928 error = xlog_bread(log, i, 1, bp, &offset);
929 if (error)
930 goto out_error;
931
932 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
933 *rblk = i;
934 *rhead = (struct xlog_rec_header *) offset;
935 if (++found == count)
936 break;
937 }
938 }
939
940 /*
941 * If we haven't hit the tail block or the log record header count,
942 * start looking again from the end of the physical log. Note that
943 * callers can pass head == tail if the tail is not yet known.
944 */
945 if (tail_blk >= head_blk && found != count) {
946 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
947 error = xlog_bread(log, i, 1, bp, &offset);
948 if (error)
949 goto out_error;
950
951 if (*(__be32 *)offset ==
952 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
953 *wrapped = true;
954 *rblk = i;
955 *rhead = (struct xlog_rec_header *) offset;
956 if (++found == count)
957 break;
958 }
959 }
960 }
961
962 return found;
963
964 out_error:
965 return error;
966 }
967
968 /*
969 * Seek forward in the log for log record headers.
970 *
971 * Given head and tail blocks, walk forward from the tail block until we find
972 * the provided number of records or hit the head block. The return value is the
973 * number of records encountered or a negative error code. The log block and
974 * buffer pointer of the last record seen are returned in rblk and rhead
975 * respectively.
976 */
977 STATIC int
978 xlog_seek_logrec_hdr(
979 struct xlog *log,
980 xfs_daddr_t head_blk,
981 xfs_daddr_t tail_blk,
982 int count,
983 struct xfs_buf *bp,
984 xfs_daddr_t *rblk,
985 struct xlog_rec_header **rhead,
986 bool *wrapped)
987 {
988 int i;
989 int error;
990 int found = 0;
991 char *offset = NULL;
992 xfs_daddr_t end_blk;
993
994 *wrapped = false;
995
996 /*
997 * Walk forward from the tail block until we hit the head or the last
998 * block in the log.
999 */
1000 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
1001 for (i = (int) tail_blk; i <= end_blk; i++) {
1002 error = xlog_bread(log, i, 1, bp, &offset);
1003 if (error)
1004 goto out_error;
1005
1006 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1007 *rblk = i;
1008 *rhead = (struct xlog_rec_header *) offset;
1009 if (++found == count)
1010 break;
1011 }
1012 }
1013
1014 /*
1015 * If we haven't hit the head block or the log record header count,
1016 * start looking again from the start of the physical log.
1017 */
1018 if (tail_blk > head_blk && found != count) {
1019 for (i = 0; i < (int) head_blk; i++) {
1020 error = xlog_bread(log, i, 1, bp, &offset);
1021 if (error)
1022 goto out_error;
1023
1024 if (*(__be32 *)offset ==
1025 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1026 *wrapped = true;
1027 *rblk = i;
1028 *rhead = (struct xlog_rec_header *) offset;
1029 if (++found == count)
1030 break;
1031 }
1032 }
1033 }
1034
1035 return found;
1036
1037 out_error:
1038 return error;
1039 }
1040
1041 /*
1042 * Calculate distance from head to tail (i.e., unused space in the log).
1043 */
1044 static inline int
1045 xlog_tail_distance(
1046 struct xlog *log,
1047 xfs_daddr_t head_blk,
1048 xfs_daddr_t tail_blk)
1049 {
1050 if (head_blk < tail_blk)
1051 return tail_blk - head_blk;
1052
1053 return tail_blk + (log->l_logBBsize - head_blk);
1054 }
1055
1056 /*
1057 * Verify the log tail. This is particularly important when torn or incomplete
1058 * writes have been detected near the front of the log and the head has been
1059 * walked back accordingly.
1060 *
1061 * We also have to handle the case where the tail was pinned and the head
1062 * blocked behind the tail right before a crash. If the tail had been pushed
1063 * immediately prior to the crash and the subsequent checkpoint was only
1064 * partially written, it's possible it overwrote the last referenced tail in the
1065 * log with garbage. This is not a coherency problem because the tail must have
1066 * been pushed before it can be overwritten, but appears as log corruption to
1067 * recovery because we have no way to know the tail was updated if the
1068 * subsequent checkpoint didn't write successfully.
1069 *
1070 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1071 * offending record is within max iclog bufs from the head, walk the tail
1072 * forward and retry until a valid tail is found or corruption is detected out
1073 * of the range of a possible overwrite.
1074 */
1075 STATIC int
1076 xlog_verify_tail(
1077 struct xlog *log,
1078 xfs_daddr_t head_blk,
1079 xfs_daddr_t *tail_blk,
1080 int hsize)
1081 {
1082 struct xlog_rec_header *thead;
1083 struct xfs_buf *bp;
1084 xfs_daddr_t first_bad;
1085 int error = 0;
1086 bool wrapped;
1087 xfs_daddr_t tmp_tail;
1088 xfs_daddr_t orig_tail = *tail_blk;
1089
1090 bp = xlog_get_bp(log, 1);
1091 if (!bp)
1092 return -ENOMEM;
1093
1094 /*
1095 * Make sure the tail points to a record (returns positive count on
1096 * success).
1097 */
1098 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1099 &tmp_tail, &thead, &wrapped);
1100 if (error < 0)
1101 goto out;
1102 if (*tail_blk != tmp_tail)
1103 *tail_blk = tmp_tail;
1104
1105 /*
1106 * Run a CRC check from the tail to the head. We can't just check
1107 * MAX_ICLOGS records past the tail because the tail may point to stale
1108 * blocks cleared during the search for the head/tail. These blocks are
1109 * overwritten with zero-length records and thus record count is not a
1110 * reliable indicator of the iclog state before a crash.
1111 */
1112 first_bad = 0;
1113 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1114 XLOG_RECOVER_CRCPASS, &first_bad);
1115 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1116 int tail_distance;
1117
1118 /*
1119 * Is corruption within range of the head? If so, retry from
1120 * the next record. Otherwise return an error.
1121 */
1122 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1123 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1124 break;
1125
1126 /* skip to the next record; returns positive count on success */
1127 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1128 &tmp_tail, &thead, &wrapped);
1129 if (error < 0)
1130 goto out;
1131
1132 *tail_blk = tmp_tail;
1133 first_bad = 0;
1134 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1135 XLOG_RECOVER_CRCPASS, &first_bad);
1136 }
1137
1138 if (!error && *tail_blk != orig_tail)
1139 xfs_warn(log->l_mp,
1140 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1141 orig_tail, *tail_blk);
1142 out:
1143 xlog_put_bp(bp);
1144 return error;
1145 }
1146
1147 /*
1148 * Detect and trim torn writes from the head of the log.
1149 *
1150 * Storage without sector atomicity guarantees can result in torn writes in the
1151 * log in the event of a crash. Our only means to detect this scenario is via
1152 * CRC verification. While we can't always be certain that CRC verification
1153 * failure is due to a torn write vs. an unrelated corruption, we do know that
1154 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1155 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1156 * the log and treat failures in this range as torn writes as a matter of
1157 * policy. In the event of CRC failure, the head is walked back to the last good
1158 * record in the log and the tail is updated from that record and verified.
1159 */
1160 STATIC int
1161 xlog_verify_head(
1162 struct xlog *log,
1163 xfs_daddr_t *head_blk, /* in/out: unverified head */
1164 xfs_daddr_t *tail_blk, /* out: tail block */
1165 struct xfs_buf *bp,
1166 xfs_daddr_t *rhead_blk, /* start blk of last record */
1167 struct xlog_rec_header **rhead, /* ptr to last record */
1168 bool *wrapped) /* last rec. wraps phys. log */
1169 {
1170 struct xlog_rec_header *tmp_rhead;
1171 struct xfs_buf *tmp_bp;
1172 xfs_daddr_t first_bad;
1173 xfs_daddr_t tmp_rhead_blk;
1174 int found;
1175 int error;
1176 bool tmp_wrapped;
1177
1178 /*
1179 * Check the head of the log for torn writes. Search backwards from the
1180 * head until we hit the tail or the maximum number of log record I/Os
1181 * that could have been in flight at one time. Use a temporary buffer so
1182 * we don't trash the rhead/bp pointers from the caller.
1183 */
1184 tmp_bp = xlog_get_bp(log, 1);
1185 if (!tmp_bp)
1186 return -ENOMEM;
1187 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1188 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1189 &tmp_rhead, &tmp_wrapped);
1190 xlog_put_bp(tmp_bp);
1191 if (error < 0)
1192 return error;
1193
1194 /*
1195 * Now run a CRC verification pass over the records starting at the
1196 * block found above to the current head. If a CRC failure occurs, the
1197 * log block of the first bad record is saved in first_bad.
1198 */
1199 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1200 XLOG_RECOVER_CRCPASS, &first_bad);
1201 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1202 /*
1203 * We've hit a potential torn write. Reset the error and warn
1204 * about it.
1205 */
1206 error = 0;
1207 xfs_warn(log->l_mp,
1208 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1209 first_bad, *head_blk);
1210
1211 /*
1212 * Get the header block and buffer pointer for the last good
1213 * record before the bad record.
1214 *
1215 * Note that xlog_find_tail() clears the blocks at the new head
1216 * (i.e., the records with invalid CRC) if the cycle number
1217 * matches the the current cycle.
1218 */
1219 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1220 rhead_blk, rhead, wrapped);
1221 if (found < 0)
1222 return found;
1223 if (found == 0) /* XXX: right thing to do here? */
1224 return -EIO;
1225
1226 /*
1227 * Reset the head block to the starting block of the first bad
1228 * log record and set the tail block based on the last good
1229 * record.
1230 *
1231 * Bail out if the updated head/tail match as this indicates
1232 * possible corruption outside of the acceptable
1233 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1234 */
1235 *head_blk = first_bad;
1236 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1237 if (*head_blk == *tail_blk) {
1238 ASSERT(0);
1239 return 0;
1240 }
1241 }
1242 if (error)
1243 return error;
1244
1245 return xlog_verify_tail(log, *head_blk, tail_blk,
1246 be32_to_cpu((*rhead)->h_size));
1247 }
1248
1249 /*
1250 * Check whether the head of the log points to an unmount record. In other
1251 * words, determine whether the log is clean. If so, update the in-core state
1252 * appropriately.
1253 */
1254 static int
1255 xlog_check_unmount_rec(
1256 struct xlog *log,
1257 xfs_daddr_t *head_blk,
1258 xfs_daddr_t *tail_blk,
1259 struct xlog_rec_header *rhead,
1260 xfs_daddr_t rhead_blk,
1261 struct xfs_buf *bp,
1262 bool *clean)
1263 {
1264 struct xlog_op_header *op_head;
1265 xfs_daddr_t umount_data_blk;
1266 xfs_daddr_t after_umount_blk;
1267 int hblks;
1268 int error;
1269 char *offset;
1270
1271 *clean = false;
1272
1273 /*
1274 * Look for unmount record. If we find it, then we know there was a
1275 * clean unmount. Since 'i' could be the last block in the physical
1276 * log, we convert to a log block before comparing to the head_blk.
1277 *
1278 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1279 * below. We won't want to clear the unmount record if there is one, so
1280 * we pass the lsn of the unmount record rather than the block after it.
1281 */
1282 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1283 int h_size = be32_to_cpu(rhead->h_size);
1284 int h_version = be32_to_cpu(rhead->h_version);
1285
1286 if ((h_version & XLOG_VERSION_2) &&
1287 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1288 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1289 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1290 hblks++;
1291 } else {
1292 hblks = 1;
1293 }
1294 } else {
1295 hblks = 1;
1296 }
1297 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1298 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1299 if (*head_blk == after_umount_blk &&
1300 be32_to_cpu(rhead->h_num_logops) == 1) {
1301 umount_data_blk = rhead_blk + hblks;
1302 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1303 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1304 if (error)
1305 return error;
1306
1307 op_head = (struct xlog_op_header *)offset;
1308 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1309 /*
1310 * Set tail and last sync so that newly written log
1311 * records will point recovery to after the current
1312 * unmount record.
1313 */
1314 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1315 log->l_curr_cycle, after_umount_blk);
1316 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1317 log->l_curr_cycle, after_umount_blk);
1318 *tail_blk = after_umount_blk;
1319
1320 *clean = true;
1321 }
1322 }
1323
1324 return 0;
1325 }
1326
1327 static void
1328 xlog_set_state(
1329 struct xlog *log,
1330 xfs_daddr_t head_blk,
1331 struct xlog_rec_header *rhead,
1332 xfs_daddr_t rhead_blk,
1333 bool bump_cycle)
1334 {
1335 /*
1336 * Reset log values according to the state of the log when we
1337 * crashed. In the case where head_blk == 0, we bump curr_cycle
1338 * one because the next write starts a new cycle rather than
1339 * continuing the cycle of the last good log record. At this
1340 * point we have guaranteed that all partial log records have been
1341 * accounted for. Therefore, we know that the last good log record
1342 * written was complete and ended exactly on the end boundary
1343 * of the physical log.
1344 */
1345 log->l_prev_block = rhead_blk;
1346 log->l_curr_block = (int)head_blk;
1347 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1348 if (bump_cycle)
1349 log->l_curr_cycle++;
1350 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1351 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1352 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1353 BBTOB(log->l_curr_block));
1354 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1355 BBTOB(log->l_curr_block));
1356 }
1357
1358 /*
1359 * Find the sync block number or the tail of the log.
1360 *
1361 * This will be the block number of the last record to have its
1362 * associated buffers synced to disk. Every log record header has
1363 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1364 * to get a sync block number. The only concern is to figure out which
1365 * log record header to believe.
1366 *
1367 * The following algorithm uses the log record header with the largest
1368 * lsn. The entire log record does not need to be valid. We only care
1369 * that the header is valid.
1370 *
1371 * We could speed up search by using current head_blk buffer, but it is not
1372 * available.
1373 */
1374 STATIC int
1375 xlog_find_tail(
1376 struct xlog *log,
1377 xfs_daddr_t *head_blk,
1378 xfs_daddr_t *tail_blk)
1379 {
1380 xlog_rec_header_t *rhead;
1381 char *offset = NULL;
1382 xfs_buf_t *bp;
1383 int error;
1384 xfs_daddr_t rhead_blk;
1385 xfs_lsn_t tail_lsn;
1386 bool wrapped = false;
1387 bool clean = false;
1388
1389 /*
1390 * Find previous log record
1391 */
1392 if ((error = xlog_find_head(log, head_blk)))
1393 return error;
1394 ASSERT(*head_blk < INT_MAX);
1395
1396 bp = xlog_get_bp(log, 1);
1397 if (!bp)
1398 return -ENOMEM;
1399 if (*head_blk == 0) { /* special case */
1400 error = xlog_bread(log, 0, 1, bp, &offset);
1401 if (error)
1402 goto done;
1403
1404 if (xlog_get_cycle(offset) == 0) {
1405 *tail_blk = 0;
1406 /* leave all other log inited values alone */
1407 goto done;
1408 }
1409 }
1410
1411 /*
1412 * Search backwards through the log looking for the log record header
1413 * block. This wraps all the way back around to the head so something is
1414 * seriously wrong if we can't find it.
1415 */
1416 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1417 &rhead_blk, &rhead, &wrapped);
1418 if (error < 0)
1419 return error;
1420 if (!error) {
1421 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1422 return -EIO;
1423 }
1424 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1425
1426 /*
1427 * Set the log state based on the current head record.
1428 */
1429 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1430 tail_lsn = atomic64_read(&log->l_tail_lsn);
1431
1432 /*
1433 * Look for an unmount record at the head of the log. This sets the log
1434 * state to determine whether recovery is necessary.
1435 */
1436 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1437 rhead_blk, bp, &clean);
1438 if (error)
1439 goto done;
1440
1441 /*
1442 * Verify the log head if the log is not clean (e.g., we have anything
1443 * but an unmount record at the head). This uses CRC verification to
1444 * detect and trim torn writes. If discovered, CRC failures are
1445 * considered torn writes and the log head is trimmed accordingly.
1446 *
1447 * Note that we can only run CRC verification when the log is dirty
1448 * because there's no guarantee that the log data behind an unmount
1449 * record is compatible with the current architecture.
1450 */
1451 if (!clean) {
1452 xfs_daddr_t orig_head = *head_blk;
1453
1454 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1455 &rhead_blk, &rhead, &wrapped);
1456 if (error)
1457 goto done;
1458
1459 /* update in-core state again if the head changed */
1460 if (*head_blk != orig_head) {
1461 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1462 wrapped);
1463 tail_lsn = atomic64_read(&log->l_tail_lsn);
1464 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1465 rhead, rhead_blk, bp,
1466 &clean);
1467 if (error)
1468 goto done;
1469 }
1470 }
1471
1472 /*
1473 * Note that the unmount was clean. If the unmount was not clean, we
1474 * need to know this to rebuild the superblock counters from the perag
1475 * headers if we have a filesystem using non-persistent counters.
1476 */
1477 if (clean)
1478 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1479
1480 /*
1481 * Make sure that there are no blocks in front of the head
1482 * with the same cycle number as the head. This can happen
1483 * because we allow multiple outstanding log writes concurrently,
1484 * and the later writes might make it out before earlier ones.
1485 *
1486 * We use the lsn from before modifying it so that we'll never
1487 * overwrite the unmount record after a clean unmount.
1488 *
1489 * Do this only if we are going to recover the filesystem
1490 *
1491 * NOTE: This used to say "if (!readonly)"
1492 * However on Linux, we can & do recover a read-only filesystem.
1493 * We only skip recovery if NORECOVERY is specified on mount,
1494 * in which case we would not be here.
1495 *
1496 * But... if the -device- itself is readonly, just skip this.
1497 * We can't recover this device anyway, so it won't matter.
1498 */
1499 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1500 error = xlog_clear_stale_blocks(log, tail_lsn);
1501
1502 done:
1503 xlog_put_bp(bp);
1504
1505 if (error)
1506 xfs_warn(log->l_mp, "failed to locate log tail");
1507 return error;
1508 }
1509
1510 /*
1511 * Is the log zeroed at all?
1512 *
1513 * The last binary search should be changed to perform an X block read
1514 * once X becomes small enough. You can then search linearly through
1515 * the X blocks. This will cut down on the number of reads we need to do.
1516 *
1517 * If the log is partially zeroed, this routine will pass back the blkno
1518 * of the first block with cycle number 0. It won't have a complete LR
1519 * preceding it.
1520 *
1521 * Return:
1522 * 0 => the log is completely written to
1523 * 1 => use *blk_no as the first block of the log
1524 * <0 => error has occurred
1525 */
1526 STATIC int
1527 xlog_find_zeroed(
1528 struct xlog *log,
1529 xfs_daddr_t *blk_no)
1530 {
1531 xfs_buf_t *bp;
1532 char *offset;
1533 uint first_cycle, last_cycle;
1534 xfs_daddr_t new_blk, last_blk, start_blk;
1535 xfs_daddr_t num_scan_bblks;
1536 int error, log_bbnum = log->l_logBBsize;
1537
1538 *blk_no = 0;
1539
1540 /* check totally zeroed log */
1541 bp = xlog_get_bp(log, 1);
1542 if (!bp)
1543 return -ENOMEM;
1544 error = xlog_bread(log, 0, 1, bp, &offset);
1545 if (error)
1546 goto bp_err;
1547
1548 first_cycle = xlog_get_cycle(offset);
1549 if (first_cycle == 0) { /* completely zeroed log */
1550 *blk_no = 0;
1551 xlog_put_bp(bp);
1552 return 1;
1553 }
1554
1555 /* check partially zeroed log */
1556 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1557 if (error)
1558 goto bp_err;
1559
1560 last_cycle = xlog_get_cycle(offset);
1561 if (last_cycle != 0) { /* log completely written to */
1562 xlog_put_bp(bp);
1563 return 0;
1564 } else if (first_cycle != 1) {
1565 /*
1566 * If the cycle of the last block is zero, the cycle of
1567 * the first block must be 1. If it's not, maybe we're
1568 * not looking at a log... Bail out.
