]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_log_recover.c
Merge tag 'gpio-v4.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 #include "xfs_rmap_item.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_refcount_item.h"
49 #include "xfs_bmap_item.h"
50
51 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
52
53 STATIC int
54 xlog_find_zeroed(
55 struct xlog *,
56 xfs_daddr_t *);
57 STATIC int
58 xlog_clear_stale_blocks(
59 struct xlog *,
60 xfs_lsn_t);
61 #if defined(DEBUG)
62 STATIC void
63 xlog_recover_check_summary(
64 struct xlog *);
65 #else
66 #define xlog_recover_check_summary(log)
67 #endif
68 STATIC int
69 xlog_do_recovery_pass(
70 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
71
72 /*
73 * This structure is used during recovery to record the buf log items which
74 * have been canceled and should not be replayed.
75 */
76 struct xfs_buf_cancel {
77 xfs_daddr_t bc_blkno;
78 uint bc_len;
79 int bc_refcount;
80 struct list_head bc_list;
81 };
82
83 /*
84 * Sector aligned buffer routines for buffer create/read/write/access
85 */
86
87 /*
88 * Verify the given count of basic blocks is valid number of blocks
89 * to specify for an operation involving the given XFS log buffer.
90 * Returns nonzero if the count is valid, 0 otherwise.
91 */
92
93 static inline int
94 xlog_buf_bbcount_valid(
95 struct xlog *log,
96 int bbcount)
97 {
98 return bbcount > 0 && bbcount <= log->l_logBBsize;
99 }
100
101 /*
102 * Allocate a buffer to hold log data. The buffer needs to be able
103 * to map to a range of nbblks basic blocks at any valid (basic
104 * block) offset within the log.
105 */
106 STATIC xfs_buf_t *
107 xlog_get_bp(
108 struct xlog *log,
109 int nbblks)
110 {
111 struct xfs_buf *bp;
112
113 if (!xlog_buf_bbcount_valid(log, nbblks)) {
114 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
115 nbblks);
116 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
117 return NULL;
118 }
119
120 /*
121 * We do log I/O in units of log sectors (a power-of-2
122 * multiple of the basic block size), so we round up the
123 * requested size to accommodate the basic blocks required
124 * for complete log sectors.
125 *
126 * In addition, the buffer may be used for a non-sector-
127 * aligned block offset, in which case an I/O of the
128 * requested size could extend beyond the end of the
129 * buffer. If the requested size is only 1 basic block it
130 * will never straddle a sector boundary, so this won't be
131 * an issue. Nor will this be a problem if the log I/O is
132 * done in basic blocks (sector size 1). But otherwise we
133 * extend the buffer by one extra log sector to ensure
134 * there's space to accommodate this possibility.
135 */
136 if (nbblks > 1 && log->l_sectBBsize > 1)
137 nbblks += log->l_sectBBsize;
138 nbblks = round_up(nbblks, log->l_sectBBsize);
139
140 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
141 if (bp)
142 xfs_buf_unlock(bp);
143 return bp;
144 }
145
146 STATIC void
147 xlog_put_bp(
148 xfs_buf_t *bp)
149 {
150 xfs_buf_free(bp);
151 }
152
153 /*
154 * Return the address of the start of the given block number's data
155 * in a log buffer. The buffer covers a log sector-aligned region.
156 */
157 STATIC char *
158 xlog_align(
159 struct xlog *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 struct xfs_buf *bp)
163 {
164 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
165
166 ASSERT(offset + nbblks <= bp->b_length);
167 return bp->b_addr + BBTOB(offset);
168 }
169
170
171 /*
172 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
173 */
174 STATIC int
175 xlog_bread_noalign(
176 struct xlog *log,
177 xfs_daddr_t blk_no,
178 int nbblks,
179 struct xfs_buf *bp)
180 {
181 int error;
182
183 if (!xlog_buf_bbcount_valid(log, nbblks)) {
184 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
185 nbblks);
186 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
187 return -EFSCORRUPTED;
188 }
189
190 blk_no = round_down(blk_no, log->l_sectBBsize);
191 nbblks = round_up(nbblks, log->l_sectBBsize);
192
193 ASSERT(nbblks > 0);
194 ASSERT(nbblks <= bp->b_length);
195
196 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
197 bp->b_flags |= XBF_READ;
198 bp->b_io_length = nbblks;
199 bp->b_error = 0;
200
201 error = xfs_buf_submit_wait(bp);
202 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
203 xfs_buf_ioerror_alert(bp, __func__);
204 return error;
205 }
206
207 STATIC int
208 xlog_bread(
209 struct xlog *log,
210 xfs_daddr_t blk_no,
211 int nbblks,
212 struct xfs_buf *bp,
213 char **offset)
214 {
215 int error;
216
217 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
218 if (error)
219 return error;
220
221 *offset = xlog_align(log, blk_no, nbblks, bp);
222 return 0;
223 }
224
225 /*
226 * Read at an offset into the buffer. Returns with the buffer in it's original
227 * state regardless of the result of the read.
228 */
229 STATIC int
230 xlog_bread_offset(
231 struct xlog *log,
232 xfs_daddr_t blk_no, /* block to read from */
233 int nbblks, /* blocks to read */
234 struct xfs_buf *bp,
235 char *offset)
236 {
237 char *orig_offset = bp->b_addr;
238 int orig_len = BBTOB(bp->b_length);
239 int error, error2;
240
241 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
242 if (error)
243 return error;
244
245 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
246
247 /* must reset buffer pointer even on error */
248 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
249 if (error)
250 return error;
251 return error2;
252 }
253
254 /*
255 * Write out the buffer at the given block for the given number of blocks.
256 * The buffer is kept locked across the write and is returned locked.
257 * This can only be used for synchronous log writes.
258 */
259 STATIC int
260 xlog_bwrite(
261 struct xlog *log,
262 xfs_daddr_t blk_no,
263 int nbblks,
264 struct xfs_buf *bp)
265 {
266 int error;
267
268 if (!xlog_buf_bbcount_valid(log, nbblks)) {
269 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
270 nbblks);
271 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
272 return -EFSCORRUPTED;
273 }
274
275 blk_no = round_down(blk_no, log->l_sectBBsize);
276 nbblks = round_up(nbblks, log->l_sectBBsize);
277
278 ASSERT(nbblks > 0);
279 ASSERT(nbblks <= bp->b_length);
280
281 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
282 xfs_buf_hold(bp);
283 xfs_buf_lock(bp);
284 bp->b_io_length = nbblks;
285 bp->b_error = 0;
286
287 error = xfs_bwrite(bp);
288 if (error)
289 xfs_buf_ioerror_alert(bp, __func__);
290 xfs_buf_relse(bp);
291 return error;
292 }
293
294 #ifdef DEBUG
295 /*
296 * dump debug superblock and log record information
297 */
298 STATIC void
299 xlog_header_check_dump(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302 {
303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
305 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
307 }
308 #else
309 #define xlog_header_check_dump(mp, head)
310 #endif
311
312 /*
313 * check log record header for recovery
314 */
315 STATIC int
316 xlog_header_check_recover(
317 xfs_mount_t *mp,
318 xlog_rec_header_t *head)
319 {
320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
321
322 /*
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
326 */
327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 xfs_warn(mp,
329 "dirty log written in incompatible format - can't recover");
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH, mp);
333 return -EFSCORRUPTED;
334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 xfs_warn(mp,
336 "dirty log entry has mismatched uuid - can't recover");
337 xlog_header_check_dump(mp, head);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH, mp);
340 return -EFSCORRUPTED;
341 }
342 return 0;
343 }
344
345 /*
346 * read the head block of the log and check the header
347 */
348 STATIC int
349 xlog_header_check_mount(
350 xfs_mount_t *mp,
351 xlog_rec_header_t *head)
352 {
353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354
355 if (uuid_is_null(&head->h_fs_uuid)) {
356 /*
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is null, we assume this log was last mounted
359 * by IRIX and continue.
