]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_log_recover.c
Merge branch 'sh/for-2.6.28' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49 #include "xfs_utils.h"
50
51 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54 xlog_recover_item_t *item);
55 #if defined(DEBUG)
56 STATIC void xlog_recover_check_summary(xlog_t *);
57 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
58 #else
59 #define xlog_recover_check_summary(log)
60 #define xlog_recover_check_ail(mp, lip, gen)
61 #endif
62
63
64 /*
65 * Sector aligned buffer routines for buffer create/read/write/access
66 */
67
68 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
69 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
70 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
71 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
72
73 xfs_buf_t *
74 xlog_get_bp(
75 xlog_t *log,
76 int num_bblks)
77 {
78 ASSERT(num_bblks > 0);
79
80 if (log->l_sectbb_log) {
81 if (num_bblks > 1)
82 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
83 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
84 }
85 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
86 }
87
88 void
89 xlog_put_bp(
90 xfs_buf_t *bp)
91 {
92 xfs_buf_free(bp);
93 }
94
95
96 /*
97 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
98 */
99 int
100 xlog_bread(
101 xlog_t *log,
102 xfs_daddr_t blk_no,
103 int nbblks,
104 xfs_buf_t *bp)
105 {
106 int error;
107
108 if (log->l_sectbb_log) {
109 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
110 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
111 }
112
113 ASSERT(nbblks > 0);
114 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
115 ASSERT(bp);
116
117 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
118 XFS_BUF_READ(bp);
119 XFS_BUF_BUSY(bp);
120 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
121 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
122
123 xfsbdstrat(log->l_mp, bp);
124 error = xfs_iowait(bp);
125 if (error)
126 xfs_ioerror_alert("xlog_bread", log->l_mp,
127 bp, XFS_BUF_ADDR(bp));
128 return error;
129 }
130
131 /*
132 * Write out the buffer at the given block for the given number of blocks.
133 * The buffer is kept locked across the write and is returned locked.
134 * This can only be used for synchronous log writes.
135 */
136 STATIC int
137 xlog_bwrite(
138 xlog_t *log,
139 xfs_daddr_t blk_no,
140 int nbblks,
141 xfs_buf_t *bp)
142 {
143 int error;
144
145 if (log->l_sectbb_log) {
146 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
147 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
148 }
149
150 ASSERT(nbblks > 0);
151 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
152
153 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
154 XFS_BUF_ZEROFLAGS(bp);
155 XFS_BUF_BUSY(bp);
156 XFS_BUF_HOLD(bp);
157 XFS_BUF_PSEMA(bp, PRIBIO);
158 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
159 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
160
161 if ((error = xfs_bwrite(log->l_mp, bp)))
162 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
163 bp, XFS_BUF_ADDR(bp));
164 return error;
165 }
166
167 STATIC xfs_caddr_t
168 xlog_align(
169 xlog_t *log,
170 xfs_daddr_t blk_no,
171 int nbblks,
172 xfs_buf_t *bp)
173 {
174 xfs_caddr_t ptr;
175
176 if (!log->l_sectbb_log)
177 return XFS_BUF_PTR(bp);
178
179 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
180 ASSERT(XFS_BUF_SIZE(bp) >=
181 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
182 return ptr;
183 }
184
185 #ifdef DEBUG
186 /*
187 * dump debug superblock and log record information
188 */
189 STATIC void
190 xlog_header_check_dump(
191 xfs_mount_t *mp,
192 xlog_rec_header_t *head)
193 {
194 int b;
195
196 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
197 for (b = 0; b < 16; b++)
198 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
199 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
200 cmn_err(CE_DEBUG, " log : uuid = ");
201 for (b = 0; b < 16; b++)
202 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
203 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
204 }
205 #else
206 #define xlog_header_check_dump(mp, head)
207 #endif
208
209 /*
210 * check log record header for recovery
211 */
212 STATIC int
213 xlog_header_check_recover(
214 xfs_mount_t *mp,
215 xlog_rec_header_t *head)
216 {
217 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
218
219 /*
220 * IRIX doesn't write the h_fmt field and leaves it zeroed
221 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222 * a dirty log created in IRIX.
223 */
224 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
225 xlog_warn(
226 "XFS: dirty log written in incompatible format - can't recover");
227 xlog_header_check_dump(mp, head);
228 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229 XFS_ERRLEVEL_HIGH, mp);
230 return XFS_ERROR(EFSCORRUPTED);
231 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
232 xlog_warn(
233 "XFS: dirty log entry has mismatched uuid - can't recover");
234 xlog_header_check_dump(mp, head);
235 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236 XFS_ERRLEVEL_HIGH, mp);
237 return XFS_ERROR(EFSCORRUPTED);
238 }
239 return 0;
240 }
241
242 /*
243 * read the head block of the log and check the header
244 */
245 STATIC int
246 xlog_header_check_mount(
247 xfs_mount_t *mp,
248 xlog_rec_header_t *head)
249 {
250 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
251
252 if (uuid_is_nil(&head->h_fs_uuid)) {
253 /*
254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 * h_fs_uuid is nil, we assume this log was last mounted
256 * by IRIX and continue.
257 */
258 xlog_warn("XFS: nil uuid in log - IRIX style log");
259 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260 xlog_warn("XFS: log has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp, head);
262 XFS_ERROR_REPORT("xlog_header_check_mount",
263 XFS_ERRLEVEL_HIGH, mp);
264 return XFS_ERROR(EFSCORRUPTED);
265 }
266 return 0;
267 }
268
269 STATIC void
270 xlog_recover_iodone(
271 struct xfs_buf *bp)
272 {
273 xfs_mount_t *mp;
274
275 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
276
277 if (XFS_BUF_GETERROR(bp)) {
278 /*
279 * We're not going to bother about retrying
280 * this during recovery. One strike!
281 */
282 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
283 xfs_ioerror_alert("xlog_recover_iodone",
284 mp, bp, XFS_BUF_ADDR(bp));
285 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
286 }
287 XFS_BUF_SET_FSPRIVATE(bp, NULL);
288 XFS_BUF_CLR_IODONE_FUNC(bp);
289 xfs_biodone(bp);
290 }
291
292 /*
293 * This routine finds (to an approximation) the first block in the physical
294 * log which contains the given cycle. It uses a binary search algorithm.
295 * Note that the algorithm can not be perfect because the disk will not
296 * necessarily be perfect.
297 */
298 STATIC int
299 xlog_find_cycle_start(
300 xlog_t *log,
301 xfs_buf_t *bp,
302 xfs_daddr_t first_blk,
303 xfs_daddr_t *last_blk,
304 uint cycle)
305 {
306 xfs_caddr_t offset;
307 xfs_daddr_t mid_blk;
308 uint mid_cycle;
309 int error;
310
311 mid_blk = BLK_AVG(first_blk, *last_blk);
312 while (mid_blk != first_blk && mid_blk != *last_blk) {
313 if ((error = xlog_bread(log, mid_blk, 1, bp)))
314 return error;
315 offset = xlog_align(log, mid_blk, 1, bp);
316 mid_cycle = xlog_get_cycle(offset);
317 if (mid_cycle == cycle) {
318 *last_blk = mid_blk;
319 /* last_half_cycle == mid_cycle */
320 } else {
321 first_blk = mid_blk;
322 /* first_half_cycle == mid_cycle */
323 }
324 mid_blk = BLK_AVG(first_blk, *last_blk);
325 }
326 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
327 (mid_blk == *last_blk && mid_blk-1 == first_blk));
328
329 return 0;
330 }
331
332 /*
333 * Check that the range of blocks does not contain the cycle number
334 * given. The scan needs to occur from front to back and the ptr into the
335 * region must be updated since a later routine will need to perform another
336 * test. If the region is completely good, we end up returning the same
337 * last block number.
338 *
339 * Set blkno to -1 if we encounter no errors. This is an invalid block number
340 * since we don't ever expect logs to get this large.
341 */
342 STATIC int
343 xlog_find_verify_cycle(
344 xlog_t *log,
345 xfs_daddr_t start_blk,
346 int nbblks,
347 uint stop_on_cycle_no,
348 xfs_daddr_t *new_blk)
349 {
350 xfs_daddr_t i, j;
351 uint cycle;
352 xfs_buf_t *bp;
353 xfs_daddr_t bufblks;
354 xfs_caddr_t buf = NULL;
355 int error = 0;
356
357 bufblks = 1 << ffs(nbblks);
358
359 while (!(bp = xlog_get_bp(log, bufblks))) {
360 /* can't get enough memory to do everything in one big buffer */
361 bufblks >>= 1;
362 if (bufblks <= log->l_sectbb_log)
363 return ENOMEM;
364 }
365
366 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
367 int bcount;
368
369 bcount = min(bufblks, (start_blk + nbblks - i));
370
371 if ((error = xlog_bread(log, i, bcount, bp)))
372 goto out;
373
374 buf = xlog_align(log, i, bcount, bp);
375 for (j = 0; j < bcount; j++) {
376 cycle = xlog_get_cycle(buf);
377 if (cycle == stop_on_cycle_no) {
378 *new_blk = i+j;
379 goto out;
380 }
381
382 buf += BBSIZE;
383 }
384 }
385
386 *new_blk = -1;
387
388 out:
389 xlog_put_bp(bp);
390 return error;
391 }
392
393 /*
394 * Potentially backup over partial log record write.
395 *
396 * In the typical case, last_blk is the number of the block directly after
397 * a good log record. Therefore, we subtract one to get the block number
398 * of the last block in the given buffer. extra_bblks contains the number
399 * of blocks we would have read on a previous read. This happens when the
400 * last log record is split over the end of the physical log.
401 *
402 * extra_bblks is the number of blocks potentially verified on a previous
403 * call to this routine.
404 */
405 STATIC int
406 xlog_find_verify_log_record(
407 xlog_t *log,
408 xfs_daddr_t start_blk,
409 xfs_daddr_t *last_blk,
410 int extra_bblks)
411 {
412 xfs_daddr_t i;
413 xfs_buf_t *bp;
414 xfs_caddr_t offset = NULL;
415 xlog_rec_header_t *head = NULL;
416 int error = 0;
417 int smallmem = 0;
418 int num_blks = *last_blk - start_blk;
419 int xhdrs;
420
421 ASSERT(start_blk != 0 || *last_blk != start_blk);
422
423 if (!(bp = xlog_get_bp(log, num_blks))) {
424 if (!(bp = xlog_get_bp(log, 1)))
425 return ENOMEM;
426 smallmem = 1;
427 } else {
428 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
429 goto out;
430 offset = xlog_align(log, start_blk, num_blks, bp);
431 offset += ((num_blks - 1) << BBSHIFT);
432 }
433
434 for (i = (*last_blk) - 1; i >= 0; i--) {
435 if (i < start_blk) {
436 /* valid log record not found */
437 xlog_warn(
438 "XFS: Log inconsistent (didn't find previous header)");
439 ASSERT(0);
440 error = XFS_ERROR(EIO);
441 goto out;
442 }
443
444 if (smallmem) {
445 if ((error = xlog_bread(log, i, 1, bp)))
446 goto out;
447 offset = xlog_align(log, i, 1, bp);
448 }
449
450 head = (xlog_rec_header_t *)offset;
451
452 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
453 break;
454
455 if (!smallmem)
456 offset -= BBSIZE;
457 }
458
459 /*
460 * We hit the beginning of the physical log & still no header. Return
461 * to caller. If caller can handle a return of -1, then this routine
462 * will be called again for the end of the physical log.
463 */
464 if (i == -1) {
465 error = -1;
466 goto out;
467 }
468
469 /*
470 * We have the final block of the good log (the first block
471 * of the log record _before_ the head. So we check the uuid.
472 */
473 if ((error = xlog_header_check_mount(log->l_mp, head)))
474 goto out;
475
476 /*
477 * We may have found a log record header before we expected one.
478 * last_blk will be the 1st block # with a given cycle #. We may end
479 * up reading an entire log record. In this case, we don't want to
480 * reset last_blk. Only when last_blk points in the middle of a log
481 * record do we update last_blk.
482 */
483 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
484 uint h_size = be32_to_cpu(head->h_size);
485
486 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
487 if (h_size % XLOG_HEADER_CYCLE_SIZE)
488 xhdrs++;
489 } else {
490 xhdrs = 1;
491 }
492
493 if (*last_blk - i + extra_bblks !=
494 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
495 *last_blk = i;
496
497 out:
498 xlog_put_bp(bp);
499 return error;
500 }
501
502 /*
503 * Head is defined to be the point of the log where the next log write
504 * write could go. This means that incomplete LR writes at the end are
505 * eliminated when calculating the head. We aren't guaranteed that previous
506 * LR have complete transactions. We only know that a cycle number of
507 * current cycle number -1 won't be present in the log if we start writing
508 * from our current block number.
509 *
510 * last_blk contains the block number of the first block with a given
511 * cycle number.
512 *
513 * Return: zero if normal, non-zero if error.
514 */
515 STATIC int
516 xlog_find_head(
517 xlog_t *log,
518 xfs_daddr_t *return_head_blk)
519 {
520 xfs_buf_t *bp;
521 xfs_caddr_t offset;
522 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
523 int num_scan_bblks;
524 uint first_half_cycle, last_half_cycle;
525 uint stop_on_cycle;
526 int error, log_bbnum = log->l_logBBsize;
527
528 /* Is the end of the log device zeroed? */
529 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
530 *return_head_blk = first_blk;
531
532 /* Is the whole lot zeroed? */
533 if (!first_blk) {
534 /* Linux XFS shouldn't generate totally zeroed logs -
535 * mkfs etc write a dummy unmount record to a fresh
536 * log so we can store the uuid in there
537 */
538 xlog_warn("XFS: totally zeroed log");
539 }
540
541 return 0;
542 } else if (error) {
543 xlog_warn("XFS: empty log check failed");
544 return error;
545 }
546
547 first_blk = 0; /* get cycle # of 1st block */
548 bp = xlog_get_bp(log, 1);
549 if (!bp)
550 return ENOMEM;
551 if ((error = xlog_bread(log, 0, 1, bp)))
552 goto bp_err;
553 offset = xlog_align(log, 0, 1, bp);
554 first_half_cycle = xlog_get_cycle(offset);
555
556 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
557 if ((error = xlog_bread(log, last_blk, 1, bp)))
558 goto bp_err;
559 offset = xlog_align(log, last_blk, 1, bp);
560 last_half_cycle = xlog_get_cycle(offset);
561 ASSERT(last_half_cycle != 0);
562
563 /*
564 * If the 1st half cycle number is equal to the last half cycle number,
565 * then the entire log is stamped with the same cycle number. In this
566 * case, head_blk can't be set to zero (which makes sense). The below
567 * math doesn't work out properly with head_blk equal to zero. Instead,
568 * we set it to log_bbnum which is an invalid block number, but this
569 * value makes the math correct. If head_blk doesn't changed through
570 * all the tests below, *head_blk is set to zero at the very end rather
571 * than log_bbnum. In a sense, log_bbnum and zero are the same block
572 * in a circular file.
573 */
574 if (first_half_cycle == last_half_cycle) {
575 /*
576 * In this case we believe that the entire log should have
577 * cycle number last_half_cycle. We need to scan backwards
578 * from the end verifying that there are no holes still
579 * containing last_half_cycle - 1. If we find such a hole,
580 * then the start of that hole will be the new head. The
581 * simple case looks like
582 * x | x ... | x - 1 | x
583 * Another case that fits this picture would be
584 * x | x + 1 | x ... | x
585 * In this case the head really is somewhere at the end of the
586 * log, as one of the latest writes at the beginning was
587 * incomplete.
588 * One more case is
589 * x | x + 1 | x ... | x - 1 | x
590 * This is really the combination of the above two cases, and
591 * the head has to end up at the start of the x-1 hole at the
592 * end of the log.