1569 */
1570 xfs_warn(log->l_mp,
1571 "Log inconsistent or not a log (last==0, first!=1)");
1572 error = -EINVAL;
1573 goto bp_err;
1574 }
1575
1576 /* we have a partially zeroed log */
1577 last_blk = log_bbnum-1;
1578 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1579 goto bp_err;
1580
1581 /*
1582 * Validate the answer. Because there is no way to guarantee that
1583 * the entire log is made up of log records which are the same size,
1584 * we scan over the defined maximum blocks. At this point, the maximum
1585 * is not chosen to mean anything special. XXXmiken
1586 */
1587 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1588 ASSERT(num_scan_bblks <= INT_MAX);
1589
1590 if (last_blk < num_scan_bblks)
1591 num_scan_bblks = last_blk;
1592 start_blk = last_blk - num_scan_bblks;
1593
1594 /*
1595 * We search for any instances of cycle number 0 that occur before
1596 * our current estimate of the head. What we're trying to detect is
1597 * 1 ... | 0 | 1 | 0...
1598 * ^ binary search ends here
1599 */
1600 if ((error = xlog_find_verify_cycle(log, start_blk,
1601 (int)num_scan_bblks, 0, &new_blk)))
1602 goto bp_err;
1603 if (new_blk != -1)
1604 last_blk = new_blk;
1605
1606 /*
1607 * Potentially backup over partial log record write. We don't need
1608 * to search the end of the log because we know it is zero.
1609 */
1610 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1611 if (error == 1)
1612 error = -EIO;
1613 if (error)
1614 goto bp_err;
1615
1616 *blk_no = last_blk;
1617 bp_err:
1618 xlog_put_bp(bp);
1619 if (error)
1620 return error;
1621 return 1;
1622 }
1623
1624 /*
1625 * These are simple subroutines used by xlog_clear_stale_blocks() below
1626 * to initialize a buffer full of empty log record headers and write
1627 * them into the log.
1628 */
1629 STATIC void
1630 xlog_add_record(
1631 struct xlog *log,
1632 char *buf,
1633 int cycle,
1634 int block,
1635 int tail_cycle,
1636 int tail_block)
1637 {
1638 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1639
1640 memset(buf, 0, BBSIZE);
1641 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1642 recp->h_cycle = cpu_to_be32(cycle);
1643 recp->h_version = cpu_to_be32(
1644 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1645 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1646 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1647 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1648 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1649 }
1650
1651 STATIC int
1652 xlog_write_log_records(
1653 struct xlog *log,
1654 int cycle,
1655 int start_block,
1656 int blocks,
1657 int tail_cycle,
1658 int tail_block)
1659 {
1660 char *offset;
1661 xfs_buf_t *bp;
1662 int balign, ealign;
1663 int sectbb = log->l_sectBBsize;
1664 int end_block = start_block + blocks;
1665 int bufblks;
1666 int error = 0;
1667 int i, j = 0;
1668
1669 /*
1670 * Greedily allocate a buffer big enough to handle the full
1671 * range of basic blocks to be written. If that fails, try
1672 * a smaller size. We need to be able to write at least a
1673 * log sector, or we're out of luck.
1674 */
1675 bufblks = 1 << ffs(blocks);
1676 while (bufblks > log->l_logBBsize)
1677 bufblks >>= 1;
1678 while (!(bp = xlog_get_bp(log, bufblks))) {
1679 bufblks >>= 1;
1680 if (bufblks < sectbb)
1681 return -ENOMEM;
1682 }
1683
1684 /* We may need to do a read at the start to fill in part of
1685 * the buffer in the starting sector not covered by the first
1686 * write below.
1687 */
1688 balign = round_down(start_block, sectbb);
1689 if (balign != start_block) {
1690 error = xlog_bread_noalign(log, start_block, 1, bp);
1691 if (error)
1692 goto out_put_bp;
1693
1694 j = start_block - balign;
1695 }
1696
1697 for (i = start_block; i < end_block; i += bufblks) {
1698 int bcount, endcount;
1699
1700 bcount = min(bufblks, end_block - start_block);
1701 endcount = bcount - j;
1702
1703 /* We may need to do a read at the end to fill in part of
1704 * the buffer in the final sector not covered by the write.
1705 * If this is the same sector as the above read, skip it.
1706 */
1707 ealign = round_down(end_block, sectbb);
1708 if (j == 0 && (start_block + endcount > ealign)) {
1709 offset = bp->b_addr + BBTOB(ealign - start_block);
1710 error = xlog_bread_offset(log, ealign, sectbb,
1711 bp, offset);
1712 if (error)
1713 break;
1714
1715 }
1716
1717 offset = xlog_align(log, start_block, endcount, bp);
1718 for (; j < endcount; j++) {
1719 xlog_add_record(log, offset, cycle, i+j,
1720 tail_cycle, tail_block);
1721 offset += BBSIZE;
1722 }
1723 error = xlog_bwrite(log, start_block, endcount, bp);
1724 if (error)
1725 break;
1726 start_block += endcount;
1727 j = 0;
1728 }
1729
1730 out_put_bp:
1731 xlog_put_bp(bp);
1732 return error;
1733 }
1734
1735 /*
1736 * This routine is called to blow away any incomplete log writes out
1737 * in front of the log head. We do this so that we won't become confused
1738 * if we come up, write only a little bit more, and then crash again.
1739 * If we leave the partial log records out there, this situation could
1740 * cause us to think those partial writes are valid blocks since they
1741 * have the current cycle number. We get rid of them by overwriting them
1742 * with empty log records with the old cycle number rather than the
1743 * current one.
1744 *
1745 * The tail lsn is passed in rather than taken from
1746 * the log so that we will not write over the unmount record after a
1747 * clean unmount in a 512 block log. Doing so would leave the log without
1748 * any valid log records in it until a new one was written. If we crashed
1749 * during that time we would not be able to recover.
1750 */
1751 STATIC int
1752 xlog_clear_stale_blocks(
1753 struct xlog *log,
1754 xfs_lsn_t tail_lsn)
1755 {
1756 int tail_cycle, head_cycle;
1757 int tail_block, head_block;
1758 int tail_distance, max_distance;
1759 int distance;
1760 int error;
1761
1762 tail_cycle = CYCLE_LSN(tail_lsn);
1763 tail_block = BLOCK_LSN(tail_lsn);
1764 head_cycle = log->l_curr_cycle;
1765 head_block = log->l_curr_block;
1766
1767 /*
1768 * Figure out the distance between the new head of the log
1769 * and the tail. We want to write over any blocks beyond the
1770 * head that we may have written just before the crash, but
1771 * we don't want to overwrite the tail of the log.
1772 */
1773 if (head_cycle == tail_cycle) {
1774 /*
1775 * The tail is behind the head in the physical log,
1776 * so the distance from the head to the tail is the
1777 * distance from the head to the end of the log plus
1778 * the distance from the beginning of the log to the
1779 * tail.
1780 */
1781 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1782 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1783 XFS_ERRLEVEL_LOW, log->l_mp);
1784 return -EFSCORRUPTED;
1785 }
1786 tail_distance = tail_block + (log->l_logBBsize - head_block);
1787 } else {
1788 /*
1789 * The head is behind the tail in the physical log,
1790 * so the distance from the head to the tail is just
1791 * the tail block minus the head block.
1792 */
1793 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1794 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1795 XFS_ERRLEVEL_LOW, log->l_mp);
1796 return -EFSCORRUPTED;
1797 }
1798 tail_distance = tail_block - head_block;
1799 }
1800
1801 /*
1802 * If the head is right up against the tail, we can't clear
1803 * anything.
1804 */
1805 if (tail_distance <= 0) {
1806 ASSERT(tail_distance == 0);
1807 return 0;
1808 }
1809
1810 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1811 /*
1812 * Take the smaller of the maximum amount of outstanding I/O
1813 * we could have and the distance to the tail to clear out.
1814 * We take the smaller so that we don't overwrite the tail and
1815 * we don't waste all day writing from the head to the tail
1816 * for no reason.
1817 */
1818 max_distance = MIN(max_distance, tail_distance);
1819
1820 if ((head_block + max_distance) <= log->l_logBBsize) {
1821 /*
1822 * We can stomp all the blocks we need to without
1823 * wrapping around the end of the log. Just do it
1824 * in a single write. Use the cycle number of the
1825 * current cycle minus one so that the log will look like:
1826 * n ... | n - 1 ...
1827 */
1828 error = xlog_write_log_records(log, (head_cycle - 1),
1829 head_block, max_distance, tail_cycle,
1830 tail_block);
1831 if (error)
1832 return error;
1833 } else {
1834 /*
1835 * We need to wrap around the end of the physical log in
1836 * order to clear all the blocks. Do it in two separate
1837 * I/Os. The first write should be from the head to the
1838 * end of the physical log, and it should use the current
1839 * cycle number minus one just like above.
1840 */
1841 distance = log->l_logBBsize - head_block;
1842 error = xlog_write_log_records(log, (head_cycle - 1),
1843 head_block, distance, tail_cycle,
1844 tail_block);
1845
1846 if (error)
1847 return error;
1848
1849 /*
1850 * Now write the blocks at the start of the physical log.
1851 * This writes the remainder of the blocks we want to clear.
1852 * It uses the current cycle number since we're now on the
1853 * same cycle as the head so that we get:
1854 * n ... n ... | n - 1 ...
1855 * ^^^^^ blocks we're writing
1856 */
1857 distance = max_distance - (log->l_logBBsize - head_block);
1858 error = xlog_write_log_records(log, head_cycle, 0, distance,
1859 tail_cycle, tail_block);
1860 if (error)
1861 return error;
1862 }
1863
1864 return 0;
1865 }
1866
1867 /******************************************************************************
1868 *
1869 * Log recover routines
1870 *
1871 ******************************************************************************
1872 */
1873
1874 /*
1875 * Sort the log items in the transaction.
1876 *
1877 * The ordering constraints are defined by the inode allocation and unlink
1878 * behaviour. The rules are:
1879 *
1880 * 1. Every item is only logged once in a given transaction. Hence it
1881 * represents the last logged state of the item. Hence ordering is
1882 * dependent on the order in which operations need to be performed so
1883 * required initial conditions are always met.
1884 *
1885 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1886 * there's nothing to replay from them so we can simply cull them
1887 * from the transaction. However, we can't do that until after we've
1888 * replayed all the other items because they may be dependent on the
1889 * cancelled buffer and replaying the cancelled buffer can remove it
1890 * form the cancelled buffer table. Hence they have tobe done last.
1891 *
1892 * 3. Inode allocation buffers must be replayed before inode items that
1893 * read the buffer and replay changes into it. For filesystems using the
1894 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1895 * treated the same as inode allocation buffers as they create and
1896 * initialise the buffers directly.
1897 *
1898 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1899 * This ensures that inodes are completely flushed to the inode buffer
1900 * in a "free" state before we remove the unlinked inode list pointer.
1901 *
1902 * Hence the ordering needs to be inode allocation buffers first, inode items
1903 * second, inode unlink buffers third and cancelled buffers last.
1904 *
1905 * But there's a problem with that - we can't tell an inode allocation buffer
1906 * apart from a regular buffer, so we can't separate them. We can, however,
1907 * tell an inode unlink buffer from the others, and so we can separate them out
1908 * from all the other buffers and move them to last.
1909 *
1910 * Hence, 4 lists, in order from head to tail:
1911 * - buffer_list for all buffers except cancelled/inode unlink buffers
1912 * - item_list for all non-buffer items
1913 * - inode_buffer_list for inode unlink buffers
1914 * - cancel_list for the cancelled buffers
1915 *
1916 * Note that we add objects to the tail of the lists so that first-to-last
1917 * ordering is preserved within the lists. Adding objects to the head of the
1918 * list means when we traverse from the head we walk them in last-to-first
1919 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1920 * but for all other items there may be specific ordering that we need to
1921 * preserve.
1922 */
1923 STATIC int
1924 xlog_recover_reorder_trans(
1925 struct xlog *log,
1926 struct xlog_recover *trans,
1927 int pass)
1928 {
1929 xlog_recover_item_t *item, *n;
1930 int error = 0;
1931 LIST_HEAD(sort_list);
1932 LIST_HEAD(cancel_list);
1933 LIST_HEAD(buffer_list);
1934 LIST_HEAD(inode_buffer_list);
1935 LIST_HEAD(inode_list);
1936
1937 list_splice_init(&trans->r_itemq, &sort_list);
1938 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1939 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1940
1941 switch (ITEM_TYPE(item)) {
1942 case XFS_LI_ICREATE:
1943 list_move_tail(&item->ri_list, &buffer_list);
1944 break;
1945 case XFS_LI_BUF:
1946 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1947 trace_xfs_log_recover_item_reorder_head(log,
1948 trans, item, pass);
1949 list_move(&item->ri_list, &cancel_list);
1950 break;
1951 }
1952 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1953 list_move(&item->ri_list, &inode_buffer_list);
1954 break;
1955 }
1956 list_move_tail(&item->ri_list, &buffer_list);
1957 break;
1958 case XFS_LI_INODE:
1959 case XFS_LI_DQUOT:
1960 case XFS_LI_QUOTAOFF:
1961 case XFS_LI_EFD:
1962 case XFS_LI_EFI:
1963 case XFS_LI_RUI:
1964 case XFS_LI_RUD:
1965 case XFS_LI_CUI:
1966 case XFS_LI_CUD:
1967 case XFS_LI_BUI:
1968 case XFS_LI_BUD:
1969 trace_xfs_log_recover_item_reorder_tail(log,
1970 trans, item, pass);
1971 list_move_tail(&item->ri_list, &inode_list);
1972 break;
1973 default:
1974 xfs_warn(log->l_mp,
1975 "%s: unrecognized type of log operation",
1976 __func__);
1977 ASSERT(0);
1978 /*
1979 * return the remaining items back to the transaction
1980 * item list so they can be freed in caller.
1981 */
1982 if (!list_empty(&sort_list))
1983 list_splice_init(&sort_list, &trans->r_itemq);
1984 error = -EIO;
1985 goto out;
1986 }
1987 }
1988 out:
1989 ASSERT(list_empty(&sort_list));
1990 if (!list_empty(&buffer_list))
1991 list_splice(&buffer_list, &trans->r_itemq);
1992 if (!list_empty(&inode_list))
1993 list_splice_tail(&inode_list, &trans->r_itemq);
1994 if (!list_empty(&inode_buffer_list))
1995 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1996 if (!list_empty(&cancel_list))
1997 list_splice_tail(&cancel_list, &trans->r_itemq);
1998 return error;
1999 }
2000
2001 /*
2002 * Build up the table of buf cancel records so that we don't replay
2003 * cancelled data in the second pass. For buffer records that are
2004 * not cancel records, there is nothing to do here so we just return.
2005 *
2006 * If we get a cancel record which is already in the table, this indicates
2007 * that the buffer was cancelled multiple times. In order to ensure
2008 * that during pass 2 we keep the record in the table until we reach its
2009 * last occurrence in the log, we keep a reference count in the cancel
2010 * record in the table to tell us how many times we expect to see this
2011 * record during the second pass.
2012 */
2013 STATIC int
2014 xlog_recover_buffer_pass1(
2015 struct xlog *log,
2016 struct xlog_recover_item *item)
2017 {
2018 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2019 struct list_head *bucket;
2020 struct xfs_buf_cancel *bcp;
2021
2022 /*
2023 * If this isn't a cancel buffer item, then just return.
2024 */
2025 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2026 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2027 return 0;
2028 }
2029
2030 /*
2031 * Insert an xfs_buf_cancel record into the hash table of them.
2032 * If there is already an identical record, bump its reference count.
2033 */
2034 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2035 list_for_each_entry(bcp, bucket, bc_list) {
2036 if (bcp->bc_blkno == buf_f->blf_blkno &&
2037 bcp->bc_len == buf_f->blf_len) {
2038 bcp->bc_refcount++;
2039 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2040 return 0;
2041 }
2042 }
2043
2044 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2045 bcp->bc_blkno = buf_f->blf_blkno;
2046 bcp->bc_len = buf_f->blf_len;
2047 bcp->bc_refcount = 1;
2048 list_add_tail(&bcp->bc_list, bucket);
2049
2050 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2051 return 0;
2052 }
2053
2054 /*
2055 * Check to see whether the buffer being recovered has a corresponding
2056 * entry in the buffer cancel record table. If it is, return the cancel
2057 * buffer structure to the caller.
2058 */
2059 STATIC struct xfs_buf_cancel *
2060 xlog_peek_buffer_cancelled(
2061 struct xlog *log,
2062 xfs_daddr_t blkno,
2063 uint len,
2064 unsigned short flags)
2065 {
2066 struct list_head *bucket;
2067 struct xfs_buf_cancel *bcp;
2068
2069 if (!log->l_buf_cancel_table) {
2070 /* empty table means no cancelled buffers in the log */
2071 ASSERT(!(flags & XFS_BLF_CANCEL));
2072 return NULL;
2073 }
2074
2075 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2076 list_for_each_entry(bcp, bucket, bc_list) {
2077 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2078 return bcp;
2079 }
2080
2081 /*
2082 * We didn't find a corresponding entry in the table, so return 0 so
2083 * that the buffer is NOT cancelled.
2084 */
2085 ASSERT(!(flags & XFS_BLF_CANCEL));
2086 return NULL;
2087 }
2088
2089 /*
2090 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2091 * otherwise return 0. If the buffer is actually a buffer cancel item
2092 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2093 * table and remove it from the table if this is the last reference.
2094 *
2095 * We remove the cancel record from the table when we encounter its last
2096 * occurrence in the log so that if the same buffer is re-used again after its
2097 * last cancellation we actually replay the changes made at that point.
2098 */
2099 STATIC int
2100 xlog_check_buffer_cancelled(
2101 struct xlog *log,
2102 xfs_daddr_t blkno,
2103 uint len,
2104 unsigned short flags)
2105 {
2106 struct xfs_buf_cancel *bcp;
2107
2108 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2109 if (!bcp)
2110 return 0;
2111
2112 /*
2113 * We've go a match, so return 1 so that the recovery of this buffer
2114 * is cancelled. If this buffer is actually a buffer cancel log
2115 * item, then decrement the refcount on the one in the table and
2116 * remove it if this is the last reference.
2117 */
2118 if (flags & XFS_BLF_CANCEL) {
2119 if (--bcp->bc_refcount == 0) {
2120 list_del(&bcp->bc_list);
2121 kmem_free(bcp);
2122 }
2123 }
2124 return 1;
2125 }
2126
2127 /*
2128 * Perform recovery for a buffer full of inodes. In these buffers, the only
2129 * data which should be recovered is that which corresponds to the
2130 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2131 * data for the inodes is always logged through the inodes themselves rather
2132 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2133 *
2134 * The only time when buffers full of inodes are fully recovered is when the
2135 * buffer is full of newly allocated inodes. In this case the buffer will
2136 * not be marked as an inode buffer and so will be sent to
2137 * xlog_recover_do_reg_buffer() below during recovery.
