]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_log_recover.c
[XFS] fix valid but harmless sparse warning
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49
50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void xlog_recover_check_summary(xlog_t *);
56 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57 #else
58 #define xlog_recover_check_summary(log)
59 #define xlog_recover_check_ail(mp, lip, gen)
60 #endif
61
62
63 /*
64 * Sector aligned buffer routines for buffer create/read/write/access
65 */
66
67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
68 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
71
72 xfs_buf_t *
73 xlog_get_bp(
74 xlog_t *log,
75 int num_bblks)
76 {
77 ASSERT(num_bblks > 0);
78
79 if (log->l_sectbb_log) {
80 if (num_bblks > 1)
81 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83 }
84 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85 }
86
87 void
88 xlog_put_bp(
89 xfs_buf_t *bp)
90 {
91 xfs_buf_free(bp);
92 }
93
94
95 /*
96 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
97 */
98 int
99 xlog_bread(
100 xlog_t *log,
101 xfs_daddr_t blk_no,
102 int nbblks,
103 xfs_buf_t *bp)
104 {
105 int error;
106
107 if (log->l_sectbb_log) {
108 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110 }
111
112 ASSERT(nbblks > 0);
113 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114 ASSERT(bp);
115
116 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117 XFS_BUF_READ(bp);
118 XFS_BUF_BUSY(bp);
119 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121
122 xfsbdstrat(log->l_mp, bp);
123 if ((error = xfs_iowait(bp)))
124 xfs_ioerror_alert("xlog_bread", log->l_mp,
125 bp, XFS_BUF_ADDR(bp));
126 return error;
127 }
128
129 /*
130 * Write out the buffer at the given block for the given number of blocks.
131 * The buffer is kept locked across the write and is returned locked.
132 * This can only be used for synchronous log writes.
133 */
134 STATIC int
135 xlog_bwrite(
136 xlog_t *log,
137 xfs_daddr_t blk_no,
138 int nbblks,
139 xfs_buf_t *bp)
140 {
141 int error;
142
143 if (log->l_sectbb_log) {
144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146 }
147
148 ASSERT(nbblks > 0);
149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150
151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 XFS_BUF_ZEROFLAGS(bp);
153 XFS_BUF_BUSY(bp);
154 XFS_BUF_HOLD(bp);
155 XFS_BUF_PSEMA(bp, PRIBIO);
156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158
159 if ((error = xfs_bwrite(log->l_mp, bp)))
160 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 bp, XFS_BUF_ADDR(bp));
162 return error;
163 }
164
165 STATIC xfs_caddr_t
166 xlog_align(
167 xlog_t *log,
168 xfs_daddr_t blk_no,
169 int nbblks,
170 xfs_buf_t *bp)
171 {
172 xfs_caddr_t ptr;
173
174 if (!log->l_sectbb_log)
175 return XFS_BUF_PTR(bp);
176
177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 ASSERT(XFS_BUF_SIZE(bp) >=
179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180 return ptr;
181 }
182
183 #ifdef DEBUG
184 /*
185 * dump debug superblock and log record information
186 */
187 STATIC void
188 xlog_header_check_dump(
189 xfs_mount_t *mp,
190 xlog_rec_header_t *head)
191 {
192 int b;
193
194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__);
195 for (b = 0; b < 16; b++)
196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 cmn_err(CE_DEBUG, " log : uuid = ");
199 for (b = 0; b < 16; b++)
200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201 cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
202 }
203 #else
204 #define xlog_header_check_dump(mp, head)
205 #endif
206
207 /*
208 * check log record header for recovery
209 */
210 STATIC int
211 xlog_header_check_recover(
212 xfs_mount_t *mp,
213 xlog_rec_header_t *head)
214 {
215 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
216
217 /*
218 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 * a dirty log created in IRIX.
221 */
222 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
223 xlog_warn(
224 "XFS: dirty log written in incompatible format - can't recover");
225 xlog_header_check_dump(mp, head);
226 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 XFS_ERRLEVEL_HIGH, mp);
228 return XFS_ERROR(EFSCORRUPTED);
229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 xlog_warn(
231 "XFS: dirty log entry has mismatched uuid - can't recover");
232 xlog_header_check_dump(mp, head);
233 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 XFS_ERRLEVEL_HIGH, mp);
235 return XFS_ERROR(EFSCORRUPTED);
236 }
237 return 0;
238 }
239
240 /*
241 * read the head block of the log and check the header
242 */
243 STATIC int
244 xlog_header_check_mount(
245 xfs_mount_t *mp,
246 xlog_rec_header_t *head)
247 {
248 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
249
250 if (uuid_is_nil(&head->h_fs_uuid)) {
251 /*
252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 * h_fs_uuid is nil, we assume this log was last mounted
254 * by IRIX and continue.
255 */
256 xlog_warn("XFS: nil uuid in log - IRIX style log");
257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 xlog_warn("XFS: log has mismatched uuid - can't recover");
259 xlog_header_check_dump(mp, head);
260 XFS_ERROR_REPORT("xlog_header_check_mount",
261 XFS_ERRLEVEL_HIGH, mp);
262 return XFS_ERROR(EFSCORRUPTED);
263 }
264 return 0;
265 }
266
267 STATIC void
268 xlog_recover_iodone(
269 struct xfs_buf *bp)
270 {
271 xfs_mount_t *mp;
272
273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274
275 if (XFS_BUF_GETERROR(bp)) {
276 /*
277 * We're not going to bother about retrying
278 * this during recovery. One strike!
279 */
280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 xfs_ioerror_alert("xlog_recover_iodone",
282 mp, bp, XFS_BUF_ADDR(bp));
283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
284 }
285 XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 XFS_BUF_CLR_IODONE_FUNC(bp);
287 xfs_biodone(bp);
288 }
289
290 /*
291 * This routine finds (to an approximation) the first block in the physical
292 * log which contains the given cycle. It uses a binary search algorithm.
293 * Note that the algorithm can not be perfect because the disk will not
294 * necessarily be perfect.
295 */
296 int
297 xlog_find_cycle_start(
298 xlog_t *log,
299 xfs_buf_t *bp,
300 xfs_daddr_t first_blk,
301 xfs_daddr_t *last_blk,
302 uint cycle)
303 {
304 xfs_caddr_t offset;
305 xfs_daddr_t mid_blk;
306 uint mid_cycle;
307 int error;
308
309 mid_blk = BLK_AVG(first_blk, *last_blk);
310 while (mid_blk != first_blk && mid_blk != *last_blk) {
311 if ((error = xlog_bread(log, mid_blk, 1, bp)))
312 return error;
313 offset = xlog_align(log, mid_blk, 1, bp);
314 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
315 if (mid_cycle == cycle) {
316 *last_blk = mid_blk;
317 /* last_half_cycle == mid_cycle */
318 } else {
319 first_blk = mid_blk;
320 /* first_half_cycle == mid_cycle */
321 }
322 mid_blk = BLK_AVG(first_blk, *last_blk);
323 }
324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 (mid_blk == *last_blk && mid_blk-1 == first_blk));
326
327 return 0;
328 }
329
330 /*
331 * Check that the range of blocks does not contain the cycle number
332 * given. The scan needs to occur from front to back and the ptr into the
333 * region must be updated since a later routine will need to perform another
334 * test. If the region is completely good, we end up returning the same
335 * last block number.
336 *
337 * Set blkno to -1 if we encounter no errors. This is an invalid block number
338 * since we don't ever expect logs to get this large.
339 */
340 STATIC int
341 xlog_find_verify_cycle(
342 xlog_t *log,
343 xfs_daddr_t start_blk,
344 int nbblks,
345 uint stop_on_cycle_no,
346 xfs_daddr_t *new_blk)
347 {
348 xfs_daddr_t i, j;
349 uint cycle;
350 xfs_buf_t *bp;
351 xfs_daddr_t bufblks;
352 xfs_caddr_t buf = NULL;
353 int error = 0;
354
355 bufblks = 1 << ffs(nbblks);
356
357 while (!(bp = xlog_get_bp(log, bufblks))) {
358 /* can't get enough memory to do everything in one big buffer */
359 bufblks >>= 1;
360 if (bufblks <= log->l_sectbb_log)
361 return ENOMEM;
362 }
363
364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365 int bcount;
366
367 bcount = min(bufblks, (start_blk + nbblks - i));
368
369 if ((error = xlog_bread(log, i, bcount, bp)))
370 goto out;
371
372 buf = xlog_align(log, i, bcount, bp);
373 for (j = 0; j < bcount; j++) {
374 cycle = GET_CYCLE(buf, ARCH_CONVERT);
375 if (cycle == stop_on_cycle_no) {
376 *new_blk = i+j;
377 goto out;
378 }
379
380 buf += BBSIZE;
381 }
382 }
383
384 *new_blk = -1;
385
386 out:
387 xlog_put_bp(bp);
388 return error;
389 }
390
391 /*
392 * Potentially backup over partial log record write.
393 *
394 * In the typical case, last_blk is the number of the block directly after
395 * a good log record. Therefore, we subtract one to get the block number
396 * of the last block in the given buffer. extra_bblks contains the number
397 * of blocks we would have read on a previous read. This happens when the
398 * last log record is split over the end of the physical log.
399 *
400 * extra_bblks is the number of blocks potentially verified on a previous
401 * call to this routine.
402 */
403 STATIC int
404 xlog_find_verify_log_record(
405 xlog_t *log,
406 xfs_daddr_t start_blk,
407 xfs_daddr_t *last_blk,
408 int extra_bblks)
409 {
410 xfs_daddr_t i;
411 xfs_buf_t *bp;
412 xfs_caddr_t offset = NULL;
413 xlog_rec_header_t *head = NULL;
414 int error = 0;
415 int smallmem = 0;
416 int num_blks = *last_blk - start_blk;
417 int xhdrs;
418
419 ASSERT(start_blk != 0 || *last_blk != start_blk);
420
421 if (!(bp = xlog_get_bp(log, num_blks))) {
422 if (!(bp = xlog_get_bp(log, 1)))
423 return ENOMEM;
424 smallmem = 1;
425 } else {
426 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427 goto out;
428 offset = xlog_align(log, start_blk, num_blks, bp);
429 offset += ((num_blks - 1) << BBSHIFT);
430 }
431
432 for (i = (*last_blk) - 1; i >= 0; i--) {
433 if (i < start_blk) {
434 /* valid log record not found */
435 xlog_warn(
436 "XFS: Log inconsistent (didn't find previous header)");
437 ASSERT(0);
438 error = XFS_ERROR(EIO);
439 goto out;
440 }
441
442 if (smallmem) {
443 if ((error = xlog_bread(log, i, 1, bp)))
444 goto out;
445 offset = xlog_align(log, i, 1, bp);
446 }
447
448 head = (xlog_rec_header_t *)offset;
449
450 if (XLOG_HEADER_MAGIC_NUM ==
451 INT_GET(head->h_magicno, ARCH_CONVERT))
452 break;
453
454 if (!smallmem)
455 offset -= BBSIZE;
456 }
457
458 /*
459 * We hit the beginning of the physical log & still no header. Return
460 * to caller. If caller can handle a return of -1, then this routine
461 * will be called again for the end of the physical log.
462 */
463 if (i == -1) {
464 error = -1;
465 goto out;
466 }
467
468 /*
469 * We have the final block of the good log (the first block
470 * of the log record _before_ the head. So we check the uuid.
471 */
472 if ((error = xlog_header_check_mount(log->l_mp, head)))
473 goto out;
474
475 /*
476 * We may have found a log record header before we expected one.
477 * last_blk will be the 1st block # with a given cycle #. We may end
478 * up reading an entire log record. In this case, we don't want to
479 * reset last_blk. Only when last_blk points in the middle of a log
480 * record do we update last_blk.
481 */
482 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
483 uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
484
485 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486 if (h_size % XLOG_HEADER_CYCLE_SIZE)
487 xhdrs++;
488 } else {
489 xhdrs = 1;
490 }
491
492 if (*last_blk - i + extra_bblks
493 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
494 *last_blk = i;
495
496 out:
497 xlog_put_bp(bp);
498 return error;
499 }
500
501 /*
502 * Head is defined to be the point of the log where the next log write
503 * write could go. This means that incomplete LR writes at the end are
504 * eliminated when calculating the head. We aren't guaranteed that previous
505 * LR have complete transactions. We only know that a cycle number of
506 * current cycle number -1 won't be present in the log if we start writing
507 * from our current block number.
508 *
509 * last_blk contains the block number of the first block with a given
510 * cycle number.
511 *
512 * Return: zero if normal, non-zero if error.
513 */
514 STATIC int
515 xlog_find_head(
516 xlog_t *log,
517 xfs_daddr_t *return_head_blk)
518 {
519 xfs_buf_t *bp;
520 xfs_caddr_t offset;
521 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
522 int num_scan_bblks;
523 uint first_half_cycle, last_half_cycle;
524 uint stop_on_cycle;
525 int error, log_bbnum = log->l_logBBsize;
526
527 /* Is the end of the log device zeroed? */
528 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529 *return_head_blk = first_blk;
530
531 /* Is the whole lot zeroed? */
532 if (!first_blk) {
533 /* Linux XFS shouldn't generate totally zeroed logs -
534 * mkfs etc write a dummy unmount record to a fresh
535 * log so we can store the uuid in there
536 */
537 xlog_warn("XFS: totally zeroed log");
538 }
539
540 return 0;
541 } else if (error) {
542 xlog_warn("XFS: empty log check failed");
543 return error;
544 }
545
546 first_blk = 0; /* get cycle # of 1st block */
547 bp = xlog_get_bp(log, 1);
548 if (!bp)
549 return ENOMEM;
550 if ((error = xlog_bread(log, 0, 1, bp)))
551 goto bp_err;
552 offset = xlog_align(log, 0, 1, bp);
553 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
554
555 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
556 if ((error = xlog_bread(log, last_blk, 1, bp)))
557 goto bp_err;
558 offset = xlog_align(log, last_blk, 1, bp);
559 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
560 ASSERT(last_half_cycle != 0);
561
562 /*
563 * If the 1st half cycle number is equal to the last half cycle number,
564 * then the entire log is stamped with the same cycle number. In this
565 * case, head_blk can't be set to zero (which makes sense). The below
566 * math doesn't work out properly with head_blk equal to zero. Instead,
567 * we set it to log_bbnum which is an invalid block number, but this
568 * value makes the math correct. If head_blk doesn't changed through
569 * all the tests below, *head_blk is set to zero at the very end rather
570 * than log_bbnum. In a sense, log_bbnum and zero are the same block
571 * in a circular file.
572 */
573 if (first_half_cycle == last_half_cycle) {
574 /*
575 * In this case we believe that the entire log should have
576 * cycle number last_half_cycle. We need to scan backwards
577 * from the end verifying that there are no holes still
578 * containing last_half_cycle - 1. If we find such a hole,
579 * then the start of that hole will be the new head. The
580 * simple case looks like
581 * x | x ... | x - 1 | x
582 * Another case that fits this picture would be
583 * x | x + 1 | x ... | x
584 * In this case the head really is somewhere at the end of the
585 * log, as one of the latest writes at the beginning was
586 * incomplete.
587 * One more case is
588 * x | x + 1 | x ... | x - 1 | x
589 * This is really the combination of the above two cases, and
590 * the head has to end up at the start of the x-1 hole at the
591 * end of the log.
592 *
593 * In the 256k log case, we will read from the beginning to the
594 * end of the log and search for cycle numbers equal to x-1.
595 * We don't worry about the x+1 blocks that we encounter,
596 * because we know that they cannot be the head since the log
597 * started with x.