360 */
361 xfs_warn(mp, "null uuid in log - IRIX style log");
362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
363 xfs_warn(mp, "log has mismatched uuid - can't recover");
364 xlog_header_check_dump(mp, head);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH, mp);
367 return -EFSCORRUPTED;
368 }
369 return 0;
370 }
371
372 STATIC void
373 xlog_recover_iodone(
374 struct xfs_buf *bp)
375 {
376 if (bp->b_error) {
377 /*
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
380 */
381 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
382 xfs_buf_ioerror_alert(bp, __func__);
383 xfs_force_shutdown(bp->b_target->bt_mount,
384 SHUTDOWN_META_IO_ERROR);
385 }
386 }
387
388 /*
389 * On v5 supers, a bli could be attached to update the metadata LSN.
390 * Clean it up.
391 */
392 if (bp->b_fspriv)
393 xfs_buf_item_relse(bp);
394 ASSERT(bp->b_fspriv == NULL);
395
396 bp->b_iodone = NULL;
397 xfs_buf_ioend(bp);
398 }
399
400 /*
401 * This routine finds (to an approximation) the first block in the physical
402 * log which contains the given cycle. It uses a binary search algorithm.
403 * Note that the algorithm can not be perfect because the disk will not
404 * necessarily be perfect.
405 */
406 STATIC int
407 xlog_find_cycle_start(
408 struct xlog *log,
409 struct xfs_buf *bp,
410 xfs_daddr_t first_blk,
411 xfs_daddr_t *last_blk,
412 uint cycle)
413 {
414 char *offset;
415 xfs_daddr_t mid_blk;
416 xfs_daddr_t end_blk;
417 uint mid_cycle;
418 int error;
419
420 end_blk = *last_blk;
421 mid_blk = BLK_AVG(first_blk, end_blk);
422 while (mid_blk != first_blk && mid_blk != end_blk) {
423 error = xlog_bread(log, mid_blk, 1, bp, &offset);
424 if (error)
425 return error;
426 mid_cycle = xlog_get_cycle(offset);
427 if (mid_cycle == cycle)
428 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
429 else
430 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
431 mid_blk = BLK_AVG(first_blk, end_blk);
432 }
433 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
434 (mid_blk == end_blk && mid_blk-1 == first_blk));
435
436 *last_blk = end_blk;
437
438 return 0;
439 }
440
441 /*
442 * Check that a range of blocks does not contain stop_on_cycle_no.
443 * Fill in *new_blk with the block offset where such a block is
444 * found, or with -1 (an invalid block number) if there is no such
445 * block in the range. The scan needs to occur from front to back
446 * and the pointer into the region must be updated since a later
447 * routine will need to perform another test.
448 */
449 STATIC int
450 xlog_find_verify_cycle(
451 struct xlog *log,
452 xfs_daddr_t start_blk,
453 int nbblks,
454 uint stop_on_cycle_no,
455 xfs_daddr_t *new_blk)
456 {
457 xfs_daddr_t i, j;
458 uint cycle;
459 xfs_buf_t *bp;
460 xfs_daddr_t bufblks;
461 char *buf = NULL;
462 int error = 0;
463
464 /*
465 * Greedily allocate a buffer big enough to handle the full
466 * range of basic blocks we'll be examining. If that fails,
467 * try a smaller size. We need to be able to read at least
468 * a log sector, or we're out of luck.
469 */
470 bufblks = 1 << ffs(nbblks);
471 while (bufblks > log->l_logBBsize)
472 bufblks >>= 1;
473 while (!(bp = xlog_get_bp(log, bufblks))) {
474 bufblks >>= 1;
475 if (bufblks < log->l_sectBBsize)
476 return -ENOMEM;
477 }
478
479 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
480 int bcount;
481
482 bcount = min(bufblks, (start_blk + nbblks - i));
483
484 error = xlog_bread(log, i, bcount, bp, &buf);
485 if (error)
486 goto out;
487
488 for (j = 0; j < bcount; j++) {
489 cycle = xlog_get_cycle(buf);
490 if (cycle == stop_on_cycle_no) {
491 *new_blk = i+j;
492 goto out;
493 }
494
495 buf += BBSIZE;
496 }
497 }
498
499 *new_blk = -1;
500
501 out:
502 xlog_put_bp(bp);
503 return error;
504 }
505
506 /*
507 * Potentially backup over partial log record write.
508 *
509 * In the typical case, last_blk is the number of the block directly after
510 * a good log record. Therefore, we subtract one to get the block number
511 * of the last block in the given buffer. extra_bblks contains the number
512 * of blocks we would have read on a previous read. This happens when the
513 * last log record is split over the end of the physical log.
514 *
515 * extra_bblks is the number of blocks potentially verified on a previous
516 * call to this routine.
517 */
518 STATIC int
519 xlog_find_verify_log_record(
520 struct xlog *log,
521 xfs_daddr_t start_blk,
522 xfs_daddr_t *last_blk,
523 int extra_bblks)
524 {
525 xfs_daddr_t i;
526 xfs_buf_t *bp;
527 char *offset = NULL;
528 xlog_rec_header_t *head = NULL;
529 int error = 0;
530 int smallmem = 0;
531 int num_blks = *last_blk - start_blk;
532 int xhdrs;
533
534 ASSERT(start_blk != 0 || *last_blk != start_blk);
535
536 if (!(bp = xlog_get_bp(log, num_blks))) {
537 if (!(bp = xlog_get_bp(log, 1)))
538 return -ENOMEM;
539 smallmem = 1;
540 } else {
541 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
542 if (error)
543 goto out;
544 offset += ((num_blks - 1) << BBSHIFT);
545 }
546
547 for (i = (*last_blk) - 1; i >= 0; i--) {
548 if (i < start_blk) {
549 /* valid log record not found */
550 xfs_warn(log->l_mp,
551 "Log inconsistent (didn't find previous header)");
552 ASSERT(0);
553 error = -EIO;
554 goto out;
555 }
556
557 if (smallmem) {
558 error = xlog_bread(log, i, 1, bp, &offset);
559 if (error)
560 goto out;
561 }
562
563 head = (xlog_rec_header_t *)offset;
564
565 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
566 break;
567
568 if (!smallmem)
569 offset -= BBSIZE;
570 }
571
572 /*
573 * We hit the beginning of the physical log & still no header. Return
574 * to caller. If caller can handle a return of -1, then this routine
575 * will be called again for the end of the physical log.
576 */
577 if (i == -1) {
578 error = 1;
579 goto out;
580 }
581
582 /*
583 * We have the final block of the good log (the first block
584 * of the log record _before_ the head. So we check the uuid.
585 */
586 if ((error = xlog_header_check_mount(log->l_mp, head)))
587 goto out;
588
589 /*
590 * We may have found a log record header before we expected one.
591 * last_blk will be the 1st block # with a given cycle #. We may end
592 * up reading an entire log record. In this case, we don't want to
593 * reset last_blk. Only when last_blk points in the middle of a log
594 * record do we update last_blk.
595 */
596 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
597 uint h_size = be32_to_cpu(head->h_size);
598
599 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
600 if (h_size % XLOG_HEADER_CYCLE_SIZE)
601 xhdrs++;
602 } else {
603 xhdrs = 1;
604 }
605
606 if (*last_blk - i + extra_bblks !=
607 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
608 *last_blk = i;
609
610 out:
611 xlog_put_bp(bp);
612 return error;
613 }
614
615 /*
616 * Head is defined to be the point of the log where the next log write
617 * could go. This means that incomplete LR writes at the end are
618 * eliminated when calculating the head. We aren't guaranteed that previous
619 * LR have complete transactions. We only know that a cycle number of
620 * current cycle number -1 won't be present in the log if we start writing
621 * from our current block number.
622 *
623 * last_blk contains the block number of the first block with a given
624 * cycle number.