2138 */
2139 STATIC int
2140 xlog_recover_do_inode_buffer(
2141 struct xfs_mount *mp,
2142 xlog_recover_item_t *item,
2143 struct xfs_buf *bp,
2144 xfs_buf_log_format_t *buf_f)
2145 {
2146 int i;
2147 int item_index = 0;
2148 int bit = 0;
2149 int nbits = 0;
2150 int reg_buf_offset = 0;
2151 int reg_buf_bytes = 0;
2152 int next_unlinked_offset;
2153 int inodes_per_buf;
2154 xfs_agino_t *logged_nextp;
2155 xfs_agino_t *buffer_nextp;
2156
2157 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2158
2159 /*
2160 * Post recovery validation only works properly on CRC enabled
2161 * filesystems.
2162 */
2163 if (xfs_sb_version_hascrc(&mp->m_sb))
2164 bp->b_ops = &xfs_inode_buf_ops;
2165
2166 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2167 for (i = 0; i < inodes_per_buf; i++) {
2168 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2169 offsetof(xfs_dinode_t, di_next_unlinked);
2170
2171 while (next_unlinked_offset >=
2172 (reg_buf_offset + reg_buf_bytes)) {
2173 /*
2174 * The next di_next_unlinked field is beyond
2175 * the current logged region. Find the next
2176 * logged region that contains or is beyond
2177 * the current di_next_unlinked field.
2178 */
2179 bit += nbits;
2180 bit = xfs_next_bit(buf_f->blf_data_map,
2181 buf_f->blf_map_size, bit);
2182
2183 /*
2184 * If there are no more logged regions in the
2185 * buffer, then we're done.
2186 */
2187 if (bit == -1)
2188 return 0;
2189
2190 nbits = xfs_contig_bits(buf_f->blf_data_map,
2191 buf_f->blf_map_size, bit);
2192 ASSERT(nbits > 0);
2193 reg_buf_offset = bit << XFS_BLF_SHIFT;
2194 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2195 item_index++;
2196 }
2197
2198 /*
2199 * If the current logged region starts after the current
2200 * di_next_unlinked field, then move on to the next
2201 * di_next_unlinked field.
2202 */
2203 if (next_unlinked_offset < reg_buf_offset)
2204 continue;
2205
2206 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2207 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2208 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2209 BBTOB(bp->b_io_length));
2210
2211 /*
2212 * The current logged region contains a copy of the
2213 * current di_next_unlinked field. Extract its value
2214 * and copy it to the buffer copy.
2215 */
2216 logged_nextp = item->ri_buf[item_index].i_addr +
2217 next_unlinked_offset - reg_buf_offset;
2218 if (unlikely(*logged_nextp == 0)) {
2219 xfs_alert(mp,
2220 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2221 "Trying to replay bad (0) inode di_next_unlinked field.",
2222 item, bp);
2223 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2224 XFS_ERRLEVEL_LOW, mp);
2225 return -EFSCORRUPTED;
2226 }
2227
2228 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2229 *buffer_nextp = *logged_nextp;
2230
2231 /*
2232 * If necessary, recalculate the CRC in the on-disk inode. We
2233 * have to leave the inode in a consistent state for whoever
2234 * reads it next....
2235 */
2236 xfs_dinode_calc_crc(mp,
2237 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2238
2239 }
2240
2241 return 0;
2242 }
2243
2244 /*
2245 * V5 filesystems know the age of the buffer on disk being recovered. We can
2246 * have newer objects on disk than we are replaying, and so for these cases we
2247 * don't want to replay the current change as that will make the buffer contents
2248 * temporarily invalid on disk.
2249 *
2250 * The magic number might not match the buffer type we are going to recover
2251 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2252 * extract the LSN of the existing object in the buffer based on it's current
2253 * magic number. If we don't recognise the magic number in the buffer, then
2254 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2255 * so can recover the buffer.
2256 *
2257 * Note: we cannot rely solely on magic number matches to determine that the
2258 * buffer has a valid LSN - we also need to verify that it belongs to this
2259 * filesystem, so we need to extract the object's LSN and compare it to that
2260 * which we read from the superblock. If the UUIDs don't match, then we've got a
2261 * stale metadata block from an old filesystem instance that we need to recover
2262 * over the top of.
2263 */
2264 static xfs_lsn_t
2265 xlog_recover_get_buf_lsn(
2266 struct xfs_mount *mp,
2267 struct xfs_buf *bp)
2268 {
2269 uint32_t magic32;
2270 uint16_t magic16;
2271 uint16_t magicda;
2272 void *blk = bp->b_addr;
2273 uuid_t *uuid;
2274 xfs_lsn_t lsn = -1;
2275
2276 /* v4 filesystems always recover immediately */
2277 if (!xfs_sb_version_hascrc(&mp->m_sb))
2278 goto recover_immediately;
2279
2280 magic32 = be32_to_cpu(*(__be32 *)blk);
2281 switch (magic32) {
2282 case XFS_ABTB_CRC_MAGIC:
2283 case XFS_ABTC_CRC_MAGIC:
2284 case XFS_ABTB_MAGIC:
2285 case XFS_ABTC_MAGIC:
2286 case XFS_RMAP_CRC_MAGIC:
2287 case XFS_REFC_CRC_MAGIC:
2288 case XFS_IBT_CRC_MAGIC:
2289 case XFS_IBT_MAGIC: {
2290 struct xfs_btree_block *btb = blk;
2291
2292 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2293 uuid = &btb->bb_u.s.bb_uuid;
2294 break;
2295 }
2296 case XFS_BMAP_CRC_MAGIC:
2297 case XFS_BMAP_MAGIC: {
2298 struct xfs_btree_block *btb = blk;
2299
2300 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2301 uuid = &btb->bb_u.l.bb_uuid;
2302 break;
2303 }
2304 case XFS_AGF_MAGIC:
2305 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2306 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2307 break;
2308 case XFS_AGFL_MAGIC:
2309 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2310 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2311 break;
2312 case XFS_AGI_MAGIC:
2313 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2314 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2315 break;
2316 case XFS_SYMLINK_MAGIC:
2317 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2318 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2319 break;
2320 case XFS_DIR3_BLOCK_MAGIC:
2321 case XFS_DIR3_DATA_MAGIC:
2322 case XFS_DIR3_FREE_MAGIC:
2323 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2324 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2325 break;
2326 case XFS_ATTR3_RMT_MAGIC:
2327 /*
2328 * Remote attr blocks are written synchronously, rather than
2329 * being logged. That means they do not contain a valid LSN
2330 * (i.e. transactionally ordered) in them, and hence any time we
2331 * see a buffer to replay over the top of a remote attribute
2332 * block we should simply do so.
2333 */
2334 goto recover_immediately;
2335 case XFS_SB_MAGIC:
2336 /*
2337 * superblock uuids are magic. We may or may not have a
2338 * sb_meta_uuid on disk, but it will be set in the in-core
2339 * superblock. We set the uuid pointer for verification
2340 * according to the superblock feature mask to ensure we check
2341 * the relevant UUID in the superblock.
2342 */
2343 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2344 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2345 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2346 else
2347 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2348 break;
2349 default:
2350 break;
2351 }
2352
2353 if (lsn != (xfs_lsn_t)-1) {
2354 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2355 goto recover_immediately;
2356 return lsn;
2357 }
2358
2359 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2360 switch (magicda) {
2361 case XFS_DIR3_LEAF1_MAGIC:
2362 case XFS_DIR3_LEAFN_MAGIC:
2363 case XFS_DA3_NODE_MAGIC:
2364 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2365 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2366 break;
2367 default:
2368 break;
2369 }
2370
2371 if (lsn != (xfs_lsn_t)-1) {
2372 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2373 goto recover_immediately;
2374 return lsn;
2375 }
2376
2377 /*
2378 * We do individual object checks on dquot and inode buffers as they
2379 * have their own individual LSN records. Also, we could have a stale
2380 * buffer here, so we have to at least recognise these buffer types.
2381 *
2382 * A notd complexity here is inode unlinked list processing - it logs
2383 * the inode directly in the buffer, but we don't know which inodes have
2384 * been modified, and there is no global buffer LSN. Hence we need to
2385 * recover all inode buffer types immediately. This problem will be
2386 * fixed by logical logging of the unlinked list modifications.
2387 */
2388 magic16 = be16_to_cpu(*(__be16 *)blk);
2389 switch (magic16) {
2390 case XFS_DQUOT_MAGIC:
2391 case XFS_DINODE_MAGIC:
2392 goto recover_immediately;
2393 default:
2394 break;
2395 }
2396
2397 /* unknown buffer contents, recover immediately */
2398
2399 recover_immediately:
2400 return (xfs_lsn_t)-1;
2401
2402 }
2403
2404 /*
2405 * Validate the recovered buffer is of the correct type and attach the
2406 * appropriate buffer operations to them for writeback. Magic numbers are in a
2407 * few places:
2408 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2409 * the first 32 bits of the buffer (most blocks),
2410 * inside a struct xfs_da_blkinfo at the start of the buffer.
2411 */
2412 static void
2413 xlog_recover_validate_buf_type(
2414 struct xfs_mount *mp,
2415 struct xfs_buf *bp,
2416 xfs_buf_log_format_t *buf_f,
2417 xfs_lsn_t current_lsn)
2418 {
2419 struct xfs_da_blkinfo *info = bp->b_addr;
2420 uint32_t magic32;
2421 uint16_t magic16;
2422 uint16_t magicda;
2423 char *warnmsg = NULL;
2424
2425 /*
2426 * We can only do post recovery validation on items on CRC enabled
2427 * fielsystems as we need to know when the buffer was written to be able
2428 * to determine if we should have replayed the item. If we replay old
2429 * metadata over a newer buffer, then it will enter a temporarily
2430 * inconsistent state resulting in verification failures. Hence for now
2431 * just avoid the verification stage for non-crc filesystems
2432 */
2433 if (!xfs_sb_version_hascrc(&mp->m_sb))
2434 return;
2435
2436 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2437 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2438 magicda = be16_to_cpu(info->magic);
2439 switch (xfs_blft_from_flags(buf_f)) {
2440 case XFS_BLFT_BTREE_BUF:
2441 switch (magic32) {
2442 case XFS_ABTB_CRC_MAGIC:
2443 case XFS_ABTC_CRC_MAGIC:
2444 case XFS_ABTB_MAGIC:
2445 case XFS_ABTC_MAGIC:
2446 bp->b_ops = &xfs_allocbt_buf_ops;
2447 break;
2448 case XFS_IBT_CRC_MAGIC:
2449 case XFS_FIBT_CRC_MAGIC:
2450 case XFS_IBT_MAGIC:
2451 case XFS_FIBT_MAGIC:
2452 bp->b_ops = &xfs_inobt_buf_ops;
2453 break;
2454 case XFS_BMAP_CRC_MAGIC:
2455 case XFS_BMAP_MAGIC:
2456 bp->b_ops = &xfs_bmbt_buf_ops;
2457 break;
2458 case XFS_RMAP_CRC_MAGIC:
2459 bp->b_ops = &xfs_rmapbt_buf_ops;
2460 break;
2461 case XFS_REFC_CRC_MAGIC:
2462 bp->b_ops = &xfs_refcountbt_buf_ops;
2463 break;
2464 default:
2465 warnmsg = "Bad btree block magic!";
2466 break;
2467 }
2468 break;
2469 case XFS_BLFT_AGF_BUF:
2470 if (magic32 != XFS_AGF_MAGIC) {
2471 warnmsg = "Bad AGF block magic!";
2472 break;
2473 }
2474 bp->b_ops = &xfs_agf_buf_ops;
2475 break;
2476 case XFS_BLFT_AGFL_BUF:
2477 if (magic32 != XFS_AGFL_MAGIC) {
2478 warnmsg = "Bad AGFL block magic!";
2479 break;
2480 }
2481 bp->b_ops = &xfs_agfl_buf_ops;
2482 break;
2483 case XFS_BLFT_AGI_BUF:
2484 if (magic32 != XFS_AGI_MAGIC) {
2485 warnmsg = "Bad AGI block magic!";
2486 break;
2487 }
2488 bp->b_ops = &xfs_agi_buf_ops;
2489 break;
2490 case XFS_BLFT_UDQUOT_BUF:
2491 case XFS_BLFT_PDQUOT_BUF:
2492 case XFS_BLFT_GDQUOT_BUF:
2493 #ifdef CONFIG_XFS_QUOTA
2494 if (magic16 != XFS_DQUOT_MAGIC) {
2495 warnmsg = "Bad DQUOT block magic!";
2496 break;
2497 }
2498 bp->b_ops = &xfs_dquot_buf_ops;
2499 #else
2500 xfs_alert(mp,
2501 "Trying to recover dquots without QUOTA support built in!");
2502 ASSERT(0);
2503 #endif
2504 break;
2505 case XFS_BLFT_DINO_BUF:
2506 if (magic16 != XFS_DINODE_MAGIC) {
2507 warnmsg = "Bad INODE block magic!";
2508 break;
2509 }
2510 bp->b_ops = &xfs_inode_buf_ops;
2511 break;
2512 case XFS_BLFT_SYMLINK_BUF:
2513 if (magic32 != XFS_SYMLINK_MAGIC) {
2514 warnmsg = "Bad symlink block magic!";
2515 break;
2516 }
2517 bp->b_ops = &xfs_symlink_buf_ops;
2518 break;
2519 case XFS_BLFT_DIR_BLOCK_BUF:
2520 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2521 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2522 warnmsg = "Bad dir block magic!";
2523 break;
2524 }
2525 bp->b_ops = &xfs_dir3_block_buf_ops;
2526 break;
2527 case XFS_BLFT_DIR_DATA_BUF:
2528 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2529 magic32 != XFS_DIR3_DATA_MAGIC) {
2530 warnmsg = "Bad dir data magic!";
2531 break;
2532 }
2533 bp->b_ops = &xfs_dir3_data_buf_ops;
2534 break;
2535 case XFS_BLFT_DIR_FREE_BUF:
2536 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2537 magic32 != XFS_DIR3_FREE_MAGIC) {
2538 warnmsg = "Bad dir3 free magic!";
2539 break;
2540 }
2541 bp->b_ops = &xfs_dir3_free_buf_ops;
2542 break;
2543 case XFS_BLFT_DIR_LEAF1_BUF:
2544 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2545 magicda != XFS_DIR3_LEAF1_MAGIC) {
2546 warnmsg = "Bad dir leaf1 magic!";
2547 break;
2548 }
2549 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2550 break;
2551 case XFS_BLFT_DIR_LEAFN_BUF:
2552 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2553 magicda != XFS_DIR3_LEAFN_MAGIC) {
2554 warnmsg = "Bad dir leafn magic!";
2555 break;
2556 }
2557 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2558 break;
2559 case XFS_BLFT_DA_NODE_BUF:
2560 if (magicda != XFS_DA_NODE_MAGIC &&
2561 magicda != XFS_DA3_NODE_MAGIC) {
2562 warnmsg = "Bad da node magic!";
2563 break;
2564 }
2565 bp->b_ops = &xfs_da3_node_buf_ops;
2566 break;
2567 case XFS_BLFT_ATTR_LEAF_BUF:
2568 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2569 magicda != XFS_ATTR3_LEAF_MAGIC) {
2570 warnmsg = "Bad attr leaf magic!";
2571 break;
2572 }
2573 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2574 break;
2575 case XFS_BLFT_ATTR_RMT_BUF:
2576 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2577 warnmsg = "Bad attr remote magic!";
2578 break;
2579 }
2580 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2581 break;
2582 case XFS_BLFT_SB_BUF:
2583 if (magic32 != XFS_SB_MAGIC) {
2584 warnmsg = "Bad SB block magic!";
2585 break;
2586 }
2587 bp->b_ops = &xfs_sb_buf_ops;
2588 break;
2589 #ifdef CONFIG_XFS_RT
2590 case XFS_BLFT_RTBITMAP_BUF:
2591 case XFS_BLFT_RTSUMMARY_BUF:
2592 /* no magic numbers for verification of RT buffers */
2593 bp->b_ops = &xfs_rtbuf_ops;
2594 break;
2595 #endif /* CONFIG_XFS_RT */
2596 default:
2597 xfs_warn(mp, "Unknown buffer type %d!",
2598 xfs_blft_from_flags(buf_f));
2599 break;
2600 }
2601
2602 /*
2603 * Nothing else to do in the case of a NULL current LSN as this means
2604 * the buffer is more recent than the change in the log and will be
2605 * skipped.
2606 */
2607 if (current_lsn == NULLCOMMITLSN)
2608 return;
2609
2610 if (warnmsg) {
2611 xfs_warn(mp, warnmsg);
2612 ASSERT(0);
2613 }
2614
2615 /*
2616 * We must update the metadata LSN of the buffer as it is written out to
2617 * ensure that older transactions never replay over this one and corrupt
2618 * the buffer. This can occur if log recovery is interrupted at some
2619 * point after the current transaction completes, at which point a
2620 * subsequent mount starts recovery from the beginning.
2621 *
2622 * Write verifiers update the metadata LSN from log items attached to
2623 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2624 * the verifier. We'll clean it up in our ->iodone() callback.
2625 */
2626 if (bp->b_ops) {
2627 struct xfs_buf_log_item *bip;
2628
2629 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2630 bp->b_iodone = xlog_recover_iodone;
2631 xfs_buf_item_init(bp, mp);
2632 bip = bp->b_fspriv;
2633 bip->bli_item.li_lsn = current_lsn;
2634 }
2635 }
2636
2637 /*
2638 * Perform a 'normal' buffer recovery. Each logged region of the
2639 * buffer should be copied over the corresponding region in the
2640 * given buffer. The bitmap in the buf log format structure indicates
2641 * where to place the logged data.
2642 */
2643 STATIC void
2644 xlog_recover_do_reg_buffer(
2645 struct xfs_mount *mp,
2646 xlog_recover_item_t *item,
2647 struct xfs_buf *bp,
2648 xfs_buf_log_format_t *buf_f,
2649 xfs_lsn_t current_lsn)
2650 {
2651 int i;
2652 int bit;
2653 int nbits;
2654 int error;
2655
2656 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2657
2658 bit = 0;
2659 i = 1; /* 0 is the buf format structure */
2660 while (1) {
2661 bit = xfs_next_bit(buf_f->blf_data_map,
2662 buf_f->blf_map_size, bit);
2663 if (bit == -1)
2664 break;
2665 nbits = xfs_contig_bits(buf_f->blf_data_map,
2666 buf_f->blf_map_size, bit);
2667 ASSERT(nbits > 0);
2668 ASSERT(item->ri_buf[i].i_addr != NULL);
2669 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2670 ASSERT(BBTOB(bp->b_io_length) >=
2671 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2672
2673 /*
2674 * The dirty regions logged in the buffer, even though
2675 * contiguous, may span multiple chunks. This is because the
2676 * dirty region may span a physical page boundary in a buffer
2677 * and hence be split into two separate vectors for writing into
2678 * the log. Hence we need to trim nbits back to the length of
2679 * the current region being copied out of the log.
2680 */
2681 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2682 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2683
2684 /*
2685 * Do a sanity check if this is a dquot buffer. Just checking
2686 * the first dquot in the buffer should do. XXXThis is
2687 * probably a good thing to do for other buf types also.