593 *
594 * In the 256k log case, we will read from the beginning to the
595 * end of the log and search for cycle numbers equal to x-1.
596 * We don't worry about the x+1 blocks that we encounter,
597 * because we know that they cannot be the head since the log
598 * started with x.
599 */
600 head_blk = log_bbnum;
601 stop_on_cycle = last_half_cycle - 1;
602 } else {
603 /*
604 * In this case we want to find the first block with cycle
605 * number matching last_half_cycle. We expect the log to be
606 * some variation on
607 * x + 1 ... | x ...
608 * The first block with cycle number x (last_half_cycle) will
609 * be where the new head belongs. First we do a binary search
610 * for the first occurrence of last_half_cycle. The binary
611 * search may not be totally accurate, so then we scan back
612 * from there looking for occurrences of last_half_cycle before
613 * us. If that backwards scan wraps around the beginning of
614 * the log, then we look for occurrences of last_half_cycle - 1
615 * at the end of the log. The cases we're looking for look
616 * like
617 * x + 1 ... | x | x + 1 | x ...
618 * ^ binary search stopped here
619 * or
620 * x + 1 ... | x ... | x - 1 | x
621 * <---------> less than scan distance
622 */
623 stop_on_cycle = last_half_cycle;
624 if ((error = xlog_find_cycle_start(log, bp, first_blk,
625 &head_blk, last_half_cycle)))
626 goto bp_err;
627 }
628
629 /*
630 * Now validate the answer. Scan back some number of maximum possible
631 * blocks and make sure each one has the expected cycle number. The
632 * maximum is determined by the total possible amount of buffering
633 * in the in-core log. The following number can be made tighter if
634 * we actually look at the block size of the filesystem.
635 */
636 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
637 if (head_blk >= num_scan_bblks) {
638 /*
639 * We are guaranteed that the entire check can be performed
640 * in one buffer.
641 */
642 start_blk = head_blk - num_scan_bblks;
643 if ((error = xlog_find_verify_cycle(log,
644 start_blk, num_scan_bblks,
645 stop_on_cycle, &new_blk)))
646 goto bp_err;
647 if (new_blk != -1)
648 head_blk = new_blk;
649 } else { /* need to read 2 parts of log */
650 /*
651 * We are going to scan backwards in the log in two parts.
652 * First we scan the physical end of the log. In this part
653 * of the log, we are looking for blocks with cycle number
654 * last_half_cycle - 1.
655 * If we find one, then we know that the log starts there, as
656 * we've found a hole that didn't get written in going around
657 * the end of the physical log. The simple case for this is
658 * x + 1 ... | x ... | x - 1 | x
659 * <---------> less than scan distance
660 * If all of the blocks at the end of the log have cycle number
661 * last_half_cycle, then we check the blocks at the start of
662 * the log looking for occurrences of last_half_cycle. If we
663 * find one, then our current estimate for the location of the
664 * first occurrence of last_half_cycle is wrong and we move
665 * back to the hole we've found. This case looks like
666 * x + 1 ... | x | x + 1 | x ...
667 * ^ binary search stopped here
668 * Another case we need to handle that only occurs in 256k
669 * logs is
670 * x + 1 ... | x ... | x+1 | x ...
671 * ^ binary search stops here
672 * In a 256k log, the scan at the end of the log will see the
673 * x + 1 blocks. We need to skip past those since that is
674 * certainly not the head of the log. By searching for
675 * last_half_cycle-1 we accomplish that.
676 */
677 start_blk = log_bbnum - num_scan_bblks + head_blk;
678 ASSERT(head_blk <= INT_MAX &&
679 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
680 if ((error = xlog_find_verify_cycle(log, start_blk,
681 num_scan_bblks - (int)head_blk,
682 (stop_on_cycle - 1), &new_blk)))
683 goto bp_err;
684 if (new_blk != -1) {
685 head_blk = new_blk;
686 goto bad_blk;
687 }
688
689 /*
690 * Scan beginning of log now. The last part of the physical
691 * log is good. This scan needs to verify that it doesn't find
692 * the last_half_cycle.
693 */
694 start_blk = 0;
695 ASSERT(head_blk <= INT_MAX);
696 if ((error = xlog_find_verify_cycle(log,
697 start_blk, (int)head_blk,
698 stop_on_cycle, &new_blk)))
699 goto bp_err;
700 if (new_blk != -1)
701 head_blk = new_blk;
702 }
703
704 bad_blk:
705 /*
706 * Now we need to make sure head_blk is not pointing to a block in
707 * the middle of a log record.
708 */
709 num_scan_bblks = XLOG_REC_SHIFT(log);
710 if (head_blk >= num_scan_bblks) {
711 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
712
713 /* start ptr at last block ptr before head_blk */
714 if ((error = xlog_find_verify_log_record(log, start_blk,
715 &head_blk, 0)) == -1) {
716 error = XFS_ERROR(EIO);
717 goto bp_err;
718 } else if (error)
719 goto bp_err;
720 } else {
721 start_blk = 0;
722 ASSERT(head_blk <= INT_MAX);
723 if ((error = xlog_find_verify_log_record(log, start_blk,
724 &head_blk, 0)) == -1) {
725 /* We hit the beginning of the log during our search */
726 start_blk = log_bbnum - num_scan_bblks + head_blk;
727 new_blk = log_bbnum;
728 ASSERT(start_blk <= INT_MAX &&
729 (xfs_daddr_t) log_bbnum-start_blk >= 0);
730 ASSERT(head_blk <= INT_MAX);
731 if ((error = xlog_find_verify_log_record(log,
732 start_blk, &new_blk,
733 (int)head_blk)) == -1) {
734 error = XFS_ERROR(EIO);
735 goto bp_err;
736 } else if (error)
737 goto bp_err;
738 if (new_blk != log_bbnum)
739 head_blk = new_blk;
740 } else if (error)
741 goto bp_err;
742 }
743
744 xlog_put_bp(bp);
745 if (head_blk == log_bbnum)
746 *return_head_blk = 0;
747 else
748 *return_head_blk = head_blk;
749 /*
750 * When returning here, we have a good block number. Bad block
751 * means that during a previous crash, we didn't have a clean break
752 * from cycle number N to cycle number N-1. In this case, we need
753 * to find the first block with cycle number N-1.
754 */
755 return 0;
756
757 bp_err:
758 xlog_put_bp(bp);
759
760 if (error)
761 xlog_warn("XFS: failed to find log head");
762 return error;
763 }
764
765 /*
766 * Find the sync block number or the tail of the log.
767 *
768 * This will be the block number of the last record to have its
769 * associated buffers synced to disk. Every log record header has
770 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
771 * to get a sync block number. The only concern is to figure out which
772 * log record header to believe.
773 *
774 * The following algorithm uses the log record header with the largest
775 * lsn. The entire log record does not need to be valid. We only care
776 * that the header is valid.
777 *
778 * We could speed up search by using current head_blk buffer, but it is not
779 * available.
780 */
781 int
782 xlog_find_tail(
783 xlog_t *log,
784 xfs_daddr_t *head_blk,
785 xfs_daddr_t *tail_blk)
786 {
787 xlog_rec_header_t *rhead;
788 xlog_op_header_t *op_head;
789 xfs_caddr_t offset = NULL;
790 xfs_buf_t *bp;
791 int error, i, found;
792 xfs_daddr_t umount_data_blk;
793 xfs_daddr_t after_umount_blk;
794 xfs_lsn_t tail_lsn;
795 int hblks;
796
797 found = 0;
798
799 /*
800 * Find previous log record
801 */
802 if ((error = xlog_find_head(log, head_blk)))
803 return error;
804
805 bp = xlog_get_bp(log, 1);
806 if (!bp)
807 return ENOMEM;
808 if (*head_blk == 0) { /* special case */
809 if ((error = xlog_bread(log, 0, 1, bp)))
810 goto bread_err;
811 offset = xlog_align(log, 0, 1, bp);
812 if (xlog_get_cycle(offset) == 0) {
813 *tail_blk = 0;
814 /* leave all other log inited values alone */
815 goto exit;
816 }
817 }
818
819 /*
820 * Search backwards looking for log record header block
821 */
822 ASSERT(*head_blk < INT_MAX);
823 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
824 if ((error = xlog_bread(log, i, 1, bp)))
825 goto bread_err;
826 offset = xlog_align(log, i, 1, bp);
827 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
828 found = 1;
829 break;
830 }
831 }
832 /*
833 * If we haven't found the log record header block, start looking
834 * again from the end of the physical log. XXXmiken: There should be
835 * a check here to make sure we didn't search more than N blocks in
836 * the previous code.
837 */
838 if (!found) {
839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 if ((error = xlog_bread(log, i, 1, bp)))
841 goto bread_err;
842 offset = xlog_align(log, i, 1, bp);
843 if (XLOG_HEADER_MAGIC_NUM ==
844 be32_to_cpu(*(__be32 *)offset)) {
845 found = 2;
846 break;
847 }
848 }
849 }
850 if (!found) {
851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852 ASSERT(0);
853 return XFS_ERROR(EIO);
854 }
855
856 /* find blk_no of tail of log */
857 rhead = (xlog_rec_header_t *)offset;
858 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
859
860 /*
861 * Reset log values according to the state of the log when we
862 * crashed. In the case where head_blk == 0, we bump curr_cycle
863 * one because the next write starts a new cycle rather than
864 * continuing the cycle of the last good log record. At this
865 * point we have guaranteed that all partial log records have been
866 * accounted for. Therefore, we know that the last good log record
867 * written was complete and ended exactly on the end boundary
868 * of the physical log.
869 */
870 log->l_prev_block = i;
871 log->l_curr_block = (int)*head_blk;
872 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
873 if (found == 2)
874 log->l_curr_cycle++;
875 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
876 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
877 log->l_grant_reserve_cycle = log->l_curr_cycle;
878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 log->l_grant_write_cycle = log->l_curr_cycle;
880 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881
882 /*
883 * Look for unmount record. If we find it, then we know there
884 * was a clean unmount. Since 'i' could be the last block in
885 * the physical log, we convert to a log block before comparing
886 * to the head_blk.
887 *
888 * Save the current tail lsn to use to pass to
889 * xlog_clear_stale_blocks() below. We won't want to clear the
890 * unmount record if there is one, so we pass the lsn of the
891 * unmount record rather than the block after it.
892 */
893 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
894 int h_size = be32_to_cpu(rhead->h_size);
895 int h_version = be32_to_cpu(rhead->h_version);
896
897 if ((h_version & XLOG_VERSION_2) &&
898 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 if (h_size % XLOG_HEADER_CYCLE_SIZE)
901 hblks++;
902 } else {
903 hblks = 1;
904 }
905 } else {
906 hblks = 1;
907 }
908 after_umount_blk = (i + hblks + (int)
909 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
910 tail_lsn = log->l_tail_lsn;
911 if (*head_blk == after_umount_blk &&
912 be32_to_cpu(rhead->h_num_logops) == 1) {
913 umount_data_blk = (i + hblks) % log->l_logBBsize;
914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 goto bread_err;
916 }
917 offset = xlog_align(log, umount_data_blk, 1, bp);
918 op_head = (xlog_op_header_t *)offset;
919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920 /*
921 * Set tail and last sync so that newly written
922 * log records will point recovery to after the
923 * current unmount record.
924 */
925 log->l_tail_lsn =
926 xlog_assign_lsn(log->l_curr_cycle,
927 after_umount_blk);
928 log->l_last_sync_lsn =
929 xlog_assign_lsn(log->l_curr_cycle,
930 after_umount_blk);
931 *tail_blk = after_umount_blk;
932
933 /*
934 * Note that the unmount was clean. If the unmount
935 * was not clean, we need to know this to rebuild the
936 * superblock counters from the perag headers if we
937 * have a filesystem using non-persistent counters.
938 */
939 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
940 }
941 }
942
943 /*
944 * Make sure that there are no blocks in front of the head
945 * with the same cycle number as the head. This can happen
946 * because we allow multiple outstanding log writes concurrently,
947 * and the later writes might make it out before earlier ones.
948 *
949 * We use the lsn from before modifying it so that we'll never
950 * overwrite the unmount record after a clean unmount.
951 *
952 * Do this only if we are going to recover the filesystem
953 *
954 * NOTE: This used to say "if (!readonly)"
955 * However on Linux, we can & do recover a read-only filesystem.
956 * We only skip recovery if NORECOVERY is specified on mount,
957 * in which case we would not be here.
958 *
959 * But... if the -device- itself is readonly, just skip this.
960 * We can't recover this device anyway, so it won't matter.
961 */
962 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
963 error = xlog_clear_stale_blocks(log, tail_lsn);
964 }
965
966 bread_err:
967 exit:
968 xlog_put_bp(bp);
969
970 if (error)
971 xlog_warn("XFS: failed to locate log tail");
972 return error;
973 }
974
975 /*
976 * Is the log zeroed at all?
977 *
978 * The last binary search should be changed to perform an X block read
979 * once X becomes small enough. You can then search linearly through
980 * the X blocks. This will cut down on the number of reads we need to do.
981 *
982 * If the log is partially zeroed, this routine will pass back the blkno
983 * of the first block with cycle number 0. It won't have a complete LR
984 * preceding it.
985 *
986 * Return:
987 * 0 => the log is completely written to
988 * -1 => use *blk_no as the first block of the log
989 * >0 => error has occurred
990 */
991 STATIC int
992 xlog_find_zeroed(
993 xlog_t *log,
994 xfs_daddr_t *blk_no)
995 {
996 xfs_buf_t *bp;
997 xfs_caddr_t offset;
998 uint first_cycle, last_cycle;
999 xfs_daddr_t new_blk, last_blk, start_blk;
1000 xfs_daddr_t num_scan_bblks;
1001 int error, log_bbnum = log->l_logBBsize;
1002
1003 *blk_no = 0;
1004
1005 /* check totally zeroed log */
1006 bp = xlog_get_bp(log, 1);
1007 if (!bp)
1008 return ENOMEM;
1009 if ((error = xlog_bread(log, 0, 1, bp)))
1010 goto bp_err;
1011 offset = xlog_align(log, 0, 1, bp);
1012 first_cycle = xlog_get_cycle(offset);
1013 if (first_cycle == 0) { /* completely zeroed log */
1014 *blk_no = 0;
1015 xlog_put_bp(bp);
1016 return -1;
1017 }
1018
1019 /* check partially zeroed log */
1020 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1021 goto bp_err;
1022 offset = xlog_align(log, log_bbnum-1, 1, bp);
1023 last_cycle = xlog_get_cycle(offset);
1024 if (last_cycle != 0) { /* log completely written to */
1025 xlog_put_bp(bp);
1026 return 0;
1027 } else if (first_cycle != 1) {
1028 /*
1029 * If the cycle of the last block is zero, the cycle of
1030 * the first block must be 1. If it's not, maybe we're
1031 * not looking at a log... Bail out.
1032 */
1033 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1034 return XFS_ERROR(EINVAL);
1035 }
1036
1037 /* we have a partially zeroed log */
1038 last_blk = log_bbnum-1;
1039 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1040 goto bp_err;
1041
1042 /*
1043 * Validate the answer. Because there is no way to guarantee that
1044 * the entire log is made up of log records which are the same size,
1045 * we scan over the defined maximum blocks. At this point, the maximum
1046 * is not chosen to mean anything special. XXXmiken
1047 */
1048 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1049 ASSERT(num_scan_bblks <= INT_MAX);
1050
1051 if (last_blk < num_scan_bblks)
1052 num_scan_bblks = last_blk;
1053 start_blk = last_blk - num_scan_bblks;
1054
1055 /*
1056 * We search for any instances of cycle number 0 that occur before
1057 * our current estimate of the head. What we're trying to detect is
1058 * 1 ... | 0 | 1 | 0...