625 *
626 * Return: zero if normal, non-zero if error.
627 */
628 STATIC int
629 xlog_find_head(
630 struct xlog *log,
631 xfs_daddr_t *return_head_blk)
632 {
633 xfs_buf_t *bp;
634 char *offset;
635 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
636 int num_scan_bblks;
637 uint first_half_cycle, last_half_cycle;
638 uint stop_on_cycle;
639 int error, log_bbnum = log->l_logBBsize;
640
641 /* Is the end of the log device zeroed? */
642 error = xlog_find_zeroed(log, &first_blk);
643 if (error < 0) {
644 xfs_warn(log->l_mp, "empty log check failed");
645 return error;
646 }
647 if (error == 1) {
648 *return_head_blk = first_blk;
649
650 /* Is the whole lot zeroed? */
651 if (!first_blk) {
652 /* Linux XFS shouldn't generate totally zeroed logs -
653 * mkfs etc write a dummy unmount record to a fresh
654 * log so we can store the uuid in there
655 */
656 xfs_warn(log->l_mp, "totally zeroed log");
657 }
658
659 return 0;
660 }
661
662 first_blk = 0; /* get cycle # of 1st block */
663 bp = xlog_get_bp(log, 1);
664 if (!bp)
665 return -ENOMEM;
666
667 error = xlog_bread(log, 0, 1, bp, &offset);
668 if (error)
669 goto bp_err;
670
671 first_half_cycle = xlog_get_cycle(offset);
672
673 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
674 error = xlog_bread(log, last_blk, 1, bp, &offset);
675 if (error)
676 goto bp_err;
677
678 last_half_cycle = xlog_get_cycle(offset);
679 ASSERT(last_half_cycle != 0);
680
681 /*
682 * If the 1st half cycle number is equal to the last half cycle number,
683 * then the entire log is stamped with the same cycle number. In this
684 * case, head_blk can't be set to zero (which makes sense). The below
685 * math doesn't work out properly with head_blk equal to zero. Instead,
686 * we set it to log_bbnum which is an invalid block number, but this
687 * value makes the math correct. If head_blk doesn't changed through
688 * all the tests below, *head_blk is set to zero at the very end rather
689 * than log_bbnum. In a sense, log_bbnum and zero are the same block
690 * in a circular file.
691 */
692 if (first_half_cycle == last_half_cycle) {
693 /*
694 * In this case we believe that the entire log should have
695 * cycle number last_half_cycle. We need to scan backwards
696 * from the end verifying that there are no holes still
697 * containing last_half_cycle - 1. If we find such a hole,
698 * then the start of that hole will be the new head. The
699 * simple case looks like
700 * x | x ... | x - 1 | x
701 * Another case that fits this picture would be
702 * x | x + 1 | x ... | x
703 * In this case the head really is somewhere at the end of the
704 * log, as one of the latest writes at the beginning was
705 * incomplete.
706 * One more case is
707 * x | x + 1 | x ... | x - 1 | x
708 * This is really the combination of the above two cases, and
709 * the head has to end up at the start of the x-1 hole at the
710 * end of the log.
711 *
712 * In the 256k log case, we will read from the beginning to the
713 * end of the log and search for cycle numbers equal to x-1.
714 * We don't worry about the x+1 blocks that we encounter,
715 * because we know that they cannot be the head since the log
716 * started with x.
717 */
718 head_blk = log_bbnum;
719 stop_on_cycle = last_half_cycle - 1;
720 } else {
721 /*
722 * In this case we want to find the first block with cycle
723 * number matching last_half_cycle. We expect the log to be
724 * some variation on
725 * x + 1 ... | x ... | x
726 * The first block with cycle number x (last_half_cycle) will
727 * be where the new head belongs. First we do a binary search
728 * for the first occurrence of last_half_cycle. The binary
729 * search may not be totally accurate, so then we scan back
730 * from there looking for occurrences of last_half_cycle before
731 * us. If that backwards scan wraps around the beginning of
732 * the log, then we look for occurrences of last_half_cycle - 1
733 * at the end of the log. The cases we're looking for look
734 * like
735 * v binary search stopped here
736 * x + 1 ... | x | x + 1 | x ... | x
737 * ^ but we want to locate this spot
738 * or
739 * <---------> less than scan distance
740 * x + 1 ... | x ... | x - 1 | x
741 * ^ we want to locate this spot
742 */
743 stop_on_cycle = last_half_cycle;
744 if ((error = xlog_find_cycle_start(log, bp, first_blk,
745 &head_blk, last_half_cycle)))
746 goto bp_err;
747 }
748
749 /*
750 * Now validate the answer. Scan back some number of maximum possible
751 * blocks and make sure each one has the expected cycle number. The
752 * maximum is determined by the total possible amount of buffering
753 * in the in-core log. The following number can be made tighter if
754 * we actually look at the block size of the filesystem.
755 */
756 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
757 if (head_blk >= num_scan_bblks) {
758 /*
759 * We are guaranteed that the entire check can be performed
760 * in one buffer.
761 */
762 start_blk = head_blk - num_scan_bblks;
763 if ((error = xlog_find_verify_cycle(log,
764 start_blk, num_scan_bblks,
765 stop_on_cycle, &new_blk)))
766 goto bp_err;
767 if (new_blk != -1)
768 head_blk = new_blk;
769 } else { /* need to read 2 parts of log */
770 /*
771 * We are going to scan backwards in the log in two parts.
772 * First we scan the physical end of the log. In this part
773 * of the log, we are looking for blocks with cycle number
774 * last_half_cycle - 1.
775 * If we find one, then we know that the log starts there, as
776 * we've found a hole that didn't get written in going around
777 * the end of the physical log. The simple case for this is
778 * x + 1 ... | x ... | x - 1 | x
779 * <---------> less than scan distance
780 * If all of the blocks at the end of the log have cycle number
781 * last_half_cycle, then we check the blocks at the start of
782 * the log looking for occurrences of last_half_cycle. If we
783 * find one, then our current estimate for the location of the
784 * first occurrence of last_half_cycle is wrong and we move
785 * back to the hole we've found. This case looks like
786 * x + 1 ... | x | x + 1 | x ...
787 * ^ binary search stopped here
788 * Another case we need to handle that only occurs in 256k
789 * logs is
790 * x + 1 ... | x ... | x+1 | x ...
791 * ^ binary search stops here
792 * In a 256k log, the scan at the end of the log will see the
793 * x + 1 blocks. We need to skip past those since that is
794 * certainly not the head of the log. By searching for
795 * last_half_cycle-1 we accomplish that.
796 */
797 ASSERT(head_blk <= INT_MAX &&
798 (xfs_daddr_t) num_scan_bblks >= head_blk);
799 start_blk = log_bbnum - (num_scan_bblks - head_blk);
800 if ((error = xlog_find_verify_cycle(log, start_blk,
801 num_scan_bblks - (int)head_blk,
802 (stop_on_cycle - 1), &new_blk)))
803 goto bp_err;
804 if (new_blk != -1) {
805 head_blk = new_blk;
806 goto validate_head;
807 }
808
809 /*
810 * Scan beginning of log now. The last part of the physical
811 * log is good. This scan needs to verify that it doesn't find
812 * the last_half_cycle.
813 */
814 start_blk = 0;
815 ASSERT(head_blk <= INT_MAX);
816 if ((error = xlog_find_verify_cycle(log,
817 start_blk, (int)head_blk,
818 stop_on_cycle, &new_blk)))
819 goto bp_err;
820 if (new_blk != -1)
821 head_blk = new_blk;
822 }
823
824 validate_head:
825 /*
826 * Now we need to make sure head_blk is not pointing to a block in
827 * the middle of a log record.