598 */
599 head_blk = log_bbnum;
600 stop_on_cycle = last_half_cycle - 1;
601 } else {
602 /*
603 * In this case we want to find the first block with cycle
604 * number matching last_half_cycle. We expect the log to be
605 * some variation on
606 * x + 1 ... | x ...
607 * The first block with cycle number x (last_half_cycle) will
608 * be where the new head belongs. First we do a binary search
609 * for the first occurrence of last_half_cycle. The binary
610 * search may not be totally accurate, so then we scan back
611 * from there looking for occurrences of last_half_cycle before
612 * us. If that backwards scan wraps around the beginning of
613 * the log, then we look for occurrences of last_half_cycle - 1
614 * at the end of the log. The cases we're looking for look
615 * like
616 * x + 1 ... | x | x + 1 | x ...
617 * ^ binary search stopped here
618 * or
619 * x + 1 ... | x ... | x - 1 | x
620 * <---------> less than scan distance
621 */
622 stop_on_cycle = last_half_cycle;
623 if ((error = xlog_find_cycle_start(log, bp, first_blk,
624 &head_blk, last_half_cycle)))
625 goto bp_err;
626 }
627
628 /*
629 * Now validate the answer. Scan back some number of maximum possible
630 * blocks and make sure each one has the expected cycle number. The
631 * maximum is determined by the total possible amount of buffering
632 * in the in-core log. The following number can be made tighter if
633 * we actually look at the block size of the filesystem.
634 */
635 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636 if (head_blk >= num_scan_bblks) {
637 /*
638 * We are guaranteed that the entire check can be performed
639 * in one buffer.
640 */
641 start_blk = head_blk - num_scan_bblks;
642 if ((error = xlog_find_verify_cycle(log,
643 start_blk, num_scan_bblks,
644 stop_on_cycle, &new_blk)))
645 goto bp_err;
646 if (new_blk != -1)
647 head_blk = new_blk;
648 } else { /* need to read 2 parts of log */
649 /*
650 * We are going to scan backwards in the log in two parts.
651 * First we scan the physical end of the log. In this part
652 * of the log, we are looking for blocks with cycle number
653 * last_half_cycle - 1.
654 * If we find one, then we know that the log starts there, as
655 * we've found a hole that didn't get written in going around
656 * the end of the physical log. The simple case for this is
657 * x + 1 ... | x ... | x - 1 | x
658 * <---------> less than scan distance
659 * If all of the blocks at the end of the log have cycle number
660 * last_half_cycle, then we check the blocks at the start of
661 * the log looking for occurrences of last_half_cycle. If we
662 * find one, then our current estimate for the location of the
663 * first occurrence of last_half_cycle is wrong and we move
664 * back to the hole we've found. This case looks like
665 * x + 1 ... | x | x + 1 | x ...
666 * ^ binary search stopped here
667 * Another case we need to handle that only occurs in 256k
668 * logs is
669 * x + 1 ... | x ... | x+1 | x ...
670 * ^ binary search stops here
671 * In a 256k log, the scan at the end of the log will see the
672 * x + 1 blocks. We need to skip past those since that is
673 * certainly not the head of the log. By searching for
674 * last_half_cycle-1 we accomplish that.
675 */
676 start_blk = log_bbnum - num_scan_bblks + head_blk;
677 ASSERT(head_blk <= INT_MAX &&
678 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679 if ((error = xlog_find_verify_cycle(log, start_blk,
680 num_scan_bblks - (int)head_blk,
681 (stop_on_cycle - 1), &new_blk)))
682 goto bp_err;
683 if (new_blk != -1) {
684 head_blk = new_blk;
685 goto bad_blk;
686 }
687
688 /*
689 * Scan beginning of log now. The last part of the physical
690 * log is good. This scan needs to verify that it doesn't find
691 * the last_half_cycle.
692 */
693 start_blk = 0;
694 ASSERT(head_blk <= INT_MAX);
695 if ((error = xlog_find_verify_cycle(log,
696 start_blk, (int)head_blk,
697 stop_on_cycle, &new_blk)))
698 goto bp_err;
699 if (new_blk != -1)
700 head_blk = new_blk;
701 }
702
703 bad_blk:
704 /*
705 * Now we need to make sure head_blk is not pointing to a block in
706 * the middle of a log record.
707 */
708 num_scan_bblks = XLOG_REC_SHIFT(log);
709 if (head_blk >= num_scan_bblks) {
710 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711
712 /* start ptr at last block ptr before head_blk */
713 if ((error = xlog_find_verify_log_record(log, start_blk,
714 &head_blk, 0)) == -1) {
715 error = XFS_ERROR(EIO);
716 goto bp_err;
717 } else if (error)
718 goto bp_err;
719 } else {
720 start_blk = 0;
721 ASSERT(head_blk <= INT_MAX);
722 if ((error = xlog_find_verify_log_record(log, start_blk,
723 &head_blk, 0)) == -1) {
724 /* We hit the beginning of the log during our search */
725 start_blk = log_bbnum - num_scan_bblks + head_blk;
726 new_blk = log_bbnum;
727 ASSERT(start_blk <= INT_MAX &&
728 (xfs_daddr_t) log_bbnum-start_blk >= 0);
729 ASSERT(head_blk <= INT_MAX);
730 if ((error = xlog_find_verify_log_record(log,
731 start_blk, &new_blk,
732 (int)head_blk)) == -1) {
733 error = XFS_ERROR(EIO);
734 goto bp_err;
735 } else if (error)
736 goto bp_err;
737 if (new_blk != log_bbnum)
738 head_blk = new_blk;
739 } else if (error)
740 goto bp_err;
741 }
742
743 xlog_put_bp(bp);
744 if (head_blk == log_bbnum)
745 *return_head_blk = 0;
746 else
747 *return_head_blk = head_blk;
748 /*
749 * When returning here, we have a good block number. Bad block
750 * means that during a previous crash, we didn't have a clean break
751 * from cycle number N to cycle number N-1. In this case, we need
752 * to find the first block with cycle number N-1.
753 */
754 return 0;
755
756 bp_err:
757 xlog_put_bp(bp);
758
759 if (error)
760 xlog_warn("XFS: failed to find log head");
761 return error;
762 }
763
764 /*
765 * Find the sync block number or the tail of the log.
766 *
767 * This will be the block number of the last record to have its
768 * associated buffers synced to disk. Every log record header has
769 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
770 * to get a sync block number. The only concern is to figure out which
771 * log record header to believe.
772 *
773 * The following algorithm uses the log record header with the largest
774 * lsn. The entire log record does not need to be valid. We only care
775 * that the header is valid.
776 *
777 * We could speed up search by using current head_blk buffer, but it is not
778 * available.
779 */
780 int
781 xlog_find_tail(
782 xlog_t *log,
783 xfs_daddr_t *head_blk,
784 xfs_daddr_t *tail_blk)
785 {
786 xlog_rec_header_t *rhead;
787 xlog_op_header_t *op_head;
788 xfs_caddr_t offset = NULL;
789 xfs_buf_t *bp;
790 int error, i, found;
791 xfs_daddr_t umount_data_blk;
792 xfs_daddr_t after_umount_blk;
793 xfs_lsn_t tail_lsn;
794 int hblks;
795
796 found = 0;
797
798 /*
799 * Find previous log record
800 */
801 if ((error = xlog_find_head(log, head_blk)))
802 return error;
803
804 bp = xlog_get_bp(log, 1);
805 if (!bp)
806 return ENOMEM;
807 if (*head_blk == 0) { /* special case */
808 if ((error = xlog_bread(log, 0, 1, bp)))
809 goto bread_err;
810 offset = xlog_align(log, 0, 1, bp);
811 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
812 *tail_blk = 0;
813 /* leave all other log inited values alone */
814 goto exit;
815 }
816 }
817
818 /*
819 * Search backwards looking for log record header block
820 */
821 ASSERT(*head_blk < INT_MAX);
822 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823 if ((error = xlog_bread(log, i, 1, bp)))
824 goto bread_err;
825 offset = xlog_align(log, i, 1, bp);
826 if (XLOG_HEADER_MAGIC_NUM ==
827 INT_GET(*(uint *)offset, ARCH_CONVERT)) {
828 found = 1;
829 break;
830 }
831 }
832 /*
833 * If we haven't found the log record header block, start looking
834 * again from the end of the physical log. XXXmiken: There should be
835 * a check here to make sure we didn't search more than N blocks in
836 * the previous code.
837 */
838 if (!found) {
839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 if ((error = xlog_bread(log, i, 1, bp)))
841 goto bread_err;
842 offset = xlog_align(log, i, 1, bp);
843 if (XLOG_HEADER_MAGIC_NUM ==
844 INT_GET(*(uint*)offset, ARCH_CONVERT)) {
845 found = 2;
846 break;
847 }
848 }
849 }
850 if (!found) {
851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852 ASSERT(0);
853 return XFS_ERROR(EIO);
854 }
855
856 /* find blk_no of tail of log */
857 rhead = (xlog_rec_header_t *)offset;
858 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
859
860 /*
861 * Reset log values according to the state of the log when we
862 * crashed. In the case where head_blk == 0, we bump curr_cycle
863 * one because the next write starts a new cycle rather than
864 * continuing the cycle of the last good log record. At this
865 * point we have guaranteed that all partial log records have been
866 * accounted for. Therefore, we know that the last good log record
867 * written was complete and ended exactly on the end boundary
868 * of the physical log.
869 */
870 log->l_prev_block = i;
871 log->l_curr_block = (int)*head_blk;
872 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
873 if (found == 2)
874 log->l_curr_cycle++;
875 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
876 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
877 log->l_grant_reserve_cycle = log->l_curr_cycle;
878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 log->l_grant_write_cycle = log->l_curr_cycle;
880 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881
882 /*
883 * Look for unmount record. If we find it, then we know there
884 * was a clean unmount. Since 'i' could be the last block in
885 * the physical log, we convert to a log block before comparing
886 * to the head_blk.
887 *
888 * Save the current tail lsn to use to pass to
889 * xlog_clear_stale_blocks() below. We won't want to clear the
890 * unmount record if there is one, so we pass the lsn of the
891 * unmount record rather than the block after it.
892 */
893 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
894 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
895 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
896
897 if ((h_version & XLOG_VERSION_2) &&
898 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 if (h_size % XLOG_HEADER_CYCLE_SIZE)
901 hblks++;
902 } else {
903 hblks = 1;
904 }
905 } else {
906 hblks = 1;
907 }
908 after_umount_blk = (i + hblks + (int)
909 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
910 tail_lsn = log->l_tail_lsn;
911 if (*head_blk == after_umount_blk &&
912 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
913 umount_data_blk = (i + hblks) % log->l_logBBsize;
914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 goto bread_err;
916 }
917 offset = xlog_align(log, umount_data_blk, 1, bp);
918 op_head = (xlog_op_header_t *)offset;
919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920 /*
921 * Set tail and last sync so that newly written
922 * log records will point recovery to after the
923 * current unmount record.
924 */
925 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
926 after_umount_blk);
927 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
928 after_umount_blk);
929 *tail_blk = after_umount_blk;
930
931 /*
932 * Note that the unmount was clean. If the unmount
933 * was not clean, we need to know this to rebuild the
934 * superblock counters from the perag headers if we
935 * have a filesystem using non-persistent counters.
936 */
937 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
938 }
939 }
940
941 /*
942 * Make sure that there are no blocks in front of the head
943 * with the same cycle number as the head. This can happen
944 * because we allow multiple outstanding log writes concurrently,
945 * and the later writes might make it out before earlier ones.
946 *
947 * We use the lsn from before modifying it so that we'll never
948 * overwrite the unmount record after a clean unmount.
949 *
950 * Do this only if we are going to recover the filesystem
951 *
952 * NOTE: This used to say "if (!readonly)"
953 * However on Linux, we can & do recover a read-only filesystem.
954 * We only skip recovery if NORECOVERY is specified on mount,
955 * in which case we would not be here.
956 *
957 * But... if the -device- itself is readonly, just skip this.
958 * We can't recover this device anyway, so it won't matter.
959 */
960 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
961 error = xlog_clear_stale_blocks(log, tail_lsn);
962 }
963
964 bread_err:
965 exit:
966 xlog_put_bp(bp);
967
968 if (error)
969 xlog_warn("XFS: failed to locate log tail");
970 return error;
971 }
972
973 /*
974 * Is the log zeroed at all?
975 *
976 * The last binary search should be changed to perform an X block read
977 * once X becomes small enough. You can then search linearly through
978 * the X blocks. This will cut down on the number of reads we need to do.
979 *
980 * If the log is partially zeroed, this routine will pass back the blkno
981 * of the first block with cycle number 0. It won't have a complete LR
982 * preceding it.
983 *
984 * Return:
985 * 0 => the log is completely written to
986 * -1 => use *blk_no as the first block of the log
987 * >0 => error has occurred
988 */
989 int
990 xlog_find_zeroed(
991 xlog_t *log,
992 xfs_daddr_t *blk_no)
993 {
994 xfs_buf_t *bp;
995 xfs_caddr_t offset;
996 uint first_cycle, last_cycle;
997 xfs_daddr_t new_blk, last_blk, start_blk;
998 xfs_daddr_t num_scan_bblks;
999 int error, log_bbnum = log->l_logBBsize;
1000
1001 *blk_no = 0;
1002
1003 /* check totally zeroed log */
1004 bp = xlog_get_bp(log, 1);
1005 if (!bp)
1006 return ENOMEM;
1007 if ((error = xlog_bread(log, 0, 1, bp)))
1008 goto bp_err;
1009 offset = xlog_align(log, 0, 1, bp);
1010 first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1011 if (first_cycle == 0) { /* completely zeroed log */
1012 *blk_no = 0;
1013 xlog_put_bp(bp);
1014 return -1;
1015 }
1016
1017 /* check partially zeroed log */
1018 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1019 goto bp_err;
1020 offset = xlog_align(log, log_bbnum-1, 1, bp);
1021 last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1022 if (last_cycle != 0) { /* log completely written to */
1023 xlog_put_bp(bp);
1024 return 0;
1025 } else if (first_cycle != 1) {
1026 /*
1027 * If the cycle of the last block is zero, the cycle of
1028 * the first block must be 1. If it's not, maybe we're
1029 * not looking at a log... Bail out.
1030 */
1031 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1032 return XFS_ERROR(EINVAL);
1033 }
1034
1035 /* we have a partially zeroed log */
1036 last_blk = log_bbnum-1;
1037 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1038 goto bp_err;
1039
1040 /*
1041 * Validate the answer. Because there is no way to guarantee that
1042 * the entire log is made up of log records which are the same size,
1043 * we scan over the defined maximum blocks. At this point, the maximum
1044 * is not chosen to mean anything special. XXXmiken
1045 */
1046 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1047 ASSERT(num_scan_bblks <= INT_MAX);
1048
1049 if (last_blk < num_scan_bblks)
1050 num_scan_bblks = last_blk;
1051 start_blk = last_blk - num_scan_bblks;
1052
1053 /*
1054 * We search for any instances of cycle number 0 that occur before
1055 * our current estimate of the head. What we're trying to detect is
1056 * 1 ... | 0 | 1 | 0...
1057 * ^ binary search ends here
1058 */
1059 if ((error = xlog_find_verify_cycle(log, start_blk,
1060 (int)num_scan_bblks, 0, &new_blk)))
1061 goto bp_err;
1062 if (new_blk != -1)
1063 last_blk = new_blk;
1064
1065 /*
1066 * Potentially backup over partial log record write. We don't need
1067 * to search the end of the log because we know it is zero.