1059 * ^ binary search ends here
1060 */
1061 if ((error = xlog_find_verify_cycle(log, start_blk,
1062 (int)num_scan_bblks, 0, &new_blk)))
1063 goto bp_err;
1064 if (new_blk != -1)
1065 last_blk = new_blk;
1066
1067 /*
1068 * Potentially backup over partial log record write. We don't need
1069 * to search the end of the log because we know it is zero.
1070 */
1071 if ((error = xlog_find_verify_log_record(log, start_blk,
1072 &last_blk, 0)) == -1) {
1073 error = XFS_ERROR(EIO);
1074 goto bp_err;
1075 } else if (error)
1076 goto bp_err;
1077
1078 *blk_no = last_blk;
1079 bp_err:
1080 xlog_put_bp(bp);
1081 if (error)
1082 return error;
1083 return -1;
1084 }
1085
1086 /*
1087 * These are simple subroutines used by xlog_clear_stale_blocks() below
1088 * to initialize a buffer full of empty log record headers and write
1089 * them into the log.
1090 */
1091 STATIC void
1092 xlog_add_record(
1093 xlog_t *log,
1094 xfs_caddr_t buf,
1095 int cycle,
1096 int block,
1097 int tail_cycle,
1098 int tail_block)
1099 {
1100 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1101
1102 memset(buf, 0, BBSIZE);
1103 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1104 recp->h_cycle = cpu_to_be32(cycle);
1105 recp->h_version = cpu_to_be32(
1106 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1107 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1108 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1109 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1110 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1111 }
1112
1113 STATIC int
1114 xlog_write_log_records(
1115 xlog_t *log,
1116 int cycle,
1117 int start_block,
1118 int blocks,
1119 int tail_cycle,
1120 int tail_block)
1121 {
1122 xfs_caddr_t offset;
1123 xfs_buf_t *bp;
1124 int balign, ealign;
1125 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1126 int end_block = start_block + blocks;
1127 int bufblks;
1128 int error = 0;
1129 int i, j = 0;
1130
1131 bufblks = 1 << ffs(blocks);
1132 while (!(bp = xlog_get_bp(log, bufblks))) {
1133 bufblks >>= 1;
1134 if (bufblks <= log->l_sectbb_log)
1135 return ENOMEM;
1136 }
1137
1138 /* We may need to do a read at the start to fill in part of
1139 * the buffer in the starting sector not covered by the first
1140 * write below.
1141 */
1142 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1143 if (balign != start_block) {
1144 if ((error = xlog_bread(log, start_block, 1, bp))) {
1145 xlog_put_bp(bp);
1146 return error;
1147 }
1148 j = start_block - balign;
1149 }
1150
1151 for (i = start_block; i < end_block; i += bufblks) {
1152 int bcount, endcount;
1153
1154 bcount = min(bufblks, end_block - start_block);
1155 endcount = bcount - j;
1156
1157 /* We may need to do a read at the end to fill in part of
1158 * the buffer in the final sector not covered by the write.
1159 * If this is the same sector as the above read, skip it.
1160 */
1161 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1162 if (j == 0 && (start_block + endcount > ealign)) {
1163 offset = XFS_BUF_PTR(bp);
1164 balign = BBTOB(ealign - start_block);
1165 error = XFS_BUF_SET_PTR(bp, offset + balign,
1166 BBTOB(sectbb));
1167 if (!error)
1168 error = xlog_bread(log, ealign, sectbb, bp);
1169 if (!error)
1170 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1171 if (error)
1172 break;
1173 }
1174
1175 offset = xlog_align(log, start_block, endcount, bp);
1176 for (; j < endcount; j++) {
1177 xlog_add_record(log, offset, cycle, i+j,
1178 tail_cycle, tail_block);
1179 offset += BBSIZE;
1180 }
1181 error = xlog_bwrite(log, start_block, endcount, bp);
1182 if (error)
1183 break;
1184 start_block += endcount;
1185 j = 0;
1186 }
1187 xlog_put_bp(bp);
1188 return error;
1189 }
1190
1191 /*
1192 * This routine is called to blow away any incomplete log writes out
1193 * in front of the log head. We do this so that we won't become confused
1194 * if we come up, write only a little bit more, and then crash again.
1195 * If we leave the partial log records out there, this situation could
1196 * cause us to think those partial writes are valid blocks since they
1197 * have the current cycle number. We get rid of them by overwriting them
1198 * with empty log records with the old cycle number rather than the
1199 * current one.
1200 *
1201 * The tail lsn is passed in rather than taken from
1202 * the log so that we will not write over the unmount record after a
1203 * clean unmount in a 512 block log. Doing so would leave the log without
1204 * any valid log records in it until a new one was written. If we crashed
1205 * during that time we would not be able to recover.
1206 */
1207 STATIC int
1208 xlog_clear_stale_blocks(
1209 xlog_t *log,
1210 xfs_lsn_t tail_lsn)
1211 {
1212 int tail_cycle, head_cycle;
1213 int tail_block, head_block;
1214 int tail_distance, max_distance;
1215 int distance;
1216 int error;
1217
1218 tail_cycle = CYCLE_LSN(tail_lsn);
1219 tail_block = BLOCK_LSN(tail_lsn);
1220 head_cycle = log->l_curr_cycle;
1221 head_block = log->l_curr_block;
1222
1223 /*
1224 * Figure out the distance between the new head of the log
1225 * and the tail. We want to write over any blocks beyond the
1226 * head that we may have written just before the crash, but
1227 * we don't want to overwrite the tail of the log.
1228 */
1229 if (head_cycle == tail_cycle) {
1230 /*
1231 * The tail is behind the head in the physical log,
1232 * so the distance from the head to the tail is the
1233 * distance from the head to the end of the log plus
1234 * the distance from the beginning of the log to the
1235 * tail.
1236 */
1237 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1238 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1239 XFS_ERRLEVEL_LOW, log->l_mp);
1240 return XFS_ERROR(EFSCORRUPTED);
1241 }
1242 tail_distance = tail_block + (log->l_logBBsize - head_block);
1243 } else {
1244 /*
1245 * The head is behind the tail in the physical log,
1246 * so the distance from the head to the tail is just
1247 * the tail block minus the head block.
1248 */
1249 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1250 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1251 XFS_ERRLEVEL_LOW, log->l_mp);
1252 return XFS_ERROR(EFSCORRUPTED);
1253 }
1254 tail_distance = tail_block - head_block;
1255 }
1256
1257 /*
1258 * If the head is right up against the tail, we can't clear
1259 * anything.
1260 */
1261 if (tail_distance <= 0) {
1262 ASSERT(tail_distance == 0);
1263 return 0;
1264 }
1265
1266 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1267 /*
1268 * Take the smaller of the maximum amount of outstanding I/O
1269 * we could have and the distance to the tail to clear out.
1270 * We take the smaller so that we don't overwrite the tail and
1271 * we don't waste all day writing from the head to the tail
1272 * for no reason.
1273 */
1274 max_distance = MIN(max_distance, tail_distance);
1275
1276 if ((head_block + max_distance) <= log->l_logBBsize) {
1277 /*
1278 * We can stomp all the blocks we need to without
1279 * wrapping around the end of the log. Just do it
1280 * in a single write. Use the cycle number of the
1281 * current cycle minus one so that the log will look like:
1282 * n ... | n - 1 ...
1283 */
1284 error = xlog_write_log_records(log, (head_cycle - 1),
1285 head_block, max_distance, tail_cycle,
1286 tail_block);
1287 if (error)
1288 return error;
1289 } else {
1290 /*
1291 * We need to wrap around the end of the physical log in
1292 * order to clear all the blocks. Do it in two separate
1293 * I/Os. The first write should be from the head to the
1294 * end of the physical log, and it should use the current
1295 * cycle number minus one just like above.
1296 */
1297 distance = log->l_logBBsize - head_block;
1298 error = xlog_write_log_records(log, (head_cycle - 1),
1299 head_block, distance, tail_cycle,
1300 tail_block);
1301
1302 if (error)
1303 return error;
1304
1305 /*
1306 * Now write the blocks at the start of the physical log.
1307 * This writes the remainder of the blocks we want to clear.
1308 * It uses the current cycle number since we're now on the
1309 * same cycle as the head so that we get:
1310 * n ... n ... | n - 1 ...
1311 * ^^^^^ blocks we're writing
1312 */
1313 distance = max_distance - (log->l_logBBsize - head_block);
1314 error = xlog_write_log_records(log, head_cycle, 0, distance,
1315 tail_cycle, tail_block);
1316 if (error)
1317 return error;
1318 }
1319
1320 return 0;
1321 }
1322
1323 /******************************************************************************
1324 *
1325 * Log recover routines
1326 *
1327 ******************************************************************************
1328 */
1329
1330 STATIC xlog_recover_t *
1331 xlog_recover_find_tid(
1332 xlog_recover_t *q,
1333 xlog_tid_t tid)
1334 {
1335 xlog_recover_t *p = q;
1336
1337 while (p != NULL) {
1338 if (p->r_log_tid == tid)
1339 break;
1340 p = p->r_next;
1341 }
1342 return p;
1343 }
1344
1345 STATIC void
1346 xlog_recover_put_hashq(
1347 xlog_recover_t **q,
1348 xlog_recover_t *trans)
1349 {
1350 trans->r_next = *q;
1351 *q = trans;
1352 }
1353
1354 STATIC void
1355 xlog_recover_add_item(
1356 xlog_recover_item_t **itemq)
1357 {
1358 xlog_recover_item_t *item;
1359
1360 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1361 xlog_recover_insert_item_backq(itemq, item);
1362 }
1363
1364 STATIC int
1365 xlog_recover_add_to_cont_trans(
1366 xlog_recover_t *trans,
1367 xfs_caddr_t dp,
1368 int len)
1369 {
1370 xlog_recover_item_t *item;
1371 xfs_caddr_t ptr, old_ptr;
1372 int old_len;
1373
1374 item = trans->r_itemq;
1375 if (item == NULL) {
1376 /* finish copying rest of trans header */
1377 xlog_recover_add_item(&trans->r_itemq);
1378 ptr = (xfs_caddr_t) &trans->r_theader +
1379 sizeof(xfs_trans_header_t) - len;
1380 memcpy(ptr, dp, len); /* d, s, l */
1381 return 0;
1382 }
1383 item = item->ri_prev;
1384
1385 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1386 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1387
1388 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1389 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1390 item->ri_buf[item->ri_cnt-1].i_len += len;
1391 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1392 return 0;
1393 }
1394
1395 /*
1396 * The next region to add is the start of a new region. It could be
1397 * a whole region or it could be the first part of a new region. Because
1398 * of this, the assumption here is that the type and size fields of all
1399 * format structures fit into the first 32 bits of the structure.
1400 *
1401 * This works because all regions must be 32 bit aligned. Therefore, we
1402 * either have both fields or we have neither field. In the case we have
1403 * neither field, the data part of the region is zero length. We only have
1404 * a log_op_header and can throw away the header since a new one will appear
1405 * later. If we have at least 4 bytes, then we can determine how many regions
1406 * will appear in the current log item.
1407 */
1408 STATIC int
1409 xlog_recover_add_to_trans(
1410 xlog_recover_t *trans,
1411 xfs_caddr_t dp,
1412 int len)
1413 {
1414 xfs_inode_log_format_t *in_f; /* any will do */
1415 xlog_recover_item_t *item;
1416 xfs_caddr_t ptr;
1417
1418 if (!len)
1419 return 0;
1420 item = trans->r_itemq;
1421 if (item == NULL) {
1422 /* we need to catch log corruptions here */
1423 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1424 xlog_warn("XFS: xlog_recover_add_to_trans: "
1425 "bad header magic number");
1426 ASSERT(0);
1427 return XFS_ERROR(EIO);
1428 }
1429 if (len == sizeof(xfs_trans_header_t))
1430 xlog_recover_add_item(&trans->r_itemq);
1431 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1432 return 0;
1433 }
1434
1435 ptr = kmem_alloc(len, KM_SLEEP);
1436 memcpy(ptr, dp, len);
1437 in_f = (xfs_inode_log_format_t *)ptr;
1438
1439 if (item->ri_prev->ri_total != 0 &&
1440 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1441 xlog_recover_add_item(&trans->r_itemq);
1442 }
1443 item = trans->r_itemq;
1444 item = item->ri_prev;
1445
1446 if (item->ri_total == 0) { /* first region to be added */
1447 item->ri_total = in_f->ilf_size;
1448 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1449 item->ri_buf = kmem_zalloc((item->ri_total *
1450 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1451 }
1452 ASSERT(item->ri_total > item->ri_cnt);
1453 /* Description region is ri_buf[0] */
1454 item->ri_buf[item->ri_cnt].i_addr = ptr;
1455 item->ri_buf[item->ri_cnt].i_len = len;
1456 item->ri_cnt++;
1457 return 0;
1458 }
1459
1460 STATIC void
1461 xlog_recover_new_tid(
1462 xlog_recover_t **q,
1463 xlog_tid_t tid,
1464 xfs_lsn_t lsn)
1465 {
1466 xlog_recover_t *trans;
1467
1468 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1469 trans->r_log_tid = tid;
1470 trans->r_lsn = lsn;
1471 xlog_recover_put_hashq(q, trans);
1472 }
1473
1474 STATIC int
1475 xlog_recover_unlink_tid(
1476 xlog_recover_t **q,
1477 xlog_recover_t *trans)
1478 {
1479 xlog_recover_t *tp;
1480 int found = 0;
1481
1482 ASSERT(trans != NULL);
1483 if (trans == *q) {
1484 *q = (*q)->r_next;
1485 } else {
1486 tp = *q;
1487 while (tp) {
1488 if (tp->r_next == trans) {
1489 found = 1;
1490 break;
1491 }
1492 tp = tp->r_next;
1493 }
1494 if (!found) {
1495 xlog_warn(
1496 "XFS: xlog_recover_unlink_tid: trans not found");
1497 ASSERT(0);
1498 return XFS_ERROR(EIO);
1499 }
1500 tp->r_next = tp->r_next->r_next;
1501 }
1502 return 0;
1503 }
1504
1505 STATIC void
1506 xlog_recover_insert_item_backq(
1507 xlog_recover_item_t **q,
1508 xlog_recover_item_t *item)
1509 {
1510 if (*q == NULL) {
1511 item->ri_prev = item->ri_next = item;
1512 *q = item;
1513 } else {
1514 item->ri_next = *q;
1515 item->ri_prev = (*q)->ri_prev;
1516 (*q)->ri_prev = item;
1517 item->ri_prev->ri_next = item;
1518 }
1519 }
1520
1521 STATIC void
1522 xlog_recover_insert_item_frontq(
1523 xlog_recover_item_t **q,
1524 xlog_recover_item_t *item)
1525 {
1526 xlog_recover_insert_item_backq(q, item);
1527 *q = item;
1528 }
1529
1530 STATIC int
1531 xlog_recover_reorder_trans(
1532 xlog_recover_t *trans)
1533 {
1534 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1535 xfs_buf_log_format_t *buf_f;
1536 ushort flags = 0;
1537
1538 first_item = itemq = trans->r_itemq;
1539 trans->r_itemq = NULL;
1540 do {
1541 itemq_next = itemq->ri_next;
1542 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1543
1544 switch (ITEM_TYPE(itemq)) {
1545 case XFS_LI_BUF:
1546 flags = buf_f->blf_flags;
1547 if (!(flags & XFS_BLI_CANCEL)) {
1548 xlog_recover_insert_item_frontq(&trans->r_itemq,
1549 itemq);
1550 break;
1551 }
1552 case XFS_LI_INODE:
1553 case XFS_LI_DQUOT:
1554 case XFS_LI_QUOTAOFF:
1555 case XFS_LI_EFD:
1556 case XFS_LI_EFI:
1557 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1558 break;
1559 default:
1560 xlog_warn(
1561 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1562 ASSERT(0);
1563 return XFS_ERROR(EIO);
1564 }
1565 itemq = itemq_next;
1566 } while (first_item != itemq);
1567 return 0;
1568 }
1569
1570 /*
1571 * Build up the table of buf cancel records so that we don't replay
1572 * cancelled data in the second pass. For buffer records that are
1573 * not cancel records, there is nothing to do here so we just return.