828 */
829 num_scan_bblks = XLOG_REC_SHIFT(log);
830 if (head_blk >= num_scan_bblks) {
831 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
832
833 /* start ptr at last block ptr before head_blk */
834 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
835 if (error == 1)
836 error = -EIO;
837 if (error)
838 goto bp_err;
839 } else {
840 start_blk = 0;
841 ASSERT(head_blk <= INT_MAX);
842 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
843 if (error < 0)
844 goto bp_err;
845 if (error == 1) {
846 /* We hit the beginning of the log during our search */
847 start_blk = log_bbnum - (num_scan_bblks - head_blk);
848 new_blk = log_bbnum;
849 ASSERT(start_blk <= INT_MAX &&
850 (xfs_daddr_t) log_bbnum-start_blk >= 0);
851 ASSERT(head_blk <= INT_MAX);
852 error = xlog_find_verify_log_record(log, start_blk,
853 &new_blk, (int)head_blk);
854 if (error == 1)
855 error = -EIO;
856 if (error)
857 goto bp_err;
858 if (new_blk != log_bbnum)
859 head_blk = new_blk;
860 } else if (error)
861 goto bp_err;
862 }
863
864 xlog_put_bp(bp);
865 if (head_blk == log_bbnum)
866 *return_head_blk = 0;
867 else
868 *return_head_blk = head_blk;
869 /*
870 * When returning here, we have a good block number. Bad block
871 * means that during a previous crash, we didn't have a clean break
872 * from cycle number N to cycle number N-1. In this case, we need
873 * to find the first block with cycle number N-1.
874 */
875 return 0;
876
877 bp_err:
878 xlog_put_bp(bp);
879
880 if (error)
881 xfs_warn(log->l_mp, "failed to find log head");
882 return error;
883 }
884
885 /*
886 * Seek backwards in the log for log record headers.
887 *
888 * Given a starting log block, walk backwards until we find the provided number
889 * of records or hit the provided tail block. The return value is the number of
890 * records encountered or a negative error code. The log block and buffer
891 * pointer of the last record seen are returned in rblk and rhead respectively.
892 */
893 STATIC int
894 xlog_rseek_logrec_hdr(
895 struct xlog *log,
896 xfs_daddr_t head_blk,
897 xfs_daddr_t tail_blk,
898 int count,
899 struct xfs_buf *bp,
900 xfs_daddr_t *rblk,
901 struct xlog_rec_header **rhead,
902 bool *wrapped)
903 {
904 int i;
905 int error;
906 int found = 0;
907 char *offset = NULL;
908 xfs_daddr_t end_blk;
909
910 *wrapped = false;
911
912 /*
913 * Walk backwards from the head block until we hit the tail or the first
914 * block in the log.
915 */
916 end_blk = head_blk > tail_blk ? tail_blk : 0;
917 for (i = (int) head_blk - 1; i >= end_blk; i--) {
918 error = xlog_bread(log, i, 1, bp, &offset);
919 if (error)
920 goto out_error;
921
922 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
923 *rblk = i;
924 *rhead = (struct xlog_rec_header *) offset;
925 if (++found == count)
926 break;
927 }
928 }
929
930 /*
931 * If we haven't hit the tail block or the log record header count,
932 * start looking again from the end of the physical log. Note that
933 * callers can pass head == tail if the tail is not yet known.
934 */
935 if (tail_blk >= head_blk && found != count) {
936 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
937 error = xlog_bread(log, i, 1, bp, &offset);
938 if (error)
939 goto out_error;
940
941 if (*(__be32 *)offset ==
942 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
943 *wrapped = true;
944 *rblk = i;
945 *rhead = (struct xlog_rec_header *) offset;
946 if (++found == count)
947 break;
948 }
949 }
950 }
951
952 return found;
953
954 out_error:
955 return error;
956 }
957
958 /*
959 * Seek forward in the log for log record headers.
960 *
961 * Given head and tail blocks, walk forward from the tail block until we find
962 * the provided number of records or hit the head block. The return value is the
963 * number of records encountered or a negative error code. The log block and
964 * buffer pointer of the last record seen are returned in rblk and rhead
965 * respectively.
966 */
967 STATIC int
968 xlog_seek_logrec_hdr(
969 struct xlog *log,
970 xfs_daddr_t head_blk,
971 xfs_daddr_t tail_blk,
972 int count,
973 struct xfs_buf *bp,
974 xfs_daddr_t *rblk,
975 struct xlog_rec_header **rhead,
976 bool *wrapped)
977 {
978 int i;
979 int error;
980 int found = 0;
981 char *offset = NULL;
982 xfs_daddr_t end_blk;
983
984 *wrapped = false;
985
986 /*
987 * Walk forward from the tail block until we hit the head or the last
988 * block in the log.
989 */
990 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
991 for (i = (int) tail_blk; i <= end_blk; i++) {
992 error = xlog_bread(log, i, 1, bp, &offset);
993 if (error)
994 goto out_error;
995
996 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
997 *rblk = i;
998 *rhead = (struct xlog_rec_header *) offset;
999 if (++found == count)
1000 break;
1001 }
1002 }
1003
1004 /*
1005 * If we haven't hit the head block or the log record header count,
1006 * start looking again from the start of the physical log.
1007 */
1008 if (tail_blk > head_blk && found != count) {
1009 for (i = 0; i < (int) head_blk; i++) {
1010 error = xlog_bread(log, i, 1, bp, &offset);
1011 if (error)
1012 goto out_error;
1013
1014 if (*(__be32 *)offset ==
1015 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1016 *wrapped = true;
1017 *rblk = i;
1018 *rhead = (struct xlog_rec_header *) offset;
1019 if (++found == count)
1020 break;
1021 }
1022 }
1023 }
1024
1025 return found;
1026
1027 out_error:
1028 return error;
1029 }
1030
1031 /*
1032 * Check the log tail for torn writes. This is required when torn writes are
1033 * detected at the head and the head had to be walked back to a previous record.
1034 * The tail of the previous record must now be verified to ensure the torn
1035 * writes didn't corrupt the previous tail.
1036 *
1037 * Return an error if CRC verification fails as recovery cannot proceed.
1038 */
1039 STATIC int
1040 xlog_verify_tail(
1041 struct xlog *log,
1042 xfs_daddr_t head_blk,
1043 xfs_daddr_t tail_blk)
1044 {
1045 struct xlog_rec_header *thead;
1046 struct xfs_buf *bp;
1047 xfs_daddr_t first_bad;
1048 int count;
1049 int error = 0;
1050 bool wrapped;
1051 xfs_daddr_t tmp_head;
1052
1053 bp = xlog_get_bp(log, 1);
1054 if (!bp)
1055 return -ENOMEM;
1056
1057 /*
1058 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1059 * a temporary head block that points after the last possible
1060 * concurrently written record of the tail.
1061 */
1062 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1063 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1064 &wrapped);
1065 if (count < 0) {
1066 error = count;
1067 goto out;
1068 }
1069
1070 /*
1071 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1072 * into the actual log head. tmp_head points to the start of the record
1073 * so update it to the actual head block.
1074 */
1075 if (count < XLOG_MAX_ICLOGS + 1)
1076 tmp_head = head_blk;
1077
1078 /*
1079 * We now have a tail and temporary head block that covers at least
1080 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1081 * records were completely written. Run a CRC verification pass from
1082 * tail to head and return the result.
1083 */
1084 error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1085 XLOG_RECOVER_CRCPASS, &first_bad);
1086
1087 out:
1088 xlog_put_bp(bp);
1089 return error;
1090 }
1091
1092 /*
1093 * Detect and trim torn writes from the head of the log.
1094 *
1095 * Storage without sector atomicity guarantees can result in torn writes in the
1096 * log in the event of a crash. Our only means to detect this scenario is via
1097 * CRC verification. While we can't always be certain that CRC verification
1098 * failure is due to a torn write vs. an unrelated corruption, we do know that
1099 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1100 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1101 * the log and treat failures in this range as torn writes as a matter of
1102 * policy. In the event of CRC failure, the head is walked back to the last good
1103 * record in the log and the tail is updated from that record and verified.