2688 */
2689 error = 0;
2690 if (buf_f->blf_flags &
2691 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2692 if (item->ri_buf[i].i_addr == NULL) {
2693 xfs_alert(mp,
2694 "XFS: NULL dquot in %s.", __func__);
2695 goto next;
2696 }
2697 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2698 xfs_alert(mp,
2699 "XFS: dquot too small (%d) in %s.",
2700 item->ri_buf[i].i_len, __func__);
2701 goto next;
2702 }
2703 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2704 -1, 0, XFS_QMOPT_DOWARN,
2705 "dquot_buf_recover");
2706 if (error)
2707 goto next;
2708 }
2709
2710 memcpy(xfs_buf_offset(bp,
2711 (uint)bit << XFS_BLF_SHIFT), /* dest */
2712 item->ri_buf[i].i_addr, /* source */
2713 nbits<<XFS_BLF_SHIFT); /* length */
2714 next:
2715 i++;
2716 bit += nbits;
2717 }
2718
2719 /* Shouldn't be any more regions */
2720 ASSERT(i == item->ri_total);
2721
2722 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2723 }
2724
2725 /*
2726 * Perform a dquot buffer recovery.
2727 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2728 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2729 * Else, treat it as a regular buffer and do recovery.
2730 *
2731 * Return false if the buffer was tossed and true if we recovered the buffer to
2732 * indicate to the caller if the buffer needs writing.
2733 */
2734 STATIC bool
2735 xlog_recover_do_dquot_buffer(
2736 struct xfs_mount *mp,
2737 struct xlog *log,
2738 struct xlog_recover_item *item,
2739 struct xfs_buf *bp,
2740 struct xfs_buf_log_format *buf_f)
2741 {
2742 uint type;
2743
2744 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2745
2746 /*
2747 * Filesystems are required to send in quota flags at mount time.
2748 */
2749 if (!mp->m_qflags)
2750 return false;
2751
2752 type = 0;
2753 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2754 type |= XFS_DQ_USER;
2755 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2756 type |= XFS_DQ_PROJ;
2757 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2758 type |= XFS_DQ_GROUP;
2759 /*
2760 * This type of quotas was turned off, so ignore this buffer
2761 */
2762 if (log->l_quotaoffs_flag & type)
2763 return false;
2764
2765 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2766 return true;
2767 }
2768
2769 /*
2770 * This routine replays a modification made to a buffer at runtime.
2771 * There are actually two types of buffer, regular and inode, which
2772 * are handled differently. Inode buffers are handled differently
2773 * in that we only recover a specific set of data from them, namely
2774 * the inode di_next_unlinked fields. This is because all other inode
2775 * data is actually logged via inode records and any data we replay
2776 * here which overlaps that may be stale.
2777 *
2778 * When meta-data buffers are freed at run time we log a buffer item
2779 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2780 * of the buffer in the log should not be replayed at recovery time.
2781 * This is so that if the blocks covered by the buffer are reused for
2782 * file data before we crash we don't end up replaying old, freed
2783 * meta-data into a user's file.
2784 *
2785 * To handle the cancellation of buffer log items, we make two passes
2786 * over the log during recovery. During the first we build a table of
2787 * those buffers which have been cancelled, and during the second we
2788 * only replay those buffers which do not have corresponding cancel
2789 * records in the table. See xlog_recover_buffer_pass[1,2] above
2790 * for more details on the implementation of the table of cancel records.
2791 */
2792 STATIC int
2793 xlog_recover_buffer_pass2(
2794 struct xlog *log,
2795 struct list_head *buffer_list,
2796 struct xlog_recover_item *item,
2797 xfs_lsn_t current_lsn)
2798 {
2799 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2800 xfs_mount_t *mp = log->l_mp;
2801 xfs_buf_t *bp;
2802 int error;
2803 uint buf_flags;
2804 xfs_lsn_t lsn;
2805
2806 /*
2807 * In this pass we only want to recover all the buffers which have
2808 * not been cancelled and are not cancellation buffers themselves.
2809 */
2810 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2811 buf_f->blf_len, buf_f->blf_flags)) {
2812 trace_xfs_log_recover_buf_cancel(log, buf_f);
2813 return 0;
2814 }
2815
2816 trace_xfs_log_recover_buf_recover(log, buf_f);
2817
2818 buf_flags = 0;
2819 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2820 buf_flags |= XBF_UNMAPPED;
2821
2822 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2823 buf_flags, NULL);
2824 if (!bp)
2825 return -ENOMEM;
2826 error = bp->b_error;
2827 if (error) {
2828 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2829 goto out_release;
2830 }
2831
2832 /*
2833 * Recover the buffer only if we get an LSN from it and it's less than
2834 * the lsn of the transaction we are replaying.
2835 *
2836 * Note that we have to be extremely careful of readahead here.
2837 * Readahead does not attach verfiers to the buffers so if we don't
2838 * actually do any replay after readahead because of the LSN we found
2839 * in the buffer if more recent than that current transaction then we
2840 * need to attach the verifier directly. Failure to do so can lead to
2841 * future recovery actions (e.g. EFI and unlinked list recovery) can
2842 * operate on the buffers and they won't get the verifier attached. This
2843 * can lead to blocks on disk having the correct content but a stale
2844 * CRC.
2845 *
2846 * It is safe to assume these clean buffers are currently up to date.
2847 * If the buffer is dirtied by a later transaction being replayed, then
2848 * the verifier will be reset to match whatever recover turns that
2849 * buffer into.
2850 */
2851 lsn = xlog_recover_get_buf_lsn(mp, bp);
2852 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2853 trace_xfs_log_recover_buf_skip(log, buf_f);
2854 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2855 goto out_release;
2856 }
2857
2858 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2859 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2860 if (error)
2861 goto out_release;
2862 } else if (buf_f->blf_flags &
2863 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2864 bool dirty;
2865
2866 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2867 if (!dirty)
2868 goto out_release;
2869 } else {
2870 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2871 }
2872
2873 /*
2874 * Perform delayed write on the buffer. Asynchronous writes will be
2875 * slower when taking into account all the buffers to be flushed.
2876 *
2877 * Also make sure that only inode buffers with good sizes stay in
2878 * the buffer cache. The kernel moves inodes in buffers of 1 block
2879 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2880 * buffers in the log can be a different size if the log was generated
2881 * by an older kernel using unclustered inode buffers or a newer kernel
2882 * running with a different inode cluster size. Regardless, if the
2883 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2884 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2885 * the buffer out of the buffer cache so that the buffer won't
2886 * overlap with future reads of those inodes.
2887 */
2888 if (XFS_DINODE_MAGIC ==
2889 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2890 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2891 (uint32_t)log->l_mp->m_inode_cluster_size))) {
2892 xfs_buf_stale(bp);
2893 error = xfs_bwrite(bp);
2894 } else {
2895 ASSERT(bp->b_target->bt_mount == mp);
2896 bp->b_iodone = xlog_recover_iodone;
2897 xfs_buf_delwri_queue(bp, buffer_list);
2898 }
2899
2900 out_release:
2901 xfs_buf_relse(bp);
2902 return error;
2903 }
2904
2905 /*
2906 * Inode fork owner changes
2907 *
2908 * If we have been told that we have to reparent the inode fork, it's because an
2909 * extent swap operation on a CRC enabled filesystem has been done and we are
2910 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2911 * owners of it.
2912 *
2913 * The complexity here is that we don't have an inode context to work with, so
2914 * after we've replayed the inode we need to instantiate one. This is where the
2915 * fun begins.
2916 *
2917 * We are in the middle of log recovery, so we can't run transactions. That
2918 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2919 * that will result in the corresponding iput() running the inode through
2920 * xfs_inactive(). If we've just replayed an inode core that changes the link
2921 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2922 * transactions (bad!).
2923 *
2924 * So, to avoid this, we instantiate an inode directly from the inode core we've
2925 * just recovered. We have the buffer still locked, and all we really need to
2926 * instantiate is the inode core and the forks being modified. We can do this
2927 * manually, then run the inode btree owner change, and then tear down the
2928 * xfs_inode without having to run any transactions at all.
2929 *
2930 * Also, because we don't have a transaction context available here but need to
2931 * gather all the buffers we modify for writeback so we pass the buffer_list
2932 * instead for the operation to use.
2933 */
2934
2935 STATIC int
2936 xfs_recover_inode_owner_change(
2937 struct xfs_mount *mp,
2938 struct xfs_dinode *dip,
2939 struct xfs_inode_log_format *in_f,
2940 struct list_head *buffer_list)
2941 {
2942 struct xfs_inode *ip;
2943 int error;
2944
2945 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2946
2947 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2948 if (!ip)
2949 return -ENOMEM;
2950
2951 /* instantiate the inode */
2952 xfs_inode_from_disk(ip, dip);
2953 ASSERT(ip->i_d.di_version >= 3);
2954
2955 error = xfs_iformat_fork(ip, dip);
2956 if (error)
2957 goto out_free_ip;
2958
2959
2960 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2961 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2962 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2963 ip->i_ino, buffer_list);
2964 if (error)
2965 goto out_free_ip;
2966 }
2967
2968 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2969 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2970 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2971 ip->i_ino, buffer_list);
2972 if (error)
2973 goto out_free_ip;
2974 }
2975
2976 out_free_ip:
2977 xfs_inode_free(ip);
2978 return error;
2979 }
2980
2981 STATIC int
2982 xlog_recover_inode_pass2(
2983 struct xlog *log,
2984 struct list_head *buffer_list,
2985 struct xlog_recover_item *item,
2986 xfs_lsn_t current_lsn)
2987 {
2988 struct xfs_inode_log_format *in_f;
2989 xfs_mount_t *mp = log->l_mp;
2990 xfs_buf_t *bp;
2991 xfs_dinode_t *dip;
2992 int len;
2993 char *src;
2994 char *dest;
2995 int error;
2996 int attr_index;
2997 uint fields;
2998 struct xfs_log_dinode *ldip;
2999 uint isize;
3000 int need_free = 0;
3001
3002 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3003 in_f = item->ri_buf[0].i_addr;
3004 } else {
3005 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3006 need_free = 1;
3007 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3008 if (error)
3009 goto error;
3010 }
3011
3012 /*
3013 * Inode buffers can be freed, look out for it,
3014 * and do not replay the inode.
3015 */
3016 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3017 in_f->ilf_len, 0)) {
3018 error = 0;
3019 trace_xfs_log_recover_inode_cancel(log, in_f);
3020 goto error;
3021 }
3022 trace_xfs_log_recover_inode_recover(log, in_f);
3023
3024 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3025 &xfs_inode_buf_ops);
3026 if (!bp) {
3027 error = -ENOMEM;
3028 goto error;
3029 }
3030 error = bp->b_error;
3031 if (error) {
3032 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3033 goto out_release;
3034 }
3035 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3036 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3037
3038 /*
3039 * Make sure the place we're flushing out to really looks
3040 * like an inode!
3041 */
3042 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3043 xfs_alert(mp,
3044 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3045 __func__, dip, bp, in_f->ilf_ino);
3046 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3047 XFS_ERRLEVEL_LOW, mp);
3048 error = -EFSCORRUPTED;
3049 goto out_release;
3050 }
3051 ldip = item->ri_buf[1].i_addr;
3052 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3053 xfs_alert(mp,
3054 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3055 __func__, item, in_f->ilf_ino);
3056 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3057 XFS_ERRLEVEL_LOW, mp);
3058 error = -EFSCORRUPTED;
3059 goto out_release;
3060 }
3061
3062 /*
3063 * If the inode has an LSN in it, recover the inode only if it's less
3064 * than the lsn of the transaction we are replaying. Note: we still
3065 * need to replay an owner change even though the inode is more recent
3066 * than the transaction as there is no guarantee that all the btree
3067 * blocks are more recent than this transaction, too.
3068 */
3069 if (dip->di_version >= 3) {
3070 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3071
3072 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3073 trace_xfs_log_recover_inode_skip(log, in_f);
3074 error = 0;
3075 goto out_owner_change;
3076 }
3077 }
3078
3079 /*
3080 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3081 * are transactional and if ordering is necessary we can determine that
3082 * more accurately by the LSN field in the V3 inode core. Don't trust
3083 * the inode versions we might be changing them here - use the
3084 * superblock flag to determine whether we need to look at di_flushiter
3085 * to skip replay when the on disk inode is newer than the log one
3086 */
3087 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3088 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3089 /*
3090 * Deal with the wrap case, DI_MAX_FLUSH is less
3091 * than smaller numbers
3092 */
3093 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3094 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3095 /* do nothing */
3096 } else {
3097 trace_xfs_log_recover_inode_skip(log, in_f);
3098 error = 0;
3099 goto out_release;
3100 }
3101 }
3102
3103 /* Take the opportunity to reset the flush iteration count */
3104 ldip->di_flushiter = 0;
3105
3106 if (unlikely(S_ISREG(ldip->di_mode))) {
3107 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3108 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3109 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3110 XFS_ERRLEVEL_LOW, mp, ldip);
3111 xfs_alert(mp,
3112 "%s: Bad regular inode log record, rec ptr 0x%p, "
3113 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3114 __func__, item, dip, bp, in_f->ilf_ino);
3115 error = -EFSCORRUPTED;
3116 goto out_release;
3117 }
3118 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3119 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3120 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3121 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3122 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3123 XFS_ERRLEVEL_LOW, mp, ldip);
3124 xfs_alert(mp,
3125 "%s: Bad dir inode log record, rec ptr 0x%p, "
3126 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3127 __func__, item, dip, bp, in_f->ilf_ino);
3128 error = -EFSCORRUPTED;
3129 goto out_release;
3130 }
3131 }
3132 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3133 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3134 XFS_ERRLEVEL_LOW, mp, ldip);
3135 xfs_alert(mp,
3136 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3137 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3138 __func__, item, dip, bp, in_f->ilf_ino,
3139 ldip->di_nextents + ldip->di_anextents,
3140 ldip->di_nblocks);
3141 error = -EFSCORRUPTED;
3142 goto out_release;
3143 }
3144 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3145 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3146 XFS_ERRLEVEL_LOW, mp, ldip);
3147 xfs_alert(mp,
3148 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3149 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3150 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3151 error = -EFSCORRUPTED;
3152 goto out_release;
3153 }
3154 isize = xfs_log_dinode_size(ldip->di_version);
3155 if (unlikely(item->ri_buf[1].i_len > isize)) {
3156 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3157 XFS_ERRLEVEL_LOW, mp, ldip);
3158 xfs_alert(mp,
3159 "%s: Bad inode log record length %d, rec ptr 0x%p",
3160 __func__, item->ri_buf[1].i_len, item);
3161 error = -EFSCORRUPTED;
3162 goto out_release;
3163 }
3164
3165 /* recover the log dinode inode into the on disk inode */
3166 xfs_log_dinode_to_disk(ldip, dip);
3167
3168 /* the rest is in on-disk format */
3169 if (item->ri_buf[1].i_len > isize) {
3170 memcpy((char *)dip + isize,
3171 item->ri_buf[1].i_addr + isize,
3172 item->ri_buf[1].i_len - isize);
3173 }
3174
3175 fields = in_f->ilf_fields;
3176 if (fields & XFS_ILOG_DEV)
3177 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3178
3179 if (in_f->ilf_size == 2)
3180 goto out_owner_change;
3181 len = item->ri_buf[2].i_len;
3182 src = item->ri_buf[2].i_addr;
3183 ASSERT(in_f->ilf_size <= 4);
3184 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3185 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3186 (len == in_f->ilf_dsize));
3187
3188 switch (fields & XFS_ILOG_DFORK) {
3189 case XFS_ILOG_DDATA:
3190 case XFS_ILOG_DEXT:
3191 memcpy(XFS_DFORK_DPTR(dip), src, len);
3192 break;
3193
3194 case XFS_ILOG_DBROOT:
3195 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3196 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3197 XFS_DFORK_DSIZE(dip, mp));
3198 break;
3199
3200 default:
3201 /*
3202 * There are no data fork flags set.
3203 */
3204 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3205 break;
3206 }
3207
3208 /*
3209 * If we logged any attribute data, recover it. There may or
3210 * may not have been any other non-core data logged in this
3211 * transaction.
3212 */
3213 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3214 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3215 attr_index = 3;
3216 } else {
3217 attr_index = 2;
3218 }
3219 len = item->ri_buf[attr_index].i_len;
3220 src = item->ri_buf[attr_index].i_addr;
3221 ASSERT(len == in_f->ilf_asize);
3222
3223 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3224 case XFS_ILOG_ADATA:
3225 case XFS_ILOG_AEXT:
3226 dest = XFS_DFORK_APTR(dip);
3227 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3228 memcpy(dest, src, len);
3229 break;
3230
3231 case XFS_ILOG_ABROOT:
3232 dest = XFS_DFORK_APTR(dip);
3233 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3234 len, (xfs_bmdr_block_t*)dest,
3235 XFS_DFORK_ASIZE(dip, mp));
3236 break;
3237
3238 default:
3239 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3240 ASSERT(0);
3241 error = -EIO;
3242 goto out_release;
3243 }
3244 }
3245
3246 out_owner_change:
3247 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3248 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3249 buffer_list);
3250 /* re-generate the checksum. */
3251 xfs_dinode_calc_crc(log->l_mp, dip);
3252
3253 ASSERT(bp->b_target->bt_mount == mp);
3254 bp->b_iodone = xlog_recover_iodone;
3255 xfs_buf_delwri_queue(bp, buffer_list);
3256
3257 out_release:
3258 xfs_buf_relse(bp);
3259 error:
3260 if (need_free)
3261 kmem_free(in_f);
3262 return error;
3263 }
3264
3265 /*
3266 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3267 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3268 * of that type.
3269 */
3270 STATIC int
3271 xlog_recover_quotaoff_pass1(
3272 struct xlog *log,
3273 struct xlog_recover_item *item)
3274 {
3275 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3276 ASSERT(qoff_f);
3277
3278 /*
3279 * The logitem format's flag tells us if this was user quotaoff,
3280 * group/project quotaoff or both.
3281 */
3282 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3283 log->l_quotaoffs_flag |= XFS_DQ_USER;
3284 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3285 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3286 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3287 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3288
3289 return 0;
3290 }
3291
3292 /*
3293 * Recover a dquot record
3294 */
3295 STATIC int
3296 xlog_recover_dquot_pass2(
3297 struct xlog *log,
3298 struct list_head *buffer_list,
3299 struct xlog_recover_item *item,
3300 xfs_lsn_t current_lsn)
3301 {
3302 xfs_mount_t *mp = log->l_mp;
3303 xfs_buf_t *bp;
3304 struct xfs_disk_dquot *ddq, *recddq;
3305 int error;
3306 xfs_dq_logformat_t *dq_f;
3307 uint type;
3308
3309
3310 /*
3311 * Filesystems are required to send in quota flags at mount time.
3312 */
3313 if (mp->m_qflags == 0)
3314 return 0;
3315
3316 recddq = item->ri_buf[1].i_addr;
3317 if (recddq == NULL) {
3318 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3319 return -EIO;
3320 }
3321 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3322 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3323 item->ri_buf[1].i_len, __func__);
3324 return -EIO;
3325 }
3326
3327 /*
3328 * This type of quotas was turned off, so ignore this record.
3329 */
3330 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3331 ASSERT(type);
3332 if (log->l_quotaoffs_flag & type)
3333 return 0;
3334
3335 /*
3336 * At this point we know that quota was _not_ turned off.
3337 * Since the mount flags are not indicating to us otherwise, this
3338 * must mean that quota is on, and the dquot needs to be replayed.
3339 * Remember that we may not have fully recovered the superblock yet,
3340 * so we can't do the usual trick of looking at the SB quota bits.
3341 *
3342 * The other possibility, of course, is that the quota subsystem was
3343 * removed since the last mount - ENOSYS.