1574 *
1575 * If we get a cancel record which is already in the table, this indicates
1576 * that the buffer was cancelled multiple times. In order to ensure
1577 * that during pass 2 we keep the record in the table until we reach its
1578 * last occurrence in the log, we keep a reference count in the cancel
1579 * record in the table to tell us how many times we expect to see this
1580 * record during the second pass.
1581 */
1582 STATIC void
1583 xlog_recover_do_buffer_pass1(
1584 xlog_t *log,
1585 xfs_buf_log_format_t *buf_f)
1586 {
1587 xfs_buf_cancel_t *bcp;
1588 xfs_buf_cancel_t *nextp;
1589 xfs_buf_cancel_t *prevp;
1590 xfs_buf_cancel_t **bucket;
1591 xfs_daddr_t blkno = 0;
1592 uint len = 0;
1593 ushort flags = 0;
1594
1595 switch (buf_f->blf_type) {
1596 case XFS_LI_BUF:
1597 blkno = buf_f->blf_blkno;
1598 len = buf_f->blf_len;
1599 flags = buf_f->blf_flags;
1600 break;
1601 }
1602
1603 /*
1604 * If this isn't a cancel buffer item, then just return.
1605 */
1606 if (!(flags & XFS_BLI_CANCEL))
1607 return;
1608
1609 /*
1610 * Insert an xfs_buf_cancel record into the hash table of
1611 * them. If there is already an identical record, bump
1612 * its reference count.
1613 */
1614 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1615 XLOG_BC_TABLE_SIZE];
1616 /*
1617 * If the hash bucket is empty then just insert a new record into
1618 * the bucket.
1619 */
1620 if (*bucket == NULL) {
1621 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1622 KM_SLEEP);
1623 bcp->bc_blkno = blkno;
1624 bcp->bc_len = len;
1625 bcp->bc_refcount = 1;
1626 bcp->bc_next = NULL;
1627 *bucket = bcp;
1628 return;
1629 }
1630
1631 /*
1632 * The hash bucket is not empty, so search for duplicates of our
1633 * record. If we find one them just bump its refcount. If not
1634 * then add us at the end of the list.
1635 */
1636 prevp = NULL;
1637 nextp = *bucket;
1638 while (nextp != NULL) {
1639 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1640 nextp->bc_refcount++;
1641 return;
1642 }
1643 prevp = nextp;
1644 nextp = nextp->bc_next;
1645 }
1646 ASSERT(prevp != NULL);
1647 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1648 KM_SLEEP);
1649 bcp->bc_blkno = blkno;
1650 bcp->bc_len = len;
1651 bcp->bc_refcount = 1;
1652 bcp->bc_next = NULL;
1653 prevp->bc_next = bcp;
1654 }
1655
1656 /*
1657 * Check to see whether the buffer being recovered has a corresponding
1658 * entry in the buffer cancel record table. If it does then return 1
1659 * so that it will be cancelled, otherwise return 0. If the buffer is
1660 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1661 * the refcount on the entry in the table and remove it from the table
1662 * if this is the last reference.
1663 *
1664 * We remove the cancel record from the table when we encounter its
1665 * last occurrence in the log so that if the same buffer is re-used
1666 * again after its last cancellation we actually replay the changes
1667 * made at that point.
1668 */
1669 STATIC int
1670 xlog_check_buffer_cancelled(
1671 xlog_t *log,
1672 xfs_daddr_t blkno,
1673 uint len,
1674 ushort flags)
1675 {
1676 xfs_buf_cancel_t *bcp;
1677 xfs_buf_cancel_t *prevp;
1678 xfs_buf_cancel_t **bucket;
1679
1680 if (log->l_buf_cancel_table == NULL) {
1681 /*
1682 * There is nothing in the table built in pass one,
1683 * so this buffer must not be cancelled.
1684 */
1685 ASSERT(!(flags & XFS_BLI_CANCEL));
1686 return 0;
1687 }
1688
1689 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1690 XLOG_BC_TABLE_SIZE];
1691 bcp = *bucket;
1692 if (bcp == NULL) {
1693 /*
1694 * There is no corresponding entry in the table built
1695 * in pass one, so this buffer has not been cancelled.
1696 */
1697 ASSERT(!(flags & XFS_BLI_CANCEL));
1698 return 0;
1699 }
1700
1701 /*
1702 * Search for an entry in the buffer cancel table that
1703 * matches our buffer.
1704 */
1705 prevp = NULL;
1706 while (bcp != NULL) {
1707 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1708 /*
1709 * We've go a match, so return 1 so that the
1710 * recovery of this buffer is cancelled.
1711 * If this buffer is actually a buffer cancel
1712 * log item, then decrement the refcount on the
1713 * one in the table and remove it if this is the
1714 * last reference.
1715 */
1716 if (flags & XFS_BLI_CANCEL) {
1717 bcp->bc_refcount--;
1718 if (bcp->bc_refcount == 0) {
1719 if (prevp == NULL) {
1720 *bucket = bcp->bc_next;
1721 } else {
1722 prevp->bc_next = bcp->bc_next;
1723 }
1724 kmem_free(bcp);
1725 }
1726 }
1727 return 1;
1728 }
1729 prevp = bcp;
1730 bcp = bcp->bc_next;
1731 }
1732 /*
1733 * We didn't find a corresponding entry in the table, so
1734 * return 0 so that the buffer is NOT cancelled.
1735 */
1736 ASSERT(!(flags & XFS_BLI_CANCEL));
1737 return 0;
1738 }
1739
1740 STATIC int
1741 xlog_recover_do_buffer_pass2(
1742 xlog_t *log,
1743 xfs_buf_log_format_t *buf_f)
1744 {
1745 xfs_daddr_t blkno = 0;
1746 ushort flags = 0;
1747 uint len = 0;
1748
1749 switch (buf_f->blf_type) {
1750 case XFS_LI_BUF:
1751 blkno = buf_f->blf_blkno;
1752 flags = buf_f->blf_flags;
1753 len = buf_f->blf_len;
1754 break;
1755 }
1756
1757 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1758 }
1759
1760 /*
1761 * Perform recovery for a buffer full of inodes. In these buffers,
1762 * the only data which should be recovered is that which corresponds
1763 * to the di_next_unlinked pointers in the on disk inode structures.
1764 * The rest of the data for the inodes is always logged through the
1765 * inodes themselves rather than the inode buffer and is recovered
1766 * in xlog_recover_do_inode_trans().
1767 *
1768 * The only time when buffers full of inodes are fully recovered is
1769 * when the buffer is full of newly allocated inodes. In this case
1770 * the buffer will not be marked as an inode buffer and so will be
1771 * sent to xlog_recover_do_reg_buffer() below during recovery.
1772 */
1773 STATIC int
1774 xlog_recover_do_inode_buffer(
1775 xfs_mount_t *mp,
1776 xlog_recover_item_t *item,
1777 xfs_buf_t *bp,
1778 xfs_buf_log_format_t *buf_f)
1779 {
1780 int i;
1781 int item_index;
1782 int bit;
1783 int nbits;
1784 int reg_buf_offset;
1785 int reg_buf_bytes;
1786 int next_unlinked_offset;
1787 int inodes_per_buf;
1788 xfs_agino_t *logged_nextp;
1789 xfs_agino_t *buffer_nextp;
1790 unsigned int *data_map = NULL;
1791 unsigned int map_size = 0;
1792
1793 switch (buf_f->blf_type) {
1794 case XFS_LI_BUF:
1795 data_map = buf_f->blf_data_map;
1796 map_size = buf_f->blf_map_size;
1797 break;
1798 }
1799 /*
1800 * Set the variables corresponding to the current region to
1801 * 0 so that we'll initialize them on the first pass through
1802 * the loop.
1803 */
1804 reg_buf_offset = 0;
1805 reg_buf_bytes = 0;
1806 bit = 0;
1807 nbits = 0;
1808 item_index = 0;
1809 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1810 for (i = 0; i < inodes_per_buf; i++) {
1811 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1812 offsetof(xfs_dinode_t, di_next_unlinked);
1813
1814 while (next_unlinked_offset >=
1815 (reg_buf_offset + reg_buf_bytes)) {
1816 /*
1817 * The next di_next_unlinked field is beyond
1818 * the current logged region. Find the next
1819 * logged region that contains or is beyond
1820 * the current di_next_unlinked field.
1821 */
1822 bit += nbits;
1823 bit = xfs_next_bit(data_map, map_size, bit);
1824
1825 /*
1826 * If there are no more logged regions in the
1827 * buffer, then we're done.
1828 */
1829 if (bit == -1) {
1830 return 0;
1831 }
1832
1833 nbits = xfs_contig_bits(data_map, map_size,
1834 bit);
1835 ASSERT(nbits > 0);
1836 reg_buf_offset = bit << XFS_BLI_SHIFT;
1837 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1838 item_index++;
1839 }
1840
1841 /*
1842 * If the current logged region starts after the current
1843 * di_next_unlinked field, then move on to the next
1844 * di_next_unlinked field.
1845 */
1846 if (next_unlinked_offset < reg_buf_offset) {
1847 continue;
1848 }
1849
1850 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1851 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1852 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1853
1854 /*
1855 * The current logged region contains a copy of the
1856 * current di_next_unlinked field. Extract its value
1857 * and copy it to the buffer copy.
1858 */
1859 logged_nextp = (xfs_agino_t *)
1860 ((char *)(item->ri_buf[item_index].i_addr) +
1861 (next_unlinked_offset - reg_buf_offset));
1862 if (unlikely(*logged_nextp == 0)) {
1863 xfs_fs_cmn_err(CE_ALERT, mp,
1864 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1865 item, bp);
1866 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1867 XFS_ERRLEVEL_LOW, mp);
1868 return XFS_ERROR(EFSCORRUPTED);
1869 }
1870
1871 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1872 next_unlinked_offset);
1873 *buffer_nextp = *logged_nextp;
1874 }
1875
1876 return 0;
1877 }
1878
1879 /*
1880 * Perform a 'normal' buffer recovery. Each logged region of the
1881 * buffer should be copied over the corresponding region in the
1882 * given buffer. The bitmap in the buf log format structure indicates
1883 * where to place the logged data.
1884 */
1885 /*ARGSUSED*/
1886 STATIC void
1887 xlog_recover_do_reg_buffer(
1888 xlog_recover_item_t *item,
1889 xfs_buf_t *bp,
1890 xfs_buf_log_format_t *buf_f)
1891 {
1892 int i;
1893 int bit;
1894 int nbits;
1895 unsigned int *data_map = NULL;
1896 unsigned int map_size = 0;
1897 int error;
1898
1899 switch (buf_f->blf_type) {
1900 case XFS_LI_BUF:
1901 data_map = buf_f->blf_data_map;
1902 map_size = buf_f->blf_map_size;
1903 break;
1904 }
1905 bit = 0;
1906 i = 1; /* 0 is the buf format structure */
1907 while (1) {
1908 bit = xfs_next_bit(data_map, map_size, bit);
1909 if (bit == -1)
1910 break;
1911 nbits = xfs_contig_bits(data_map, map_size, bit);
1912 ASSERT(nbits > 0);
1913 ASSERT(item->ri_buf[i].i_addr != NULL);
1914 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1915 ASSERT(XFS_BUF_COUNT(bp) >=
1916 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1917
1918 /*
1919 * Do a sanity check if this is a dquot buffer. Just checking
1920 * the first dquot in the buffer should do. XXXThis is
1921 * probably a good thing to do for other buf types also.
1922 */
1923 error = 0;
1924 if (buf_f->blf_flags &
1925 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1926 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1927 item->ri_buf[i].i_addr,
1928 -1, 0, XFS_QMOPT_DOWARN,
1929 "dquot_buf_recover");
1930 }
1931 if (!error)
1932 memcpy(xfs_buf_offset(bp,
1933 (uint)bit << XFS_BLI_SHIFT), /* dest */
1934 item->ri_buf[i].i_addr, /* source */
1935 nbits<<XFS_BLI_SHIFT); /* length */
1936 i++;
1937 bit += nbits;
1938 }
1939
1940 /* Shouldn't be any more regions */
1941 ASSERT(i == item->ri_total);
1942 }
1943
1944 /*
1945 * Do some primitive error checking on ondisk dquot data structures.
1946 */
1947 int
1948 xfs_qm_dqcheck(
1949 xfs_disk_dquot_t *ddq,
1950 xfs_dqid_t id,
1951 uint type, /* used only when IO_dorepair is true */
1952 uint flags,
1953 char *str)
1954 {
1955 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1956 int errs = 0;
1957
1958 /*
1959 * We can encounter an uninitialized dquot buffer for 2 reasons:
1960 * 1. If we crash while deleting the quotainode(s), and those blks got
1961 * used for user data. This is because we take the path of regular
1962 * file deletion; however, the size field of quotainodes is never
1963 * updated, so all the tricks that we play in itruncate_finish
1964 * don't quite matter.
1965 *
1966 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1967 * But the allocation will be replayed so we'll end up with an
1968 * uninitialized quota block.
1969 *
1970 * This is all fine; things are still consistent, and we haven't lost
1971 * any quota information. Just don't complain about bad dquot blks.
1972 */
1973 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1974 if (flags & XFS_QMOPT_DOWARN)
1975 cmn_err(CE_ALERT,
1976 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1977 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1978 errs++;
1979 }
1980 if (ddq->d_version != XFS_DQUOT_VERSION) {
1981 if (flags & XFS_QMOPT_DOWARN)
1982 cmn_err(CE_ALERT,
1983 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1984 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1985 errs++;
1986 }
1987
1988 if (ddq->d_flags != XFS_DQ_USER &&
1989 ddq->d_flags != XFS_DQ_PROJ &&
1990 ddq->d_flags != XFS_DQ_GROUP) {
1991 if (flags & XFS_QMOPT_DOWARN)
1992 cmn_err(CE_ALERT,
1993 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1994 str, id, ddq->d_flags);
1995 errs++;
1996 }
1997
1998 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1999 if (flags & XFS_QMOPT_DOWARN)
2000 cmn_err(CE_ALERT,
2001 "%s : ondisk-dquot 0x%p, ID mismatch: "
2002 "0x%x expected, found id 0x%x",
2003 str, ddq, id, be32_to_cpu(ddq->d_id));
2004 errs++;
2005 }
2006
2007 if (!errs && ddq->d_id) {
2008 if (ddq->d_blk_softlimit &&
2009 be64_to_cpu(ddq->d_bcount) >=
2010 be64_to_cpu(ddq->d_blk_softlimit)) {
2011 if (!ddq->d_btimer) {
2012 if (flags & XFS_QMOPT_DOWARN)
2013 cmn_err(CE_ALERT,
2014 "%s : Dquot ID 0x%x (0x%p) "
2015 "BLK TIMER NOT STARTED",
2016 str, (int)be32_to_cpu(ddq->d_id), ddq);
2017 errs++;
2018 }
2019 }
2020 if (ddq->d_ino_softlimit &&
2021 be64_to_cpu(ddq->d_icount) >=
2022 be64_to_cpu(ddq->d_ino_softlimit)) {
2023 if (!ddq->d_itimer) {
2024 if (flags & XFS_QMOPT_DOWARN)
2025 cmn_err(CE_ALERT,
2026 "%s : Dquot ID 0x%x (0x%p) "
2027 "INODE TIMER NOT STARTED",
2028 str, (int)be32_to_cpu(ddq->d_id), ddq);
2029 errs++;
2030 }
2031 }
2032 if (ddq->d_rtb_softlimit &&
2033 be64_to_cpu(ddq->d_rtbcount) >=
2034 be64_to_cpu(ddq->d_rtb_softlimit)) {
2035 if (!ddq->d_rtbtimer) {
2036 if (flags & XFS_QMOPT_DOWARN)
2037 cmn_err(CE_ALERT,
2038 "%s : Dquot ID 0x%x (0x%p) "
2039 "RTBLK TIMER NOT STARTED",
2040 str, (int)be32_to_cpu(ddq->d_id), ddq);
2041 errs++;
2042 }
2043 }
2044 }
2045
2046 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2047 return errs;
2048
2049 if (flags & XFS_QMOPT_DOWARN)
2050 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2051
2052 /*
2053 * Typically, a repair is only requested by quotacheck.