1104 */
1105 STATIC int
1106 xlog_verify_head(
1107 struct xlog *log,
1108 xfs_daddr_t *head_blk, /* in/out: unverified head */
1109 xfs_daddr_t *tail_blk, /* out: tail block */
1110 struct xfs_buf *bp,
1111 xfs_daddr_t *rhead_blk, /* start blk of last record */
1112 struct xlog_rec_header **rhead, /* ptr to last record */
1113 bool *wrapped) /* last rec. wraps phys. log */
1114 {
1115 struct xlog_rec_header *tmp_rhead;
1116 struct xfs_buf *tmp_bp;
1117 xfs_daddr_t first_bad;
1118 xfs_daddr_t tmp_rhead_blk;
1119 int found;
1120 int error;
1121 bool tmp_wrapped;
1122
1123 /*
1124 * Check the head of the log for torn writes. Search backwards from the
1125 * head until we hit the tail or the maximum number of log record I/Os
1126 * that could have been in flight at one time. Use a temporary buffer so
1127 * we don't trash the rhead/bp pointers from the caller.
1128 */
1129 tmp_bp = xlog_get_bp(log, 1);
1130 if (!tmp_bp)
1131 return -ENOMEM;
1132 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1133 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1134 &tmp_rhead, &tmp_wrapped);
1135 xlog_put_bp(tmp_bp);
1136 if (error < 0)
1137 return error;
1138
1139 /*
1140 * Now run a CRC verification pass over the records starting at the
1141 * block found above to the current head. If a CRC failure occurs, the
1142 * log block of the first bad record is saved in first_bad.
1143 */
1144 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1145 XLOG_RECOVER_CRCPASS, &first_bad);
1146 if (error == -EFSBADCRC) {
1147 /*
1148 * We've hit a potential torn write. Reset the error and warn
1149 * about it.
1150 */
1151 error = 0;
1152 xfs_warn(log->l_mp,
1153 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1154 first_bad, *head_blk);
1155
1156 /*
1157 * Get the header block and buffer pointer for the last good
1158 * record before the bad record.
1159 *
1160 * Note that xlog_find_tail() clears the blocks at the new head
1161 * (i.e., the records with invalid CRC) if the cycle number
1162 * matches the the current cycle.
1163 */
1164 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1165 rhead_blk, rhead, wrapped);
1166 if (found < 0)
1167 return found;
1168 if (found == 0) /* XXX: right thing to do here? */
1169 return -EIO;
1170
1171 /*
1172 * Reset the head block to the starting block of the first bad
1173 * log record and set the tail block based on the last good
1174 * record.
1175 *
1176 * Bail out if the updated head/tail match as this indicates
1177 * possible corruption outside of the acceptable
1178 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1179 */
1180 *head_blk = first_bad;
1181 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1182 if (*head_blk == *tail_blk) {
1183 ASSERT(0);
1184 return 0;
1185 }
1186
1187 /*
1188 * Now verify the tail based on the updated head. This is
1189 * required because the torn writes trimmed from the head could
1190 * have been written over the tail of a previous record. Return
1191 * any errors since recovery cannot proceed if the tail is
1192 * corrupt.
1193 *
1194 * XXX: This leaves a gap in truly robust protection from torn
1195 * writes in the log. If the head is behind the tail, the tail
1196 * pushes forward to create some space and then a crash occurs
1197 * causing the writes into the previous record's tail region to
1198 * tear, log recovery isn't able to recover.
1199 *
1200 * How likely is this to occur? If possible, can we do something
1201 * more intelligent here? Is it safe to push the tail forward if
1202 * we can determine that the tail is within the range of the
1203 * torn write (e.g., the kernel can only overwrite the tail if
1204 * it has actually been pushed forward)? Alternatively, could we
1205 * somehow prevent this condition at runtime?
1206 */
1207 error = xlog_verify_tail(log, *head_blk, *tail_blk);
1208 }
1209
1210 return error;
1211 }
1212
1213 /*
1214 * Check whether the head of the log points to an unmount record. In other
1215 * words, determine whether the log is clean. If so, update the in-core state
1216 * appropriately.
1217 */
1218 static int
1219 xlog_check_unmount_rec(
1220 struct xlog *log,
1221 xfs_daddr_t *head_blk,
1222 xfs_daddr_t *tail_blk,
1223 struct xlog_rec_header *rhead,
1224 xfs_daddr_t rhead_blk,
1225 struct xfs_buf *bp,
1226 bool *clean)
1227 {
1228 struct xlog_op_header *op_head;
1229 xfs_daddr_t umount_data_blk;
1230 xfs_daddr_t after_umount_blk;
1231 int hblks;
1232 int error;
1233 char *offset;
1234
1235 *clean = false;
1236
1237 /*
1238 * Look for unmount record. If we find it, then we know there was a
1239 * clean unmount. Since 'i' could be the last block in the physical
1240 * log, we convert to a log block before comparing to the head_blk.
1241 *
1242 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1243 * below. We won't want to clear the unmount record if there is one, so
1244 * we pass the lsn of the unmount record rather than the block after it.
1245 */
1246 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1247 int h_size = be32_to_cpu(rhead->h_size);
1248 int h_version = be32_to_cpu(rhead->h_version);
1249
1250 if ((h_version & XLOG_VERSION_2) &&
1251 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1252 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1253 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1254 hblks++;
1255 } else {
1256 hblks = 1;
1257 }
1258 } else {
1259 hblks = 1;
1260 }
1261 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1262 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1263 if (*head_blk == after_umount_blk &&
1264 be32_to_cpu(rhead->h_num_logops) == 1) {
1265 umount_data_blk = rhead_blk + hblks;
1266 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1267 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1268 if (error)
1269 return error;
1270
1271 op_head = (struct xlog_op_header *)offset;
1272 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1273 /*
1274 * Set tail and last sync so that newly written log
1275 * records will point recovery to after the current
1276 * unmount record.
1277 */
1278 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1279 log->l_curr_cycle, after_umount_blk);
1280 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1281 log->l_curr_cycle, after_umount_blk);
1282 *tail_blk = after_umount_blk;
1283
1284 *clean = true;
1285 }
1286 }
1287
1288 return 0;
1289 }
1290
1291 static void
1292 xlog_set_state(
1293 struct xlog *log,
1294 xfs_daddr_t head_blk,
1295 struct xlog_rec_header *rhead,
1296 xfs_daddr_t rhead_blk,
1297 bool bump_cycle)
1298 {
1299 /*
1300 * Reset log values according to the state of the log when we
1301 * crashed. In the case where head_blk == 0, we bump curr_cycle
1302 * one because the next write starts a new cycle rather than
1303 * continuing the cycle of the last good log record. At this
1304 * point we have guaranteed that all partial log records have been
1305 * accounted for. Therefore, we know that the last good log record
1306 * written was complete and ended exactly on the end boundary
1307 * of the physical log.
1308 */
1309 log->l_prev_block = rhead_blk;
1310 log->l_curr_block = (int)head_blk;
1311 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1312 if (bump_cycle)
1313 log->l_curr_cycle++;
1314 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1315 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1316 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1317 BBTOB(log->l_curr_block));
1318 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1319 BBTOB(log->l_curr_block));
1320 }
1321
1322 /*
1323 * Find the sync block number or the tail of the log.
1324 *
1325 * This will be the block number of the last record to have its
1326 * associated buffers synced to disk. Every log record header has
1327 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1328 * to get a sync block number. The only concern is to figure out which
1329 * log record header to believe.
1330 *
1331 * The following algorithm uses the log record header with the largest
1332 * lsn. The entire log record does not need to be valid. We only care
1333 * that the header is valid.
1334 *
1335 * We could speed up search by using current head_blk buffer, but it is not
1336 * available.