3344 */
3345 dq_f = item->ri_buf[0].i_addr;
3346 ASSERT(dq_f);
3347 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3348 "xlog_recover_dquot_pass2 (log copy)");
3349 if (error)
3350 return -EIO;
3351 ASSERT(dq_f->qlf_len == 1);
3352
3353 /*
3354 * At this point we are assuming that the dquots have been allocated
3355 * and hence the buffer has valid dquots stamped in it. It should,
3356 * therefore, pass verifier validation. If the dquot is bad, then the
3357 * we'll return an error here, so we don't need to specifically check
3358 * the dquot in the buffer after the verifier has run.
3359 */
3360 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3361 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3362 &xfs_dquot_buf_ops);
3363 if (error)
3364 return error;
3365
3366 ASSERT(bp);
3367 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3368
3369 /*
3370 * If the dquot has an LSN in it, recover the dquot only if it's less
3371 * than the lsn of the transaction we are replaying.
3372 */
3373 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3374 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3375 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3376
3377 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3378 goto out_release;
3379 }
3380 }
3381
3382 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3383 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3384 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3385 XFS_DQUOT_CRC_OFF);
3386 }
3387
3388 ASSERT(dq_f->qlf_size == 2);
3389 ASSERT(bp->b_target->bt_mount == mp);
3390 bp->b_iodone = xlog_recover_iodone;
3391 xfs_buf_delwri_queue(bp, buffer_list);
3392
3393 out_release:
3394 xfs_buf_relse(bp);
3395 return 0;
3396 }
3397
3398 /*
3399 * This routine is called to create an in-core extent free intent
3400 * item from the efi format structure which was logged on disk.
3401 * It allocates an in-core efi, copies the extents from the format
3402 * structure into it, and adds the efi to the AIL with the given
3403 * LSN.
3404 */
3405 STATIC int
3406 xlog_recover_efi_pass2(
3407 struct xlog *log,
3408 struct xlog_recover_item *item,
3409 xfs_lsn_t lsn)
3410 {
3411 int error;
3412 struct xfs_mount *mp = log->l_mp;
3413 struct xfs_efi_log_item *efip;
3414 struct xfs_efi_log_format *efi_formatp;
3415
3416 efi_formatp = item->ri_buf[0].i_addr;
3417
3418 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3419 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3420 if (error) {
3421 xfs_efi_item_free(efip);
3422 return error;
3423 }
3424 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3425
3426 spin_lock(&log->l_ailp->xa_lock);
3427 /*
3428 * The EFI has two references. One for the EFD and one for EFI to ensure
3429 * it makes it into the AIL. Insert the EFI into the AIL directly and
3430 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3431 * AIL lock.
3432 */
3433 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3434 xfs_efi_release(efip);
3435 return 0;
3436 }
3437
3438
3439 /*
3440 * This routine is called when an EFD format structure is found in a committed
3441 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3442 * was still in the log. To do this it searches the AIL for the EFI with an id
3443 * equal to that in the EFD format structure. If we find it we drop the EFD
3444 * reference, which removes the EFI from the AIL and frees it.
3445 */
3446 STATIC int
3447 xlog_recover_efd_pass2(
3448 struct xlog *log,
3449 struct xlog_recover_item *item)
3450 {
3451 xfs_efd_log_format_t *efd_formatp;
3452 xfs_efi_log_item_t *efip = NULL;
3453 xfs_log_item_t *lip;
3454 uint64_t efi_id;
3455 struct xfs_ail_cursor cur;
3456 struct xfs_ail *ailp = log->l_ailp;
3457
3458 efd_formatp = item->ri_buf[0].i_addr;
3459 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3460 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3461 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3462 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3463 efi_id = efd_formatp->efd_efi_id;
3464
3465 /*
3466 * Search for the EFI with the id in the EFD format structure in the
3467 * AIL.
3468 */
3469 spin_lock(&ailp->xa_lock);
3470 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3471 while (lip != NULL) {
3472 if (lip->li_type == XFS_LI_EFI) {
3473 efip = (xfs_efi_log_item_t *)lip;
3474 if (efip->efi_format.efi_id == efi_id) {
3475 /*
3476 * Drop the EFD reference to the EFI. This
3477 * removes the EFI from the AIL and frees it.
3478 */
3479 spin_unlock(&ailp->xa_lock);
3480 xfs_efi_release(efip);
3481 spin_lock(&ailp->xa_lock);
3482 break;
3483 }
3484 }
3485 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3486 }
3487
3488 xfs_trans_ail_cursor_done(&cur);
3489 spin_unlock(&ailp->xa_lock);
3490
3491 return 0;
3492 }
3493
3494 /*
3495 * This routine is called to create an in-core extent rmap update
3496 * item from the rui format structure which was logged on disk.
3497 * It allocates an in-core rui, copies the extents from the format
3498 * structure into it, and adds the rui to the AIL with the given
3499 * LSN.
3500 */
3501 STATIC int
3502 xlog_recover_rui_pass2(
3503 struct xlog *log,
3504 struct xlog_recover_item *item,
3505 xfs_lsn_t lsn)
3506 {
3507 int error;
3508 struct xfs_mount *mp = log->l_mp;
3509 struct xfs_rui_log_item *ruip;
3510 struct xfs_rui_log_format *rui_formatp;
3511
3512 rui_formatp = item->ri_buf[0].i_addr;
3513
3514 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3515 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3516 if (error) {
3517 xfs_rui_item_free(ruip);
3518 return error;
3519 }
3520 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3521
3522 spin_lock(&log->l_ailp->xa_lock);
3523 /*
3524 * The RUI has two references. One for the RUD and one for RUI to ensure
3525 * it makes it into the AIL. Insert the RUI into the AIL directly and
3526 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3527 * AIL lock.
3528 */
3529 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3530 xfs_rui_release(ruip);
3531 return 0;
3532 }
3533
3534
3535 /*
3536 * This routine is called when an RUD format structure is found in a committed
3537 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3538 * was still in the log. To do this it searches the AIL for the RUI with an id
3539 * equal to that in the RUD format structure. If we find it we drop the RUD
3540 * reference, which removes the RUI from the AIL and frees it.
3541 */
3542 STATIC int
3543 xlog_recover_rud_pass2(
3544 struct xlog *log,
3545 struct xlog_recover_item *item)
3546 {
3547 struct xfs_rud_log_format *rud_formatp;
3548 struct xfs_rui_log_item *ruip = NULL;
3549 struct xfs_log_item *lip;
3550 uint64_t rui_id;
3551 struct xfs_ail_cursor cur;
3552 struct xfs_ail *ailp = log->l_ailp;
3553
3554 rud_formatp = item->ri_buf[0].i_addr;
3555 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3556 rui_id = rud_formatp->rud_rui_id;
3557
3558 /*
3559 * Search for the RUI with the id in the RUD format structure in the
3560 * AIL.
3561 */
3562 spin_lock(&ailp->xa_lock);
3563 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3564 while (lip != NULL) {
3565 if (lip->li_type == XFS_LI_RUI) {
3566 ruip = (struct xfs_rui_log_item *)lip;
3567 if (ruip->rui_format.rui_id == rui_id) {
3568 /*
3569 * Drop the RUD reference to the RUI. This
3570 * removes the RUI from the AIL and frees it.
3571 */
3572 spin_unlock(&ailp->xa_lock);
3573 xfs_rui_release(ruip);
3574 spin_lock(&ailp->xa_lock);
3575 break;
3576 }
3577 }
3578 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3579 }
3580
3581 xfs_trans_ail_cursor_done(&cur);
3582 spin_unlock(&ailp->xa_lock);
3583
3584 return 0;
3585 }
3586
3587 /*
3588 * Copy an CUI format buffer from the given buf, and into the destination
3589 * CUI format structure. The CUI/CUD items were designed not to need any
3590 * special alignment handling.
3591 */
3592 static int
3593 xfs_cui_copy_format(
3594 struct xfs_log_iovec *buf,
3595 struct xfs_cui_log_format *dst_cui_fmt)
3596 {
3597 struct xfs_cui_log_format *src_cui_fmt;
3598 uint len;
3599
3600 src_cui_fmt = buf->i_addr;
3601 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3602
3603 if (buf->i_len == len) {
3604 memcpy(dst_cui_fmt, src_cui_fmt, len);
3605 return 0;
3606 }
3607 return -EFSCORRUPTED;
3608 }
3609
3610 /*
3611 * This routine is called to create an in-core extent refcount update
3612 * item from the cui format structure which was logged on disk.
3613 * It allocates an in-core cui, copies the extents from the format
3614 * structure into it, and adds the cui to the AIL with the given
3615 * LSN.
3616 */
3617 STATIC int
3618 xlog_recover_cui_pass2(
3619 struct xlog *log,
3620 struct xlog_recover_item *item,
3621 xfs_lsn_t lsn)
3622 {
3623 int error;
3624 struct xfs_mount *mp = log->l_mp;
3625 struct xfs_cui_log_item *cuip;
3626 struct xfs_cui_log_format *cui_formatp;
3627
3628 cui_formatp = item->ri_buf[0].i_addr;
3629
3630 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3631 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3632 if (error) {
3633 xfs_cui_item_free(cuip);
3634 return error;
3635 }
3636 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3637
3638 spin_lock(&log->l_ailp->xa_lock);
3639 /*
3640 * The CUI has two references. One for the CUD and one for CUI to ensure
3641 * it makes it into the AIL. Insert the CUI into the AIL directly and
3642 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3643 * AIL lock.
3644 */
3645 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3646 xfs_cui_release(cuip);
3647 return 0;
3648 }
3649
3650
3651 /*
3652 * This routine is called when an CUD format structure is found in a committed
3653 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3654 * was still in the log. To do this it searches the AIL for the CUI with an id
3655 * equal to that in the CUD format structure. If we find it we drop the CUD
3656 * reference, which removes the CUI from the AIL and frees it.
3657 */
3658 STATIC int
3659 xlog_recover_cud_pass2(
3660 struct xlog *log,
3661 struct xlog_recover_item *item)
3662 {
3663 struct xfs_cud_log_format *cud_formatp;
3664 struct xfs_cui_log_item *cuip = NULL;
3665 struct xfs_log_item *lip;
3666 uint64_t cui_id;
3667 struct xfs_ail_cursor cur;
3668 struct xfs_ail *ailp = log->l_ailp;
3669
3670 cud_formatp = item->ri_buf[0].i_addr;
3671 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3672 return -EFSCORRUPTED;
3673 cui_id = cud_formatp->cud_cui_id;
3674
3675 /*
3676 * Search for the CUI with the id in the CUD format structure in the
3677 * AIL.
3678 */
3679 spin_lock(&ailp->xa_lock);
3680 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3681 while (lip != NULL) {
3682 if (lip->li_type == XFS_LI_CUI) {
3683 cuip = (struct xfs_cui_log_item *)lip;
3684 if (cuip->cui_format.cui_id == cui_id) {
3685 /*
3686 * Drop the CUD reference to the CUI. This
3687 * removes the CUI from the AIL and frees it.
3688 */
3689 spin_unlock(&ailp->xa_lock);
3690 xfs_cui_release(cuip);
3691 spin_lock(&ailp->xa_lock);
3692 break;
3693 }
3694 }
3695 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3696 }
3697
3698 xfs_trans_ail_cursor_done(&cur);
3699 spin_unlock(&ailp->xa_lock);
3700
3701 return 0;
3702 }
3703
3704 /*
3705 * Copy an BUI format buffer from the given buf, and into the destination
3706 * BUI format structure. The BUI/BUD items were designed not to need any
3707 * special alignment handling.
3708 */
3709 static int
3710 xfs_bui_copy_format(
3711 struct xfs_log_iovec *buf,
3712 struct xfs_bui_log_format *dst_bui_fmt)
3713 {
3714 struct xfs_bui_log_format *src_bui_fmt;
3715 uint len;
3716
3717 src_bui_fmt = buf->i_addr;
3718 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3719
3720 if (buf->i_len == len) {
3721 memcpy(dst_bui_fmt, src_bui_fmt, len);
3722 return 0;
3723 }
3724 return -EFSCORRUPTED;
3725 }
3726
3727 /*
3728 * This routine is called to create an in-core extent bmap update
3729 * item from the bui format structure which was logged on disk.
3730 * It allocates an in-core bui, copies the extents from the format
3731 * structure into it, and adds the bui to the AIL with the given
3732 * LSN.
3733 */
3734 STATIC int
3735 xlog_recover_bui_pass2(
3736 struct xlog *log,
3737 struct xlog_recover_item *item,
3738 xfs_lsn_t lsn)
3739 {
3740 int error;
3741 struct xfs_mount *mp = log->l_mp;
3742 struct xfs_bui_log_item *buip;
3743 struct xfs_bui_log_format *bui_formatp;
3744
3745 bui_formatp = item->ri_buf[0].i_addr;
3746
3747 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3748 return -EFSCORRUPTED;
3749 buip = xfs_bui_init(mp);
3750 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3751 if (error) {
3752 xfs_bui_item_free(buip);
3753 return error;
3754 }
3755 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3756
3757 spin_lock(&log->l_ailp->xa_lock);
3758 /*
3759 * The RUI has two references. One for the RUD and one for RUI to ensure
3760 * it makes it into the AIL. Insert the RUI into the AIL directly and
3761 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3762 * AIL lock.
3763 */
3764 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3765 xfs_bui_release(buip);
3766 return 0;
3767 }
3768
3769
3770 /*
3771 * This routine is called when an BUD format structure is found in a committed
3772 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3773 * was still in the log. To do this it searches the AIL for the BUI with an id
3774 * equal to that in the BUD format structure. If we find it we drop the BUD
3775 * reference, which removes the BUI from the AIL and frees it.
3776 */
3777 STATIC int
3778 xlog_recover_bud_pass2(
3779 struct xlog *log,
3780 struct xlog_recover_item *item)
3781 {
3782 struct xfs_bud_log_format *bud_formatp;
3783 struct xfs_bui_log_item *buip = NULL;
3784 struct xfs_log_item *lip;
3785 uint64_t bui_id;
3786 struct xfs_ail_cursor cur;
3787 struct xfs_ail *ailp = log->l_ailp;
3788
3789 bud_formatp = item->ri_buf[0].i_addr;
3790 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3791 return -EFSCORRUPTED;
3792 bui_id = bud_formatp->bud_bui_id;
3793
3794 /*
3795 * Search for the BUI with the id in the BUD format structure in the
3796 * AIL.
3797 */
3798 spin_lock(&ailp->xa_lock);
3799 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3800 while (lip != NULL) {
3801 if (lip->li_type == XFS_LI_BUI) {
3802 buip = (struct xfs_bui_log_item *)lip;
3803 if (buip->bui_format.bui_id == bui_id) {
3804 /*
3805 * Drop the BUD reference to the BUI. This
3806 * removes the BUI from the AIL and frees it.
3807 */
3808 spin_unlock(&ailp->xa_lock);
3809 xfs_bui_release(buip);
3810 spin_lock(&ailp->xa_lock);
3811 break;
3812 }
3813 }
3814 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3815 }
3816
3817 xfs_trans_ail_cursor_done(&cur);
3818 spin_unlock(&ailp->xa_lock);
3819
3820 return 0;
3821 }
3822
3823 /*
3824 * This routine is called when an inode create format structure is found in a
3825 * committed transaction in the log. It's purpose is to initialise the inodes
3826 * being allocated on disk. This requires us to get inode cluster buffers that
3827 * match the range to be initialised, stamped with inode templates and written
3828 * by delayed write so that subsequent modifications will hit the cached buffer
3829 * and only need writing out at the end of recovery.
3830 */
3831 STATIC int
3832 xlog_recover_do_icreate_pass2(
3833 struct xlog *log,
3834 struct list_head *buffer_list,
3835 xlog_recover_item_t *item)
3836 {
3837 struct xfs_mount *mp = log->l_mp;
3838 struct xfs_icreate_log *icl;
3839 xfs_agnumber_t agno;
3840 xfs_agblock_t agbno;
3841 unsigned int count;
3842 unsigned int isize;
3843 xfs_agblock_t length;
3844 int blks_per_cluster;
3845 int bb_per_cluster;
3846 int cancel_count;
3847 int nbufs;
3848 int i;
3849
3850 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3851 if (icl->icl_type != XFS_LI_ICREATE) {
3852 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3853 return -EINVAL;
3854 }
3855
3856 if (icl->icl_size != 1) {
3857 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3858 return -EINVAL;
3859 }
3860
3861 agno = be32_to_cpu(icl->icl_ag);
3862 if (agno >= mp->m_sb.sb_agcount) {
3863 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3864 return -EINVAL;
3865 }
3866 agbno = be32_to_cpu(icl->icl_agbno);
3867 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3868 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3869 return -EINVAL;
3870 }
3871 isize = be32_to_cpu(icl->icl_isize);
3872 if (isize != mp->m_sb.sb_inodesize) {
3873 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3874 return -EINVAL;
3875 }
3876 count = be32_to_cpu(icl->icl_count);
3877 if (!count) {
3878 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3879 return -EINVAL;
3880 }
3881 length = be32_to_cpu(icl->icl_length);
3882 if (!length || length >= mp->m_sb.sb_agblocks) {
3883 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3884 return -EINVAL;
3885 }
3886
3887 /*
3888 * The inode chunk is either full or sparse and we only support
3889 * m_ialloc_min_blks sized sparse allocations at this time.
3890 */
3891 if (length != mp->m_ialloc_blks &&
3892 length != mp->m_ialloc_min_blks) {
3893 xfs_warn(log->l_mp,
3894 "%s: unsupported chunk length", __FUNCTION__);
3895 return -EINVAL;
3896 }
3897
3898 /* verify inode count is consistent with extent length */
3899 if ((count >> mp->m_sb.sb_inopblog) != length) {
3900 xfs_warn(log->l_mp,
3901 "%s: inconsistent inode count and chunk length",
3902 __FUNCTION__);
3903 return -EINVAL;
3904 }
3905
3906 /*
3907 * The icreate transaction can cover multiple cluster buffers and these
3908 * buffers could have been freed and reused. Check the individual
3909 * buffers for cancellation so we don't overwrite anything written after
3910 * a cancellation.
3911 */
3912 blks_per_cluster = xfs_icluster_size_fsb(mp);
3913 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3914 nbufs = length / blks_per_cluster;
3915 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3916 xfs_daddr_t daddr;
3917
3918 daddr = XFS_AGB_TO_DADDR(mp, agno,
3919 agbno + i * blks_per_cluster);
3920 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3921 cancel_count++;
3922 }
3923
3924 /*
3925 * We currently only use icreate for a single allocation at a time. This
3926 * means we should expect either all or none of the buffers to be
3927 * cancelled. Be conservative and skip replay if at least one buffer is
3928 * cancelled, but warn the user that something is awry if the buffers
3929 * are not consistent.
3930 *
3931 * XXX: This must be refined to only skip cancelled clusters once we use
3932 * icreate for multiple chunk allocations.