2054 */
2055 ASSERT(id != -1);
2056 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2057 memset(d, 0, sizeof(xfs_dqblk_t));
2058
2059 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2060 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2061 d->dd_diskdq.d_flags = type;
2062 d->dd_diskdq.d_id = cpu_to_be32(id);
2063
2064 return errs;
2065 }
2066
2067 /*
2068 * Perform a dquot buffer recovery.
2069 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2070 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2071 * Else, treat it as a regular buffer and do recovery.
2072 */
2073 STATIC void
2074 xlog_recover_do_dquot_buffer(
2075 xfs_mount_t *mp,
2076 xlog_t *log,
2077 xlog_recover_item_t *item,
2078 xfs_buf_t *bp,
2079 xfs_buf_log_format_t *buf_f)
2080 {
2081 uint type;
2082
2083 /*
2084 * Filesystems are required to send in quota flags at mount time.
2085 */
2086 if (mp->m_qflags == 0) {
2087 return;
2088 }
2089
2090 type = 0;
2091 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2092 type |= XFS_DQ_USER;
2093 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2094 type |= XFS_DQ_PROJ;
2095 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2096 type |= XFS_DQ_GROUP;
2097 /*
2098 * This type of quotas was turned off, so ignore this buffer
2099 */
2100 if (log->l_quotaoffs_flag & type)
2101 return;
2102
2103 xlog_recover_do_reg_buffer(item, bp, buf_f);
2104 }
2105
2106 /*
2107 * This routine replays a modification made to a buffer at runtime.
2108 * There are actually two types of buffer, regular and inode, which
2109 * are handled differently. Inode buffers are handled differently
2110 * in that we only recover a specific set of data from them, namely
2111 * the inode di_next_unlinked fields. This is because all other inode
2112 * data is actually logged via inode records and any data we replay
2113 * here which overlaps that may be stale.
2114 *
2115 * When meta-data buffers are freed at run time we log a buffer item
2116 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2117 * of the buffer in the log should not be replayed at recovery time.
2118 * This is so that if the blocks covered by the buffer are reused for
2119 * file data before we crash we don't end up replaying old, freed
2120 * meta-data into a user's file.
2121 *
2122 * To handle the cancellation of buffer log items, we make two passes
2123 * over the log during recovery. During the first we build a table of
2124 * those buffers which have been cancelled, and during the second we
2125 * only replay those buffers which do not have corresponding cancel
2126 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2127 * for more details on the implementation of the table of cancel records.
2128 */
2129 STATIC int
2130 xlog_recover_do_buffer_trans(
2131 xlog_t *log,
2132 xlog_recover_item_t *item,
2133 int pass)
2134 {
2135 xfs_buf_log_format_t *buf_f;
2136 xfs_mount_t *mp;
2137 xfs_buf_t *bp;
2138 int error;
2139 int cancel;
2140 xfs_daddr_t blkno;
2141 int len;
2142 ushort flags;
2143
2144 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2145
2146 if (pass == XLOG_RECOVER_PASS1) {
2147 /*
2148 * In this pass we're only looking for buf items
2149 * with the XFS_BLI_CANCEL bit set.
2150 */
2151 xlog_recover_do_buffer_pass1(log, buf_f);
2152 return 0;
2153 } else {
2154 /*
2155 * In this pass we want to recover all the buffers
2156 * which have not been cancelled and are not
2157 * cancellation buffers themselves. The routine
2158 * we call here will tell us whether or not to
2159 * continue with the replay of this buffer.
2160 */
2161 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2162 if (cancel) {
2163 return 0;
2164 }
2165 }
2166 switch (buf_f->blf_type) {
2167 case XFS_LI_BUF:
2168 blkno = buf_f->blf_blkno;
2169 len = buf_f->blf_len;
2170 flags = buf_f->blf_flags;
2171 break;
2172 default:
2173 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2174 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2175 buf_f->blf_type, log->l_mp->m_logname ?
2176 log->l_mp->m_logname : "internal");
2177 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2178 XFS_ERRLEVEL_LOW, log->l_mp);
2179 return XFS_ERROR(EFSCORRUPTED);
2180 }
2181
2182 mp = log->l_mp;
2183 if (flags & XFS_BLI_INODE_BUF) {
2184 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2185 XFS_BUF_LOCK);
2186 } else {
2187 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2188 }
2189 if (XFS_BUF_ISERROR(bp)) {
2190 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2191 bp, blkno);
2192 error = XFS_BUF_GETERROR(bp);
2193 xfs_buf_relse(bp);
2194 return error;
2195 }
2196
2197 error = 0;
2198 if (flags & XFS_BLI_INODE_BUF) {
2199 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2200 } else if (flags &
2201 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2202 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2203 } else {
2204 xlog_recover_do_reg_buffer(item, bp, buf_f);
2205 }
2206 if (error)
2207 return XFS_ERROR(error);
2208
2209 /*
2210 * Perform delayed write on the buffer. Asynchronous writes will be
2211 * slower when taking into account all the buffers to be flushed.
2212 *
2213 * Also make sure that only inode buffers with good sizes stay in
2214 * the buffer cache. The kernel moves inodes in buffers of 1 block
2215 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2216 * buffers in the log can be a different size if the log was generated
2217 * by an older kernel using unclustered inode buffers or a newer kernel
2218 * running with a different inode cluster size. Regardless, if the
2219 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2220 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2221 * the buffer out of the buffer cache so that the buffer won't
2222 * overlap with future reads of those inodes.
2223 */
2224 if (XFS_DINODE_MAGIC ==
2225 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2226 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2227 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2228 XFS_BUF_STALE(bp);
2229 error = xfs_bwrite(mp, bp);
2230 } else {
2231 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2232 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2233 XFS_BUF_SET_FSPRIVATE(bp, mp);
2234 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2235 xfs_bdwrite(mp, bp);
2236 }
2237
2238 return (error);
2239 }
2240
2241 STATIC int
2242 xlog_recover_do_inode_trans(
2243 xlog_t *log,
2244 xlog_recover_item_t *item,
2245 int pass)
2246 {
2247 xfs_inode_log_format_t *in_f;
2248 xfs_mount_t *mp;
2249 xfs_buf_t *bp;
2250 xfs_imap_t imap;
2251 xfs_dinode_t *dip;
2252 xfs_ino_t ino;
2253 int len;
2254 xfs_caddr_t src;
2255 xfs_caddr_t dest;
2256 int error;
2257 int attr_index;
2258 uint fields;
2259 xfs_icdinode_t *dicp;
2260 int need_free = 0;
2261
2262 if (pass == XLOG_RECOVER_PASS1) {
2263 return 0;
2264 }
2265
2266 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2267 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2268 } else {
2269 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2270 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2271 need_free = 1;
2272 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2273 if (error)
2274 goto error;
2275 }
2276 ino = in_f->ilf_ino;
2277 mp = log->l_mp;
2278 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2279 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2280 imap.im_len = in_f->ilf_len;
2281 imap.im_boffset = in_f->ilf_boffset;
2282 } else {
2283 /*
2284 * It's an old inode format record. We don't know where
2285 * its cluster is located on disk, and we can't allow
2286 * xfs_imap() to figure it out because the inode btrees
2287 * are not ready to be used. Therefore do not pass the
2288 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2289 * us only the single block in which the inode lives
2290 * rather than its cluster, so we must make sure to
2291 * invalidate the buffer when we write it out below.
2292 */
2293 imap.im_blkno = 0;
2294 error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2295 if (error)
2296 goto error;
2297 }
2298
2299 /*
2300 * Inode buffers can be freed, look out for it,
2301 * and do not replay the inode.
2302 */
2303 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2304 error = 0;
2305 goto error;
2306 }
2307
2308 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2309 XFS_BUF_LOCK);
2310 if (XFS_BUF_ISERROR(bp)) {
2311 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2312 bp, imap.im_blkno);
2313 error = XFS_BUF_GETERROR(bp);
2314 xfs_buf_relse(bp);
2315 goto error;
2316 }
2317 error = 0;
2318 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2319 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2320
2321 /*
2322 * Make sure the place we're flushing out to really looks
2323 * like an inode!
2324 */
2325 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
2326 xfs_buf_relse(bp);
2327 xfs_fs_cmn_err(CE_ALERT, mp,
2328 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2329 dip, bp, ino);
2330 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2331 XFS_ERRLEVEL_LOW, mp);
2332 error = EFSCORRUPTED;
2333 goto error;
2334 }
2335 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2336 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2337 xfs_buf_relse(bp);
2338 xfs_fs_cmn_err(CE_ALERT, mp,
2339 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2340 item, ino);
2341 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2342 XFS_ERRLEVEL_LOW, mp);
2343 error = EFSCORRUPTED;
2344 goto error;
2345 }
2346
2347 /* Skip replay when the on disk inode is newer than the log one */
2348 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
2349 /*
2350 * Deal with the wrap case, DI_MAX_FLUSH is less
2351 * than smaller numbers
2352 */
2353 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2354 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2355 /* do nothing */
2356 } else {
2357 xfs_buf_relse(bp);
2358 error = 0;
2359 goto error;
2360 }
2361 }
2362 /* Take the opportunity to reset the flush iteration count */
2363 dicp->di_flushiter = 0;
2364
2365 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2366 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2367 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2368 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2369 XFS_ERRLEVEL_LOW, mp, dicp);
2370 xfs_buf_relse(bp);
2371 xfs_fs_cmn_err(CE_ALERT, mp,
2372 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2373 item, dip, bp, ino);
2374 error = EFSCORRUPTED;
2375 goto error;
2376 }
2377 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2378 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2379 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2380 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2381 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2382 XFS_ERRLEVEL_LOW, mp, dicp);
2383 xfs_buf_relse(bp);
2384 xfs_fs_cmn_err(CE_ALERT, mp,
2385 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2386 item, dip, bp, ino);
2387 error = EFSCORRUPTED;
2388 goto error;
2389 }
2390 }
2391 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2392 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2393 XFS_ERRLEVEL_LOW, mp, dicp);
2394 xfs_buf_relse(bp);
2395 xfs_fs_cmn_err(CE_ALERT, mp,
2396 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2397 item, dip, bp, ino,
2398 dicp->di_nextents + dicp->di_anextents,
2399 dicp->di_nblocks);
2400 error = EFSCORRUPTED;
2401 goto error;
2402 }
2403 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2404 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2405 XFS_ERRLEVEL_LOW, mp, dicp);
2406 xfs_buf_relse(bp);
2407 xfs_fs_cmn_err(CE_ALERT, mp,
2408 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2409 item, dip, bp, ino, dicp->di_forkoff);
2410 error = EFSCORRUPTED;
2411 goto error;
2412 }
2413 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2414 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2415 XFS_ERRLEVEL_LOW, mp, dicp);
2416 xfs_buf_relse(bp);
2417 xfs_fs_cmn_err(CE_ALERT, mp,
2418 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2419 item->ri_buf[1].i_len, item);
2420 error = EFSCORRUPTED;
2421 goto error;
2422 }
2423
2424 /* The core is in in-core format */
2425 xfs_dinode_to_disk(&dip->di_core,
2426 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2427
2428 /* the rest is in on-disk format */
2429 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2430 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2431 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2432 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2433 }
2434
2435 fields = in_f->ilf_fields;
2436 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2437 case XFS_ILOG_DEV:
2438 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
2439 break;
2440 case XFS_ILOG_UUID:
2441 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2442 break;
2443 }
2444
2445 if (in_f->ilf_size == 2)
2446 goto write_inode_buffer;
2447 len = item->ri_buf[2].i_len;
2448 src = item->ri_buf[2].i_addr;
2449 ASSERT(in_f->ilf_size <= 4);
2450 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2451 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2452 (len == in_f->ilf_dsize));
2453
2454 switch (fields & XFS_ILOG_DFORK) {
2455 case XFS_ILOG_DDATA:
2456 case XFS_ILOG_DEXT:
2457 memcpy(&dip->di_u, src, len);
2458 break;
2459
2460 case XFS_ILOG_DBROOT:
2461 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2462 &(dip->di_u.di_bmbt),
2463 XFS_DFORK_DSIZE(dip, mp));
2464 break;
2465
2466 default:
2467 /*
2468 * There are no data fork flags set.
2469 */
2470 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2471 break;
2472 }
2473
2474 /*
2475 * If we logged any attribute data, recover it. There may or
2476 * may not have been any other non-core data logged in this
2477 * transaction.
2478 */
2479 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2480 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2481 attr_index = 3;
2482 } else {
2483 attr_index = 2;
2484 }
2485 len = item->ri_buf[attr_index].i_len;
2486 src = item->ri_buf[attr_index].i_addr;
2487 ASSERT(len == in_f->ilf_asize);
2488
2489 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2490 case XFS_ILOG_ADATA:
2491 case XFS_ILOG_AEXT:
2492 dest = XFS_DFORK_APTR(dip);
2493 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2494 memcpy(dest, src, len);
2495 break;
2496
2497 case XFS_ILOG_ABROOT:
2498 dest = XFS_DFORK_APTR(dip);
2499 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2500 (xfs_bmdr_block_t*)dest,
2501 XFS_DFORK_ASIZE(dip, mp));
2502 break;
2503
2504 default:
2505 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2506 ASSERT(0);
2507 xfs_buf_relse(bp);
2508 error = EIO;
2509 goto error;
2510 }
2511 }
2512
2513 write_inode_buffer:
2514 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2515 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2516 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2517 XFS_BUF_SET_FSPRIVATE(bp, mp);
2518 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2519 xfs_bdwrite(mp, bp);
2520 } else {
2521 XFS_BUF_STALE(bp);
2522 error = xfs_bwrite(mp, bp);
2523 }
2524
2525 error:
2526 if (need_free)
2527 kmem_free(in_f);
2528 return XFS_ERROR(error);
2529 }
2530
2531 /*
2532 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2533 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2534 * of that type.
2535 */
2536 STATIC int
2537 xlog_recover_do_quotaoff_trans(
2538 xlog_t *log,
2539 xlog_recover_item_t *item,
2540 int pass)
2541 {
2542 xfs_qoff_logformat_t *qoff_f;
2543
2544 if (pass == XLOG_RECOVER_PASS2) {
2545 return (0);
2546 }
2547
2548 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2549 ASSERT(qoff_f);
2550
2551 /*
2552 * The logitem format's flag tells us if this was user quotaoff,
2553 * group/project quotaoff or both.