1337 */
1338 STATIC int
1339 xlog_find_tail(
1340 struct xlog *log,
1341 xfs_daddr_t *head_blk,
1342 xfs_daddr_t *tail_blk)
1343 {
1344 xlog_rec_header_t *rhead;
1345 char *offset = NULL;
1346 xfs_buf_t *bp;
1347 int error;
1348 xfs_daddr_t rhead_blk;
1349 xfs_lsn_t tail_lsn;
1350 bool wrapped = false;
1351 bool clean = false;
1352
1353 /*
1354 * Find previous log record
1355 */
1356 if ((error = xlog_find_head(log, head_blk)))
1357 return error;
1358 ASSERT(*head_blk < INT_MAX);
1359
1360 bp = xlog_get_bp(log, 1);
1361 if (!bp)
1362 return -ENOMEM;
1363 if (*head_blk == 0) { /* special case */
1364 error = xlog_bread(log, 0, 1, bp, &offset);
1365 if (error)
1366 goto done;
1367
1368 if (xlog_get_cycle(offset) == 0) {
1369 *tail_blk = 0;
1370 /* leave all other log inited values alone */
1371 goto done;
1372 }
1373 }
1374
1375 /*
1376 * Search backwards through the log looking for the log record header
1377 * block. This wraps all the way back around to the head so something is
1378 * seriously wrong if we can't find it.
1379 */
1380 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1381 &rhead_blk, &rhead, &wrapped);
1382 if (error < 0)
1383 return error;
1384 if (!error) {
1385 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1386 return -EIO;
1387 }
1388 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1389
1390 /*
1391 * Set the log state based on the current head record.
1392 */
1393 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1394 tail_lsn = atomic64_read(&log->l_tail_lsn);
1395
1396 /*
1397 * Look for an unmount record at the head of the log. This sets the log
1398 * state to determine whether recovery is necessary.
1399 */
1400 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1401 rhead_blk, bp, &clean);
1402 if (error)
1403 goto done;
1404
1405 /*
1406 * Verify the log head if the log is not clean (e.g., we have anything
1407 * but an unmount record at the head). This uses CRC verification to
1408 * detect and trim torn writes. If discovered, CRC failures are
1409 * considered torn writes and the log head is trimmed accordingly.
1410 *
1411 * Note that we can only run CRC verification when the log is dirty
1412 * because there's no guarantee that the log data behind an unmount
1413 * record is compatible with the current architecture.
1414 */
1415 if (!clean) {
1416 xfs_daddr_t orig_head = *head_blk;
1417
1418 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1419 &rhead_blk, &rhead, &wrapped);
1420 if (error)
1421 goto done;
1422
1423 /* update in-core state again if the head changed */
1424 if (*head_blk != orig_head) {
1425 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1426 wrapped);
1427 tail_lsn = atomic64_read(&log->l_tail_lsn);
1428 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1429 rhead, rhead_blk, bp,
1430 &clean);
1431 if (error)
1432 goto done;
1433 }
1434 }
1435
1436 /*
1437 * Note that the unmount was clean. If the unmount was not clean, we
1438 * need to know this to rebuild the superblock counters from the perag
1439 * headers if we have a filesystem using non-persistent counters.
1440 */
1441 if (clean)
1442 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1443
1444 /*
1445 * Make sure that there are no blocks in front of the head
1446 * with the same cycle number as the head. This can happen
1447 * because we allow multiple outstanding log writes concurrently,
1448 * and the later writes might make it out before earlier ones.
1449 *
1450 * We use the lsn from before modifying it so that we'll never
1451 * overwrite the unmount record after a clean unmount.
1452 *
1453 * Do this only if we are going to recover the filesystem
1454 *
1455 * NOTE: This used to say "if (!readonly)"
1456 * However on Linux, we can & do recover a read-only filesystem.
1457 * We only skip recovery if NORECOVERY is specified on mount,
1458 * in which case we would not be here.
1459 *
1460 * But... if the -device- itself is readonly, just skip this.
1461 * We can't recover this device anyway, so it won't matter.
1462 */
1463 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1464 error = xlog_clear_stale_blocks(log, tail_lsn);
1465
1466 done:
1467 xlog_put_bp(bp);
1468
1469 if (error)
1470 xfs_warn(log->l_mp, "failed to locate log tail");
1471 return error;
1472 }
1473
1474 /*
1475 * Is the log zeroed at all?
1476 *
1477 * The last binary search should be changed to perform an X block read
1478 * once X becomes small enough. You can then search linearly through
1479 * the X blocks. This will cut down on the number of reads we need to do.
1480 *
1481 * If the log is partially zeroed, this routine will pass back the blkno
1482 * of the first block with cycle number 0. It won't have a complete LR
1483 * preceding it.
1484 *
1485 * Return:
1486 * 0 => the log is completely written to
1487 * 1 => use *blk_no as the first block of the log
1488 * <0 => error has occurred
1489 */
1490 STATIC int
1491 xlog_find_zeroed(
1492 struct xlog *log,
1493 xfs_daddr_t *blk_no)
1494 {
1495 xfs_buf_t *bp;
1496 char *offset;
1497 uint first_cycle, last_cycle;
1498 xfs_daddr_t new_blk, last_blk, start_blk;
1499 xfs_daddr_t num_scan_bblks;
1500 int error, log_bbnum = log->l_logBBsize;
1501
1502 *blk_no = 0;
1503
1504 /* check totally zeroed log */
1505 bp = xlog_get_bp(log, 1);
1506 if (!bp)
1507 return -ENOMEM;
1508 error = xlog_bread(log, 0, 1, bp, &offset);
1509 if (error)
1510 goto bp_err;
1511
1512 first_cycle = xlog_get_cycle(offset);
1513 if (first_cycle == 0) { /* completely zeroed log */
1514 *blk_no = 0;
1515 xlog_put_bp(bp);
1516 return 1;
1517 }
1518
1519 /* check partially zeroed log */
1520 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1521 if (error)
1522 goto bp_err;
1523
1524 last_cycle = xlog_get_cycle(offset);
1525 if (last_cycle != 0) { /* log completely written to */
1526 xlog_put_bp(bp);
1527 return 0;
1528 } else if (first_cycle != 1) {
1529 /*
1530 * If the cycle of the last block is zero, the cycle of
1531 * the first block must be 1. If it's not, maybe we're
1532 * not looking at a log... Bail out.
1533 */
1534 xfs_warn(log->l_mp,
1535 "Log inconsistent or not a log (last==0, first!=1)");
1536 error = -EINVAL;
1537 goto bp_err;
1538 }
1539
1540 /* we have a partially zeroed log */
1541 last_blk = log_bbnum-1;
1542 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1543 goto bp_err;
1544
1545 /*
1546 * Validate the answer. Because there is no way to guarantee that
1547 * the entire log is made up of log records which are the same size,
1548 * we scan over the defined maximum blocks. At this point, the maximum
1549 * is not chosen to mean anything special. XXXmiken
1550 */
1551 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1552 ASSERT(num_scan_bblks <= INT_MAX);
1553
1554 if (last_blk < num_scan_bblks)
1555 num_scan_bblks = last_blk;
1556 start_blk = last_blk - num_scan_bblks;
1557
1558 /*
1559 * We search for any instances of cycle number 0 that occur before
1560 * our current estimate of the head. What we're trying to detect is
1561 * 1 ... | 0 | 1 | 0...
1562 * ^ binary search ends here
1563 */
1564 if ((error = xlog_find_verify_cycle(log, start_blk,
1565 (int)num_scan_bblks, 0, &new_blk)))
1566 goto bp_err;
1567 if (new_blk != -1)
1568 last_blk = new_blk;
1569
1570 /*
1571 * Potentially backup over partial log record write. We don't need
1572 * to search the end of the log because we know it is zero.
1573 */
1574 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1575 if (error == 1)
1576 error = -EIO;
1577 if (error)
1578 goto bp_err;
1579
1580 *blk_no = last_blk;
1581 bp_err:
1582 xlog_put_bp(bp);
1583 if (error)
1584 return error;
1585 return 1;
1586 }
1587
1588 /*
1589 * These are simple subroutines used by xlog_clear_stale_blocks() below
1590 * to initialize a buffer full of empty log record headers and write
1591 * them into the log.