3933 */
3934 ASSERT(!cancel_count || cancel_count == nbufs);
3935 if (cancel_count) {
3936 if (cancel_count != nbufs)
3937 xfs_warn(mp,
3938 "WARNING: partial inode chunk cancellation, skipped icreate.");
3939 trace_xfs_log_recover_icreate_cancel(log, icl);
3940 return 0;
3941 }
3942
3943 trace_xfs_log_recover_icreate_recover(log, icl);
3944 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3945 length, be32_to_cpu(icl->icl_gen));
3946 }
3947
3948 STATIC void
3949 xlog_recover_buffer_ra_pass2(
3950 struct xlog *log,
3951 struct xlog_recover_item *item)
3952 {
3953 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3954 struct xfs_mount *mp = log->l_mp;
3955
3956 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3957 buf_f->blf_len, buf_f->blf_flags)) {
3958 return;
3959 }
3960
3961 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3962 buf_f->blf_len, NULL);
3963 }
3964
3965 STATIC void
3966 xlog_recover_inode_ra_pass2(
3967 struct xlog *log,
3968 struct xlog_recover_item *item)
3969 {
3970 struct xfs_inode_log_format ilf_buf;
3971 struct xfs_inode_log_format *ilfp;
3972 struct xfs_mount *mp = log->l_mp;
3973 int error;
3974
3975 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3976 ilfp = item->ri_buf[0].i_addr;
3977 } else {
3978 ilfp = &ilf_buf;
3979 memset(ilfp, 0, sizeof(*ilfp));
3980 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3981 if (error)
3982 return;
3983 }
3984
3985 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3986 return;
3987
3988 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3989 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3990 }
3991
3992 STATIC void
3993 xlog_recover_dquot_ra_pass2(
3994 struct xlog *log,
3995 struct xlog_recover_item *item)
3996 {
3997 struct xfs_mount *mp = log->l_mp;
3998 struct xfs_disk_dquot *recddq;
3999 struct xfs_dq_logformat *dq_f;
4000 uint type;
4001 int len;
4002
4003
4004 if (mp->m_qflags == 0)
4005 return;
4006
4007 recddq = item->ri_buf[1].i_addr;
4008 if (recddq == NULL)
4009 return;
4010 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4011 return;
4012
4013 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4014 ASSERT(type);
4015 if (log->l_quotaoffs_flag & type)
4016 return;
4017
4018 dq_f = item->ri_buf[0].i_addr;
4019 ASSERT(dq_f);
4020 ASSERT(dq_f->qlf_len == 1);
4021
4022 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4023 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4024 return;
4025
4026 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4027 &xfs_dquot_buf_ra_ops);
4028 }
4029
4030 STATIC void
4031 xlog_recover_ra_pass2(
4032 struct xlog *log,
4033 struct xlog_recover_item *item)
4034 {
4035 switch (ITEM_TYPE(item)) {
4036 case XFS_LI_BUF:
4037 xlog_recover_buffer_ra_pass2(log, item);
4038 break;
4039 case XFS_LI_INODE:
4040 xlog_recover_inode_ra_pass2(log, item);
4041 break;
4042 case XFS_LI_DQUOT:
4043 xlog_recover_dquot_ra_pass2(log, item);
4044 break;
4045 case XFS_LI_EFI:
4046 case XFS_LI_EFD:
4047 case XFS_LI_QUOTAOFF:
4048 case XFS_LI_RUI:
4049 case XFS_LI_RUD:
4050 case XFS_LI_CUI:
4051 case XFS_LI_CUD:
4052 case XFS_LI_BUI:
4053 case XFS_LI_BUD:
4054 default:
4055 break;
4056 }
4057 }
4058
4059 STATIC int
4060 xlog_recover_commit_pass1(
4061 struct xlog *log,
4062 struct xlog_recover *trans,
4063 struct xlog_recover_item *item)
4064 {
4065 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4066
4067 switch (ITEM_TYPE(item)) {
4068 case XFS_LI_BUF:
4069 return xlog_recover_buffer_pass1(log, item);
4070 case XFS_LI_QUOTAOFF:
4071 return xlog_recover_quotaoff_pass1(log, item);
4072 case XFS_LI_INODE:
4073 case XFS_LI_EFI:
4074 case XFS_LI_EFD:
4075 case XFS_LI_DQUOT:
4076 case XFS_LI_ICREATE:
4077 case XFS_LI_RUI:
4078 case XFS_LI_RUD:
4079 case XFS_LI_CUI:
4080 case XFS_LI_CUD:
4081 case XFS_LI_BUI:
4082 case XFS_LI_BUD:
4083 /* nothing to do in pass 1 */
4084 return 0;
4085 default:
4086 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4087 __func__, ITEM_TYPE(item));
4088 ASSERT(0);
4089 return -EIO;
4090 }
4091 }
4092
4093 STATIC int
4094 xlog_recover_commit_pass2(
4095 struct xlog *log,
4096 struct xlog_recover *trans,
4097 struct list_head *buffer_list,
4098 struct xlog_recover_item *item)
4099 {
4100 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4101
4102 switch (ITEM_TYPE(item)) {
4103 case XFS_LI_BUF:
4104 return xlog_recover_buffer_pass2(log, buffer_list, item,
4105 trans->r_lsn);
4106 case XFS_LI_INODE:
4107 return xlog_recover_inode_pass2(log, buffer_list, item,
4108 trans->r_lsn);
4109 case XFS_LI_EFI:
4110 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4111 case XFS_LI_EFD:
4112 return xlog_recover_efd_pass2(log, item);
4113 case XFS_LI_RUI:
4114 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4115 case XFS_LI_RUD:
4116 return xlog_recover_rud_pass2(log, item);
4117 case XFS_LI_CUI:
4118 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4119 case XFS_LI_CUD:
4120 return xlog_recover_cud_pass2(log, item);
4121 case XFS_LI_BUI:
4122 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4123 case XFS_LI_BUD:
4124 return xlog_recover_bud_pass2(log, item);
4125 case XFS_LI_DQUOT:
4126 return xlog_recover_dquot_pass2(log, buffer_list, item,
4127 trans->r_lsn);
4128 case XFS_LI_ICREATE:
4129 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4130 case XFS_LI_QUOTAOFF:
4131 /* nothing to do in pass2 */
4132 return 0;
4133 default:
4134 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4135 __func__, ITEM_TYPE(item));
4136 ASSERT(0);
4137 return -EIO;
4138 }
4139 }
4140
4141 STATIC int
4142 xlog_recover_items_pass2(
4143 struct xlog *log,
4144 struct xlog_recover *trans,
4145 struct list_head *buffer_list,
4146 struct list_head *item_list)
4147 {
4148 struct xlog_recover_item *item;
4149 int error = 0;
4150
4151 list_for_each_entry(item, item_list, ri_list) {
4152 error = xlog_recover_commit_pass2(log, trans,
4153 buffer_list, item);
4154 if (error)
4155 return error;
4156 }
4157
4158 return error;
4159 }
4160
4161 /*
4162 * Perform the transaction.
4163 *
4164 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4165 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4166 */
4167 STATIC int
4168 xlog_recover_commit_trans(
4169 struct xlog *log,
4170 struct xlog_recover *trans,
4171 int pass,
4172 struct list_head *buffer_list)
4173 {
4174 int error = 0;
4175 int items_queued = 0;
4176 struct xlog_recover_item *item;
4177 struct xlog_recover_item *next;
4178 LIST_HEAD (ra_list);
4179 LIST_HEAD (done_list);
4180
4181 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4182
4183 hlist_del_init(&trans->r_list);
4184
4185 error = xlog_recover_reorder_trans(log, trans, pass);
4186 if (error)
4187 return error;
4188
4189 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4190 switch (pass) {
4191 case XLOG_RECOVER_PASS1:
4192 error = xlog_recover_commit_pass1(log, trans, item);
4193 break;
4194 case XLOG_RECOVER_PASS2:
4195 xlog_recover_ra_pass2(log, item);
4196 list_move_tail(&item->ri_list, &ra_list);
4197 items_queued++;
4198 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4199 error = xlog_recover_items_pass2(log, trans,
4200 buffer_list, &ra_list);
4201 list_splice_tail_init(&ra_list, &done_list);
4202 items_queued = 0;
4203 }
4204
4205 break;
4206 default:
4207 ASSERT(0);
4208 }
4209
4210 if (error)
4211 goto out;
4212 }
4213
4214 out:
4215 if (!list_empty(&ra_list)) {
4216 if (!error)
4217 error = xlog_recover_items_pass2(log, trans,
4218 buffer_list, &ra_list);
4219 list_splice_tail_init(&ra_list, &done_list);
4220 }
4221
4222 if (!list_empty(&done_list))
4223 list_splice_init(&done_list, &trans->r_itemq);
4224
4225 return error;
4226 }
4227
4228 STATIC void
4229 xlog_recover_add_item(
4230 struct list_head *head)
4231 {
4232 xlog_recover_item_t *item;
4233
4234 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4235 INIT_LIST_HEAD(&item->ri_list);
4236 list_add_tail(&item->ri_list, head);
4237 }
4238
4239 STATIC int
4240 xlog_recover_add_to_cont_trans(
4241 struct xlog *log,
4242 struct xlog_recover *trans,
4243 char *dp,
4244 int len)
4245 {
4246 xlog_recover_item_t *item;
4247 char *ptr, *old_ptr;
4248 int old_len;
4249
4250 /*
4251 * If the transaction is empty, the header was split across this and the
4252 * previous record. Copy the rest of the header.
4253 */
4254 if (list_empty(&trans->r_itemq)) {
4255 ASSERT(len <= sizeof(struct xfs_trans_header));
4256 if (len > sizeof(struct xfs_trans_header)) {
4257 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4258 return -EIO;
4259 }
4260
4261 xlog_recover_add_item(&trans->r_itemq);
4262 ptr = (char *)&trans->r_theader +
4263 sizeof(struct xfs_trans_header) - len;
4264 memcpy(ptr, dp, len);
4265 return 0;
4266 }
4267
4268 /* take the tail entry */
4269 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4270
4271 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4272 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4273
4274 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4275 memcpy(&ptr[old_len], dp, len);
4276 item->ri_buf[item->ri_cnt-1].i_len += len;
4277 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4278 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4279 return 0;
4280 }
4281
4282 /*
4283 * The next region to add is the start of a new region. It could be
4284 * a whole region or it could be the first part of a new region. Because
4285 * of this, the assumption here is that the type and size fields of all
4286 * format structures fit into the first 32 bits of the structure.
4287 *
4288 * This works because all regions must be 32 bit aligned. Therefore, we
4289 * either have both fields or we have neither field. In the case we have
4290 * neither field, the data part of the region is zero length. We only have
4291 * a log_op_header and can throw away the header since a new one will appear
4292 * later. If we have at least 4 bytes, then we can determine how many regions
4293 * will appear in the current log item.
4294 */
4295 STATIC int
4296 xlog_recover_add_to_trans(
4297 struct xlog *log,
4298 struct xlog_recover *trans,
4299 char *dp,
4300 int len)
4301 {
4302 struct xfs_inode_log_format *in_f; /* any will do */
4303 xlog_recover_item_t *item;
4304 char *ptr;
4305
4306 if (!len)
4307 return 0;
4308 if (list_empty(&trans->r_itemq)) {
4309 /* we need to catch log corruptions here */
4310 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4311 xfs_warn(log->l_mp, "%s: bad header magic number",
4312 __func__);
4313 ASSERT(0);
4314 return -EIO;
4315 }
4316
4317 if (len > sizeof(struct xfs_trans_header)) {
4318 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4319 ASSERT(0);
4320 return -EIO;
4321 }
4322
4323 /*
4324 * The transaction header can be arbitrarily split across op
4325 * records. If we don't have the whole thing here, copy what we
4326 * do have and handle the rest in the next record.
4327 */
4328 if (len == sizeof(struct xfs_trans_header))
4329 xlog_recover_add_item(&trans->r_itemq);
4330 memcpy(&trans->r_theader, dp, len);
4331 return 0;
4332 }
4333
4334 ptr = kmem_alloc(len, KM_SLEEP);
4335 memcpy(ptr, dp, len);
4336 in_f = (struct xfs_inode_log_format *)ptr;
4337
4338 /* take the tail entry */
4339 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4340 if (item->ri_total != 0 &&
4341 item->ri_total == item->ri_cnt) {
4342 /* tail item is in use, get a new one */
4343 xlog_recover_add_item(&trans->r_itemq);
4344 item = list_entry(trans->r_itemq.prev,
4345 xlog_recover_item_t, ri_list);
4346 }
4347
4348 if (item->ri_total == 0) { /* first region to be added */
4349 if (in_f->ilf_size == 0 ||
4350 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4351 xfs_warn(log->l_mp,
4352 "bad number of regions (%d) in inode log format",
4353 in_f->ilf_size);
4354 ASSERT(0);
4355 kmem_free(ptr);
4356 return -EIO;
4357 }
4358
4359 item->ri_total = in_f->ilf_size;
4360 item->ri_buf =
4361 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4362 KM_SLEEP);
4363 }
4364 ASSERT(item->ri_total > item->ri_cnt);
4365 /* Description region is ri_buf[0] */
4366 item->ri_buf[item->ri_cnt].i_addr = ptr;
4367 item->ri_buf[item->ri_cnt].i_len = len;
4368 item->ri_cnt++;
4369 trace_xfs_log_recover_item_add(log, trans, item, 0);
4370 return 0;
4371 }
4372
4373 /*
4374 * Free up any resources allocated by the transaction
4375 *
4376 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4377 */
4378 STATIC void
4379 xlog_recover_free_trans(
4380 struct xlog_recover *trans)
4381 {
4382 xlog_recover_item_t *item, *n;
4383 int i;
4384
4385 hlist_del_init(&trans->r_list);
4386
4387 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4388 /* Free the regions in the item. */
4389 list_del(&item->ri_list);
4390 for (i = 0; i < item->ri_cnt; i++)
4391 kmem_free(item->ri_buf[i].i_addr);
4392 /* Free the item itself */
4393 kmem_free(item->ri_buf);
4394 kmem_free(item);
4395 }
4396 /* Free the transaction recover structure */
4397 kmem_free(trans);
4398 }
4399
4400 /*
4401 * On error or completion, trans is freed.
4402 */
4403 STATIC int
4404 xlog_recovery_process_trans(
4405 struct xlog *log,
4406 struct xlog_recover *trans,
4407 char *dp,
4408 unsigned int len,
4409 unsigned int flags,
4410 int pass,
4411 struct list_head *buffer_list)
4412 {
4413 int error = 0;
4414 bool freeit = false;
4415
4416 /* mask off ophdr transaction container flags */
4417 flags &= ~XLOG_END_TRANS;
4418 if (flags & XLOG_WAS_CONT_TRANS)
4419 flags &= ~XLOG_CONTINUE_TRANS;
4420
4421 /*
4422 * Callees must not free the trans structure. We'll decide if we need to
4423 * free it or not based on the operation being done and it's result.
4424 */
4425 switch (flags) {
4426 /* expected flag values */
4427 case 0:
4428 case XLOG_CONTINUE_TRANS:
4429 error = xlog_recover_add_to_trans(log, trans, dp, len);
4430 break;
4431 case XLOG_WAS_CONT_TRANS:
4432 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4433 break;
4434 case XLOG_COMMIT_TRANS:
4435 error = xlog_recover_commit_trans(log, trans, pass,
4436 buffer_list);
4437 /* success or fail, we are now done with this transaction. */
4438 freeit = true;
4439 break;
4440
4441 /* unexpected flag values */
4442 case XLOG_UNMOUNT_TRANS:
4443 /* just skip trans */
4444 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4445 freeit = true;
4446 break;
4447 case XLOG_START_TRANS:
4448 default:
4449 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4450 ASSERT(0);
4451 error = -EIO;
4452 break;
4453 }
4454 if (error || freeit)
4455 xlog_recover_free_trans(trans);
4456 return error;
4457 }
4458
4459 /*
4460 * Lookup the transaction recovery structure associated with the ID in the
4461 * current ophdr. If the transaction doesn't exist and the start flag is set in
4462 * the ophdr, then allocate a new transaction for future ID matches to find.
4463 * Either way, return what we found during the lookup - an existing transaction
4464 * or nothing.
4465 */
4466 STATIC struct xlog_recover *
4467 xlog_recover_ophdr_to_trans(
4468 struct hlist_head rhash[],
4469 struct xlog_rec_header *rhead,
4470 struct xlog_op_header *ohead)
4471 {
4472 struct xlog_recover *trans;
4473 xlog_tid_t tid;
4474 struct hlist_head *rhp;
4475
4476 tid = be32_to_cpu(ohead->oh_tid);
4477 rhp = &rhash[XLOG_RHASH(tid)];
4478 hlist_for_each_entry(trans, rhp, r_list) {
4479 if (trans->r_log_tid == tid)
4480 return trans;
4481 }
4482
4483 /*
4484 * skip over non-start transaction headers - we could be
4485 * processing slack space before the next transaction starts
4486 */
4487 if (!(ohead->oh_flags & XLOG_START_TRANS))
4488 return NULL;
4489
4490 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4491
4492 /*
4493 * This is a new transaction so allocate a new recovery container to
4494 * hold the recovery ops that will follow.
4495 */
4496 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4497 trans->r_log_tid = tid;
4498 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4499 INIT_LIST_HEAD(&trans->r_itemq);
4500 INIT_HLIST_NODE(&trans->r_list);
4501 hlist_add_head(&trans->r_list, rhp);
4502
4503 /*
4504 * Nothing more to do for this ophdr. Items to be added to this new
4505 * transaction will be in subsequent ophdr containers.
4506 */
4507 return NULL;
4508 }
4509
4510 STATIC int
4511 xlog_recover_process_ophdr(
4512 struct xlog *log,
4513 struct hlist_head rhash[],
4514 struct xlog_rec_header *rhead,
4515 struct xlog_op_header *ohead,
4516 char *dp,
4517 char *end,
4518 int pass,
4519 struct list_head *buffer_list)
4520 {
4521 struct xlog_recover *trans;
4522 unsigned int len;
4523 int error;
4524
4525 /* Do we understand who wrote this op? */
4526 if (ohead->oh_clientid != XFS_TRANSACTION &&
4527 ohead->oh_clientid != XFS_LOG) {
4528 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4529 __func__, ohead->oh_clientid);
4530 ASSERT(0);
4531 return -EIO;
4532 }
4533
4534 /*
4535 * Check the ophdr contains all the data it is supposed to contain.
4536 */
4537 len = be32_to_cpu(ohead->oh_len);
4538 if (dp + len > end) {
4539 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4540 WARN_ON(1);
4541 return -EIO;
4542 }
4543
4544 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4545 if (!trans) {
4546 /* nothing to do, so skip over this ophdr */
4547 return 0;
4548 }
4549
4550 /*
4551 * The recovered buffer queue is drained only once we know that all
4552 * recovery items for the current LSN have been processed. This is
4553 * required because:
4554 *
4555 * - Buffer write submission updates the metadata LSN of the buffer.
4556 * - Log recovery skips items with a metadata LSN >= the current LSN of
4557 * the recovery item.
4558 * - Separate recovery items against the same metadata buffer can share
4559 * a current LSN. I.e., consider that the LSN of a recovery item is
4560 * defined as the starting LSN of the first record in which its
4561 * transaction appears, that a record can hold multiple transactions,
4562 * and/or that a transaction can span multiple records.
4563 *
4564 * In other words, we are allowed to submit a buffer from log recovery
4565 * once per current LSN. Otherwise, we may incorrectly skip recovery
4566 * items and cause corruption.
4567 *
4568 * We don't know up front whether buffers are updated multiple times per
4569 * LSN. Therefore, track the current LSN of each commit log record as it
4570 * is processed and drain the queue when it changes. Use commit records
4571 * because they are ordered correctly by the logging code.