2554 */
2555 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2556 log->l_quotaoffs_flag |= XFS_DQ_USER;
2557 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2558 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2559 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2560 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2561
2562 return (0);
2563 }
2564
2565 /*
2566 * Recover a dquot record
2567 */
2568 STATIC int
2569 xlog_recover_do_dquot_trans(
2570 xlog_t *log,
2571 xlog_recover_item_t *item,
2572 int pass)
2573 {
2574 xfs_mount_t *mp;
2575 xfs_buf_t *bp;
2576 struct xfs_disk_dquot *ddq, *recddq;
2577 int error;
2578 xfs_dq_logformat_t *dq_f;
2579 uint type;
2580
2581 if (pass == XLOG_RECOVER_PASS1) {
2582 return 0;
2583 }
2584 mp = log->l_mp;
2585
2586 /*
2587 * Filesystems are required to send in quota flags at mount time.
2588 */
2589 if (mp->m_qflags == 0)
2590 return (0);
2591
2592 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2593 ASSERT(recddq);
2594 /*
2595 * This type of quotas was turned off, so ignore this record.
2596 */
2597 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2598 ASSERT(type);
2599 if (log->l_quotaoffs_flag & type)
2600 return (0);
2601
2602 /*
2603 * At this point we know that quota was _not_ turned off.
2604 * Since the mount flags are not indicating to us otherwise, this
2605 * must mean that quota is on, and the dquot needs to be replayed.
2606 * Remember that we may not have fully recovered the superblock yet,
2607 * so we can't do the usual trick of looking at the SB quota bits.
2608 *
2609 * The other possibility, of course, is that the quota subsystem was
2610 * removed since the last mount - ENOSYS.
2611 */
2612 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2613 ASSERT(dq_f);
2614 if ((error = xfs_qm_dqcheck(recddq,
2615 dq_f->qlf_id,
2616 0, XFS_QMOPT_DOWARN,
2617 "xlog_recover_do_dquot_trans (log copy)"))) {
2618 return XFS_ERROR(EIO);
2619 }
2620 ASSERT(dq_f->qlf_len == 1);
2621
2622 error = xfs_read_buf(mp, mp->m_ddev_targp,
2623 dq_f->qlf_blkno,
2624 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2625 0, &bp);
2626 if (error) {
2627 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2628 bp, dq_f->qlf_blkno);
2629 return error;
2630 }
2631 ASSERT(bp);
2632 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2633
2634 /*
2635 * At least the magic num portion should be on disk because this
2636 * was among a chunk of dquots created earlier, and we did some
2637 * minimal initialization then.
2638 */
2639 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2640 "xlog_recover_do_dquot_trans")) {
2641 xfs_buf_relse(bp);
2642 return XFS_ERROR(EIO);
2643 }
2644
2645 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2646
2647 ASSERT(dq_f->qlf_size == 2);
2648 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2649 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2650 XFS_BUF_SET_FSPRIVATE(bp, mp);
2651 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2652 xfs_bdwrite(mp, bp);
2653
2654 return (0);
2655 }
2656
2657 /*
2658 * This routine is called to create an in-core extent free intent
2659 * item from the efi format structure which was logged on disk.
2660 * It allocates an in-core efi, copies the extents from the format
2661 * structure into it, and adds the efi to the AIL with the given
2662 * LSN.
2663 */
2664 STATIC int
2665 xlog_recover_do_efi_trans(
2666 xlog_t *log,
2667 xlog_recover_item_t *item,
2668 xfs_lsn_t lsn,
2669 int pass)
2670 {
2671 int error;
2672 xfs_mount_t *mp;
2673 xfs_efi_log_item_t *efip;
2674 xfs_efi_log_format_t *efi_formatp;
2675
2676 if (pass == XLOG_RECOVER_PASS1) {
2677 return 0;
2678 }
2679
2680 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2681
2682 mp = log->l_mp;
2683 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2684 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2685 &(efip->efi_format)))) {
2686 xfs_efi_item_free(efip);
2687 return error;
2688 }
2689 efip->efi_next_extent = efi_formatp->efi_nextents;
2690 efip->efi_flags |= XFS_EFI_COMMITTED;
2691
2692 spin_lock(&mp->m_ail_lock);
2693 /*
2694 * xfs_trans_update_ail() drops the AIL lock.
2695 */
2696 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
2697 return 0;
2698 }
2699
2700
2701 /*
2702 * This routine is called when an efd format structure is found in
2703 * a committed transaction in the log. It's purpose is to cancel
2704 * the corresponding efi if it was still in the log. To do this
2705 * it searches the AIL for the efi with an id equal to that in the
2706 * efd format structure. If we find it, we remove the efi from the
2707 * AIL and free it.
2708 */
2709 STATIC void
2710 xlog_recover_do_efd_trans(
2711 xlog_t *log,
2712 xlog_recover_item_t *item,
2713 int pass)
2714 {
2715 xfs_mount_t *mp;
2716 xfs_efd_log_format_t *efd_formatp;
2717 xfs_efi_log_item_t *efip = NULL;
2718 xfs_log_item_t *lip;
2719 int gen;
2720 __uint64_t efi_id;
2721
2722 if (pass == XLOG_RECOVER_PASS1) {
2723 return;
2724 }
2725
2726 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2727 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2728 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2729 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2730 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2731 efi_id = efd_formatp->efd_efi_id;
2732
2733 /*
2734 * Search for the efi with the id in the efd format structure
2735 * in the AIL.
2736 */
2737 mp = log->l_mp;
2738 spin_lock(&mp->m_ail_lock);
2739 lip = xfs_trans_first_ail(mp, &gen);
2740 while (lip != NULL) {
2741 if (lip->li_type == XFS_LI_EFI) {
2742 efip = (xfs_efi_log_item_t *)lip;
2743 if (efip->efi_format.efi_id == efi_id) {
2744 /*
2745 * xfs_trans_delete_ail() drops the
2746 * AIL lock.
2747 */
2748 xfs_trans_delete_ail(mp, lip);
2749 xfs_efi_item_free(efip);
2750 return;
2751 }
2752 }
2753 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2754 }
2755 spin_unlock(&mp->m_ail_lock);
2756 }
2757
2758 /*
2759 * Perform the transaction
2760 *
2761 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2762 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2763 */
2764 STATIC int
2765 xlog_recover_do_trans(
2766 xlog_t *log,
2767 xlog_recover_t *trans,
2768 int pass)
2769 {
2770 int error = 0;
2771 xlog_recover_item_t *item, *first_item;
2772
2773 if ((error = xlog_recover_reorder_trans(trans)))
2774 return error;
2775 first_item = item = trans->r_itemq;
2776 do {
2777 /*
2778 * we don't need to worry about the block number being
2779 * truncated in > 1 TB buffers because in user-land,
2780 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2781 * the blknos will get through the user-mode buffer
2782 * cache properly. The only bad case is o32 kernels
2783 * where xfs_daddr_t is 32-bits but mount will warn us
2784 * off a > 1 TB filesystem before we get here.
2785 */
2786 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2787 if ((error = xlog_recover_do_buffer_trans(log, item,
2788 pass)))
2789 break;
2790 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2791 if ((error = xlog_recover_do_inode_trans(log, item,
2792 pass)))
2793 break;
2794 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2795 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2796 pass)))
2797 break;
2798 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2799 xlog_recover_do_efd_trans(log, item, pass);
2800 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2801 if ((error = xlog_recover_do_dquot_trans(log, item,
2802 pass)))
2803 break;
2804 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2805 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2806 pass)))
2807 break;
2808 } else {
2809 xlog_warn("XFS: xlog_recover_do_trans");
2810 ASSERT(0);
2811 error = XFS_ERROR(EIO);
2812 break;
2813 }
2814 item = item->ri_next;
2815 } while (first_item != item);
2816
2817 return error;
2818 }
2819
2820 /*
2821 * Free up any resources allocated by the transaction
2822 *
2823 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2824 */
2825 STATIC void
2826 xlog_recover_free_trans(
2827 xlog_recover_t *trans)
2828 {
2829 xlog_recover_item_t *first_item, *item, *free_item;
2830 int i;
2831
2832 item = first_item = trans->r_itemq;
2833 do {
2834 free_item = item;
2835 item = item->ri_next;
2836 /* Free the regions in the item. */
2837 for (i = 0; i < free_item->ri_cnt; i++) {
2838 kmem_free(free_item->ri_buf[i].i_addr);
2839 }
2840 /* Free the item itself */
2841 kmem_free(free_item->ri_buf);
2842 kmem_free(free_item);
2843 } while (first_item != item);
2844 /* Free the transaction recover structure */
2845 kmem_free(trans);
2846 }
2847
2848 STATIC int
2849 xlog_recover_commit_trans(
2850 xlog_t *log,
2851 xlog_recover_t **q,
2852 xlog_recover_t *trans,
2853 int pass)
2854 {
2855 int error;
2856
2857 if ((error = xlog_recover_unlink_tid(q, trans)))
2858 return error;
2859 if ((error = xlog_recover_do_trans(log, trans, pass)))
2860 return error;
2861 xlog_recover_free_trans(trans); /* no error */
2862 return 0;
2863 }
2864
2865 STATIC int
2866 xlog_recover_unmount_trans(
2867 xlog_recover_t *trans)
2868 {
2869 /* Do nothing now */
2870 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2871 return 0;
2872 }
2873
2874 /*
2875 * There are two valid states of the r_state field. 0 indicates that the
2876 * transaction structure is in a normal state. We have either seen the
2877 * start of the transaction or the last operation we added was not a partial
2878 * operation. If the last operation we added to the transaction was a
2879 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2880 *
2881 * NOTE: skip LRs with 0 data length.
2882 */
2883 STATIC int
2884 xlog_recover_process_data(
2885 xlog_t *log,
2886 xlog_recover_t *rhash[],
2887 xlog_rec_header_t *rhead,
2888 xfs_caddr_t dp,
2889 int pass)
2890 {
2891 xfs_caddr_t lp;
2892 int num_logops;
2893 xlog_op_header_t *ohead;
2894 xlog_recover_t *trans;
2895 xlog_tid_t tid;
2896 int error;
2897 unsigned long hash;
2898 uint flags;
2899
2900 lp = dp + be32_to_cpu(rhead->h_len);
2901 num_logops = be32_to_cpu(rhead->h_num_logops);
2902
2903 /* check the log format matches our own - else we can't recover */
2904 if (xlog_header_check_recover(log->l_mp, rhead))
2905 return (XFS_ERROR(EIO));
2906
2907 while ((dp < lp) && num_logops) {
2908 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2909 ohead = (xlog_op_header_t *)dp;
2910 dp += sizeof(xlog_op_header_t);
2911 if (ohead->oh_clientid != XFS_TRANSACTION &&
2912 ohead->oh_clientid != XFS_LOG) {
2913 xlog_warn(
2914 "XFS: xlog_recover_process_data: bad clientid");
2915 ASSERT(0);
2916 return (XFS_ERROR(EIO));
2917 }
2918 tid = be32_to_cpu(ohead->oh_tid);
2919 hash = XLOG_RHASH(tid);
2920 trans = xlog_recover_find_tid(rhash[hash], tid);
2921 if (trans == NULL) { /* not found; add new tid */
2922 if (ohead->oh_flags & XLOG_START_TRANS)
2923 xlog_recover_new_tid(&rhash[hash], tid,
2924 be64_to_cpu(rhead->h_lsn));
2925 } else {
2926 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2927 xlog_warn(
2928 "XFS: xlog_recover_process_data: bad length");
2929 WARN_ON(1);
2930 return (XFS_ERROR(EIO));
2931 }
2932 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2933 if (flags & XLOG_WAS_CONT_TRANS)
2934 flags &= ~XLOG_CONTINUE_TRANS;
2935 switch (flags) {
2936 case XLOG_COMMIT_TRANS:
2937 error = xlog_recover_commit_trans(log,
2938 &rhash[hash], trans, pass);
2939 break;
2940 case XLOG_UNMOUNT_TRANS:
2941 error = xlog_recover_unmount_trans(trans);
2942 break;
2943 case XLOG_WAS_CONT_TRANS:
2944 error = xlog_recover_add_to_cont_trans(trans,
2945 dp, be32_to_cpu(ohead->oh_len));
2946 break;
2947 case XLOG_START_TRANS:
2948 xlog_warn(
2949 "XFS: xlog_recover_process_data: bad transaction");
2950 ASSERT(0);
2951 error = XFS_ERROR(EIO);
2952 break;
2953 case 0:
2954 case XLOG_CONTINUE_TRANS:
2955 error = xlog_recover_add_to_trans(trans,
2956 dp, be32_to_cpu(ohead->oh_len));
2957 break;
2958 default:
2959 xlog_warn(
2960 "XFS: xlog_recover_process_data: bad flag");
2961 ASSERT(0);
2962 error = XFS_ERROR(EIO);
2963 break;
2964 }
2965 if (error)
2966 return error;
2967 }
2968 dp += be32_to_cpu(ohead->oh_len);
2969 num_logops--;
2970 }
2971 return 0;
2972 }
2973
2974 /*
2975 * Process an extent free intent item that was recovered from
2976 * the log. We need to free the extents that it describes.
2977 */
2978 STATIC int
2979 xlog_recover_process_efi(
2980 xfs_mount_t *mp,
2981 xfs_efi_log_item_t *efip)
2982 {
2983 xfs_efd_log_item_t *efdp;
2984 xfs_trans_t *tp;
2985 int i;
2986 int error = 0;
2987 xfs_extent_t *extp;
2988 xfs_fsblock_t startblock_fsb;
2989
2990 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2991
2992 /*
2993 * First check the validity of the extents described by the
2994 * EFI. If any are bad, then assume that all are bad and
2995 * just toss the EFI.
2996 */
2997 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2998 extp = &(efip->efi_format.efi_extents[i]);
2999 startblock_fsb = XFS_BB_TO_FSB(mp,
3000 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3001 if ((startblock_fsb == 0) ||
3002 (extp->ext_len == 0) ||
3003 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3004 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3005 /*
3006 * This will pull the EFI from the AIL and
3007 * free the memory associated with it.
3008 */
3009 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3010 return XFS_ERROR(EIO);
3011 }
3012 }
3013
3014 tp = xfs_trans_alloc(mp, 0);
3015 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3016 if (error)
3017 goto abort_error;
3018 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3019
3020 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3021 extp = &(efip->efi_format.efi_extents[i]);
3022 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3023 if (error)
3024 goto abort_error;
3025 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3026 extp->ext_len);
3027 }
3028
3029 efip->efi_flags |= XFS_EFI_RECOVERED;
3030 error = xfs_trans_commit(tp, 0);
3031 return error;
3032
3033 abort_error:
3034 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3035 return error;
3036 }
3037
3038 /*
3039 * Verify that once we've encountered something other than an EFI
3040 * in the AIL that there are no more EFIs in the AIL.
3041 */
3042 #if defined(DEBUG)
3043 STATIC void
3044 xlog_recover_check_ail(
3045 xfs_mount_t *mp,
3046 xfs_log_item_t *lip,
3047 int gen)
3048 {
3049 int orig_gen = gen;
3050
3051 do {
3052 ASSERT(lip->li_type != XFS_LI_EFI);
3053 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3054 /*
3055 * The check will be bogus if we restart from the
3056 * beginning of the AIL, so ASSERT that we don't.
3057 * We never should since we're holding the AIL lock
3058 * the entire time.
3059 */
3060 ASSERT(gen == orig_gen);
3061 } while (lip != NULL);
3062 }
3063 #endif /* DEBUG */
3064
3065 /*
3066 * When this is called, all of the EFIs which did not have
3067 * corresponding EFDs should be in the AIL. What we do now
3068 * is free the extents associated with each one.
3069 *
3070 * Since we process the EFIs in normal transactions, they
3071 * will be removed at some point after the commit. This prevents
3072 * us from just walking down the list processing each one.
3073 * We'll use a flag in the EFI to skip those that we've already
3074 * processed and use the AIL iteration mechanism's generation
3075 * count to try to speed this up at least a bit.
3076 *
3077 * When we start, we know that the EFIs are the only things in
3078 * the AIL. As we process them, however, other items are added
3079 * to the AIL. Since everything added to the AIL must come after
3080 * everything already in the AIL, we stop processing as soon as
3081 * we see something other than an EFI in the AIL.