1068 */
1069 if ((error = xlog_find_verify_log_record(log, start_blk,
1070 &last_blk, 0)) == -1) {
1071 error = XFS_ERROR(EIO);
1072 goto bp_err;
1073 } else if (error)
1074 goto bp_err;
1075
1076 *blk_no = last_blk;
1077 bp_err:
1078 xlog_put_bp(bp);
1079 if (error)
1080 return error;
1081 return -1;
1082 }
1083
1084 /*
1085 * These are simple subroutines used by xlog_clear_stale_blocks() below
1086 * to initialize a buffer full of empty log record headers and write
1087 * them into the log.
1088 */
1089 STATIC void
1090 xlog_add_record(
1091 xlog_t *log,
1092 xfs_caddr_t buf,
1093 int cycle,
1094 int block,
1095 int tail_cycle,
1096 int tail_block)
1097 {
1098 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1099
1100 memset(buf, 0, BBSIZE);
1101 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1102 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1103 INT_SET(recp->h_version, ARCH_CONVERT,
1104 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1105 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1106 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1107 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1108 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1109 }
1110
1111 STATIC int
1112 xlog_write_log_records(
1113 xlog_t *log,
1114 int cycle,
1115 int start_block,
1116 int blocks,
1117 int tail_cycle,
1118 int tail_block)
1119 {
1120 xfs_caddr_t offset;
1121 xfs_buf_t *bp;
1122 int balign, ealign;
1123 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1124 int end_block = start_block + blocks;
1125 int bufblks;
1126 int error = 0;
1127 int i, j = 0;
1128
1129 bufblks = 1 << ffs(blocks);
1130 while (!(bp = xlog_get_bp(log, bufblks))) {
1131 bufblks >>= 1;
1132 if (bufblks <= log->l_sectbb_log)
1133 return ENOMEM;
1134 }
1135
1136 /* We may need to do a read at the start to fill in part of
1137 * the buffer in the starting sector not covered by the first
1138 * write below.
1139 */
1140 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1141 if (balign != start_block) {
1142 if ((error = xlog_bread(log, start_block, 1, bp))) {
1143 xlog_put_bp(bp);
1144 return error;
1145 }
1146 j = start_block - balign;
1147 }
1148
1149 for (i = start_block; i < end_block; i += bufblks) {
1150 int bcount, endcount;
1151
1152 bcount = min(bufblks, end_block - start_block);
1153 endcount = bcount - j;
1154
1155 /* We may need to do a read at the end to fill in part of
1156 * the buffer in the final sector not covered by the write.
1157 * If this is the same sector as the above read, skip it.
1158 */
1159 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1160 if (j == 0 && (start_block + endcount > ealign)) {
1161 offset = XFS_BUF_PTR(bp);
1162 balign = BBTOB(ealign - start_block);
1163 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1164 if ((error = xlog_bread(log, ealign, sectbb, bp)))
1165 break;
1166 XFS_BUF_SET_PTR(bp, offset, bufblks);
1167 }
1168
1169 offset = xlog_align(log, start_block, endcount, bp);
1170 for (; j < endcount; j++) {
1171 xlog_add_record(log, offset, cycle, i+j,
1172 tail_cycle, tail_block);
1173 offset += BBSIZE;
1174 }
1175 error = xlog_bwrite(log, start_block, endcount, bp);
1176 if (error)
1177 break;
1178 start_block += endcount;
1179 j = 0;
1180 }
1181 xlog_put_bp(bp);
1182 return error;
1183 }
1184
1185 /*
1186 * This routine is called to blow away any incomplete log writes out
1187 * in front of the log head. We do this so that we won't become confused
1188 * if we come up, write only a little bit more, and then crash again.
1189 * If we leave the partial log records out there, this situation could
1190 * cause us to think those partial writes are valid blocks since they
1191 * have the current cycle number. We get rid of them by overwriting them
1192 * with empty log records with the old cycle number rather than the
1193 * current one.
1194 *
1195 * The tail lsn is passed in rather than taken from
1196 * the log so that we will not write over the unmount record after a
1197 * clean unmount in a 512 block log. Doing so would leave the log without
1198 * any valid log records in it until a new one was written. If we crashed
1199 * during that time we would not be able to recover.
1200 */
1201 STATIC int
1202 xlog_clear_stale_blocks(
1203 xlog_t *log,
1204 xfs_lsn_t tail_lsn)
1205 {
1206 int tail_cycle, head_cycle;
1207 int tail_block, head_block;
1208 int tail_distance, max_distance;
1209 int distance;
1210 int error;
1211
1212 tail_cycle = CYCLE_LSN(tail_lsn);
1213 tail_block = BLOCK_LSN(tail_lsn);
1214 head_cycle = log->l_curr_cycle;
1215 head_block = log->l_curr_block;
1216
1217 /*
1218 * Figure out the distance between the new head of the log
1219 * and the tail. We want to write over any blocks beyond the
1220 * head that we may have written just before the crash, but
1221 * we don't want to overwrite the tail of the log.
1222 */
1223 if (head_cycle == tail_cycle) {
1224 /*
1225 * The tail is behind the head in the physical log,
1226 * so the distance from the head to the tail is the
1227 * distance from the head to the end of the log plus
1228 * the distance from the beginning of the log to the
1229 * tail.
1230 */
1231 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1232 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1233 XFS_ERRLEVEL_LOW, log->l_mp);
1234 return XFS_ERROR(EFSCORRUPTED);
1235 }
1236 tail_distance = tail_block + (log->l_logBBsize - head_block);
1237 } else {
1238 /*
1239 * The head is behind the tail in the physical log,
1240 * so the distance from the head to the tail is just
1241 * the tail block minus the head block.
1242 */
1243 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1244 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1245 XFS_ERRLEVEL_LOW, log->l_mp);
1246 return XFS_ERROR(EFSCORRUPTED);
1247 }
1248 tail_distance = tail_block - head_block;
1249 }
1250
1251 /*
1252 * If the head is right up against the tail, we can't clear
1253 * anything.
1254 */
1255 if (tail_distance <= 0) {
1256 ASSERT(tail_distance == 0);
1257 return 0;
1258 }
1259
1260 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1261 /*
1262 * Take the smaller of the maximum amount of outstanding I/O
1263 * we could have and the distance to the tail to clear out.
1264 * We take the smaller so that we don't overwrite the tail and
1265 * we don't waste all day writing from the head to the tail
1266 * for no reason.
1267 */
1268 max_distance = MIN(max_distance, tail_distance);
1269
1270 if ((head_block + max_distance) <= log->l_logBBsize) {
1271 /*
1272 * We can stomp all the blocks we need to without
1273 * wrapping around the end of the log. Just do it
1274 * in a single write. Use the cycle number of the
1275 * current cycle minus one so that the log will look like:
1276 * n ... | n - 1 ...
1277 */
1278 error = xlog_write_log_records(log, (head_cycle - 1),
1279 head_block, max_distance, tail_cycle,
1280 tail_block);
1281 if (error)
1282 return error;
1283 } else {
1284 /*
1285 * We need to wrap around the end of the physical log in
1286 * order to clear all the blocks. Do it in two separate
1287 * I/Os. The first write should be from the head to the
1288 * end of the physical log, and it should use the current
1289 * cycle number minus one just like above.
1290 */
1291 distance = log->l_logBBsize - head_block;
1292 error = xlog_write_log_records(log, (head_cycle - 1),
1293 head_block, distance, tail_cycle,
1294 tail_block);
1295
1296 if (error)
1297 return error;
1298
1299 /*
1300 * Now write the blocks at the start of the physical log.
1301 * This writes the remainder of the blocks we want to clear.
1302 * It uses the current cycle number since we're now on the
1303 * same cycle as the head so that we get:
1304 * n ... n ... | n - 1 ...
1305 * ^^^^^ blocks we're writing
1306 */
1307 distance = max_distance - (log->l_logBBsize - head_block);
1308 error = xlog_write_log_records(log, head_cycle, 0, distance,
1309 tail_cycle, tail_block);
1310 if (error)
1311 return error;
1312 }
1313
1314 return 0;
1315 }
1316
1317 /******************************************************************************
1318 *
1319 * Log recover routines
1320 *
1321 ******************************************************************************
1322 */
1323
1324 STATIC xlog_recover_t *
1325 xlog_recover_find_tid(
1326 xlog_recover_t *q,
1327 xlog_tid_t tid)
1328 {
1329 xlog_recover_t *p = q;
1330
1331 while (p != NULL) {
1332 if (p->r_log_tid == tid)
1333 break;
1334 p = p->r_next;
1335 }
1336 return p;
1337 }
1338
1339 STATIC void
1340 xlog_recover_put_hashq(
1341 xlog_recover_t **q,
1342 xlog_recover_t *trans)
1343 {
1344 trans->r_next = *q;
1345 *q = trans;
1346 }
1347
1348 STATIC void
1349 xlog_recover_add_item(
1350 xlog_recover_item_t **itemq)
1351 {
1352 xlog_recover_item_t *item;
1353
1354 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1355 xlog_recover_insert_item_backq(itemq, item);
1356 }
1357
1358 STATIC int
1359 xlog_recover_add_to_cont_trans(
1360 xlog_recover_t *trans,
1361 xfs_caddr_t dp,
1362 int len)
1363 {
1364 xlog_recover_item_t *item;
1365 xfs_caddr_t ptr, old_ptr;
1366 int old_len;
1367
1368 item = trans->r_itemq;
1369 if (item == NULL) {
1370 /* finish copying rest of trans header */
1371 xlog_recover_add_item(&trans->r_itemq);
1372 ptr = (xfs_caddr_t) &trans->r_theader +
1373 sizeof(xfs_trans_header_t) - len;
1374 memcpy(ptr, dp, len); /* d, s, l */
1375 return 0;
1376 }
1377 item = item->ri_prev;
1378
1379 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1380 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1381
1382 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1383 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1384 item->ri_buf[item->ri_cnt-1].i_len += len;
1385 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1386 return 0;
1387 }
1388
1389 /*
1390 * The next region to add is the start of a new region. It could be
1391 * a whole region or it could be the first part of a new region. Because
1392 * of this, the assumption here is that the type and size fields of all
1393 * format structures fit into the first 32 bits of the structure.
1394 *
1395 * This works because all regions must be 32 bit aligned. Therefore, we
1396 * either have both fields or we have neither field. In the case we have
1397 * neither field, the data part of the region is zero length. We only have
1398 * a log_op_header and can throw away the header since a new one will appear
1399 * later. If we have at least 4 bytes, then we can determine how many regions
1400 * will appear in the current log item.
1401 */
1402 STATIC int
1403 xlog_recover_add_to_trans(
1404 xlog_recover_t *trans,
1405 xfs_caddr_t dp,
1406 int len)
1407 {
1408 xfs_inode_log_format_t *in_f; /* any will do */
1409 xlog_recover_item_t *item;
1410 xfs_caddr_t ptr;
1411
1412 if (!len)
1413 return 0;
1414 item = trans->r_itemq;
1415 if (item == NULL) {
1416 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1417 if (len == sizeof(xfs_trans_header_t))
1418 xlog_recover_add_item(&trans->r_itemq);
1419 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1420 return 0;
1421 }
1422
1423 ptr = kmem_alloc(len, KM_SLEEP);
1424 memcpy(ptr, dp, len);
1425 in_f = (xfs_inode_log_format_t *)ptr;
1426
1427 if (item->ri_prev->ri_total != 0 &&
1428 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1429 xlog_recover_add_item(&trans->r_itemq);
1430 }
1431 item = trans->r_itemq;
1432 item = item->ri_prev;
1433
1434 if (item->ri_total == 0) { /* first region to be added */
1435 item->ri_total = in_f->ilf_size;
1436 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1437 item->ri_buf = kmem_zalloc((item->ri_total *
1438 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1439 }
1440 ASSERT(item->ri_total > item->ri_cnt);
1441 /* Description region is ri_buf[0] */
1442 item->ri_buf[item->ri_cnt].i_addr = ptr;
1443 item->ri_buf[item->ri_cnt].i_len = len;
1444 item->ri_cnt++;
1445 return 0;
1446 }
1447
1448 STATIC void
1449 xlog_recover_new_tid(
1450 xlog_recover_t **q,
1451 xlog_tid_t tid,
1452 xfs_lsn_t lsn)
1453 {
1454 xlog_recover_t *trans;
1455
1456 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1457 trans->r_log_tid = tid;
1458 trans->r_lsn = lsn;
1459 xlog_recover_put_hashq(q, trans);
1460 }
1461
1462 STATIC int
1463 xlog_recover_unlink_tid(
1464 xlog_recover_t **q,
1465 xlog_recover_t *trans)
1466 {
1467 xlog_recover_t *tp;
1468 int found = 0;
1469
1470 ASSERT(trans != NULL);
1471 if (trans == *q) {
1472 *q = (*q)->r_next;
1473 } else {
1474 tp = *q;
1475 while (tp) {
1476 if (tp->r_next == trans) {
1477 found = 1;
1478 break;
1479 }
1480 tp = tp->r_next;
1481 }
1482 if (!found) {
1483 xlog_warn(
1484 "XFS: xlog_recover_unlink_tid: trans not found");
1485 ASSERT(0);
1486 return XFS_ERROR(EIO);
1487 }
1488 tp->r_next = tp->r_next->r_next;
1489 }
1490 return 0;
1491 }
1492
1493 STATIC void
1494 xlog_recover_insert_item_backq(
1495 xlog_recover_item_t **q,
1496 xlog_recover_item_t *item)
1497 {
1498 if (*q == NULL) {
1499 item->ri_prev = item->ri_next = item;
1500 *q = item;
1501 } else {
1502 item->ri_next = *q;
1503 item->ri_prev = (*q)->ri_prev;
1504 (*q)->ri_prev = item;
1505 item->ri_prev->ri_next = item;
1506 }
1507 }
1508
1509 STATIC void
1510 xlog_recover_insert_item_frontq(
1511 xlog_recover_item_t **q,
1512 xlog_recover_item_t *item)
1513 {
1514 xlog_recover_insert_item_backq(q, item);
1515 *q = item;
1516 }
1517
1518 STATIC int
1519 xlog_recover_reorder_trans(
1520 xlog_recover_t *trans)
1521 {
1522 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1523 xfs_buf_log_format_t *buf_f;
1524 ushort flags = 0;
1525
1526 first_item = itemq = trans->r_itemq;
1527 trans->r_itemq = NULL;
1528 do {
1529 itemq_next = itemq->ri_next;
1530 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1531
1532 switch (ITEM_TYPE(itemq)) {
1533 case XFS_LI_BUF:
1534 flags = buf_f->blf_flags;
1535 if (!(flags & XFS_BLI_CANCEL)) {
1536 xlog_recover_insert_item_frontq(&trans->r_itemq,
1537 itemq);
1538 break;
1539 }
1540 case XFS_LI_INODE:
1541 case XFS_LI_DQUOT:
1542 case XFS_LI_QUOTAOFF:
1543 case XFS_LI_EFD:
1544 case XFS_LI_EFI:
1545 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1546 break;
1547 default:
1548 xlog_warn(
1549 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1550 ASSERT(0);
1551 return XFS_ERROR(EIO);
1552 }
1553 itemq = itemq_next;
1554 } while (first_item != itemq);
1555 return 0;
1556 }
1557
1558 /*
1559 * Build up the table of buf cancel records so that we don't replay
1560 * cancelled data in the second pass. For buffer records that are
1561 * not cancel records, there is nothing to do here so we just return.
1562 *
1563 * If we get a cancel record which is already in the table, this indicates
1564 * that the buffer was cancelled multiple times. In order to ensure
1565 * that during pass 2 we keep the record in the table until we reach its
1566 * last occurrence in the log, we keep a reference count in the cancel
1567 * record in the table to tell us how many times we expect to see this
1568 * record during the second pass.