4572 */
4573 if (log->l_recovery_lsn != trans->r_lsn &&
4574 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4575 error = xfs_buf_delwri_submit(buffer_list);
4576 if (error)
4577 return error;
4578 log->l_recovery_lsn = trans->r_lsn;
4579 }
4580
4581 return xlog_recovery_process_trans(log, trans, dp, len,
4582 ohead->oh_flags, pass, buffer_list);
4583 }
4584
4585 /*
4586 * There are two valid states of the r_state field. 0 indicates that the
4587 * transaction structure is in a normal state. We have either seen the
4588 * start of the transaction or the last operation we added was not a partial
4589 * operation. If the last operation we added to the transaction was a
4590 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4591 *
4592 * NOTE: skip LRs with 0 data length.
4593 */
4594 STATIC int
4595 xlog_recover_process_data(
4596 struct xlog *log,
4597 struct hlist_head rhash[],
4598 struct xlog_rec_header *rhead,
4599 char *dp,
4600 int pass,
4601 struct list_head *buffer_list)
4602 {
4603 struct xlog_op_header *ohead;
4604 char *end;
4605 int num_logops;
4606 int error;
4607
4608 end = dp + be32_to_cpu(rhead->h_len);
4609 num_logops = be32_to_cpu(rhead->h_num_logops);
4610
4611 /* check the log format matches our own - else we can't recover */
4612 if (xlog_header_check_recover(log->l_mp, rhead))
4613 return -EIO;
4614
4615 trace_xfs_log_recover_record(log, rhead, pass);
4616 while ((dp < end) && num_logops) {
4617
4618 ohead = (struct xlog_op_header *)dp;
4619 dp += sizeof(*ohead);
4620 ASSERT(dp <= end);
4621
4622 /* errors will abort recovery */
4623 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4624 dp, end, pass, buffer_list);
4625 if (error)
4626 return error;
4627
4628 dp += be32_to_cpu(ohead->oh_len);
4629 num_logops--;
4630 }
4631 return 0;
4632 }
4633
4634 /* Recover the EFI if necessary. */
4635 STATIC int
4636 xlog_recover_process_efi(
4637 struct xfs_mount *mp,
4638 struct xfs_ail *ailp,
4639 struct xfs_log_item *lip)
4640 {
4641 struct xfs_efi_log_item *efip;
4642 int error;
4643
4644 /*
4645 * Skip EFIs that we've already processed.
4646 */
4647 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4648 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4649 return 0;
4650
4651 spin_unlock(&ailp->xa_lock);
4652 error = xfs_efi_recover(mp, efip);
4653 spin_lock(&ailp->xa_lock);
4654
4655 return error;
4656 }
4657
4658 /* Release the EFI since we're cancelling everything. */
4659 STATIC void
4660 xlog_recover_cancel_efi(
4661 struct xfs_mount *mp,
4662 struct xfs_ail *ailp,
4663 struct xfs_log_item *lip)
4664 {
4665 struct xfs_efi_log_item *efip;
4666
4667 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4668
4669 spin_unlock(&ailp->xa_lock);
4670 xfs_efi_release(efip);
4671 spin_lock(&ailp->xa_lock);
4672 }
4673
4674 /* Recover the RUI if necessary. */
4675 STATIC int
4676 xlog_recover_process_rui(
4677 struct xfs_mount *mp,
4678 struct xfs_ail *ailp,
4679 struct xfs_log_item *lip)
4680 {
4681 struct xfs_rui_log_item *ruip;
4682 int error;
4683
4684 /*
4685 * Skip RUIs that we've already processed.
4686 */
4687 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4688 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4689 return 0;
4690
4691 spin_unlock(&ailp->xa_lock);
4692 error = xfs_rui_recover(mp, ruip);
4693 spin_lock(&ailp->xa_lock);
4694
4695 return error;
4696 }
4697
4698 /* Release the RUI since we're cancelling everything. */
4699 STATIC void
4700 xlog_recover_cancel_rui(
4701 struct xfs_mount *mp,
4702 struct xfs_ail *ailp,
4703 struct xfs_log_item *lip)
4704 {
4705 struct xfs_rui_log_item *ruip;
4706
4707 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4708
4709 spin_unlock(&ailp->xa_lock);
4710 xfs_rui_release(ruip);
4711 spin_lock(&ailp->xa_lock);
4712 }
4713
4714 /* Recover the CUI if necessary. */
4715 STATIC int
4716 xlog_recover_process_cui(
4717 struct xfs_mount *mp,
4718 struct xfs_ail *ailp,
4719 struct xfs_log_item *lip)
4720 {
4721 struct xfs_cui_log_item *cuip;
4722 int error;
4723
4724 /*
4725 * Skip CUIs that we've already processed.
4726 */
4727 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4728 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4729 return 0;
4730
4731 spin_unlock(&ailp->xa_lock);
4732 error = xfs_cui_recover(mp, cuip);
4733 spin_lock(&ailp->xa_lock);
4734
4735 return error;
4736 }
4737
4738 /* Release the CUI since we're cancelling everything. */
4739 STATIC void
4740 xlog_recover_cancel_cui(
4741 struct xfs_mount *mp,
4742 struct xfs_ail *ailp,
4743 struct xfs_log_item *lip)
4744 {
4745 struct xfs_cui_log_item *cuip;
4746
4747 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4748
4749 spin_unlock(&ailp->xa_lock);
4750 xfs_cui_release(cuip);
4751 spin_lock(&ailp->xa_lock);
4752 }
4753
4754 /* Recover the BUI if necessary. */
4755 STATIC int
4756 xlog_recover_process_bui(
4757 struct xfs_mount *mp,
4758 struct xfs_ail *ailp,
4759 struct xfs_log_item *lip)
4760 {
4761 struct xfs_bui_log_item *buip;
4762 int error;
4763
4764 /*
4765 * Skip BUIs that we've already processed.
4766 */
4767 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4768 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4769 return 0;
4770
4771 spin_unlock(&ailp->xa_lock);
4772 error = xfs_bui_recover(mp, buip);
4773 spin_lock(&ailp->xa_lock);
4774
4775 return error;
4776 }
4777
4778 /* Release the BUI since we're cancelling everything. */
4779 STATIC void
4780 xlog_recover_cancel_bui(
4781 struct xfs_mount *mp,
4782 struct xfs_ail *ailp,
4783 struct xfs_log_item *lip)
4784 {
4785 struct xfs_bui_log_item *buip;
4786
4787 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4788
4789 spin_unlock(&ailp->xa_lock);
4790 xfs_bui_release(buip);
4791 spin_lock(&ailp->xa_lock);
4792 }
4793
4794 /* Is this log item a deferred action intent? */
4795 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4796 {
4797 switch (lip->li_type) {
4798 case XFS_LI_EFI:
4799 case XFS_LI_RUI:
4800 case XFS_LI_CUI:
4801 case XFS_LI_BUI:
4802 return true;
4803 default:
4804 return false;
4805 }
4806 }
4807
4808 /*
4809 * When this is called, all of the log intent items which did not have
4810 * corresponding log done items should be in the AIL. What we do now
4811 * is update the data structures associated with each one.
4812 *
4813 * Since we process the log intent items in normal transactions, they
4814 * will be removed at some point after the commit. This prevents us
4815 * from just walking down the list processing each one. We'll use a
4816 * flag in the intent item to skip those that we've already processed
4817 * and use the AIL iteration mechanism's generation count to try to
4818 * speed this up at least a bit.
4819 *
4820 * When we start, we know that the intents are the only things in the
4821 * AIL. As we process them, however, other items are added to the
4822 * AIL.
4823 */
4824 STATIC int
4825 xlog_recover_process_intents(
4826 struct xlog *log)
4827 {
4828 struct xfs_log_item *lip;
4829 int error = 0;
4830 struct xfs_ail_cursor cur;
4831 struct xfs_ail *ailp;
4832 #if defined(DEBUG) || defined(XFS_WARN)
4833 xfs_lsn_t last_lsn;
4834 #endif
4835
4836 ailp = log->l_ailp;
4837 spin_lock(&ailp->xa_lock);
4838 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4839 #if defined(DEBUG) || defined(XFS_WARN)
4840 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4841 #endif
4842 while (lip != NULL) {
4843 /*
4844 * We're done when we see something other than an intent.
4845 * There should be no intents left in the AIL now.
4846 */
4847 if (!xlog_item_is_intent(lip)) {
4848 #ifdef DEBUG
4849 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4850 ASSERT(!xlog_item_is_intent(lip));
4851 #endif
4852 break;
4853 }
4854
4855 /*
4856 * We should never see a redo item with a LSN higher than
4857 * the last transaction we found in the log at the start
4858 * of recovery.
4859 */
4860 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4861
4862 switch (lip->li_type) {
4863 case XFS_LI_EFI:
4864 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4865 break;
4866 case XFS_LI_RUI:
4867 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4868 break;
4869 case XFS_LI_CUI:
4870 error = xlog_recover_process_cui(log->l_mp, ailp, lip);
4871 break;
4872 case XFS_LI_BUI:
4873 error = xlog_recover_process_bui(log->l_mp, ailp, lip);
4874 break;
4875 }
4876 if (error)
4877 goto out;
4878 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4879 }
4880 out:
4881 xfs_trans_ail_cursor_done(&cur);
4882 spin_unlock(&ailp->xa_lock);
4883 return error;
4884 }
4885
4886 /*
4887 * A cancel occurs when the mount has failed and we're bailing out.
4888 * Release all pending log intent items so they don't pin the AIL.
4889 */
4890 STATIC int
4891 xlog_recover_cancel_intents(
4892 struct xlog *log)
4893 {
4894 struct xfs_log_item *lip;
4895 int error = 0;
4896 struct xfs_ail_cursor cur;
4897 struct xfs_ail *ailp;
4898
4899 ailp = log->l_ailp;
4900 spin_lock(&ailp->xa_lock);
4901 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4902 while (lip != NULL) {
4903 /*
4904 * We're done when we see something other than an intent.
4905 * There should be no intents left in the AIL now.
4906 */
4907 if (!xlog_item_is_intent(lip)) {
4908 #ifdef DEBUG
4909 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4910 ASSERT(!xlog_item_is_intent(lip));
4911 #endif
4912 break;
4913 }
4914
4915 switch (lip->li_type) {
4916 case XFS_LI_EFI:
4917 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4918 break;
4919 case XFS_LI_RUI:
4920 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4921 break;
4922 case XFS_LI_CUI:
4923 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4924 break;
4925 case XFS_LI_BUI:
4926 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4927 break;
4928 }
4929
4930 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4931 }
4932
4933 xfs_trans_ail_cursor_done(&cur);
4934 spin_unlock(&ailp->xa_lock);
4935 return error;
4936 }
4937
4938 /*
4939 * This routine performs a transaction to null out a bad inode pointer
4940 * in an agi unlinked inode hash bucket.
4941 */
4942 STATIC void
4943 xlog_recover_clear_agi_bucket(
4944 xfs_mount_t *mp,
4945 xfs_agnumber_t agno,
4946 int bucket)
4947 {
4948 xfs_trans_t *tp;
4949 xfs_agi_t *agi;
4950 xfs_buf_t *agibp;
4951 int offset;
4952 int error;
4953
4954 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4955 if (error)
4956 goto out_error;
4957
4958 error = xfs_read_agi(mp, tp, agno, &agibp);
4959 if (error)
4960 goto out_abort;
4961
4962 agi = XFS_BUF_TO_AGI(agibp);
4963 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4964 offset = offsetof(xfs_agi_t, agi_unlinked) +
4965 (sizeof(xfs_agino_t) * bucket);
4966 xfs_trans_log_buf(tp, agibp, offset,
4967 (offset + sizeof(xfs_agino_t) - 1));
4968
4969 error = xfs_trans_commit(tp);
4970 if (error)
4971 goto out_error;
4972 return;
4973
4974 out_abort:
4975 xfs_trans_cancel(tp);
4976 out_error:
4977 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4978 return;
4979 }
4980
4981 STATIC xfs_agino_t
4982 xlog_recover_process_one_iunlink(
4983 struct xfs_mount *mp,
4984 xfs_agnumber_t agno,
4985 xfs_agino_t agino,
4986 int bucket)
4987 {
4988 struct xfs_buf *ibp;
4989 struct xfs_dinode *dip;
4990 struct xfs_inode *ip;
4991 xfs_ino_t ino;
4992 int error;
4993
4994 ino = XFS_AGINO_TO_INO(mp, agno, agino);
4995 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4996 if (error)
4997 goto fail;
4998
4999 /*
5000 * Get the on disk inode to find the next inode in the bucket.
5001 */
5002 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5003 if (error)
5004 goto fail_iput;
5005
5006 xfs_iflags_clear(ip, XFS_IRECOVERY);
5007 ASSERT(VFS_I(ip)->i_nlink == 0);
5008 ASSERT(VFS_I(ip)->i_mode != 0);
5009
5010 /* setup for the next pass */
5011 agino = be32_to_cpu(dip->di_next_unlinked);
5012 xfs_buf_relse(ibp);
5013
5014 /*
5015 * Prevent any DMAPI event from being sent when the reference on
5016 * the inode is dropped.
5017 */
5018 ip->i_d.di_dmevmask = 0;
5019
5020 IRELE(ip);
5021 return agino;
5022
5023 fail_iput:
5024 IRELE(ip);
5025 fail:
5026 /*
5027 * We can't read in the inode this bucket points to, or this inode
5028 * is messed up. Just ditch this bucket of inodes. We will lose
5029 * some inodes and space, but at least we won't hang.
5030 *
5031 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5032 * clear the inode pointer in the bucket.
5033 */
5034 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5035 return NULLAGINO;
5036 }
5037
5038 /*
5039 * xlog_iunlink_recover
5040 *
5041 * This is called during recovery to process any inodes which
5042 * we unlinked but not freed when the system crashed. These
5043 * inodes will be on the lists in the AGI blocks. What we do
5044 * here is scan all the AGIs and fully truncate and free any
5045 * inodes found on the lists. Each inode is removed from the
5046 * lists when it has been fully truncated and is freed. The
5047 * freeing of the inode and its removal from the list must be
5048 * atomic.
5049 */
5050 STATIC void
5051 xlog_recover_process_iunlinks(
5052 struct xlog *log)
5053 {
5054 xfs_mount_t *mp;
5055 xfs_agnumber_t agno;
5056 xfs_agi_t *agi;
5057 xfs_buf_t *agibp;
5058 xfs_agino_t agino;
5059 int bucket;
5060 int error;
5061 uint mp_dmevmask;
5062
5063 mp = log->l_mp;
5064
5065 /*
5066 * Prevent any DMAPI event from being sent while in this function.
5067 */
5068 mp_dmevmask = mp->m_dmevmask;
5069 mp->m_dmevmask = 0;
5070
5071 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5072 /*
5073 * Find the agi for this ag.
5074 */
5075 error = xfs_read_agi(mp, NULL, agno, &agibp);
5076 if (error) {
5077 /*
5078 * AGI is b0rked. Don't process it.
5079 *
5080 * We should probably mark the filesystem as corrupt
5081 * after we've recovered all the ag's we can....
5082 */
5083 continue;
5084 }
5085 /*
5086 * Unlock the buffer so that it can be acquired in the normal
5087 * course of the transaction to truncate and free each inode.
5088 * Because we are not racing with anyone else here for the AGI
5089 * buffer, we don't even need to hold it locked to read the
5090 * initial unlinked bucket entries out of the buffer. We keep
5091 * buffer reference though, so that it stays pinned in memory
5092 * while we need the buffer.
5093 */
5094 agi = XFS_BUF_TO_AGI(agibp);
5095 xfs_buf_unlock(agibp);
5096
5097 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5098 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5099 while (agino != NULLAGINO) {
5100 agino = xlog_recover_process_one_iunlink(mp,
5101 agno, agino, bucket);
5102 }
5103 }
5104 xfs_buf_rele(agibp);
5105 }
5106
5107 mp->m_dmevmask = mp_dmevmask;
5108 }
5109
5110 STATIC int
5111 xlog_unpack_data(
5112 struct xlog_rec_header *rhead,
5113 char *dp,
5114 struct xlog *log)
5115 {
5116 int i, j, k;
5117
5118 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5119 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5120 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5121 dp += BBSIZE;
5122 }
5123
5124 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5125 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5126 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5127 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5128 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5129 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5130 dp += BBSIZE;
5131 }
5132 }
5133
5134 return 0;
5135 }
5136
5137 /*
5138 * CRC check, unpack and process a log record.
5139 */
5140 STATIC int
5141 xlog_recover_process(
5142 struct xlog *log,
5143 struct hlist_head rhash[],
5144 struct xlog_rec_header *rhead,
5145 char *dp,
5146 int pass,
5147 struct list_head *buffer_list)
5148 {
5149 int error;
5150 __le32 old_crc = rhead->h_crc;
5151 __le32 crc;
5152
5153
5154 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5155
5156 /*
5157 * Nothing else to do if this is a CRC verification pass. Just return
5158 * if this a record with a non-zero crc. Unfortunately, mkfs always
5159 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5160 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5161 * know precisely what failed.
5162 */
5163 if (pass == XLOG_RECOVER_CRCPASS) {
5164 if (old_crc && crc != old_crc)
5165 return -EFSBADCRC;
5166 return 0;
5167 }
5168
5169 /*
5170 * We're in the normal recovery path. Issue a warning if and only if the
5171 * CRC in the header is non-zero. This is an advisory warning and the
5172 * zero CRC check prevents warnings from being emitted when upgrading
5173 * the kernel from one that does not add CRCs by default.
5174 */
5175 if (crc != old_crc) {
5176 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5177 xfs_alert(log->l_mp,
5178 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5179 le32_to_cpu(old_crc),
5180 le32_to_cpu(crc));
5181 xfs_hex_dump(dp, 32);
5182 }
5183
5184 /*
5185 * If the filesystem is CRC enabled, this mismatch becomes a
5186 * fatal log corruption failure.
5187 */
5188 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5189 return -EFSCORRUPTED;
5190 }
5191
5192 error = xlog_unpack_data(rhead, dp, log);
5193 if (error)
5194 return error;
5195
5196 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5197 buffer_list);
5198 }
5199
5200 STATIC int
5201 xlog_valid_rec_header(
5202 struct xlog *log,
5203 struct xlog_rec_header *rhead,
5204 xfs_daddr_t blkno)
5205 {
5206 int hlen;
5207
5208 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5209 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5210 XFS_ERRLEVEL_LOW, log->l_mp);
5211 return -EFSCORRUPTED;
5212 }
5213 if (unlikely(
5214 (!rhead->h_version ||
5215 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5216 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5217 __func__, be32_to_cpu(rhead->h_version));
5218 return -EIO;
5219 }
5220
5221 /* LR body must have data or it wouldn't have been written */
5222 hlen = be32_to_cpu(rhead->h_len);
5223 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5224 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5225 XFS_ERRLEVEL_LOW, log->l_mp);
5226 return -EFSCORRUPTED;
5227 }
5228 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5229 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5230 XFS_ERRLEVEL_LOW, log->l_mp);
5231 return -EFSCORRUPTED;
5232 }
5233 return 0;
5234 }
5235
5236 /*
5237 * Read the log from tail to head and process the log records found.
5238 * Handle the two cases where the tail and head are in the same cycle
5239 * and where the active portion of the log wraps around the end of
5240 * the physical log separately. The pass parameter is passed through
5241 * to the routines called to process the data and is not looked at
5242 * here.