1592 */
1593 STATIC void
1594 xlog_add_record(
1595 struct xlog *log,
1596 char *buf,
1597 int cycle,
1598 int block,
1599 int tail_cycle,
1600 int tail_block)
1601 {
1602 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1603
1604 memset(buf, 0, BBSIZE);
1605 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1606 recp->h_cycle = cpu_to_be32(cycle);
1607 recp->h_version = cpu_to_be32(
1608 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1609 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1610 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1611 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1612 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1613 }
1614
1615 STATIC int
1616 xlog_write_log_records(
1617 struct xlog *log,
1618 int cycle,
1619 int start_block,
1620 int blocks,
1621 int tail_cycle,
1622 int tail_block)
1623 {
1624 char *offset;
1625 xfs_buf_t *bp;
1626 int balign, ealign;
1627 int sectbb = log->l_sectBBsize;
1628 int end_block = start_block + blocks;
1629 int bufblks;
1630 int error = 0;
1631 int i, j = 0;
1632
1633 /*
1634 * Greedily allocate a buffer big enough to handle the full
1635 * range of basic blocks to be written. If that fails, try
1636 * a smaller size. We need to be able to write at least a
1637 * log sector, or we're out of luck.
1638 */
1639 bufblks = 1 << ffs(blocks);
1640 while (bufblks > log->l_logBBsize)
1641 bufblks >>= 1;
1642 while (!(bp = xlog_get_bp(log, bufblks))) {
1643 bufblks >>= 1;
1644 if (bufblks < sectbb)
1645 return -ENOMEM;
1646 }
1647
1648 /* We may need to do a read at the start to fill in part of
1649 * the buffer in the starting sector not covered by the first
1650 * write below.
1651 */
1652 balign = round_down(start_block, sectbb);
1653 if (balign != start_block) {
1654 error = xlog_bread_noalign(log, start_block, 1, bp);
1655 if (error)
1656 goto out_put_bp;
1657
1658 j = start_block - balign;
1659 }
1660
1661 for (i = start_block; i < end_block; i += bufblks) {
1662 int bcount, endcount;
1663
1664 bcount = min(bufblks, end_block - start_block);
1665 endcount = bcount - j;
1666
1667 /* We may need to do a read at the end to fill in part of
1668 * the buffer in the final sector not covered by the write.
1669 * If this is the same sector as the above read, skip it.
1670 */
1671 ealign = round_down(end_block, sectbb);
1672 if (j == 0 && (start_block + endcount > ealign)) {
1673 offset = bp->b_addr + BBTOB(ealign - start_block);
1674 error = xlog_bread_offset(log, ealign, sectbb,
1675 bp, offset);
1676 if (error)
1677 break;
1678
1679 }
1680
1681 offset = xlog_align(log, start_block, endcount, bp);
1682 for (; j < endcount; j++) {
1683 xlog_add_record(log, offset, cycle, i+j,
1684 tail_cycle, tail_block);
1685 offset += BBSIZE;
1686 }
1687 error = xlog_bwrite(log, start_block, endcount, bp);
1688 if (error)
1689 break;
1690 start_block += endcount;
1691 j = 0;
1692 }
1693
1694 out_put_bp:
1695 xlog_put_bp(bp);
1696 return error;
1697 }
1698
1699 /*
1700 * This routine is called to blow away any incomplete log writes out
1701 * in front of the log head. We do this so that we won't become confused
1702 * if we come up, write only a little bit more, and then crash again.
1703 * If we leave the partial log records out there, this situation could
1704 * cause us to think those partial writes are valid blocks since they
1705 * have the current cycle number. We get rid of them by overwriting them
1706 * with empty log records with the old cycle number rather than the
1707 * current one.
1708 *
1709 * The tail lsn is passed in rather than taken from
1710 * the log so that we will not write over the unmount record after a
1711 * clean unmount in a 512 block log. Doing so would leave the log without
1712 * any valid log records in it until a new one was written. If we crashed
1713 * during that time we would not be able to recover.
1714 */
1715 STATIC int
1716 xlog_clear_stale_blocks(
1717 struct xlog *log,
1718 xfs_lsn_t tail_lsn)
1719 {
1720 int tail_cycle, head_cycle;
1721 int tail_block, head_block;
1722 int tail_distance, max_distance;
1723 int distance;
1724 int error;
1725
1726 tail_cycle = CYCLE_LSN(tail_lsn);
1727 tail_block = BLOCK_LSN(tail_lsn);
1728 head_cycle = log->l_curr_cycle;
1729 head_block = log->l_curr_block;
1730
1731 /*
1732 * Figure out the distance between the new head of the log
1733 * and the tail. We want to write over any blocks beyond the
1734 * head that we may have written just before the crash, but
1735 * we don't want to overwrite the tail of the log.
1736 */
1737 if (head_cycle == tail_cycle) {
1738 /*
1739 * The tail is behind the head in the physical log,
1740 * so the distance from the head to the tail is the
1741 * distance from the head to the end of the log plus
1742 * the distance from the beginning of the log to the
1743 * tail.
1744 */
1745 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1747 XFS_ERRLEVEL_LOW, log->l_mp);
1748 return -EFSCORRUPTED;
1749 }
1750 tail_distance = tail_block + (log->l_logBBsize - head_block);
1751 } else {
1752 /*
1753 * The head is behind the tail in the physical log,
1754 * so the distance from the head to the tail is just
1755 * the tail block minus the head block.
1756 */
1757 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1758 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1759 XFS_ERRLEVEL_LOW, log->l_mp);
1760 return -EFSCORRUPTED;
1761 }
1762 tail_distance = tail_block - head_block;
1763 }
1764
1765 /*
1766 * If the head is right up against the tail, we can't clear
1767 * anything.
1768 */
1769 if (tail_distance <= 0) {
1770 ASSERT(tail_distance == 0);
1771 return 0;
1772 }
1773
1774 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1775 /*
1776 * Take the smaller of the maximum amount of outstanding I/O
1777 * we could have and the distance to the tail to clear out.
1778 * We take the smaller so that we don't overwrite the tail and
1779 * we don't waste all day writing from the head to the tail
1780 * for no reason.
1781 */
1782 max_distance = MIN(max_distance, tail_distance);
1783
1784 if ((head_block + max_distance) <= log->l_logBBsize) {
1785 /*
1786 * We can stomp all the blocks we need to without
1787 * wrapping around the end of the log. Just do it
1788 * in a single write. Use the cycle number of the
1789 * current cycle minus one so that the log will look like:
1790 * n ... | n - 1 ...
1791 */
1792 error = xlog_write_log_records(log, (head_cycle - 1),
1793 head_block, max_distance, tail_cycle,
1794 tail_block);
1795 if (error)
1796 return error;
1797 } else {
1798 /*
1799 * We need to wrap around the end of the physical log in
1800 * order to clear all the blocks. Do it in two separate
1801 * I/Os. The first write should be from the head to the
1802 * end of the physical log, and it should use the current
1803 * cycle number minus one just like above.
1804 */
1805 distance = log->l_logBBsize - head_block;
1806 error = xlog_write_log_records(log, (head_cycle - 1),
1807 head_block, distance, tail_cycle,
1808 tail_block);
1809
1810 if (error)
1811 return error;
1812
1813 /*
1814 * Now write the blocks at the start of the physical log.
1815 * This writes the remainder of the blocks we want to clear.
1816 * It uses the current cycle number since we're now on the
1817 * same cycle as the head so that we get:
1818 * n ... n ... | n - 1 ...