1569 */
1570 STATIC void
1571 xlog_recover_do_buffer_pass1(
1572 xlog_t *log,
1573 xfs_buf_log_format_t *buf_f)
1574 {
1575 xfs_buf_cancel_t *bcp;
1576 xfs_buf_cancel_t *nextp;
1577 xfs_buf_cancel_t *prevp;
1578 xfs_buf_cancel_t **bucket;
1579 xfs_daddr_t blkno = 0;
1580 uint len = 0;
1581 ushort flags = 0;
1582
1583 switch (buf_f->blf_type) {
1584 case XFS_LI_BUF:
1585 blkno = buf_f->blf_blkno;
1586 len = buf_f->blf_len;
1587 flags = buf_f->blf_flags;
1588 break;
1589 }
1590
1591 /*
1592 * If this isn't a cancel buffer item, then just return.
1593 */
1594 if (!(flags & XFS_BLI_CANCEL))
1595 return;
1596
1597 /*
1598 * Insert an xfs_buf_cancel record into the hash table of
1599 * them. If there is already an identical record, bump
1600 * its reference count.
1601 */
1602 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1603 XLOG_BC_TABLE_SIZE];
1604 /*
1605 * If the hash bucket is empty then just insert a new record into
1606 * the bucket.
1607 */
1608 if (*bucket == NULL) {
1609 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1610 KM_SLEEP);
1611 bcp->bc_blkno = blkno;
1612 bcp->bc_len = len;
1613 bcp->bc_refcount = 1;
1614 bcp->bc_next = NULL;
1615 *bucket = bcp;
1616 return;
1617 }
1618
1619 /*
1620 * The hash bucket is not empty, so search for duplicates of our
1621 * record. If we find one them just bump its refcount. If not
1622 * then add us at the end of the list.
1623 */
1624 prevp = NULL;
1625 nextp = *bucket;
1626 while (nextp != NULL) {
1627 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1628 nextp->bc_refcount++;
1629 return;
1630 }
1631 prevp = nextp;
1632 nextp = nextp->bc_next;
1633 }
1634 ASSERT(prevp != NULL);
1635 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1636 KM_SLEEP);
1637 bcp->bc_blkno = blkno;
1638 bcp->bc_len = len;
1639 bcp->bc_refcount = 1;
1640 bcp->bc_next = NULL;
1641 prevp->bc_next = bcp;
1642 }
1643
1644 /*
1645 * Check to see whether the buffer being recovered has a corresponding
1646 * entry in the buffer cancel record table. If it does then return 1
1647 * so that it will be cancelled, otherwise return 0. If the buffer is
1648 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1649 * the refcount on the entry in the table and remove it from the table
1650 * if this is the last reference.
1651 *
1652 * We remove the cancel record from the table when we encounter its
1653 * last occurrence in the log so that if the same buffer is re-used
1654 * again after its last cancellation we actually replay the changes
1655 * made at that point.
1656 */
1657 STATIC int
1658 xlog_check_buffer_cancelled(
1659 xlog_t *log,
1660 xfs_daddr_t blkno,
1661 uint len,
1662 ushort flags)
1663 {
1664 xfs_buf_cancel_t *bcp;
1665 xfs_buf_cancel_t *prevp;
1666 xfs_buf_cancel_t **bucket;
1667
1668 if (log->l_buf_cancel_table == NULL) {
1669 /*
1670 * There is nothing in the table built in pass one,
1671 * so this buffer must not be cancelled.
1672 */
1673 ASSERT(!(flags & XFS_BLI_CANCEL));
1674 return 0;
1675 }
1676
1677 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1678 XLOG_BC_TABLE_SIZE];
1679 bcp = *bucket;
1680 if (bcp == NULL) {
1681 /*
1682 * There is no corresponding entry in the table built
1683 * in pass one, so this buffer has not been cancelled.
1684 */
1685 ASSERT(!(flags & XFS_BLI_CANCEL));
1686 return 0;
1687 }
1688
1689 /*
1690 * Search for an entry in the buffer cancel table that
1691 * matches our buffer.
1692 */
1693 prevp = NULL;
1694 while (bcp != NULL) {
1695 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1696 /*
1697 * We've go a match, so return 1 so that the
1698 * recovery of this buffer is cancelled.
1699 * If this buffer is actually a buffer cancel
1700 * log item, then decrement the refcount on the
1701 * one in the table and remove it if this is the
1702 * last reference.
1703 */
1704 if (flags & XFS_BLI_CANCEL) {
1705 bcp->bc_refcount--;
1706 if (bcp->bc_refcount == 0) {
1707 if (prevp == NULL) {
1708 *bucket = bcp->bc_next;
1709 } else {
1710 prevp->bc_next = bcp->bc_next;
1711 }
1712 kmem_free(bcp,
1713 sizeof(xfs_buf_cancel_t));
1714 }
1715 }
1716 return 1;
1717 }
1718 prevp = bcp;
1719 bcp = bcp->bc_next;
1720 }
1721 /*
1722 * We didn't find a corresponding entry in the table, so
1723 * return 0 so that the buffer is NOT cancelled.
1724 */
1725 ASSERT(!(flags & XFS_BLI_CANCEL));
1726 return 0;
1727 }
1728
1729 STATIC int
1730 xlog_recover_do_buffer_pass2(
1731 xlog_t *log,
1732 xfs_buf_log_format_t *buf_f)
1733 {
1734 xfs_daddr_t blkno = 0;
1735 ushort flags = 0;
1736 uint len = 0;
1737
1738 switch (buf_f->blf_type) {
1739 case XFS_LI_BUF:
1740 blkno = buf_f->blf_blkno;
1741 flags = buf_f->blf_flags;
1742 len = buf_f->blf_len;
1743 break;
1744 }
1745
1746 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1747 }
1748
1749 /*
1750 * Perform recovery for a buffer full of inodes. In these buffers,
1751 * the only data which should be recovered is that which corresponds
1752 * to the di_next_unlinked pointers in the on disk inode structures.
1753 * The rest of the data for the inodes is always logged through the
1754 * inodes themselves rather than the inode buffer and is recovered
1755 * in xlog_recover_do_inode_trans().
1756 *
1757 * The only time when buffers full of inodes are fully recovered is
1758 * when the buffer is full of newly allocated inodes. In this case
1759 * the buffer will not be marked as an inode buffer and so will be
1760 * sent to xlog_recover_do_reg_buffer() below during recovery.
1761 */
1762 STATIC int
1763 xlog_recover_do_inode_buffer(
1764 xfs_mount_t *mp,
1765 xlog_recover_item_t *item,
1766 xfs_buf_t *bp,
1767 xfs_buf_log_format_t *buf_f)
1768 {
1769 int i;
1770 int item_index;
1771 int bit;
1772 int nbits;
1773 int reg_buf_offset;
1774 int reg_buf_bytes;
1775 int next_unlinked_offset;
1776 int inodes_per_buf;
1777 xfs_agino_t *logged_nextp;
1778 xfs_agino_t *buffer_nextp;
1779 unsigned int *data_map = NULL;
1780 unsigned int map_size = 0;
1781
1782 switch (buf_f->blf_type) {
1783 case XFS_LI_BUF:
1784 data_map = buf_f->blf_data_map;
1785 map_size = buf_f->blf_map_size;
1786 break;
1787 }
1788 /*
1789 * Set the variables corresponding to the current region to
1790 * 0 so that we'll initialize them on the first pass through
1791 * the loop.
1792 */
1793 reg_buf_offset = 0;
1794 reg_buf_bytes = 0;
1795 bit = 0;
1796 nbits = 0;
1797 item_index = 0;
1798 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1799 for (i = 0; i < inodes_per_buf; i++) {
1800 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1801 offsetof(xfs_dinode_t, di_next_unlinked);
1802
1803 while (next_unlinked_offset >=
1804 (reg_buf_offset + reg_buf_bytes)) {
1805 /*
1806 * The next di_next_unlinked field is beyond
1807 * the current logged region. Find the next
1808 * logged region that contains or is beyond
1809 * the current di_next_unlinked field.
1810 */
1811 bit += nbits;
1812 bit = xfs_next_bit(data_map, map_size, bit);
1813
1814 /*
1815 * If there are no more logged regions in the
1816 * buffer, then we're done.
1817 */
1818 if (bit == -1) {
1819 return 0;
1820 }
1821
1822 nbits = xfs_contig_bits(data_map, map_size,
1823 bit);
1824 ASSERT(nbits > 0);
1825 reg_buf_offset = bit << XFS_BLI_SHIFT;
1826 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1827 item_index++;
1828 }
1829
1830 /*
1831 * If the current logged region starts after the current
1832 * di_next_unlinked field, then move on to the next
1833 * di_next_unlinked field.
1834 */
1835 if (next_unlinked_offset < reg_buf_offset) {
1836 continue;
1837 }
1838
1839 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1840 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1841 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1842
1843 /*
1844 * The current logged region contains a copy of the
1845 * current di_next_unlinked field. Extract its value
1846 * and copy it to the buffer copy.
1847 */
1848 logged_nextp = (xfs_agino_t *)
1849 ((char *)(item->ri_buf[item_index].i_addr) +
1850 (next_unlinked_offset - reg_buf_offset));
1851 if (unlikely(*logged_nextp == 0)) {
1852 xfs_fs_cmn_err(CE_ALERT, mp,
1853 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1854 item, bp);
1855 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1856 XFS_ERRLEVEL_LOW, mp);
1857 return XFS_ERROR(EFSCORRUPTED);
1858 }
1859
1860 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1861 next_unlinked_offset);
1862 *buffer_nextp = *logged_nextp;
1863 }
1864
1865 return 0;
1866 }
1867
1868 /*
1869 * Perform a 'normal' buffer recovery. Each logged region of the
1870 * buffer should be copied over the corresponding region in the
1871 * given buffer. The bitmap in the buf log format structure indicates
1872 * where to place the logged data.
1873 */
1874 /*ARGSUSED*/
1875 STATIC void
1876 xlog_recover_do_reg_buffer(
1877 xfs_mount_t *mp,
1878 xlog_recover_item_t *item,
1879 xfs_buf_t *bp,
1880 xfs_buf_log_format_t *buf_f)
1881 {
1882 int i;
1883 int bit;
1884 int nbits;
1885 unsigned int *data_map = NULL;
1886 unsigned int map_size = 0;
1887 int error;
1888 int stale_buf = 1;
1889
1890 /*
1891 * Scan through the on-disk inode buffer and attempt to
1892 * determine if it has been written to since it was logged.
1893 *
1894 * - If any of the magic numbers are incorrect then the buffer is stale
1895 * - If any of the modes are non-zero then the buffer is not stale
1896 * - If all of the modes are zero and at least one of the generation
1897 * counts is non-zero then the buffer is stale
1898 *
1899 * If the end result is a stale buffer then the log buffer is replayed
1900 * otherwise it is skipped.
1901 *
1902 * This heuristic is not perfect. It can be improved by scanning the
1903 * entire inode chunk for evidence that any of the inode clusters have
1904 * been updated. To fix this problem completely we will need a major
1905 * architectural change to the logging system.
1906 */
1907 if (buf_f->blf_flags & XFS_BLI_INODE_NEW_BUF) {
1908 xfs_dinode_t *dip;
1909 int inodes_per_buf;
1910 int mode_count = 0;
1911 int gen_count = 0;
1912
1913 stale_buf = 0;
1914 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1915 for (i = 0; i < inodes_per_buf; i++) {
1916 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
1917 i * mp->m_sb.sb_inodesize);
1918 if (be16_to_cpu(dip->di_core.di_magic) !=
1919 XFS_DINODE_MAGIC) {
1920 stale_buf = 1;
1921 break;
1922 }
1923 if (dip->di_core.di_mode)
1924 mode_count++;
1925 if (dip->di_core.di_gen)
1926 gen_count++;
1927 }
1928
1929 if (!mode_count && gen_count)
1930 stale_buf = 1;
1931 }
1932
1933 switch (buf_f->blf_type) {
1934 case XFS_LI_BUF:
1935 data_map = buf_f->blf_data_map;
1936 map_size = buf_f->blf_map_size;
1937 break;
1938 }
1939 bit = 0;
1940 i = 1; /* 0 is the buf format structure */
1941 while (1) {
1942 bit = xfs_next_bit(data_map, map_size, bit);
1943 if (bit == -1)
1944 break;
1945 nbits = xfs_contig_bits(data_map, map_size, bit);
1946 ASSERT(nbits > 0);
1947 ASSERT(item->ri_buf[i].i_addr != NULL);
1948 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1949 ASSERT(XFS_BUF_COUNT(bp) >=
1950 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1951
1952 /*
1953 * Do a sanity check if this is a dquot buffer. Just checking
1954 * the first dquot in the buffer should do. XXXThis is
1955 * probably a good thing to do for other buf types also.
1956 */
1957 error = 0;
1958 if (buf_f->blf_flags &
1959 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1960 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1961 item->ri_buf[i].i_addr,
1962 -1, 0, XFS_QMOPT_DOWARN,
1963 "dquot_buf_recover");
1964 }
1965 if (!error && stale_buf)
1966 memcpy(xfs_buf_offset(bp,
1967 (uint)bit << XFS_BLI_SHIFT), /* dest */
1968 item->ri_buf[i].i_addr, /* source */
1969 nbits<<XFS_BLI_SHIFT); /* length */
1970 i++;
1971 bit += nbits;
1972 }
1973
1974 /* Shouldn't be any more regions */
1975 ASSERT(i == item->ri_total);
1976 }
1977
1978 /*
1979 * Do some primitive error checking on ondisk dquot data structures.
1980 */
1981 int
1982 xfs_qm_dqcheck(
1983 xfs_disk_dquot_t *ddq,
1984 xfs_dqid_t id,
1985 uint type, /* used only when IO_dorepair is true */
1986 uint flags,
1987 char *str)
1988 {
1989 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1990 int errs = 0;
1991
1992 /*
1993 * We can encounter an uninitialized dquot buffer for 2 reasons:
1994 * 1. If we crash while deleting the quotainode(s), and those blks got
1995 * used for user data. This is because we take the path of regular
1996 * file deletion; however, the size field of quotainodes is never
1997 * updated, so all the tricks that we play in itruncate_finish
1998 * don't quite matter.
1999 *
2000 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2001 * But the allocation will be replayed so we'll end up with an
2002 * uninitialized quota block.
2003 *
2004 * This is all fine; things are still consistent, and we haven't lost
2005 * any quota information. Just don't complain about bad dquot blks.