5243 */
5244 STATIC int
5245 xlog_do_recovery_pass(
5246 struct xlog *log,
5247 xfs_daddr_t head_blk,
5248 xfs_daddr_t tail_blk,
5249 int pass,
5250 xfs_daddr_t *first_bad) /* out: first bad log rec */
5251 {
5252 xlog_rec_header_t *rhead;
5253 xfs_daddr_t blk_no, rblk_no;
5254 xfs_daddr_t rhead_blk;
5255 char *offset;
5256 xfs_buf_t *hbp, *dbp;
5257 int error = 0, h_size, h_len;
5258 int error2 = 0;
5259 int bblks, split_bblks;
5260 int hblks, split_hblks, wrapped_hblks;
5261 int i;
5262 struct hlist_head rhash[XLOG_RHASH_SIZE];
5263 LIST_HEAD (buffer_list);
5264
5265 ASSERT(head_blk != tail_blk);
5266 blk_no = rhead_blk = tail_blk;
5267
5268 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5269 INIT_HLIST_HEAD(&rhash[i]);
5270
5271 /*
5272 * Read the header of the tail block and get the iclog buffer size from
5273 * h_size. Use this to tell how many sectors make up the log header.
5274 */
5275 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5276 /*
5277 * When using variable length iclogs, read first sector of
5278 * iclog header and extract the header size from it. Get a
5279 * new hbp that is the correct size.
5280 */
5281 hbp = xlog_get_bp(log, 1);
5282 if (!hbp)
5283 return -ENOMEM;
5284
5285 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5286 if (error)
5287 goto bread_err1;
5288
5289 rhead = (xlog_rec_header_t *)offset;
5290 error = xlog_valid_rec_header(log, rhead, tail_blk);
5291 if (error)
5292 goto bread_err1;
5293
5294 /*
5295 * xfsprogs has a bug where record length is based on lsunit but
5296 * h_size (iclog size) is hardcoded to 32k. Now that we
5297 * unconditionally CRC verify the unmount record, this means the
5298 * log buffer can be too small for the record and cause an
5299 * overrun.
5300 *
5301 * Detect this condition here. Use lsunit for the buffer size as
5302 * long as this looks like the mkfs case. Otherwise, return an
5303 * error to avoid a buffer overrun.
5304 */
5305 h_size = be32_to_cpu(rhead->h_size);
5306 h_len = be32_to_cpu(rhead->h_len);
5307 if (h_len > h_size) {
5308 if (h_len <= log->l_mp->m_logbsize &&
5309 be32_to_cpu(rhead->h_num_logops) == 1) {
5310 xfs_warn(log->l_mp,
5311 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5312 h_size, log->l_mp->m_logbsize);
5313 h_size = log->l_mp->m_logbsize;
5314 } else
5315 return -EFSCORRUPTED;
5316 }
5317
5318 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5319 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5320 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5321 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5322 hblks++;
5323 xlog_put_bp(hbp);
5324 hbp = xlog_get_bp(log, hblks);
5325 } else {
5326 hblks = 1;
5327 }
5328 } else {
5329 ASSERT(log->l_sectBBsize == 1);
5330 hblks = 1;
5331 hbp = xlog_get_bp(log, 1);
5332 h_size = XLOG_BIG_RECORD_BSIZE;
5333 }
5334
5335 if (!hbp)
5336 return -ENOMEM;
5337 dbp = xlog_get_bp(log, BTOBB(h_size));
5338 if (!dbp) {
5339 xlog_put_bp(hbp);
5340 return -ENOMEM;
5341 }
5342
5343 memset(rhash, 0, sizeof(rhash));
5344 if (tail_blk > head_blk) {
5345 /*
5346 * Perform recovery around the end of the physical log.
5347 * When the head is not on the same cycle number as the tail,
5348 * we can't do a sequential recovery.
5349 */
5350 while (blk_no < log->l_logBBsize) {
5351 /*
5352 * Check for header wrapping around physical end-of-log
5353 */
5354 offset = hbp->b_addr;
5355 split_hblks = 0;
5356 wrapped_hblks = 0;
5357 if (blk_no + hblks <= log->l_logBBsize) {
5358 /* Read header in one read */
5359 error = xlog_bread(log, blk_no, hblks, hbp,
5360 &offset);
5361 if (error)
5362 goto bread_err2;
5363 } else {
5364 /* This LR is split across physical log end */
5365 if (blk_no != log->l_logBBsize) {
5366 /* some data before physical log end */
5367 ASSERT(blk_no <= INT_MAX);
5368 split_hblks = log->l_logBBsize - (int)blk_no;
5369 ASSERT(split_hblks > 0);
5370 error = xlog_bread(log, blk_no,
5371 split_hblks, hbp,
5372 &offset);
5373 if (error)
5374 goto bread_err2;
5375 }
5376
5377 /*
5378 * Note: this black magic still works with
5379 * large sector sizes (non-512) only because:
5380 * - we increased the buffer size originally
5381 * by 1 sector giving us enough extra space
5382 * for the second read;
5383 * - the log start is guaranteed to be sector
5384 * aligned;
5385 * - we read the log end (LR header start)
5386 * _first_, then the log start (LR header end)
5387 * - order is important.
5388 */
5389 wrapped_hblks = hblks - split_hblks;
5390 error = xlog_bread_offset(log, 0,
5391 wrapped_hblks, hbp,
5392 offset + BBTOB(split_hblks));
5393 if (error)
5394 goto bread_err2;
5395 }
5396 rhead = (xlog_rec_header_t *)offset;
5397 error = xlog_valid_rec_header(log, rhead,
5398 split_hblks ? blk_no : 0);
5399 if (error)
5400 goto bread_err2;
5401
5402 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5403 blk_no += hblks;
5404
5405 /*
5406 * Read the log record data in multiple reads if it
5407 * wraps around the end of the log. Note that if the
5408 * header already wrapped, blk_no could point past the
5409 * end of the log. The record data is contiguous in
5410 * that case.
5411 */
5412 if (blk_no + bblks <= log->l_logBBsize ||
5413 blk_no >= log->l_logBBsize) {
5414 /* mod blk_no in case the header wrapped and
5415 * pushed it beyond the end of the log */
5416 rblk_no = do_mod(blk_no, log->l_logBBsize);
5417 error = xlog_bread(log, rblk_no, bblks, dbp,
5418 &offset);
5419 if (error)
5420 goto bread_err2;
5421 } else {
5422 /* This log record is split across the
5423 * physical end of log */
5424 offset = dbp->b_addr;
5425 split_bblks = 0;
5426 if (blk_no != log->l_logBBsize) {
5427 /* some data is before the physical
5428 * end of log */
5429 ASSERT(!wrapped_hblks);
5430 ASSERT(blk_no <= INT_MAX);
5431 split_bblks =
5432 log->l_logBBsize - (int)blk_no;
5433 ASSERT(split_bblks > 0);
5434 error = xlog_bread(log, blk_no,
5435 split_bblks, dbp,
5436 &offset);
5437 if (error)
5438 goto bread_err2;
5439 }
5440
5441 /*
5442 * Note: this black magic still works with
5443 * large sector sizes (non-512) only because:
5444 * - we increased the buffer size originally
5445 * by 1 sector giving us enough extra space
5446 * for the second read;
5447 * - the log start is guaranteed to be sector
5448 * aligned;
5449 * - we read the log end (LR header start)
5450 * _first_, then the log start (LR header end)
5451 * - order is important.
5452 */
5453 error = xlog_bread_offset(log, 0,
5454 bblks - split_bblks, dbp,
5455 offset + BBTOB(split_bblks));
5456 if (error)
5457 goto bread_err2;
5458 }
5459
5460 error = xlog_recover_process(log, rhash, rhead, offset,
5461 pass, &buffer_list);
5462 if (error)
5463 goto bread_err2;
5464
5465 blk_no += bblks;
5466 rhead_blk = blk_no;
5467 }
5468
5469 ASSERT(blk_no >= log->l_logBBsize);
5470 blk_no -= log->l_logBBsize;
5471 rhead_blk = blk_no;
5472 }
5473
5474 /* read first part of physical log */
5475 while (blk_no < head_blk) {
5476 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5477 if (error)
5478 goto bread_err2;
5479
5480 rhead = (xlog_rec_header_t *)offset;
5481 error = xlog_valid_rec_header(log, rhead, blk_no);
5482 if (error)
5483 goto bread_err2;
5484
5485 /* blocks in data section */
5486 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5487 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5488 &offset);
5489 if (error)
5490 goto bread_err2;
5491
5492 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5493 &buffer_list);
5494 if (error)
5495 goto bread_err2;
5496
5497 blk_no += bblks + hblks;
5498 rhead_blk = blk_no;
5499 }
5500
5501 bread_err2:
5502 xlog_put_bp(dbp);
5503 bread_err1:
5504 xlog_put_bp(hbp);
5505
5506 /*
5507 * Submit buffers that have been added from the last record processed,
5508 * regardless of error status.
5509 */
5510 if (!list_empty(&buffer_list))
5511 error2 = xfs_buf_delwri_submit(&buffer_list);
5512
5513 if (error && first_bad)
5514 *first_bad = rhead_blk;
5515
5516 /*
5517 * Transactions are freed at commit time but transactions without commit
5518 * records on disk are never committed. Free any that may be left in the
5519 * hash table.
5520 */
5521 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5522 struct hlist_node *tmp;
5523 struct xlog_recover *trans;
5524
5525 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5526 xlog_recover_free_trans(trans);
5527 }
5528
5529 return error ? error : error2;
5530 }
5531
5532 /*
5533 * Do the recovery of the log. We actually do this in two phases.
5534 * The two passes are necessary in order to implement the function
5535 * of cancelling a record written into the log. The first pass
5536 * determines those things which have been cancelled, and the
5537 * second pass replays log items normally except for those which
5538 * have been cancelled. The handling of the replay and cancellations
5539 * takes place in the log item type specific routines.
5540 *
5541 * The table of items which have cancel records in the log is allocated
5542 * and freed at this level, since only here do we know when all of
5543 * the log recovery has been completed.
5544 */
5545 STATIC int
5546 xlog_do_log_recovery(
5547 struct xlog *log,
5548 xfs_daddr_t head_blk,
5549 xfs_daddr_t tail_blk)
5550 {
5551 int error, i;
5552
5553 ASSERT(head_blk != tail_blk);
5554
5555 /*
5556 * First do a pass to find all of the cancelled buf log items.
5557 * Store them in the buf_cancel_table for use in the second pass.
5558 */
5559 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5560 sizeof(struct list_head),
5561 KM_SLEEP);
5562 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5563 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5564
5565 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5566 XLOG_RECOVER_PASS1, NULL);
5567 if (error != 0) {
5568 kmem_free(log->l_buf_cancel_table);
5569 log->l_buf_cancel_table = NULL;
5570 return error;
5571 }
5572 /*
5573 * Then do a second pass to actually recover the items in the log.
5574 * When it is complete free the table of buf cancel items.
5575 */
5576 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5577 XLOG_RECOVER_PASS2, NULL);
5578 #ifdef DEBUG
5579 if (!error) {
5580 int i;
5581
5582 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5583 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5584 }
5585 #endif /* DEBUG */
5586
5587 kmem_free(log->l_buf_cancel_table);
5588 log->l_buf_cancel_table = NULL;
5589
5590 return error;
5591 }
5592
5593 /*
5594 * Do the actual recovery
5595 */
5596 STATIC int
5597 xlog_do_recover(
5598 struct xlog *log,
5599 xfs_daddr_t head_blk,
5600 xfs_daddr_t tail_blk)
5601 {
5602 struct xfs_mount *mp = log->l_mp;
5603 int error;
5604 xfs_buf_t *bp;
5605 xfs_sb_t *sbp;
5606
5607 trace_xfs_log_recover(log, head_blk, tail_blk);
5608
5609 /*
5610 * First replay the images in the log.
5611 */
5612 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5613 if (error)
5614 return error;
5615
5616 /*
5617 * If IO errors happened during recovery, bail out.
5618 */
5619 if (XFS_FORCED_SHUTDOWN(mp)) {
5620 return -EIO;
5621 }
5622
5623 /*
5624 * We now update the tail_lsn since much of the recovery has completed
5625 * and there may be space available to use. If there were no extent
5626 * or iunlinks, we can free up the entire log and set the tail_lsn to
5627 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5628 * lsn of the last known good LR on disk. If there are extent frees
5629 * or iunlinks they will have some entries in the AIL; so we look at
5630 * the AIL to determine how to set the tail_lsn.
5631 */
5632 xlog_assign_tail_lsn(mp);
5633
5634 /*
5635 * Now that we've finished replaying all buffer and inode
5636 * updates, re-read in the superblock and reverify it.
5637 */
5638 bp = xfs_getsb(mp, 0);
5639 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5640 ASSERT(!(bp->b_flags & XBF_WRITE));
5641 bp->b_flags |= XBF_READ;
5642 bp->b_ops = &xfs_sb_buf_ops;
5643
5644 error = xfs_buf_submit_wait(bp);
5645 if (error) {
5646 if (!XFS_FORCED_SHUTDOWN(mp)) {
5647 xfs_buf_ioerror_alert(bp, __func__);
5648 ASSERT(0);
5649 }
5650 xfs_buf_relse(bp);
5651 return error;
5652 }
5653
5654 /* Convert superblock from on-disk format */
5655 sbp = &mp->m_sb;
5656 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5657 xfs_buf_relse(bp);
5658
5659 /* re-initialise in-core superblock and geometry structures */
5660 xfs_reinit_percpu_counters(mp);
5661 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5662 if (error) {
5663 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5664 return error;
5665 }
5666 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5667
5668 xlog_recover_check_summary(log);
5669
5670 /* Normal transactions can now occur */
5671 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5672 return 0;
5673 }
5674
5675 /*
5676 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5677 *
5678 * Return error or zero.
5679 */
5680 int
5681 xlog_recover(
5682 struct xlog *log)
5683 {
5684 xfs_daddr_t head_blk, tail_blk;
5685 int error;
5686
5687 /* find the tail of the log */
5688 error = xlog_find_tail(log, &head_blk, &tail_blk);
5689 if (error)
5690 return error;
5691
5692 /*
5693 * The superblock was read before the log was available and thus the LSN
5694 * could not be verified. Check the superblock LSN against the current
5695 * LSN now that it's known.
5696 */
5697 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5698 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5699 return -EINVAL;
5700
5701 if (tail_blk != head_blk) {
5702 /* There used to be a comment here:
5703 *
5704 * disallow recovery on read-only mounts. note -- mount
5705 * checks for ENOSPC and turns it into an intelligent
5706 * error message.
5707 * ...but this is no longer true. Now, unless you specify
5708 * NORECOVERY (in which case this function would never be
5709 * called), we just go ahead and recover. We do this all
5710 * under the vfs layer, so we can get away with it unless
5711 * the device itself is read-only, in which case we fail.
5712 */
5713 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5714 return error;
5715 }
5716
5717 /*
5718 * Version 5 superblock log feature mask validation. We know the
5719 * log is dirty so check if there are any unknown log features
5720 * in what we need to recover. If there are unknown features
5721 * (e.g. unsupported transactions, then simply reject the
5722 * attempt at recovery before touching anything.
5723 */
5724 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5725 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5726 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5727 xfs_warn(log->l_mp,
5728 "Superblock has unknown incompatible log features (0x%x) enabled.",
5729 (log->l_mp->m_sb.sb_features_log_incompat &
5730 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5731 xfs_warn(log->l_mp,
5732 "The log can not be fully and/or safely recovered by this kernel.");
5733 xfs_warn(log->l_mp,
5734 "Please recover the log on a kernel that supports the unknown features.");
5735 return -EINVAL;
5736 }
5737
5738 /*
5739 * Delay log recovery if the debug hook is set. This is debug
5740 * instrumention to coordinate simulation of I/O failures with
5741 * log recovery.
5742 */
5743 if (xfs_globals.log_recovery_delay) {
5744 xfs_notice(log->l_mp,
5745 "Delaying log recovery for %d seconds.",
5746 xfs_globals.log_recovery_delay);
5747 msleep(xfs_globals.log_recovery_delay * 1000);
5748 }
5749
5750 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5751 log->l_mp->m_logname ? log->l_mp->m_logname
5752 : "internal");
5753
5754 error = xlog_do_recover(log, head_blk, tail_blk);
5755 log->l_flags |= XLOG_RECOVERY_NEEDED;
5756 }
5757 return error;
5758 }
5759
5760 /*
5761 * In the first part of recovery we replay inodes and buffers and build
5762 * up the list of extent free items which need to be processed. Here
5763 * we process the extent free items and clean up the on disk unlinked
5764 * inode lists. This is separated from the first part of recovery so
5765 * that the root and real-time bitmap inodes can be read in from disk in
5766 * between the two stages. This is necessary so that we can free space
5767 * in the real-time portion of the file system.
5768 */
5769 int
5770 xlog_recover_finish(
5771 struct xlog *log)
5772 {
5773 /*
5774 * Now we're ready to do the transactions needed for the
5775 * rest of recovery. Start with completing all the extent
5776 * free intent records and then process the unlinked inode
5777 * lists. At this point, we essentially run in normal mode
5778 * except that we're still performing recovery actions
5779 * rather than accepting new requests.
5780 */
5781 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5782 int error;
5783 error = xlog_recover_process_intents(log);
5784 if (error) {
5785 xfs_alert(log->l_mp, "Failed to recover intents");
5786 return error;
5787 }
5788
5789 /*
5790 * Sync the log to get all the intents out of the AIL.
5791 * This isn't absolutely necessary, but it helps in
5792 * case the unlink transactions would have problems
5793 * pushing the intents out of the way.
5794 */
5795 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5796
5797 xlog_recover_process_iunlinks(log);
5798
5799 xlog_recover_check_summary(log);
5800
5801 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5802 log->l_mp->m_logname ? log->l_mp->m_logname
5803 : "internal");
5804 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5805 } else {
5806 xfs_info(log->l_mp, "Ending clean mount");
5807 }
5808 return 0;
5809 }
5810
5811 int
5812 xlog_recover_cancel(
5813 struct xlog *log)
5814 {
5815 int error = 0;
5816
5817 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5818 error = xlog_recover_cancel_intents(log);
5819
5820 return error;
5821 }
5822
5823 #if defined(DEBUG)
5824 /*
5825 * Read all of the agf and agi counters and check that they
5826 * are consistent with the superblock counters.
5827 */
5828 void
5829 xlog_recover_check_summary(
5830 struct xlog *log)
5831 {
5832 xfs_mount_t *mp;
5833 xfs_agf_t *agfp;
5834 xfs_buf_t *agfbp;
5835 xfs_buf_t *agibp;
5836 xfs_agnumber_t agno;
5837 uint64_t freeblks;
5838 uint64_t itotal;
5839 uint64_t ifree;
5840 int error;
5841
5842 mp = log->l_mp;
5843
5844 freeblks = 0LL;
5845 itotal = 0LL;
5846 ifree = 0LL;
5847 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5848 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5849 if (error) {
5850 xfs_alert(mp, "%s agf read failed agno %d error %d",
5851 __func__, agno, error);
5852 } else {
5853 agfp = XFS_BUF_TO_AGF(agfbp);
5854 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5855 be32_to_cpu(agfp->agf_flcount);
5856 xfs_buf_relse(agfbp);
5857 }
5858
5859 error = xfs_read_agi(mp, NULL, agno, &agibp);
5860 if (error) {
5861 xfs_alert(mp, "%s agi read failed agno %d error %d",
5862 __func__, agno, error);
5863 } else {
5864 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5865
5866 itotal += be32_to_cpu(agi->agi_count);
5867 ifree += be32_to_cpu(agi->agi_freecount);
5868 xfs_buf_relse(agibp);
5869 }
5870 }
5871 }
5872 #endif /* DEBUG */