3082 */
3083 STATIC int
3084 xlog_recover_process_efis(
3085 xlog_t *log)
3086 {
3087 xfs_log_item_t *lip;
3088 xfs_efi_log_item_t *efip;
3089 int gen;
3090 xfs_mount_t *mp;
3091 int error = 0;
3092
3093 mp = log->l_mp;
3094 spin_lock(&mp->m_ail_lock);
3095
3096 lip = xfs_trans_first_ail(mp, &gen);
3097 while (lip != NULL) {
3098 /*
3099 * We're done when we see something other than an EFI.
3100 */
3101 if (lip->li_type != XFS_LI_EFI) {
3102 xlog_recover_check_ail(mp, lip, gen);
3103 break;
3104 }
3105
3106 /*
3107 * Skip EFIs that we've already processed.
3108 */
3109 efip = (xfs_efi_log_item_t *)lip;
3110 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3111 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3112 continue;
3113 }
3114
3115 spin_unlock(&mp->m_ail_lock);
3116 error = xlog_recover_process_efi(mp, efip);
3117 if (error)
3118 return error;
3119 spin_lock(&mp->m_ail_lock);
3120 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3121 }
3122 spin_unlock(&mp->m_ail_lock);
3123 return error;
3124 }
3125
3126 /*
3127 * This routine performs a transaction to null out a bad inode pointer
3128 * in an agi unlinked inode hash bucket.
3129 */
3130 STATIC void
3131 xlog_recover_clear_agi_bucket(
3132 xfs_mount_t *mp,
3133 xfs_agnumber_t agno,
3134 int bucket)
3135 {
3136 xfs_trans_t *tp;
3137 xfs_agi_t *agi;
3138 xfs_buf_t *agibp;
3139 int offset;
3140 int error;
3141
3142 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3143 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3144 if (!error)
3145 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3146 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3147 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3148 if (error)
3149 goto out_abort;
3150
3151 error = EINVAL;
3152 agi = XFS_BUF_TO_AGI(agibp);
3153 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
3154 goto out_abort;
3155
3156 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3157 offset = offsetof(xfs_agi_t, agi_unlinked) +
3158 (sizeof(xfs_agino_t) * bucket);
3159 xfs_trans_log_buf(tp, agibp, offset,
3160 (offset + sizeof(xfs_agino_t) - 1));
3161
3162 error = xfs_trans_commit(tp, 0);
3163 if (error)
3164 goto out_error;
3165 return;
3166
3167 out_abort:
3168 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3169 out_error:
3170 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3171 "failed to clear agi %d. Continuing.", agno);
3172 return;
3173 }
3174
3175 /*
3176 * xlog_iunlink_recover
3177 *
3178 * This is called during recovery to process any inodes which
3179 * we unlinked but not freed when the system crashed. These
3180 * inodes will be on the lists in the AGI blocks. What we do
3181 * here is scan all the AGIs and fully truncate and free any
3182 * inodes found on the lists. Each inode is removed from the
3183 * lists when it has been fully truncated and is freed. The
3184 * freeing of the inode and its removal from the list must be
3185 * atomic.
3186 */
3187 void
3188 xlog_recover_process_iunlinks(
3189 xlog_t *log)
3190 {
3191 xfs_mount_t *mp;
3192 xfs_agnumber_t agno;
3193 xfs_agi_t *agi;
3194 xfs_buf_t *agibp;
3195 xfs_buf_t *ibp;
3196 xfs_dinode_t *dip;
3197 xfs_inode_t *ip;
3198 xfs_agino_t agino;
3199 xfs_ino_t ino;
3200 int bucket;
3201 int error;
3202 uint mp_dmevmask;
3203
3204 mp = log->l_mp;
3205
3206 /*
3207 * Prevent any DMAPI event from being sent while in this function.
3208 */
3209 mp_dmevmask = mp->m_dmevmask;
3210 mp->m_dmevmask = 0;
3211
3212 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3213 /*
3214 * Find the agi for this ag.
3215 */
3216 agibp = xfs_buf_read(mp->m_ddev_targp,
3217 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3218 XFS_FSS_TO_BB(mp, 1), 0);
3219 if (XFS_BUF_ISERROR(agibp)) {
3220 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3221 log->l_mp, agibp,
3222 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3223 }
3224 agi = XFS_BUF_TO_AGI(agibp);
3225 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3226
3227 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3228
3229 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3230 while (agino != NULLAGINO) {
3231
3232 /*
3233 * Release the agi buffer so that it can
3234 * be acquired in the normal course of the
3235 * transaction to truncate and free the inode.
3236 */
3237 xfs_buf_relse(agibp);
3238
3239 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3240 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3241 ASSERT(error || (ip != NULL));
3242
3243 if (!error) {
3244 /*
3245 * Get the on disk inode to find the
3246 * next inode in the bucket.
3247 */
3248 error = xfs_itobp(mp, NULL, ip, &dip,
3249 &ibp, 0, 0,
3250 XFS_BUF_LOCK);
3251 ASSERT(error || (dip != NULL));
3252 }
3253
3254 if (!error) {
3255 ASSERT(ip->i_d.di_nlink == 0);
3256
3257 /* setup for the next pass */
3258 agino = be32_to_cpu(
3259 dip->di_next_unlinked);
3260 xfs_buf_relse(ibp);
3261 /*
3262 * Prevent any DMAPI event from
3263 * being sent when the
3264 * reference on the inode is
3265 * dropped.
3266 */
3267 ip->i_d.di_dmevmask = 0;
3268
3269 /*
3270 * If this is a new inode, handle
3271 * it specially. Otherwise,
3272 * just drop our reference to the
3273 * inode. If there are no
3274 * other references, this will
3275 * send the inode to
3276 * xfs_inactive() which will
3277 * truncate the file and free
3278 * the inode.
3279 */
3280 if (ip->i_d.di_mode == 0)
3281 xfs_iput_new(ip, 0);
3282 else
3283 IRELE(ip);
3284 } else {
3285 /*
3286 * We can't read in the inode
3287 * this bucket points to, or
3288 * this inode is messed up. Just
3289 * ditch this bucket of inodes. We
3290 * will lose some inodes and space,
3291 * but at least we won't hang. Call
3292 * xlog_recover_clear_agi_bucket()
3293 * to perform a transaction to clear
3294 * the inode pointer in the bucket.
3295 */
3296 xlog_recover_clear_agi_bucket(mp, agno,
3297 bucket);
3298
3299 agino = NULLAGINO;
3300 }
3301
3302 /*
3303 * Reacquire the agibuffer and continue around
3304 * the loop.
3305 */
3306 agibp = xfs_buf_read(mp->m_ddev_targp,
3307 XFS_AG_DADDR(mp, agno,
3308 XFS_AGI_DADDR(mp)),
3309 XFS_FSS_TO_BB(mp, 1), 0);
3310 if (XFS_BUF_ISERROR(agibp)) {
3311 xfs_ioerror_alert(
3312 "xlog_recover_process_iunlinks(#2)",
3313 log->l_mp, agibp,
3314 XFS_AG_DADDR(mp, agno,
3315 XFS_AGI_DADDR(mp)));
3316 }
3317 agi = XFS_BUF_TO_AGI(agibp);
3318 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3319 agi->agi_magicnum));
3320 }
3321 }
3322
3323 /*
3324 * Release the buffer for the current agi so we can
3325 * go on to the next one.
3326 */
3327 xfs_buf_relse(agibp);
3328 }
3329
3330 mp->m_dmevmask = mp_dmevmask;
3331 }
3332
3333
3334 #ifdef DEBUG
3335 STATIC void
3336 xlog_pack_data_checksum(
3337 xlog_t *log,
3338 xlog_in_core_t *iclog,
3339 int size)
3340 {
3341 int i;
3342 __be32 *up;
3343 uint chksum = 0;
3344
3345 up = (__be32 *)iclog->ic_datap;
3346 /* divide length by 4 to get # words */
3347 for (i = 0; i < (size >> 2); i++) {
3348 chksum ^= be32_to_cpu(*up);
3349 up++;
3350 }
3351 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3352 }
3353 #else
3354 #define xlog_pack_data_checksum(log, iclog, size)
3355 #endif
3356
3357 /*
3358 * Stamp cycle number in every block
3359 */
3360 void
3361 xlog_pack_data(
3362 xlog_t *log,
3363 xlog_in_core_t *iclog,
3364 int roundoff)
3365 {
3366 int i, j, k;
3367 int size = iclog->ic_offset + roundoff;
3368 __be32 cycle_lsn;
3369 xfs_caddr_t dp;
3370 xlog_in_core_2_t *xhdr;
3371
3372 xlog_pack_data_checksum(log, iclog, size);
3373
3374 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3375
3376 dp = iclog->ic_datap;
3377 for (i = 0; i < BTOBB(size) &&
3378 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3379 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3380 *(__be32 *)dp = cycle_lsn;
3381 dp += BBSIZE;
3382 }
3383
3384 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3385 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3386 for ( ; i < BTOBB(size); i++) {
3387 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3388 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3389 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3390 *(__be32 *)dp = cycle_lsn;
3391 dp += BBSIZE;
3392 }
3393
3394 for (i = 1; i < log->l_iclog_heads; i++) {
3395 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3396 }
3397 }
3398 }
3399
3400 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3401 STATIC void
3402 xlog_unpack_data_checksum(
3403 xlog_rec_header_t *rhead,
3404 xfs_caddr_t dp,
3405 xlog_t *log)
3406 {
3407 __be32 *up = (__be32 *)dp;
3408 uint chksum = 0;
3409 int i;
3410
3411 /* divide length by 4 to get # words */
3412 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3413 chksum ^= be32_to_cpu(*up);
3414 up++;
3415 }
3416 if (chksum != be32_to_cpu(rhead->h_chksum)) {
3417 if (rhead->h_chksum ||
3418 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3419 cmn_err(CE_DEBUG,
3420 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3421 be32_to_cpu(rhead->h_chksum), chksum);
3422 cmn_err(CE_DEBUG,
3423 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3424 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3425 cmn_err(CE_DEBUG,
3426 "XFS: LogR this is a LogV2 filesystem\n");
3427 }
3428 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3429 }
3430 }
3431 }
3432 #else
3433 #define xlog_unpack_data_checksum(rhead, dp, log)
3434 #endif
3435
3436 STATIC void
3437 xlog_unpack_data(
3438 xlog_rec_header_t *rhead,
3439 xfs_caddr_t dp,
3440 xlog_t *log)
3441 {
3442 int i, j, k;
3443 xlog_in_core_2_t *xhdr;
3444
3445 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3446 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3447 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3448 dp += BBSIZE;
3449 }
3450
3451 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3452 xhdr = (xlog_in_core_2_t *)rhead;
3453 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3454 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3455 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3456 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3457 dp += BBSIZE;
3458 }
3459 }
3460
3461 xlog_unpack_data_checksum(rhead, dp, log);
3462 }
3463
3464 STATIC int
3465 xlog_valid_rec_header(
3466 xlog_t *log,
3467 xlog_rec_header_t *rhead,
3468 xfs_daddr_t blkno)
3469 {
3470 int hlen;
3471
3472 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3473 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3474 XFS_ERRLEVEL_LOW, log->l_mp);
3475 return XFS_ERROR(EFSCORRUPTED);
3476 }
3477 if (unlikely(
3478 (!rhead->h_version ||
3479 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3480 xlog_warn("XFS: %s: unrecognised log version (%d).",
3481 __func__, be32_to_cpu(rhead->h_version));
3482 return XFS_ERROR(EIO);
3483 }
3484
3485 /* LR body must have data or it wouldn't have been written */
3486 hlen = be32_to_cpu(rhead->h_len);
3487 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3488 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3489 XFS_ERRLEVEL_LOW, log->l_mp);
3490 return XFS_ERROR(EFSCORRUPTED);
3491 }
3492 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3493 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3494 XFS_ERRLEVEL_LOW, log->l_mp);
3495 return XFS_ERROR(EFSCORRUPTED);
3496 }
3497 return 0;
3498 }
3499
3500 /*
3501 * Read the log from tail to head and process the log records found.
3502 * Handle the two cases where the tail and head are in the same cycle
3503 * and where the active portion of the log wraps around the end of
3504 * the physical log separately. The pass parameter is passed through
3505 * to the routines called to process the data and is not looked at
3506 * here.
3507 */
3508 STATIC int
3509 xlog_do_recovery_pass(
3510 xlog_t *log,
3511 xfs_daddr_t head_blk,
3512 xfs_daddr_t tail_blk,
3513 int pass)
3514 {
3515 xlog_rec_header_t *rhead;
3516 xfs_daddr_t blk_no;
3517 xfs_caddr_t bufaddr, offset;
3518 xfs_buf_t *hbp, *dbp;
3519 int error = 0, h_size;
3520 int bblks, split_bblks;
3521 int hblks, split_hblks, wrapped_hblks;
3522 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3523
3524 ASSERT(head_blk != tail_blk);
3525
3526 /*
3527 * Read the header of the tail block and get the iclog buffer size from
3528 * h_size. Use this to tell how many sectors make up the log header.
3529 */
3530 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3531 /*
3532 * When using variable length iclogs, read first sector of
3533 * iclog header and extract the header size from it. Get a
3534 * new hbp that is the correct size.
3535 */
3536 hbp = xlog_get_bp(log, 1);
3537 if (!hbp)
3538 return ENOMEM;
3539 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3540 goto bread_err1;
3541 offset = xlog_align(log, tail_blk, 1, hbp);
3542 rhead = (xlog_rec_header_t *)offset;
3543 error = xlog_valid_rec_header(log, rhead, tail_blk);
3544 if (error)
3545 goto bread_err1;
3546 h_size = be32_to_cpu(rhead->h_size);
3547 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3548 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3549 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3550 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3551 hblks++;
3552 xlog_put_bp(hbp);
3553 hbp = xlog_get_bp(log, hblks);
3554 } else {
3555 hblks = 1;
3556 }
3557 } else {
3558 ASSERT(log->l_sectbb_log == 0);
3559 hblks = 1;
3560 hbp = xlog_get_bp(log, 1);
3561 h_size = XLOG_BIG_RECORD_BSIZE;
3562 }
3563
3564 if (!hbp)
3565 return ENOMEM;
3566 dbp = xlog_get_bp(log, BTOBB(h_size));
3567 if (!dbp) {
3568 xlog_put_bp(hbp);
3569 return ENOMEM;
3570 }
3571
3572 memset(rhash, 0, sizeof(rhash));
3573 if (tail_blk <= head_blk) {
3574 for (blk_no = tail_blk; blk_no < head_blk; ) {
3575 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3576 goto bread_err2;
3577 offset = xlog_align(log, blk_no, hblks, hbp);
3578 rhead = (xlog_rec_header_t *)offset;
3579 error = xlog_valid_rec_header(log, rhead, blk_no);
3580 if (error)
3581 goto bread_err2;
3582
3583 /* blocks in data section */
3584 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3585 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3586 if (error)
3587 goto bread_err2;
3588 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3589 xlog_unpack_data(rhead, offset, log);
3590 if ((error = xlog_recover_process_data(log,
3591 rhash, rhead, offset, pass)))
3592 goto bread_err2;
3593 blk_no += bblks + hblks;
3594 }
3595 } else {
3596 /*
3597 * Perform recovery around the end of the physical log.
3598 * When the head is not on the same cycle number as the tail,
3599 * we can't do a sequential recovery as above.