2006 */
2007 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2008 if (flags & XFS_QMOPT_DOWARN)
2009 cmn_err(CE_ALERT,
2010 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2011 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2012 errs++;
2013 }
2014 if (ddq->d_version != XFS_DQUOT_VERSION) {
2015 if (flags & XFS_QMOPT_DOWARN)
2016 cmn_err(CE_ALERT,
2017 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2018 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2019 errs++;
2020 }
2021
2022 if (ddq->d_flags != XFS_DQ_USER &&
2023 ddq->d_flags != XFS_DQ_PROJ &&
2024 ddq->d_flags != XFS_DQ_GROUP) {
2025 if (flags & XFS_QMOPT_DOWARN)
2026 cmn_err(CE_ALERT,
2027 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2028 str, id, ddq->d_flags);
2029 errs++;
2030 }
2031
2032 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2033 if (flags & XFS_QMOPT_DOWARN)
2034 cmn_err(CE_ALERT,
2035 "%s : ondisk-dquot 0x%p, ID mismatch: "
2036 "0x%x expected, found id 0x%x",
2037 str, ddq, id, be32_to_cpu(ddq->d_id));
2038 errs++;
2039 }
2040
2041 if (!errs && ddq->d_id) {
2042 if (ddq->d_blk_softlimit &&
2043 be64_to_cpu(ddq->d_bcount) >=
2044 be64_to_cpu(ddq->d_blk_softlimit)) {
2045 if (!ddq->d_btimer) {
2046 if (flags & XFS_QMOPT_DOWARN)
2047 cmn_err(CE_ALERT,
2048 "%s : Dquot ID 0x%x (0x%p) "
2049 "BLK TIMER NOT STARTED",
2050 str, (int)be32_to_cpu(ddq->d_id), ddq);
2051 errs++;
2052 }
2053 }
2054 if (ddq->d_ino_softlimit &&
2055 be64_to_cpu(ddq->d_icount) >=
2056 be64_to_cpu(ddq->d_ino_softlimit)) {
2057 if (!ddq->d_itimer) {
2058 if (flags & XFS_QMOPT_DOWARN)
2059 cmn_err(CE_ALERT,
2060 "%s : Dquot ID 0x%x (0x%p) "
2061 "INODE TIMER NOT STARTED",
2062 str, (int)be32_to_cpu(ddq->d_id), ddq);
2063 errs++;
2064 }
2065 }
2066 if (ddq->d_rtb_softlimit &&
2067 be64_to_cpu(ddq->d_rtbcount) >=
2068 be64_to_cpu(ddq->d_rtb_softlimit)) {
2069 if (!ddq->d_rtbtimer) {
2070 if (flags & XFS_QMOPT_DOWARN)
2071 cmn_err(CE_ALERT,
2072 "%s : Dquot ID 0x%x (0x%p) "
2073 "RTBLK TIMER NOT STARTED",
2074 str, (int)be32_to_cpu(ddq->d_id), ddq);
2075 errs++;
2076 }
2077 }
2078 }
2079
2080 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2081 return errs;
2082
2083 if (flags & XFS_QMOPT_DOWARN)
2084 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2085
2086 /*
2087 * Typically, a repair is only requested by quotacheck.
2088 */
2089 ASSERT(id != -1);
2090 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2091 memset(d, 0, sizeof(xfs_dqblk_t));
2092
2093 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2094 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2095 d->dd_diskdq.d_flags = type;
2096 d->dd_diskdq.d_id = cpu_to_be32(id);
2097
2098 return errs;
2099 }
2100
2101 /*
2102 * Perform a dquot buffer recovery.
2103 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2104 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2105 * Else, treat it as a regular buffer and do recovery.
2106 */
2107 STATIC void
2108 xlog_recover_do_dquot_buffer(
2109 xfs_mount_t *mp,
2110 xlog_t *log,
2111 xlog_recover_item_t *item,
2112 xfs_buf_t *bp,
2113 xfs_buf_log_format_t *buf_f)
2114 {
2115 uint type;
2116
2117 /*
2118 * Filesystems are required to send in quota flags at mount time.
2119 */
2120 if (mp->m_qflags == 0) {
2121 return;
2122 }
2123
2124 type = 0;
2125 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2126 type |= XFS_DQ_USER;
2127 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2128 type |= XFS_DQ_PROJ;
2129 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2130 type |= XFS_DQ_GROUP;
2131 /*
2132 * This type of quotas was turned off, so ignore this buffer
2133 */
2134 if (log->l_quotaoffs_flag & type)
2135 return;
2136
2137 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2138 }
2139
2140 /*
2141 * This routine replays a modification made to a buffer at runtime.
2142 * There are actually two types of buffer, regular and inode, which
2143 * are handled differently. Inode buffers are handled differently
2144 * in that we only recover a specific set of data from them, namely
2145 * the inode di_next_unlinked fields. This is because all other inode
2146 * data is actually logged via inode records and any data we replay
2147 * here which overlaps that may be stale.
2148 *
2149 * When meta-data buffers are freed at run time we log a buffer item
2150 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2151 * of the buffer in the log should not be replayed at recovery time.
2152 * This is so that if the blocks covered by the buffer are reused for
2153 * file data before we crash we don't end up replaying old, freed
2154 * meta-data into a user's file.
2155 *
2156 * To handle the cancellation of buffer log items, we make two passes
2157 * over the log during recovery. During the first we build a table of
2158 * those buffers which have been cancelled, and during the second we
2159 * only replay those buffers which do not have corresponding cancel
2160 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2161 * for more details on the implementation of the table of cancel records.
2162 */
2163 STATIC int
2164 xlog_recover_do_buffer_trans(
2165 xlog_t *log,
2166 xlog_recover_item_t *item,
2167 int pass)
2168 {
2169 xfs_buf_log_format_t *buf_f;
2170 xfs_mount_t *mp;
2171 xfs_buf_t *bp;
2172 int error;
2173 int cancel;
2174 xfs_daddr_t blkno;
2175 int len;
2176 ushort flags;
2177
2178 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2179
2180 if (pass == XLOG_RECOVER_PASS1) {
2181 /*
2182 * In this pass we're only looking for buf items
2183 * with the XFS_BLI_CANCEL bit set.
2184 */
2185 xlog_recover_do_buffer_pass1(log, buf_f);
2186 return 0;
2187 } else {
2188 /*
2189 * In this pass we want to recover all the buffers
2190 * which have not been cancelled and are not
2191 * cancellation buffers themselves. The routine
2192 * we call here will tell us whether or not to
2193 * continue with the replay of this buffer.
2194 */
2195 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2196 if (cancel) {
2197 return 0;
2198 }
2199 }
2200 switch (buf_f->blf_type) {
2201 case XFS_LI_BUF:
2202 blkno = buf_f->blf_blkno;
2203 len = buf_f->blf_len;
2204 flags = buf_f->blf_flags;
2205 break;
2206 default:
2207 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2208 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2209 buf_f->blf_type, log->l_mp->m_logname ?
2210 log->l_mp->m_logname : "internal");
2211 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2212 XFS_ERRLEVEL_LOW, log->l_mp);
2213 return XFS_ERROR(EFSCORRUPTED);
2214 }
2215
2216 mp = log->l_mp;
2217 if (flags & XFS_BLI_INODE_BUF) {
2218 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2219 XFS_BUF_LOCK);
2220 } else {
2221 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2222 }
2223 if (XFS_BUF_ISERROR(bp)) {
2224 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2225 bp, blkno);
2226 error = XFS_BUF_GETERROR(bp);
2227 xfs_buf_relse(bp);
2228 return error;
2229 }
2230
2231 error = 0;
2232 if (flags & XFS_BLI_INODE_BUF) {
2233 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2234 } else if (flags &
2235 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2236 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2237 } else {
2238 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2239 }
2240 if (error)
2241 return XFS_ERROR(error);
2242
2243 /*
2244 * Perform delayed write on the buffer. Asynchronous writes will be
2245 * slower when taking into account all the buffers to be flushed.
2246 *
2247 * Also make sure that only inode buffers with good sizes stay in
2248 * the buffer cache. The kernel moves inodes in buffers of 1 block
2249 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2250 * buffers in the log can be a different size if the log was generated
2251 * by an older kernel using unclustered inode buffers or a newer kernel
2252 * running with a different inode cluster size. Regardless, if the
2253 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2254 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2255 * the buffer out of the buffer cache so that the buffer won't
2256 * overlap with future reads of those inodes.
2257 */
2258 if (XFS_DINODE_MAGIC ==
2259 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2260 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2261 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2262 XFS_BUF_STALE(bp);
2263 error = xfs_bwrite(mp, bp);
2264 } else {
2265 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2266 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2267 XFS_BUF_SET_FSPRIVATE(bp, mp);
2268 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2269 xfs_bdwrite(mp, bp);
2270 }
2271
2272 return (error);
2273 }
2274
2275 STATIC int
2276 xlog_recover_do_inode_trans(
2277 xlog_t *log,
2278 xlog_recover_item_t *item,
2279 int pass)
2280 {
2281 xfs_inode_log_format_t *in_f;
2282 xfs_mount_t *mp;
2283 xfs_buf_t *bp;
2284 xfs_imap_t imap;
2285 xfs_dinode_t *dip;
2286 xfs_ino_t ino;
2287 int len;
2288 xfs_caddr_t src;
2289 xfs_caddr_t dest;
2290 int error;
2291 int attr_index;
2292 uint fields;
2293 xfs_dinode_core_t *dicp;
2294 int need_free = 0;
2295
2296 if (pass == XLOG_RECOVER_PASS1) {
2297 return 0;
2298 }
2299
2300 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2301 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2302 } else {
2303 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2304 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2305 need_free = 1;
2306 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2307 if (error)
2308 goto error;
2309 }
2310 ino = in_f->ilf_ino;
2311 mp = log->l_mp;
2312 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2313 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2314 imap.im_len = in_f->ilf_len;
2315 imap.im_boffset = in_f->ilf_boffset;
2316 } else {
2317 /*
2318 * It's an old inode format record. We don't know where
2319 * its cluster is located on disk, and we can't allow
2320 * xfs_imap() to figure it out because the inode btrees
2321 * are not ready to be used. Therefore do not pass the
2322 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2323 * us only the single block in which the inode lives
2324 * rather than its cluster, so we must make sure to
2325 * invalidate the buffer when we write it out below.
2326 */
2327 imap.im_blkno = 0;
2328 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2329 }
2330
2331 /*
2332 * Inode buffers can be freed, look out for it,
2333 * and do not replay the inode.
2334 */
2335 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2336 error = 0;
2337 goto error;
2338 }
2339
2340 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2341 XFS_BUF_LOCK);
2342 if (XFS_BUF_ISERROR(bp)) {
2343 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2344 bp, imap.im_blkno);
2345 error = XFS_BUF_GETERROR(bp);
2346 xfs_buf_relse(bp);
2347 goto error;
2348 }
2349 error = 0;
2350 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2351 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2352
2353 /*
2354 * Make sure the place we're flushing out to really looks
2355 * like an inode!
2356 */
2357 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2358 xfs_buf_relse(bp);
2359 xfs_fs_cmn_err(CE_ALERT, mp,
2360 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2361 dip, bp, ino);
2362 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2363 XFS_ERRLEVEL_LOW, mp);
2364 error = EFSCORRUPTED;
2365 goto error;
2366 }
2367 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2368 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2369 xfs_buf_relse(bp);
2370 xfs_fs_cmn_err(CE_ALERT, mp,
2371 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2372 item, ino);
2373 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2374 XFS_ERRLEVEL_LOW, mp);
2375 error = EFSCORRUPTED;
2376 goto error;
2377 }
2378
2379 /* Skip replay when the on disk inode is newer than the log one */
2380 if (dicp->di_flushiter <
2381 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2382 /*
2383 * Deal with the wrap case, DI_MAX_FLUSH is less
2384 * than smaller numbers
2385 */
2386 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2387 == DI_MAX_FLUSH) &&
2388 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2389 /* do nothing */
2390 } else {
2391 xfs_buf_relse(bp);
2392 error = 0;
2393 goto error;
2394 }
2395 }
2396 /* Take the opportunity to reset the flush iteration count */
2397 dicp->di_flushiter = 0;
2398
2399 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2400 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2401 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2402 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2403 XFS_ERRLEVEL_LOW, mp, dicp);
2404 xfs_buf_relse(bp);
2405 xfs_fs_cmn_err(CE_ALERT, mp,
2406 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2407 item, dip, bp, ino);
2408 error = EFSCORRUPTED;
2409 goto error;
2410 }
2411 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2412 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2413 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2414 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2415 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2416 XFS_ERRLEVEL_LOW, mp, dicp);
2417 xfs_buf_relse(bp);
2418 xfs_fs_cmn_err(CE_ALERT, mp,
2419 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2420 item, dip, bp, ino);
2421 error = EFSCORRUPTED;
2422 goto error;
2423 }
2424 }
2425 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2426 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2427 XFS_ERRLEVEL_LOW, mp, dicp);
2428 xfs_buf_relse(bp);
2429 xfs_fs_cmn_err(CE_ALERT, mp,
2430 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2431 item, dip, bp, ino,
2432 dicp->di_nextents + dicp->di_anextents,
2433 dicp->di_nblocks);
2434 error = EFSCORRUPTED;
2435 goto error;
2436 }
2437 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2438 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2439 XFS_ERRLEVEL_LOW, mp, dicp);
2440 xfs_buf_relse(bp);
2441 xfs_fs_cmn_err(CE_ALERT, mp,
2442 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2443 item, dip, bp, ino, dicp->di_forkoff);
2444 error = EFSCORRUPTED;
2445 goto error;
2446 }
2447 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2448 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2449 XFS_ERRLEVEL_LOW, mp, dicp);
2450 xfs_buf_relse(bp);
2451 xfs_fs_cmn_err(CE_ALERT, mp,
2452 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2453 item->ri_buf[1].i_len, item);
2454 error = EFSCORRUPTED;
2455 goto error;
2456 }
2457
2458 /* The core is in in-core format */
2459 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2460 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2461
2462 /* the rest is in on-disk format */
2463 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2464 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2465 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2466 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2467 }
2468
2469 fields = in_f->ilf_fields;
2470 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2471 case XFS_ILOG_DEV:
2472 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2473
2474 break;
2475 case XFS_ILOG_UUID:
2476 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2477 break;
2478 }
2479
2480 if (in_f->ilf_size == 2)
2481 goto write_inode_buffer;
2482 len = item->ri_buf[2].i_len;
2483 src = item->ri_buf[2].i_addr;
2484 ASSERT(in_f->ilf_size <= 4);
2485 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2486 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2487 (len == in_f->ilf_dsize));
2488
2489 switch (fields & XFS_ILOG_DFORK) {
2490 case XFS_ILOG_DDATA:
2491 case XFS_ILOG_DEXT:
2492 memcpy(&dip->di_u, src, len);
2493 break;
2494
2495 case XFS_ILOG_DBROOT:
2496 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2497 &(dip->di_u.di_bmbt),
2498 XFS_DFORK_DSIZE(dip, mp));
2499 break;
2500
2501 default:
2502 /*
2503 * There are no data fork flags set.
2504 */
2505 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2506 break;
2507 }
2508
2509 /*
2510 * If we logged any attribute data, recover it. There may or
2511 * may not have been any other non-core data logged in this
2512 * transaction.
2513 */
2514 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2515 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2516 attr_index = 3;
2517 } else {
2518 attr_index = 2;
2519 }
2520 len = item->ri_buf[attr_index].i_len;
2521 src = item->ri_buf[attr_index].i_addr;
2522 ASSERT(len == in_f->ilf_asize);
2523
2524 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2525 case XFS_ILOG_ADATA:
2526 case XFS_ILOG_AEXT:
2527 dest = XFS_DFORK_APTR(dip);
2528 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2529 memcpy(dest, src, len);
2530 break;
2531
2532 case XFS_ILOG_ABROOT:
2533 dest = XFS_DFORK_APTR(dip);
2534 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2535 (xfs_bmdr_block_t*)dest,
2536 XFS_DFORK_ASIZE(dip, mp));
2537 break;
2538
2539 default:
2540 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2541 ASSERT(0);
2542 xfs_buf_relse(bp);
2543 error = EIO;
2544 goto error;
2545 }
2546 }
2547
2548 write_inode_buffer:
2549 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2550 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2551 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2552 XFS_BUF_SET_FSPRIVATE(bp, mp);
2553 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2554 xfs_bdwrite(mp, bp);
2555 } else {
2556 XFS_BUF_STALE(bp);
2557 error = xfs_bwrite(mp, bp);
2558 }
2559
2560 error:
2561 if (need_free)
2562 kmem_free(in_f, sizeof(*in_f));
2563 return XFS_ERROR(error);
2564 }
2565
2566 /*
2567 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2568 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2569 * of that type.
2570 */
2571 STATIC int
2572 xlog_recover_do_quotaoff_trans(
2573 xlog_t *log,
2574 xlog_recover_item_t *item,
2575 int pass)
2576 {
2577 xfs_qoff_logformat_t *qoff_f;
2578
2579 if (pass == XLOG_RECOVER_PASS2) {
2580 return (0);
2581 }
2582
2583 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2584 ASSERT(qoff_f);
2585
2586 /*
2587 * The logitem format's flag tells us if this was user quotaoff,
2588 * group/project quotaoff or both.
2589 */
2590 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2591 log->l_quotaoffs_flag |= XFS_DQ_USER;
2592 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2593 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2594 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2595 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2596
2597 return (0);
2598 }
2599
2600 /*
2601 * Recover a dquot record
2602 */
2603 STATIC int
2604 xlog_recover_do_dquot_trans(
2605 xlog_t *log,
2606 xlog_recover_item_t *item,
2607 int pass)
2608 {
2609 xfs_mount_t *mp;
2610 xfs_buf_t *bp;
2611 struct xfs_disk_dquot *ddq, *recddq;
2612 int error;
2613 xfs_dq_logformat_t *dq_f;
2614 uint type;
2615
2616 if (pass == XLOG_RECOVER_PASS1) {
2617 return 0;
2618 }
2619 mp = log->l_mp;
2620
2621 /*
2622 * Filesystems are required to send in quota flags at mount time.
2623 */
2624 if (mp->m_qflags == 0)
2625 return (0);
2626
2627 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2628 ASSERT(recddq);
2629 /*
2630 * This type of quotas was turned off, so ignore this record.
2631 */
2632 type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2633 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2634 ASSERT(type);
2635 if (log->l_quotaoffs_flag & type)
2636 return (0);
2637
2638 /*
2639 * At this point we know that quota was _not_ turned off.
2640 * Since the mount flags are not indicating to us otherwise, this
2641 * must mean that quota is on, and the dquot needs to be replayed.
2642 * Remember that we may not have fully recovered the superblock yet,
2643 * so we can't do the usual trick of looking at the SB quota bits.
2644 *
2645 * The other possibility, of course, is that the quota subsystem was
2646 * removed since the last mount - ENOSYS.
2647 */
2648 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2649 ASSERT(dq_f);
2650 if ((error = xfs_qm_dqcheck(recddq,
2651 dq_f->qlf_id,
2652 0, XFS_QMOPT_DOWARN,
2653 "xlog_recover_do_dquot_trans (log copy)"))) {
2654 return XFS_ERROR(EIO);
2655 }
2656 ASSERT(dq_f->qlf_len == 1);
2657
2658 error = xfs_read_buf(mp, mp->m_ddev_targp,
2659 dq_f->qlf_blkno,
2660 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2661 0, &bp);
2662 if (error) {
2663 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2664 bp, dq_f->qlf_blkno);
2665 return error;
2666 }
2667 ASSERT(bp);
2668 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2669
2670 /*
2671 * At least the magic num portion should be on disk because this
2672 * was among a chunk of dquots created earlier, and we did some
2673 * minimal initialization then.
2674 */
2675 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2676 "xlog_recover_do_dquot_trans")) {
2677 xfs_buf_relse(bp);
2678 return XFS_ERROR(EIO);
2679 }
2680
2681 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2682
2683 ASSERT(dq_f->qlf_size == 2);
2684 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2685 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2686 XFS_BUF_SET_FSPRIVATE(bp, mp);
2687 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2688 xfs_bdwrite(mp, bp);
2689
2690 return (0);
2691 }
2692
2693 /*
2694 * This routine is called to create an in-core extent free intent
2695 * item from the efi format structure which was logged on disk.
2696 * It allocates an in-core efi, copies the extents from the format
2697 * structure into it, and adds the efi to the AIL with the given
2698 * LSN.
2699 */
2700 STATIC int
2701 xlog_recover_do_efi_trans(
2702 xlog_t *log,
2703 xlog_recover_item_t *item,
2704 xfs_lsn_t lsn,
2705 int pass)
2706 {
2707 int error;
2708 xfs_mount_t *mp;
2709 xfs_efi_log_item_t *efip;
2710 xfs_efi_log_format_t *efi_formatp;
2711 SPLDECL(s);
2712
2713 if (pass == XLOG_RECOVER_PASS1) {
2714 return 0;
2715 }
2716
2717 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2718
2719 mp = log->l_mp;
2720 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2721 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2722 &(efip->efi_format)))) {
2723 xfs_efi_item_free(efip);
2724 return error;
2725 }
2726 efip->efi_next_extent = efi_formatp->efi_nextents;
2727 efip->efi_flags |= XFS_EFI_COMMITTED;
2728
2729 AIL_LOCK(mp,s);
2730 /*
2731 * xfs_trans_update_ail() drops the AIL lock.
2732 */
2733 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2734 return 0;
2735 }
2736
2737
2738 /*
2739 * This routine is called when an efd format structure is found in
2740 * a committed transaction in the log. It's purpose is to cancel
2741 * the corresponding efi if it was still in the log. To do this
2742 * it searches the AIL for the efi with an id equal to that in the
2743 * efd format structure. If we find it, we remove the efi from the
2744 * AIL and free it.
2745 */
2746 STATIC void
2747 xlog_recover_do_efd_trans(
2748 xlog_t *log,
2749 xlog_recover_item_t *item,
2750 int pass)
2751 {
2752 xfs_mount_t *mp;
2753 xfs_efd_log_format_t *efd_formatp;
2754 xfs_efi_log_item_t *efip = NULL;
2755 xfs_log_item_t *lip;
2756 int gen;
2757 __uint64_t efi_id;
2758 SPLDECL(s);
2759
2760 if (pass == XLOG_RECOVER_PASS1) {
2761 return;
2762 }
2763
2764 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2765 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2766 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2767 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2768 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2769 efi_id = efd_formatp->efd_efi_id;
2770
2771 /*
2772 * Search for the efi with the id in the efd format structure
2773 * in the AIL.
2774 */
2775 mp = log->l_mp;
2776 AIL_LOCK(mp,s);
2777 lip = xfs_trans_first_ail(mp, &gen);
2778 while (lip != NULL) {
2779 if (lip->li_type == XFS_LI_EFI) {
2780 efip = (xfs_efi_log_item_t *)lip;
2781 if (efip->efi_format.efi_id == efi_id) {
2782 /*
2783 * xfs_trans_delete_ail() drops the
2784 * AIL lock.
2785 */
2786 xfs_trans_delete_ail(mp, lip, s);
2787 break;
2788 }
2789 }
2790 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2791 }
2792
2793 /*
2794 * If we found it, then free it up. If it wasn't there, it
2795 * must have been overwritten in the log. Oh well.
2796 */
2797 if (lip != NULL) {
2798 xfs_efi_item_free(efip);
2799 } else {
2800 AIL_UNLOCK(mp, s);
2801 }
2802 }
2803
2804 /*
2805 * Perform the transaction
2806 *
2807 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2808 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2809 */
2810 STATIC int
2811 xlog_recover_do_trans(
2812 xlog_t *log,
2813 xlog_recover_t *trans,
2814 int pass)
2815 {
2816 int error = 0;
2817 xlog_recover_item_t *item, *first_item;
2818
2819 if ((error = xlog_recover_reorder_trans(trans)))
2820 return error;
2821 first_item = item = trans->r_itemq;
2822 do {
2823 /*
2824 * we don't need to worry about the block number being
2825 * truncated in > 1 TB buffers because in user-land,
2826 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2827 * the blknos will get through the user-mode buffer
2828 * cache properly. The only bad case is o32 kernels
2829 * where xfs_daddr_t is 32-bits but mount will warn us
2830 * off a > 1 TB filesystem before we get here.
2831 */
2832 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2833 if ((error = xlog_recover_do_buffer_trans(log, item,
2834 pass)))
2835 break;
2836 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2837 if ((error = xlog_recover_do_inode_trans(log, item,
2838 pass)))
2839 break;
2840 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2841 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2842 pass)))
2843 break;
2844 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2845 xlog_recover_do_efd_trans(log, item, pass);
2846 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2847 if ((error = xlog_recover_do_dquot_trans(log, item,
2848 pass)))
2849 break;
2850 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2851 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2852 pass)))
2853 break;
2854 } else {
2855 xlog_warn("XFS: xlog_recover_do_trans");
2856 ASSERT(0);
2857 error = XFS_ERROR(EIO);
2858 break;
2859 }
2860 item = item->ri_next;
2861 } while (first_item != item);
2862
2863 return error;
2864 }
2865
2866 /*
2867 * Free up any resources allocated by the transaction
2868 *
2869 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2870 */
2871 STATIC void
2872 xlog_recover_free_trans(
2873 xlog_recover_t *trans)
2874 {
2875 xlog_recover_item_t *first_item, *item, *free_item;
2876 int i;
2877
2878 item = first_item = trans->r_itemq;
2879 do {
2880 free_item = item;
2881 item = item->ri_next;
2882 /* Free the regions in the item. */
2883 for (i = 0; i < free_item->ri_cnt; i++) {
2884 kmem_free(free_item->ri_buf[i].i_addr,
2885 free_item->ri_buf[i].i_len);
2886 }
2887 /* Free the item itself */
2888 kmem_free(free_item->ri_buf,
2889 (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2890 kmem_free(free_item, sizeof(xlog_recover_item_t));
2891 } while (first_item != item);
2892 /* Free the transaction recover structure */
2893 kmem_free(trans, sizeof(xlog_recover_t));
2894 }
2895
2896 STATIC int
2897 xlog_recover_commit_trans(
2898 xlog_t *log,
2899 xlog_recover_t **q,
2900 xlog_recover_t *trans,
2901 int pass)
2902 {
2903 int error;
2904
2905 if ((error = xlog_recover_unlink_tid(q, trans)))
2906 return error;
2907 if ((error = xlog_recover_do_trans(log, trans, pass)))
2908 return error;
2909 xlog_recover_free_trans(trans); /* no error */
2910 return 0;
2911 }
2912
2913 STATIC int
2914 xlog_recover_unmount_trans(
2915 xlog_recover_t *trans)
2916 {
2917 /* Do nothing now */
2918 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2919 return 0;
2920 }
2921
2922 /*
2923 * There are two valid states of the r_state field. 0 indicates that the
2924 * transaction structure is in a normal state. We have either seen the
2925 * start of the transaction or the last operation we added was not a partial
2926 * operation. If the last operation we added to the transaction was a
2927 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2928 *
2929 * NOTE: skip LRs with 0 data length.
2930 */
2931 STATIC int
2932 xlog_recover_process_data(
2933 xlog_t *log,
2934 xlog_recover_t *rhash[],
2935 xlog_rec_header_t *rhead,
2936 xfs_caddr_t dp,
2937 int pass)
2938 {
2939 xfs_caddr_t lp;
2940 int num_logops;
2941 xlog_op_header_t *ohead;
2942 xlog_recover_t *trans;
2943 xlog_tid_t tid;
2944 int error;
2945 unsigned long hash;
2946 uint flags;
2947
2948 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2949 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2950
2951 /* check the log format matches our own - else we can't recover */
2952 if (xlog_header_check_recover(log->l_mp, rhead))
2953 return (XFS_ERROR(EIO));
2954
2955 while ((dp < lp) && num_logops) {
2956 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2957 ohead = (xlog_op_header_t *)dp;
2958 dp += sizeof(xlog_op_header_t);
2959 if (ohead->oh_clientid != XFS_TRANSACTION &&
2960 ohead->oh_clientid != XFS_LOG) {
2961 xlog_warn(
2962 "XFS: xlog_recover_process_data: bad clientid");
2963 ASSERT(0);
2964 return (XFS_ERROR(EIO));
2965 }
2966 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2967 hash = XLOG_RHASH(tid);
2968 trans = xlog_recover_find_tid(rhash[hash], tid);
2969 if (trans == NULL) { /* not found; add new tid */
2970 if (ohead->oh_flags & XLOG_START_TRANS)
2971 xlog_recover_new_tid(&rhash[hash], tid,
2972 INT_GET(rhead->h_lsn, ARCH_CONVERT));
2973 } else {
2974 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2975 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2976 if (flags & XLOG_WAS_CONT_TRANS)
2977 flags &= ~XLOG_CONTINUE_TRANS;
2978 switch (flags) {
2979 case XLOG_COMMIT_TRANS:
2980 error = xlog_recover_commit_trans(log,
2981 &rhash[hash], trans, pass);
2982 break;
2983 case XLOG_UNMOUNT_TRANS:
2984 error = xlog_recover_unmount_trans(trans);
2985 break;
2986 case XLOG_WAS_CONT_TRANS:
2987 error = xlog_recover_add_to_cont_trans(trans,
2988 dp, INT_GET(ohead->oh_len,
2989 ARCH_CONVERT));
2990 break;
2991 case XLOG_START_TRANS:
2992 xlog_warn(
2993 "XFS: xlog_recover_process_data: bad transaction");
2994 ASSERT(0);
2995 error = XFS_ERROR(EIO);
2996 break;
2997 case 0:
2998 case XLOG_CONTINUE_TRANS:
2999 error = xlog_recover_add_to_trans(trans,
3000 dp, INT_GET(ohead->oh_len,
3001 ARCH_CONVERT));
3002 break;
3003 default:
3004 xlog_warn(
3005 "XFS: xlog_recover_process_data: bad flag");
3006 ASSERT(0);
3007 error = XFS_ERROR(EIO);
3008 break;
3009 }
3010 if (error)
3011 return error;
3012 }
3013 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3014 num_logops--;
3015 }
3016 return 0;
3017 }
3018
3019 /*
3020 * Process an extent free intent item that was recovered from
3021 * the log. We need to free the extents that it describes.
3022 */
3023 STATIC void
3024 xlog_recover_process_efi(
3025 xfs_mount_t *mp,
3026 xfs_efi_log_item_t *efip)
3027 {
3028 xfs_efd_log_item_t *efdp;
3029 xfs_trans_t *tp;
3030 int i;
3031 xfs_extent_t *extp;
3032 xfs_fsblock_t startblock_fsb;
3033
3034 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3035
3036 /*
3037 * First check the validity of the extents described by the
3038 * EFI. If any are bad, then assume that all are bad and
3039 * just toss the EFI.
3040 */
3041 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3042 extp = &(efip->efi_format.efi_extents[i]);
3043 startblock_fsb = XFS_BB_TO_FSB(mp,
3044 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3045 if ((startblock_fsb == 0) ||
3046 (extp->ext_len == 0) ||
3047 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3048 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3049 /*
3050 * This will pull the EFI from the AIL and
3051 * free the memory associated with it.
3052 */
3053 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3054 return;
3055 }
3056 }
3057
3058 tp = xfs_trans_alloc(mp, 0);
3059 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3060 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3061
3062 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3063 extp = &(efip->efi_format.efi_extents[i]);
3064 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3065 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3066 extp->ext_len);
3067 }
3068
3069 efip->efi_flags |= XFS_EFI_RECOVERED;
3070 xfs_trans_commit(tp, 0);
3071 }
3072
3073 /*
3074 * Verify that once we've encountered something other than an EFI
3075 * in the AIL that there are no more EFIs in the AIL.
3076 */
3077 #if defined(DEBUG)
3078 STATIC void
3079 xlog_recover_check_ail(
3080 xfs_mount_t *mp,
3081 xfs_log_item_t *lip,
3082 int gen)
3083 {
3084 int orig_gen = gen;
3085
3086 do {
3087 ASSERT(lip->li_type != XFS_LI_EFI);
3088 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3089 /*
3090 * The check will be bogus if we restart from the
3091 * beginning of the AIL, so ASSERT that we don't.
3092 * We never should since we're holding the AIL lock
3093 * the entire time.