3600 */
3601 blk_no = tail_blk;
3602 while (blk_no < log->l_logBBsize) {
3603 /*
3604 * Check for header wrapping around physical end-of-log
3605 */
3606 offset = NULL;
3607 split_hblks = 0;
3608 wrapped_hblks = 0;
3609 if (blk_no + hblks <= log->l_logBBsize) {
3610 /* Read header in one read */
3611 error = xlog_bread(log, blk_no, hblks, hbp);
3612 if (error)
3613 goto bread_err2;
3614 offset = xlog_align(log, blk_no, hblks, hbp);
3615 } else {
3616 /* This LR is split across physical log end */
3617 if (blk_no != log->l_logBBsize) {
3618 /* some data before physical log end */
3619 ASSERT(blk_no <= INT_MAX);
3620 split_hblks = log->l_logBBsize - (int)blk_no;
3621 ASSERT(split_hblks > 0);
3622 if ((error = xlog_bread(log, blk_no,
3623 split_hblks, hbp)))
3624 goto bread_err2;
3625 offset = xlog_align(log, blk_no,
3626 split_hblks, hbp);
3627 }
3628 /*
3629 * Note: this black magic still works with
3630 * large sector sizes (non-512) only because:
3631 * - we increased the buffer size originally
3632 * by 1 sector giving us enough extra space
3633 * for the second read;
3634 * - the log start is guaranteed to be sector
3635 * aligned;
3636 * - we read the log end (LR header start)
3637 * _first_, then the log start (LR header end)
3638 * - order is important.
3639 */
3640 wrapped_hblks = hblks - split_hblks;
3641 bufaddr = XFS_BUF_PTR(hbp);
3642 error = XFS_BUF_SET_PTR(hbp,
3643 bufaddr + BBTOB(split_hblks),
3644 BBTOB(hblks - split_hblks));
3645 if (!error)
3646 error = xlog_bread(log, 0,
3647 wrapped_hblks, hbp);
3648 if (!error)
3649 error = XFS_BUF_SET_PTR(hbp, bufaddr,
3650 BBTOB(hblks));
3651 if (error)
3652 goto bread_err2;
3653 if (!offset)
3654 offset = xlog_align(log, 0,
3655 wrapped_hblks, hbp);
3656 }
3657 rhead = (xlog_rec_header_t *)offset;
3658 error = xlog_valid_rec_header(log, rhead,
3659 split_hblks ? blk_no : 0);
3660 if (error)
3661 goto bread_err2;
3662
3663 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3664 blk_no += hblks;
3665
3666 /* Read in data for log record */
3667 if (blk_no + bblks <= log->l_logBBsize) {
3668 error = xlog_bread(log, blk_no, bblks, dbp);
3669 if (error)
3670 goto bread_err2;
3671 offset = xlog_align(log, blk_no, bblks, dbp);
3672 } else {
3673 /* This log record is split across the
3674 * physical end of log */
3675 offset = NULL;
3676 split_bblks = 0;
3677 if (blk_no != log->l_logBBsize) {
3678 /* some data is before the physical
3679 * end of log */
3680 ASSERT(!wrapped_hblks);
3681 ASSERT(blk_no <= INT_MAX);
3682 split_bblks =
3683 log->l_logBBsize - (int)blk_no;
3684 ASSERT(split_bblks > 0);
3685 if ((error = xlog_bread(log, blk_no,
3686 split_bblks, dbp)))
3687 goto bread_err2;
3688 offset = xlog_align(log, blk_no,
3689 split_bblks, dbp);
3690 }
3691 /*
3692 * Note: this black magic still works with
3693 * large sector sizes (non-512) only because:
3694 * - we increased the buffer size originally
3695 * by 1 sector giving us enough extra space
3696 * for the second read;
3697 * - the log start is guaranteed to be sector
3698 * aligned;
3699 * - we read the log end (LR header start)
3700 * _first_, then the log start (LR header end)
3701 * - order is important.
3702 */
3703 bufaddr = XFS_BUF_PTR(dbp);
3704 error = XFS_BUF_SET_PTR(dbp,
3705 bufaddr + BBTOB(split_bblks),
3706 BBTOB(bblks - split_bblks));
3707 if (!error)
3708 error = xlog_bread(log, wrapped_hblks,
3709 bblks - split_bblks,
3710 dbp);
3711 if (!error)
3712 error = XFS_BUF_SET_PTR(dbp, bufaddr,
3713 h_size);
3714 if (error)
3715 goto bread_err2;
3716 if (!offset)
3717 offset = xlog_align(log, wrapped_hblks,
3718 bblks - split_bblks, dbp);
3719 }
3720 xlog_unpack_data(rhead, offset, log);
3721 if ((error = xlog_recover_process_data(log, rhash,
3722 rhead, offset, pass)))
3723 goto bread_err2;
3724 blk_no += bblks;
3725 }
3726
3727 ASSERT(blk_no >= log->l_logBBsize);
3728 blk_no -= log->l_logBBsize;
3729
3730 /* read first part of physical log */
3731 while (blk_no < head_blk) {
3732 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3733 goto bread_err2;
3734 offset = xlog_align(log, blk_no, hblks, hbp);
3735 rhead = (xlog_rec_header_t *)offset;
3736 error = xlog_valid_rec_header(log, rhead, blk_no);
3737 if (error)
3738 goto bread_err2;
3739 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3740 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3741 goto bread_err2;
3742 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3743 xlog_unpack_data(rhead, offset, log);
3744 if ((error = xlog_recover_process_data(log, rhash,
3745 rhead, offset, pass)))
3746 goto bread_err2;
3747 blk_no += bblks + hblks;
3748 }
3749 }
3750
3751 bread_err2:
3752 xlog_put_bp(dbp);
3753 bread_err1:
3754 xlog_put_bp(hbp);
3755 return error;
3756 }
3757
3758 /*
3759 * Do the recovery of the log. We actually do this in two phases.
3760 * The two passes are necessary in order to implement the function
3761 * of cancelling a record written into the log. The first pass
3762 * determines those things which have been cancelled, and the
3763 * second pass replays log items normally except for those which
3764 * have been cancelled. The handling of the replay and cancellations
3765 * takes place in the log item type specific routines.
3766 *
3767 * The table of items which have cancel records in the log is allocated
3768 * and freed at this level, since only here do we know when all of
3769 * the log recovery has been completed.
3770 */
3771 STATIC int
3772 xlog_do_log_recovery(
3773 xlog_t *log,
3774 xfs_daddr_t head_blk,
3775 xfs_daddr_t tail_blk)
3776 {
3777 int error;
3778
3779 ASSERT(head_blk != tail_blk);
3780
3781 /*
3782 * First do a pass to find all of the cancelled buf log items.
3783 * Store them in the buf_cancel_table for use in the second pass.
3784 */
3785 log->l_buf_cancel_table =
3786 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3787 sizeof(xfs_buf_cancel_t*),
3788 KM_SLEEP);
3789 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3790 XLOG_RECOVER_PASS1);
3791 if (error != 0) {
3792 kmem_free(log->l_buf_cancel_table);
3793 log->l_buf_cancel_table = NULL;
3794 return error;
3795 }
3796 /*
3797 * Then do a second pass to actually recover the items in the log.
3798 * When it is complete free the table of buf cancel items.
3799 */
3800 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3801 XLOG_RECOVER_PASS2);
3802 #ifdef DEBUG
3803 if (!error) {
3804 int i;
3805
3806 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3807 ASSERT(log->l_buf_cancel_table[i] == NULL);
3808 }
3809 #endif /* DEBUG */
3810
3811 kmem_free(log->l_buf_cancel_table);
3812 log->l_buf_cancel_table = NULL;
3813
3814 return error;
3815 }
3816
3817 /*
3818 * Do the actual recovery
3819 */
3820 STATIC int
3821 xlog_do_recover(
3822 xlog_t *log,
3823 xfs_daddr_t head_blk,
3824 xfs_daddr_t tail_blk)
3825 {
3826 int error;
3827 xfs_buf_t *bp;
3828 xfs_sb_t *sbp;
3829
3830 /*
3831 * First replay the images in the log.
3832 */
3833 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3834 if (error) {
3835 return error;
3836 }
3837
3838 XFS_bflush(log->l_mp->m_ddev_targp);
3839
3840 /*
3841 * If IO errors happened during recovery, bail out.
3842 */
3843 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3844 return (EIO);
3845 }
3846
3847 /*
3848 * We now update the tail_lsn since much of the recovery has completed
3849 * and there may be space available to use. If there were no extent
3850 * or iunlinks, we can free up the entire log and set the tail_lsn to
3851 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3852 * lsn of the last known good LR on disk. If there are extent frees
3853 * or iunlinks they will have some entries in the AIL; so we look at
3854 * the AIL to determine how to set the tail_lsn.
3855 */
3856 xlog_assign_tail_lsn(log->l_mp);
3857
3858 /*
3859 * Now that we've finished replaying all buffer and inode
3860 * updates, re-read in the superblock.
3861 */
3862 bp = xfs_getsb(log->l_mp, 0);
3863 XFS_BUF_UNDONE(bp);
3864 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3865 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3866 XFS_BUF_READ(bp);
3867 XFS_BUF_UNASYNC(bp);
3868 xfsbdstrat(log->l_mp, bp);
3869 error = xfs_iowait(bp);
3870 if (error) {
3871 xfs_ioerror_alert("xlog_do_recover",
3872 log->l_mp, bp, XFS_BUF_ADDR(bp));
3873 ASSERT(0);
3874 xfs_buf_relse(bp);
3875 return error;
3876 }
3877
3878 /* Convert superblock from on-disk format */
3879 sbp = &log->l_mp->m_sb;
3880 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3881 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3882 ASSERT(xfs_sb_good_version(sbp));
3883 xfs_buf_relse(bp);
3884
3885 /* We've re-read the superblock so re-initialize per-cpu counters */
3886 xfs_icsb_reinit_counters(log->l_mp);
3887
3888 xlog_recover_check_summary(log);
3889
3890 /* Normal transactions can now occur */
3891 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3892 return 0;
3893 }
3894
3895 /*
3896 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3897 *
3898 * Return error or zero.
3899 */
3900 int
3901 xlog_recover(
3902 xlog_t *log)
3903 {
3904 xfs_daddr_t head_blk, tail_blk;
3905 int error;
3906
3907 /* find the tail of the log */
3908 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3909 return error;
3910
3911 if (tail_blk != head_blk) {
3912 /* There used to be a comment here:
3913 *
3914 * disallow recovery on read-only mounts. note -- mount
3915 * checks for ENOSPC and turns it into an intelligent
3916 * error message.
3917 * ...but this is no longer true. Now, unless you specify
3918 * NORECOVERY (in which case this function would never be
3919 * called), we just go ahead and recover. We do this all
3920 * under the vfs layer, so we can get away with it unless
3921 * the device itself is read-only, in which case we fail.
3922 */
3923 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3924 return error;
3925 }
3926
3927 cmn_err(CE_NOTE,
3928 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3929 log->l_mp->m_fsname, log->l_mp->m_logname ?
3930 log->l_mp->m_logname : "internal");
3931
3932 error = xlog_do_recover(log, head_blk, tail_blk);
3933 log->l_flags |= XLOG_RECOVERY_NEEDED;
3934 }
3935 return error;
3936 }
3937
3938 /*
3939 * In the first part of recovery we replay inodes and buffers and build
3940 * up the list of extent free items which need to be processed. Here
3941 * we process the extent free items and clean up the on disk unlinked
3942 * inode lists. This is separated from the first part of recovery so
3943 * that the root and real-time bitmap inodes can be read in from disk in
3944 * between the two stages. This is necessary so that we can free space
3945 * in the real-time portion of the file system.
3946 */
3947 int
3948 xlog_recover_finish(
3949 xlog_t *log)
3950 {
3951 /*
3952 * Now we're ready to do the transactions needed for the
3953 * rest of recovery. Start with completing all the extent
3954 * free intent records and then process the unlinked inode
3955 * lists. At this point, we essentially run in normal mode
3956 * except that we're still performing recovery actions
3957 * rather than accepting new requests.
3958 */
3959 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3960 int error;
3961 error = xlog_recover_process_efis(log);
3962 if (error) {
3963 cmn_err(CE_ALERT,
3964 "Failed to recover EFIs on filesystem: %s",
3965 log->l_mp->m_fsname);
3966 return error;
3967 }
3968 /*
3969 * Sync the log to get all the EFIs out of the AIL.
3970 * This isn't absolutely necessary, but it helps in
3971 * case the unlink transactions would have problems
3972 * pushing the EFIs out of the way.
3973 */
3974 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3975 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3976
3977 xlog_recover_process_iunlinks(log);
3978
3979 xlog_recover_check_summary(log);
3980
3981 cmn_err(CE_NOTE,
3982 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3983 log->l_mp->m_fsname, log->l_mp->m_logname ?
3984 log->l_mp->m_logname : "internal");
3985 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3986 } else {
3987 cmn_err(CE_DEBUG,
3988 "!Ending clean XFS mount for filesystem: %s\n",
3989 log->l_mp->m_fsname);
3990 }
3991 return 0;
3992 }
3993
3994
3995 #if defined(DEBUG)
3996 /*
3997 * Read all of the agf and agi counters and check that they
3998 * are consistent with the superblock counters.
3999 */
4000 void
4001 xlog_recover_check_summary(
4002 xlog_t *log)
4003 {
4004 xfs_mount_t *mp;
4005 xfs_agf_t *agfp;
4006 xfs_agi_t *agip;
4007 xfs_buf_t *agfbp;
4008 xfs_buf_t *agibp;
4009 xfs_daddr_t agfdaddr;
4010 xfs_daddr_t agidaddr;
4011 xfs_buf_t *sbbp;
4012 #ifdef XFS_LOUD_RECOVERY
4013 xfs_sb_t *sbp;
4014 #endif
4015 xfs_agnumber_t agno;
4016 __uint64_t freeblks;
4017 __uint64_t itotal;
4018 __uint64_t ifree;
4019
4020 mp = log->l_mp;
4021
4022 freeblks = 0LL;
4023 itotal = 0LL;
4024 ifree = 0LL;
4025 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4026 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4027 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4028 XFS_FSS_TO_BB(mp, 1), 0);
4029 if (XFS_BUF_ISERROR(agfbp)) {
4030 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4031 mp, agfbp, agfdaddr);
4032 }
4033 agfp = XFS_BUF_TO_AGF(agfbp);
4034 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4035 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4036 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4037
4038 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4039 be32_to_cpu(agfp->agf_flcount);
4040 xfs_buf_relse(agfbp);
4041
4042 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4043 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4044 XFS_FSS_TO_BB(mp, 1), 0);
4045 if (XFS_BUF_ISERROR(agibp)) {
4046 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4047 mp, agibp, agidaddr);
4048 }
4049 agip = XFS_BUF_TO_AGI(agibp);
4050 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4051 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4052 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4053
4054 itotal += be32_to_cpu(agip->agi_count);
4055 ifree += be32_to_cpu(agip->agi_freecount);
4056 xfs_buf_relse(agibp);
4057 }
4058
4059 sbbp = xfs_getsb(mp, 0);
4060 #ifdef XFS_LOUD_RECOVERY
4061 sbp = &mp->m_sb;
4062 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4063 cmn_err(CE_NOTE,
4064 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4065 sbp->sb_icount, itotal);
4066 cmn_err(CE_NOTE,
4067 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4068 sbp->sb_ifree, ifree);
4069 cmn_err(CE_NOTE,
4070 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4071 sbp->sb_fdblocks, freeblks);
4072 #if 0
4073 /*
4074 * This is turned off until I account for the allocation
4075 * btree blocks which live in free space.
4076 */
4077 ASSERT(sbp->sb_icount == itotal);
4078 ASSERT(sbp->sb_ifree == ifree);
4079 ASSERT(sbp->sb_fdblocks == freeblks);
4080 #endif
4081 #endif
4082 xfs_buf_relse(sbbp);
4083 }
4084 #endif /* DEBUG */