3094 */
3095 ASSERT(gen == orig_gen);
3096 } while (lip != NULL);
3097 }
3098 #endif /* DEBUG */
3099
3100 /*
3101 * When this is called, all of the EFIs which did not have
3102 * corresponding EFDs should be in the AIL. What we do now
3103 * is free the extents associated with each one.
3104 *
3105 * Since we process the EFIs in normal transactions, they
3106 * will be removed at some point after the commit. This prevents
3107 * us from just walking down the list processing each one.
3108 * We'll use a flag in the EFI to skip those that we've already
3109 * processed and use the AIL iteration mechanism's generation
3110 * count to try to speed this up at least a bit.
3111 *
3112 * When we start, we know that the EFIs are the only things in
3113 * the AIL. As we process them, however, other items are added
3114 * to the AIL. Since everything added to the AIL must come after
3115 * everything already in the AIL, we stop processing as soon as
3116 * we see something other than an EFI in the AIL.
3117 */
3118 STATIC void
3119 xlog_recover_process_efis(
3120 xlog_t *log)
3121 {
3122 xfs_log_item_t *lip;
3123 xfs_efi_log_item_t *efip;
3124 int gen;
3125 xfs_mount_t *mp;
3126 SPLDECL(s);
3127
3128 mp = log->l_mp;
3129 AIL_LOCK(mp,s);
3130
3131 lip = xfs_trans_first_ail(mp, &gen);
3132 while (lip != NULL) {
3133 /*
3134 * We're done when we see something other than an EFI.
3135 */
3136 if (lip->li_type != XFS_LI_EFI) {
3137 xlog_recover_check_ail(mp, lip, gen);
3138 break;
3139 }
3140
3141 /*
3142 * Skip EFIs that we've already processed.
3143 */
3144 efip = (xfs_efi_log_item_t *)lip;
3145 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3146 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3147 continue;
3148 }
3149
3150 AIL_UNLOCK(mp, s);
3151 xlog_recover_process_efi(mp, efip);
3152 AIL_LOCK(mp,s);
3153 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3154 }
3155 AIL_UNLOCK(mp, s);
3156 }
3157
3158 /*
3159 * This routine performs a transaction to null out a bad inode pointer
3160 * in an agi unlinked inode hash bucket.
3161 */
3162 STATIC void
3163 xlog_recover_clear_agi_bucket(
3164 xfs_mount_t *mp,
3165 xfs_agnumber_t agno,
3166 int bucket)
3167 {
3168 xfs_trans_t *tp;
3169 xfs_agi_t *agi;
3170 xfs_buf_t *agibp;
3171 int offset;
3172 int error;
3173
3174 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3175 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3176
3177 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3178 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3179 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3180 if (error) {
3181 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3182 return;
3183 }
3184
3185 agi = XFS_BUF_TO_AGI(agibp);
3186 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3187 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3188 return;
3189 }
3190
3191 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3192 offset = offsetof(xfs_agi_t, agi_unlinked) +
3193 (sizeof(xfs_agino_t) * bucket);
3194 xfs_trans_log_buf(tp, agibp, offset,
3195 (offset + sizeof(xfs_agino_t) - 1));
3196
3197 (void) xfs_trans_commit(tp, 0);
3198 }
3199
3200 /*
3201 * xlog_iunlink_recover
3202 *
3203 * This is called during recovery to process any inodes which
3204 * we unlinked but not freed when the system crashed. These
3205 * inodes will be on the lists in the AGI blocks. What we do
3206 * here is scan all the AGIs and fully truncate and free any
3207 * inodes found on the lists. Each inode is removed from the
3208 * lists when it has been fully truncated and is freed. The
3209 * freeing of the inode and its removal from the list must be
3210 * atomic.
3211 */
3212 void
3213 xlog_recover_process_iunlinks(
3214 xlog_t *log)
3215 {
3216 xfs_mount_t *mp;
3217 xfs_agnumber_t agno;
3218 xfs_agi_t *agi;
3219 xfs_buf_t *agibp;
3220 xfs_buf_t *ibp;
3221 xfs_dinode_t *dip;
3222 xfs_inode_t *ip;
3223 xfs_agino_t agino;
3224 xfs_ino_t ino;
3225 int bucket;
3226 int error;
3227 uint mp_dmevmask;
3228
3229 mp = log->l_mp;
3230
3231 /*
3232 * Prevent any DMAPI event from being sent while in this function.
3233 */
3234 mp_dmevmask = mp->m_dmevmask;
3235 mp->m_dmevmask = 0;
3236
3237 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3238 /*
3239 * Find the agi for this ag.
3240 */
3241 agibp = xfs_buf_read(mp->m_ddev_targp,
3242 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3243 XFS_FSS_TO_BB(mp, 1), 0);
3244 if (XFS_BUF_ISERROR(agibp)) {
3245 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3246 log->l_mp, agibp,
3247 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3248 }
3249 agi = XFS_BUF_TO_AGI(agibp);
3250 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3251
3252 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3253
3254 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3255 while (agino != NULLAGINO) {
3256
3257 /*
3258 * Release the agi buffer so that it can
3259 * be acquired in the normal course of the
3260 * transaction to truncate and free the inode.
3261 */
3262 xfs_buf_relse(agibp);
3263
3264 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3265 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3266 ASSERT(error || (ip != NULL));
3267
3268 if (!error) {
3269 /*
3270 * Get the on disk inode to find the
3271 * next inode in the bucket.
3272 */
3273 error = xfs_itobp(mp, NULL, ip, &dip,
3274 &ibp, 0, 0);
3275 ASSERT(error || (dip != NULL));
3276 }
3277
3278 if (!error) {
3279 ASSERT(ip->i_d.di_nlink == 0);
3280
3281 /* setup for the next pass */
3282 agino = INT_GET(dip->di_next_unlinked,
3283 ARCH_CONVERT);
3284 xfs_buf_relse(ibp);
3285 /*
3286 * Prevent any DMAPI event from
3287 * being sent when the
3288 * reference on the inode is
3289 * dropped.
3290 */
3291 ip->i_d.di_dmevmask = 0;
3292
3293 /*
3294 * If this is a new inode, handle
3295 * it specially. Otherwise,
3296 * just drop our reference to the
3297 * inode. If there are no
3298 * other references, this will
3299 * send the inode to
3300 * xfs_inactive() which will
3301 * truncate the file and free
3302 * the inode.
3303 */
3304 if (ip->i_d.di_mode == 0)
3305 xfs_iput_new(ip, 0);
3306 else
3307 VN_RELE(XFS_ITOV(ip));
3308 } else {
3309 /*
3310 * We can't read in the inode
3311 * this bucket points to, or
3312 * this inode is messed up. Just
3313 * ditch this bucket of inodes. We
3314 * will lose some inodes and space,
3315 * but at least we won't hang. Call
3316 * xlog_recover_clear_agi_bucket()
3317 * to perform a transaction to clear
3318 * the inode pointer in the bucket.
3319 */
3320 xlog_recover_clear_agi_bucket(mp, agno,
3321 bucket);
3322
3323 agino = NULLAGINO;
3324 }
3325
3326 /*
3327 * Reacquire the agibuffer and continue around
3328 * the loop.
3329 */
3330 agibp = xfs_buf_read(mp->m_ddev_targp,
3331 XFS_AG_DADDR(mp, agno,
3332 XFS_AGI_DADDR(mp)),
3333 XFS_FSS_TO_BB(mp, 1), 0);
3334 if (XFS_BUF_ISERROR(agibp)) {
3335 xfs_ioerror_alert(
3336 "xlog_recover_process_iunlinks(#2)",
3337 log->l_mp, agibp,
3338 XFS_AG_DADDR(mp, agno,
3339 XFS_AGI_DADDR(mp)));
3340 }
3341 agi = XFS_BUF_TO_AGI(agibp);
3342 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3343 agi->agi_magicnum));
3344 }
3345 }
3346
3347 /*
3348 * Release the buffer for the current agi so we can
3349 * go on to the next one.
3350 */
3351 xfs_buf_relse(agibp);
3352 }
3353
3354 mp->m_dmevmask = mp_dmevmask;
3355 }
3356
3357
3358 #ifdef DEBUG
3359 STATIC void
3360 xlog_pack_data_checksum(
3361 xlog_t *log,
3362 xlog_in_core_t *iclog,
3363 int size)
3364 {
3365 int i;
3366 uint *up;
3367 uint chksum = 0;
3368
3369 up = (uint *)iclog->ic_datap;
3370 /* divide length by 4 to get # words */
3371 for (i = 0; i < (size >> 2); i++) {
3372 chksum ^= INT_GET(*up, ARCH_CONVERT);
3373 up++;
3374 }
3375 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3376 }
3377 #else
3378 #define xlog_pack_data_checksum(log, iclog, size)
3379 #endif
3380
3381 /*
3382 * Stamp cycle number in every block
3383 */
3384 void
3385 xlog_pack_data(
3386 xlog_t *log,
3387 xlog_in_core_t *iclog,
3388 int roundoff)
3389 {
3390 int i, j, k;
3391 int size = iclog->ic_offset + roundoff;
3392 uint cycle_lsn;
3393 xfs_caddr_t dp;
3394 xlog_in_core_2_t *xhdr;
3395
3396 xlog_pack_data_checksum(log, iclog, size);
3397
3398 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3399
3400 dp = iclog->ic_datap;
3401 for (i = 0; i < BTOBB(size) &&
3402 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3403 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3404 *(uint *)dp = cycle_lsn;
3405 dp += BBSIZE;
3406 }
3407
3408 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3409 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3410 for ( ; i < BTOBB(size); i++) {
3411 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3412 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3413 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3414 *(uint *)dp = cycle_lsn;
3415 dp += BBSIZE;
3416 }
3417
3418 for (i = 1; i < log->l_iclog_heads; i++) {
3419 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3420 }
3421 }
3422 }
3423
3424 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3425 STATIC void
3426 xlog_unpack_data_checksum(
3427 xlog_rec_header_t *rhead,
3428 xfs_caddr_t dp,
3429 xlog_t *log)
3430 {
3431 uint *up = (uint *)dp;
3432 uint chksum = 0;
3433 int i;
3434
3435 /* divide length by 4 to get # words */
3436 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3437 chksum ^= INT_GET(*up, ARCH_CONVERT);
3438 up++;
3439 }
3440 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3441 if (rhead->h_chksum ||
3442 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3443 cmn_err(CE_DEBUG,
3444 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3445 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3446 cmn_err(CE_DEBUG,
3447 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3448 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3449 cmn_err(CE_DEBUG,
3450 "XFS: LogR this is a LogV2 filesystem\n");
3451 }
3452 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3453 }
3454 }
3455 }
3456 #else
3457 #define xlog_unpack_data_checksum(rhead, dp, log)
3458 #endif
3459
3460 STATIC void
3461 xlog_unpack_data(
3462 xlog_rec_header_t *rhead,
3463 xfs_caddr_t dp,
3464 xlog_t *log)
3465 {
3466 int i, j, k;
3467 xlog_in_core_2_t *xhdr;
3468
3469 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3470 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3471 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3472 dp += BBSIZE;
3473 }
3474
3475 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3476 xhdr = (xlog_in_core_2_t *)rhead;
3477 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3478 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3479 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3480 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3481 dp += BBSIZE;
3482 }
3483 }
3484
3485 xlog_unpack_data_checksum(rhead, dp, log);
3486 }
3487
3488 STATIC int
3489 xlog_valid_rec_header(
3490 xlog_t *log,
3491 xlog_rec_header_t *rhead,
3492 xfs_daddr_t blkno)
3493 {
3494 int hlen;
3495
3496 if (unlikely(
3497 (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3498 XLOG_HEADER_MAGIC_NUM))) {
3499 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3500 XFS_ERRLEVEL_LOW, log->l_mp);
3501 return XFS_ERROR(EFSCORRUPTED);
3502 }
3503 if (unlikely(
3504 (!rhead->h_version ||
3505 (INT_GET(rhead->h_version, ARCH_CONVERT) &
3506 (~XLOG_VERSION_OKBITS)) != 0))) {
3507 xlog_warn("XFS: %s: unrecognised log version (%d).",
3508 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3509 return XFS_ERROR(EIO);
3510 }
3511
3512 /* LR body must have data or it wouldn't have been written */
3513 hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3514 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3515 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3516 XFS_ERRLEVEL_LOW, log->l_mp);
3517 return XFS_ERROR(EFSCORRUPTED);
3518 }
3519 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3520 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3521 XFS_ERRLEVEL_LOW, log->l_mp);
3522 return XFS_ERROR(EFSCORRUPTED);
3523 }
3524 return 0;
3525 }
3526
3527 /*
3528 * Read the log from tail to head and process the log records found.
3529 * Handle the two cases where the tail and head are in the same cycle
3530 * and where the active portion of the log wraps around the end of
3531 * the physical log separately. The pass parameter is passed through
3532 * to the routines called to process the data and is not looked at
3533 * here.
3534 */
3535 STATIC int
3536 xlog_do_recovery_pass(
3537 xlog_t *log,
3538 xfs_daddr_t head_blk,
3539 xfs_daddr_t tail_blk,
3540 int pass)
3541 {
3542 xlog_rec_header_t *rhead;
3543 xfs_daddr_t blk_no;
3544 xfs_caddr_t bufaddr, offset;
3545 xfs_buf_t *hbp, *dbp;
3546 int error = 0, h_size;
3547 int bblks, split_bblks;
3548 int hblks, split_hblks, wrapped_hblks;
3549 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3550
3551 ASSERT(head_blk != tail_blk);
3552
3553 /*
3554 * Read the header of the tail block and get the iclog buffer size from
3555 * h_size. Use this to tell how many sectors make up the log header.
3556 */
3557 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3558 /*
3559 * When using variable length iclogs, read first sector of
3560 * iclog header and extract the header size from it. Get a
3561 * new hbp that is the correct size.
3562 */
3563 hbp = xlog_get_bp(log, 1);
3564 if (!hbp)
3565 return ENOMEM;
3566 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3567 goto bread_err1;
3568 offset = xlog_align(log, tail_blk, 1, hbp);
3569 rhead = (xlog_rec_header_t *)offset;
3570 error = xlog_valid_rec_header(log, rhead, tail_blk);
3571 if (error)
3572 goto bread_err1;
3573 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3574 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3575 & XLOG_VERSION_2) &&
3576 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3577 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3578 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3579 hblks++;
3580 xlog_put_bp(hbp);
3581 hbp = xlog_get_bp(log, hblks);
3582 } else {
3583 hblks = 1;
3584 }
3585 } else {
3586 ASSERT(log->l_sectbb_log == 0);
3587 hblks = 1;
3588 hbp = xlog_get_bp(log, 1);
3589 h_size = XLOG_BIG_RECORD_BSIZE;
3590 }
3591
3592 if (!hbp)
3593 return ENOMEM;
3594 dbp = xlog_get_bp(log, BTOBB(h_size));
3595 if (!dbp) {
3596 xlog_put_bp(hbp);
3597 return ENOMEM;
3598 }
3599
3600 memset(rhash, 0, sizeof(rhash));
3601 if (tail_blk <= head_blk) {
3602 for (blk_no = tail_blk; blk_no < head_blk; ) {
3603 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3604 goto bread_err2;
3605 offset = xlog_align(log, blk_no, hblks, hbp);
3606 rhead = (xlog_rec_header_t *)offset;
3607 error = xlog_valid_rec_header(log, rhead, blk_no);
3608 if (error)
3609 goto bread_err2;
3610
3611 /* blocks in data section */
3612 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3613 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3614 if (error)
3615 goto bread_err2;
3616 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3617 xlog_unpack_data(rhead, offset, log);
3618 if ((error = xlog_recover_process_data(log,
3619 rhash, rhead, offset, pass)))
3620 goto bread_err2;
3621 blk_no += bblks + hblks;
3622 }
3623 } else {
3624 /*
3625 * Perform recovery around the end of the physical log.
3626 * When the head is not on the same cycle number as the tail,
3627 * we can't do a sequential recovery as above.
3628 */
3629 blk_no = tail_blk;
3630 while (blk_no < log->l_logBBsize) {
3631 /*
3632 * Check for header wrapping around physical end-of-log
3633 */
3634 offset = NULL;
3635 split_hblks = 0;
3636 wrapped_hblks = 0;
3637 if (blk_no + hblks <= log->l_logBBsize) {
3638 /* Read header in one read */
3639 error = xlog_bread(log, blk_no, hblks, hbp);
3640 if (error)
3641 goto bread_err2;
3642 offset = xlog_align(log, blk_no, hblks, hbp);
3643 } else {
3644 /* This LR is split across physical log end */
3645 if (blk_no != log->l_logBBsize) {
3646 /* some data before physical log end */
3647 ASSERT(blk_no <= INT_MAX);
3648 split_hblks = log->l_logBBsize - (int)blk_no;
3649 ASSERT(split_hblks > 0);
3650 if ((error = xlog_bread(log, blk_no,
3651 split_hblks, hbp)))
3652 goto bread_err2;
3653 offset = xlog_align(log, blk_no,
3654 split_hblks, hbp);
3655 }
3656 /*
3657 * Note: this black magic still works with
3658 * large sector sizes (non-512) only because:
3659 * - we increased the buffer size originally
3660 * by 1 sector giving us enough extra space
3661 * for the second read;
3662 * - the log start is guaranteed to be sector
3663 * aligned;
3664 * - we read the log end (LR header start)
3665 * _first_, then the log start (LR header end)
3666 * - order is important.
3667 */
3668 bufaddr = XFS_BUF_PTR(hbp);
3669 XFS_BUF_SET_PTR(hbp,
3670 bufaddr + BBTOB(split_hblks),
3671 BBTOB(hblks - split_hblks));
3672 wrapped_hblks = hblks - split_hblks;
3673 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3674 if (error)
3675 goto bread_err2;
3676 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3677 if (!offset)
3678 offset = xlog_align(log, 0,
3679 wrapped_hblks, hbp);
3680 }
3681 rhead = (xlog_rec_header_t *)offset;
3682 error = xlog_valid_rec_header(log, rhead,
3683 split_hblks ? blk_no : 0);
3684 if (error)
3685 goto bread_err2;
3686
3687 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3688 blk_no += hblks;
3689
3690 /* Read in data for log record */
3691 if (blk_no + bblks <= log->l_logBBsize) {
3692 error = xlog_bread(log, blk_no, bblks, dbp);
3693 if (error)
3694 goto bread_err2;
3695 offset = xlog_align(log, blk_no, bblks, dbp);
3696 } else {
3697 /* This log record is split across the
3698 * physical end of log */
3699 offset = NULL;
3700 split_bblks = 0;
3701 if (blk_no != log->l_logBBsize) {
3702 /* some data is before the physical
3703 * end of log */
3704 ASSERT(!wrapped_hblks);
3705 ASSERT(blk_no <= INT_MAX);
3706 split_bblks =
3707 log->l_logBBsize - (int)blk_no;
3708 ASSERT(split_bblks > 0);
3709 if ((error = xlog_bread(log, blk_no,
3710 split_bblks, dbp)))
3711 goto bread_err2;
3712 offset = xlog_align(log, blk_no,
3713 split_bblks, dbp);
3714 }
3715 /*
3716 * Note: this black magic still works with
3717 * large sector sizes (non-512) only because:
3718 * - we increased the buffer size originally
3719 * by 1 sector giving us enough extra space
3720 * for the second read;
3721 * - the log start is guaranteed to be sector
3722 * aligned;
3723 * - we read the log end (LR header start)
3724 * _first_, then the log start (LR header end)
3725 * - order is important.
3726 */
3727 bufaddr = XFS_BUF_PTR(dbp);
3728 XFS_BUF_SET_PTR(dbp,
3729 bufaddr + BBTOB(split_bblks),
3730 BBTOB(bblks - split_bblks));
3731 if ((error = xlog_bread(log, wrapped_hblks,
3732 bblks - split_bblks, dbp)))
3733 goto bread_err2;
3734 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3735 if (!offset)
3736 offset = xlog_align(log, wrapped_hblks,
3737 bblks - split_bblks, dbp);
3738 }
3739 xlog_unpack_data(rhead, offset, log);
3740 if ((error = xlog_recover_process_data(log, rhash,
3741 rhead, offset, pass)))
3742 goto bread_err2;
3743 blk_no += bblks;
3744 }
3745
3746 ASSERT(blk_no >= log->l_logBBsize);
3747 blk_no -= log->l_logBBsize;
3748
3749 /* read first part of physical log */
3750 while (blk_no < head_blk) {
3751 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3752 goto bread_err2;
3753 offset = xlog_align(log, blk_no, hblks, hbp);
3754 rhead = (xlog_rec_header_t *)offset;
3755 error = xlog_valid_rec_header(log, rhead, blk_no);
3756 if (error)
3757 goto bread_err2;
3758 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3759 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3760 goto bread_err2;
3761 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3762 xlog_unpack_data(rhead, offset, log);
3763 if ((error = xlog_recover_process_data(log, rhash,
3764 rhead, offset, pass)))
3765 goto bread_err2;
3766 blk_no += bblks + hblks;
3767 }
3768 }
3769
3770 bread_err2:
3771 xlog_put_bp(dbp);
3772 bread_err1:
3773 xlog_put_bp(hbp);
3774 return error;
3775 }
3776
3777 /*
3778 * Do the recovery of the log. We actually do this in two phases.
3779 * The two passes are necessary in order to implement the function
3780 * of cancelling a record written into the log. The first pass
3781 * determines those things which have been cancelled, and the
3782 * second pass replays log items normally except for those which
3783 * have been cancelled. The handling of the replay and cancellations
3784 * takes place in the log item type specific routines.
3785 *
3786 * The table of items which have cancel records in the log is allocated
3787 * and freed at this level, since only here do we know when all of
3788 * the log recovery has been completed.
3789 */
3790 STATIC int
3791 xlog_do_log_recovery(
3792 xlog_t *log,
3793 xfs_daddr_t head_blk,
3794 xfs_daddr_t tail_blk)
3795 {
3796 int error;
3797
3798 ASSERT(head_blk != tail_blk);
3799
3800 /*
3801 * First do a pass to find all of the cancelled buf log items.
3802 * Store them in the buf_cancel_table for use in the second pass.
3803 */
3804 log->l_buf_cancel_table =
3805 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3806 sizeof(xfs_buf_cancel_t*),
3807 KM_SLEEP);
3808 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3809 XLOG_RECOVER_PASS1);
3810 if (error != 0) {
3811 kmem_free(log->l_buf_cancel_table,
3812 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3813 log->l_buf_cancel_table = NULL;
3814 return error;
3815 }
3816 /*
3817 * Then do a second pass to actually recover the items in the log.
3818 * When it is complete free the table of buf cancel items.
3819 */
3820 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3821 XLOG_RECOVER_PASS2);
3822 #ifdef DEBUG
3823 if (!error) {
3824 int i;
3825
3826 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3827 ASSERT(log->l_buf_cancel_table[i] == NULL);
3828 }
3829 #endif /* DEBUG */
3830
3831 kmem_free(log->l_buf_cancel_table,
3832 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3833 log->l_buf_cancel_table = NULL;
3834
3835 return error;
3836 }
3837
3838 /*
3839 * Do the actual recovery
3840 */
3841 STATIC int
3842 xlog_do_recover(
3843 xlog_t *log,
3844 xfs_daddr_t head_blk,
3845 xfs_daddr_t tail_blk)
3846 {
3847 int error;
3848 xfs_buf_t *bp;
3849 xfs_sb_t *sbp;
3850
3851 /*
3852 * First replay the images in the log.
3853 */
3854 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3855 if (error) {
3856 return error;
3857 }
3858
3859 XFS_bflush(log->l_mp->m_ddev_targp);
3860
3861 /*
3862 * If IO errors happened during recovery, bail out.
3863 */
3864 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3865 return (EIO);
3866 }
3867
3868 /*
3869 * We now update the tail_lsn since much of the recovery has completed
3870 * and there may be space available to use. If there were no extent
3871 * or iunlinks, we can free up the entire log and set the tail_lsn to
3872 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3873 * lsn of the last known good LR on disk. If there are extent frees
3874 * or iunlinks they will have some entries in the AIL; so we look at
3875 * the AIL to determine how to set the tail_lsn.
3876 */
3877 xlog_assign_tail_lsn(log->l_mp);
3878
3879 /*
3880 * Now that we've finished replaying all buffer and inode
3881 * updates, re-read in the superblock.
3882 */
3883 bp = xfs_getsb(log->l_mp, 0);
3884 XFS_BUF_UNDONE(bp);
3885 XFS_BUF_READ(bp);
3886 xfsbdstrat(log->l_mp, bp);
3887 if ((error = xfs_iowait(bp))) {
3888 xfs_ioerror_alert("xlog_do_recover",
3889 log->l_mp, bp, XFS_BUF_ADDR(bp));
3890 ASSERT(0);
3891 xfs_buf_relse(bp);
3892 return error;
3893 }
3894
3895 /* Convert superblock from on-disk format */
3896 sbp = &log->l_mp->m_sb;
3897 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3898 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3899 ASSERT(XFS_SB_GOOD_VERSION(sbp));
3900 xfs_buf_relse(bp);
3901
3902 /* We've re-read the superblock so re-initialize per-cpu counters */
3903 xfs_icsb_reinit_counters(log->l_mp);
3904
3905 xlog_recover_check_summary(log);
3906
3907 /* Normal transactions can now occur */
3908 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3909 return 0;
3910 }
3911
3912 /*
3913 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3914 *
3915 * Return error or zero.
3916 */
3917 int
3918 xlog_recover(
3919 xlog_t *log)
3920 {
3921 xfs_daddr_t head_blk, tail_blk;
3922 int error;
3923
3924 /* find the tail of the log */
3925 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3926 return error;
3927
3928 if (tail_blk != head_blk) {
3929 /* There used to be a comment here:
3930 *
3931 * disallow recovery on read-only mounts. note -- mount
3932 * checks for ENOSPC and turns it into an intelligent
3933 * error message.
3934 * ...but this is no longer true. Now, unless you specify
3935 * NORECOVERY (in which case this function would never be
3936 * called), we just go ahead and recover. We do this all
3937 * under the vfs layer, so we can get away with it unless
3938 * the device itself is read-only, in which case we fail.
3939 */
3940 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3941 return error;
3942 }
3943
3944 cmn_err(CE_NOTE,
3945 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3946 log->l_mp->m_fsname, log->l_mp->m_logname ?
3947 log->l_mp->m_logname : "internal");
3948
3949 error = xlog_do_recover(log, head_blk, tail_blk);
3950 log->l_flags |= XLOG_RECOVERY_NEEDED;
3951 }
3952 return error;
3953 }
3954
3955 /*
3956 * In the first part of recovery we replay inodes and buffers and build
3957 * up the list of extent free items which need to be processed. Here
3958 * we process the extent free items and clean up the on disk unlinked
3959 * inode lists. This is separated from the first part of recovery so
3960 * that the root and real-time bitmap inodes can be read in from disk in
3961 * between the two stages. This is necessary so that we can free space
3962 * in the real-time portion of the file system.
3963 */
3964 int
3965 xlog_recover_finish(
3966 xlog_t *log,
3967 int mfsi_flags)
3968 {
3969 /*
3970 * Now we're ready to do the transactions needed for the
3971 * rest of recovery. Start with completing all the extent
3972 * free intent records and then process the unlinked inode
3973 * lists. At this point, we essentially run in normal mode
3974 * except that we're still performing recovery actions
3975 * rather than accepting new requests.
3976 */
3977 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3978 xlog_recover_process_efis(log);
3979 /*
3980 * Sync the log to get all the EFIs out of the AIL.
3981 * This isn't absolutely necessary, but it helps in
3982 * case the unlink transactions would have problems
3983 * pushing the EFIs out of the way.
3984 */
3985 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3986 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3987
3988 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3989 xlog_recover_process_iunlinks(log);
3990 }
3991
3992 xlog_recover_check_summary(log);
3993
3994 cmn_err(CE_NOTE,
3995 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3996 log->l_mp->m_fsname, log->l_mp->m_logname ?
3997 log->l_mp->m_logname : "internal");
3998 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3999 } else {
4000 cmn_err(CE_DEBUG,
4001 "!Ending clean XFS mount for filesystem: %s\n",
4002 log->l_mp->m_fsname);
4003 }
4004 return 0;
4005 }
4006
4007
4008 #if defined(DEBUG)
4009 /*
4010 * Read all of the agf and agi counters and check that they
4011 * are consistent with the superblock counters.
4012 */
4013 void
4014 xlog_recover_check_summary(
4015 xlog_t *log)
4016 {
4017 xfs_mount_t *mp;
4018 xfs_agf_t *agfp;
4019 xfs_agi_t *agip;
4020 xfs_buf_t *agfbp;
4021 xfs_buf_t *agibp;
4022 xfs_daddr_t agfdaddr;
4023 xfs_daddr_t agidaddr;
4024 xfs_buf_t *sbbp;
4025 #ifdef XFS_LOUD_RECOVERY
4026 xfs_sb_t *sbp;
4027 #endif
4028 xfs_agnumber_t agno;
4029 __uint64_t freeblks;
4030 __uint64_t itotal;
4031 __uint64_t ifree;
4032
4033 mp = log->l_mp;
4034
4035 freeblks = 0LL;
4036 itotal = 0LL;
4037 ifree = 0LL;
4038 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4039 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4040 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4041 XFS_FSS_TO_BB(mp, 1), 0);
4042 if (XFS_BUF_ISERROR(agfbp)) {
4043 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4044 mp, agfbp, agfdaddr);
4045 }
4046 agfp = XFS_BUF_TO_AGF(agfbp);
4047 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4048 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4049 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4050
4051 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4052 be32_to_cpu(agfp->agf_flcount);
4053 xfs_buf_relse(agfbp);
4054
4055 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4056 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4057 XFS_FSS_TO_BB(mp, 1), 0);
4058 if (XFS_BUF_ISERROR(agibp)) {
4059 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4060 mp, agibp, agidaddr);
4061 }
4062 agip = XFS_BUF_TO_AGI(agibp);
4063 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4064 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4065 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4066
4067 itotal += be32_to_cpu(agip->agi_count);
4068 ifree += be32_to_cpu(agip->agi_freecount);
4069 xfs_buf_relse(agibp);
4070 }
4071
4072 sbbp = xfs_getsb(mp, 0);
4073 #ifdef XFS_LOUD_RECOVERY
4074 sbp = &mp->m_sb;
4075 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4076 cmn_err(CE_NOTE,
4077 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4078 sbp->sb_icount, itotal);
4079 cmn_err(CE_NOTE,
4080 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4081 sbp->sb_ifree, ifree);
4082 cmn_err(CE_NOTE,
4083 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4084 sbp->sb_fdblocks, freeblks);
4085 #if 0
4086 /*
4087 * This is turned off until I account for the allocation
4088 * btree blocks which live in free space.
4089 */
4090 ASSERT(sbp->sb_icount == itotal);
4091 ASSERT(sbp->sb_ifree == ifree);
4092 ASSERT(sbp->sb_fdblocks == freeblks);
4093 #endif
4094 #endif
4095 xfs_buf_relse(sbbp);
4096 }
4097 #endif /* DEBUG */