1819 * ^^^^^ blocks we're writing
1820 */
1821 distance = max_distance - (log->l_logBBsize - head_block);
1822 error = xlog_write_log_records(log, head_cycle, 0, distance,
1823 tail_cycle, tail_block);
1824 if (error)
1825 return error;
1826 }
1827
1828 return 0;
1829 }
1830
1831 /******************************************************************************
1832 *
1833 * Log recover routines
1834 *
1835 ******************************************************************************
1836 */
1837
1838 /*
1839 * Sort the log items in the transaction.
1840 *
1841 * The ordering constraints are defined by the inode allocation and unlink
1842 * behaviour. The rules are:
1843 *
1844 * 1. Every item is only logged once in a given transaction. Hence it
1845 * represents the last logged state of the item. Hence ordering is
1846 * dependent on the order in which operations need to be performed so
1847 * required initial conditions are always met.
1848 *
1849 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1850 * there's nothing to replay from them so we can simply cull them
1851 * from the transaction. However, we can't do that until after we've
1852 * replayed all the other items because they may be dependent on the
1853 * cancelled buffer and replaying the cancelled buffer can remove it
1854 * form the cancelled buffer table. Hence they have tobe done last.
1855 *
1856 * 3. Inode allocation buffers must be replayed before inode items that
1857 * read the buffer and replay changes into it. For filesystems using the
1858 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1859 * treated the same as inode allocation buffers as they create and
1860 * initialise the buffers directly.
1861 *
1862 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1863 * This ensures that inodes are completely flushed to the inode buffer
1864 * in a "free" state before we remove the unlinked inode list pointer.
1865 *
1866 * Hence the ordering needs to be inode allocation buffers first, inode items
1867 * second, inode unlink buffers third and cancelled buffers last.
1868 *
1869 * But there's a problem with that - we can't tell an inode allocation buffer
1870 * apart from a regular buffer, so we can't separate them. We can, however,
1871 * tell an inode unlink buffer from the others, and so we can separate them out
1872 * from all the other buffers and move them to last.
1873 *
1874 * Hence, 4 lists, in order from head to tail:
1875 * - buffer_list for all buffers except cancelled/inode unlink buffers
1876 * - item_list for all non-buffer items
1877 * - inode_buffer_list for inode unlink buffers
1878 * - cancel_list for the cancelled buffers
1879 *
1880 * Note that we add objects to the tail of the lists so that first-to-last
1881 * ordering is preserved within the lists. Adding objects to the head of the
1882 * list means when we traverse from the head we walk them in last-to-first
1883 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1884 * but for all other items there may be specific ordering that we need to
1885 * preserve.
1886 */
1887 STATIC int
1888 xlog_recover_reorder_trans(
1889 struct xlog *log,
1890 struct xlog_recover *trans,
1891 int pass)
1892 {
1893 xlog_recover_item_t *item, *n;
1894 int error = 0;
1895 LIST_HEAD(sort_list);
1896 LIST_HEAD(cancel_list);
1897 LIST_HEAD(buffer_list);
1898 LIST_HEAD(inode_buffer_list);
1899 LIST_HEAD(inode_list);
1900
1901 list_splice_init(&trans->r_itemq, &sort_list);
1902 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1903 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1904
1905 switch (ITEM_TYPE(item)) {
1906 case XFS_LI_ICREATE:
1907 list_move_tail(&item->ri_list, &buffer_list);
1908 break;
1909 case XFS_LI_BUF:
1910 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1911 trace_xfs_log_recover_item_reorder_head(log,
1912 trans, item, pass);
1913 list_move(&item->ri_list, &cancel_list);
1914 break;
1915 }
1916 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1917 list_move(&item->ri_list, &inode_buffer_list);
1918 break;
1919 }
1920 list_move_tail(&item->ri_list, &buffer_list);
1921 break;
1922 case XFS_LI_INODE:
1923 case XFS_LI_DQUOT:
1924 case XFS_LI_QUOTAOFF:
1925 case XFS_LI_EFD:
1926 case XFS_LI_EFI:
1927 case XFS_LI_RUI:
1928 case XFS_LI_RUD:
1929 case XFS_LI_CUI:
1930 case XFS_LI_CUD:
1931 case XFS_LI_BUI:
1932 case XFS_LI_BUD:
1933 trace_xfs_log_recover_item_reorder_tail(log,
1934 trans, item, pass);
1935 list_move_tail(&item->ri_list, &inode_list);
1936 break;
1937 default:
1938 xfs_warn(log->l_mp,
1939 "%s: unrecognized type of log operation",
1940 __func__);
1941 ASSERT(0);
1942 /*
1943 * return the remaining items back to the transaction
1944 * item list so they can be freed in caller.
1945 */
1946 if (!list_empty(&sort_list))
1947 list_splice_init(&sort_list, &trans->r_itemq);
1948 error = -EIO;
1949 goto out;
1950 }
1951 }
1952 out:
1953 ASSERT(list_empty(&sort_list));
1954 if (!list_empty(&buffer_list))
1955 list_splice(&buffer_list, &trans->r_itemq);
1956 if (!list_empty(&inode_list))
1957 list_splice_tail(&inode_list, &trans->r_itemq);
1958 if (!list_empty(&inode_buffer_list))
1959 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1960 if (!list_empty(&cancel_list))
1961 list_splice_tail(&cancel_list, &trans->r_itemq);
1962 return error;
1963 }
1964
1965 /*
1966 * Build up the table of buf cancel records so that we don't replay
1967 * cancelled data in the second pass. For buffer records that are
1968 * not cancel records, there is nothing to do here so we just return.
1969 *
1970 * If we get a cancel record which is already in the table, this indicates
1971 * that the buffer was cancelled multiple times. In order to ensure
1972 * that during pass 2 we keep the record in the table until we reach its
1973 * last occurrence in the log, we keep a reference count in the cancel
1974 * record in the table to tell us how many times we expect to see this
1975 * record during the second pass.
1976 */
1977 STATIC int
1978 xlog_recover_buffer_pass1(
1979 struct xlog *log,
1980 struct xlog_recover_item *item)
1981 {
1982 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1983 struct list_head *bucket;
1984 struct xfs_buf_cancel *bcp;
1985
1986 /*
1987 * If this isn't a cancel buffer item, then just return.
1988 */
1989 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1990 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1991 return 0;
1992 }
1993
1994 /*
1995 * Insert an xfs_buf_cancel record into the hash table of them.
1996 * If there is already an identical record, bump its reference count.
1997 */
1998 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1999 list_for_each_entry(bcp, bucket, bc_list) {
2000 if (bcp->bc_blkno == buf_f->blf_blkno &&
2001 bcp->bc_len == buf_f->blf_len) {
2002 bcp->bc_refcount++;
2003 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2004 return 0;
2005 }
2006 }
2007
2008 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2009 bcp->bc_blkno = buf_f->blf_blkno;
2010 bcp->bc_len = buf_f->blf_len;
2011 bcp->bc_refcount = 1;
2012 list_add_tail(&bcp->bc_list, bucket);
2013
2014 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2015 return 0;
2016 }
2017
2018 /*
2019 * Check to see whether the buffer being recovered has a corresponding
2020 * entry in the buffer cancel record table. If it is, return the cancel
2021 * buffer structure to the caller.
2022 */
2023 STATIC struct xfs_buf_cancel *
2024 xlog_peek_buffer_cancelled(
2025 struct xlog *log,
2026 xfs_daddr_t blkno,
2027 uint len,
2028 unsigned short flags)
2029 {
2030 struct list_head *bucket;
2031 struct xfs_buf_cancel *bcp;
2032
2033 if (!log->l_buf_cancel_table) {
2034 /* empty table means no cancelled buffers in the log */
2035 ASSERT(!(flags & XFS_BLF_CANCEL));
2036 return NULL;
2037 }
2038
2039 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2040 list_for_each_entry(bcp, bucket, bc_list) {
2041 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2042 return bcp;
2043 }
2044
2045 /*
2046 * We didn't find a corresponding entry in the table, so return 0 so
2047 * that the buffer is NOT cancelled.
2048 */
2049 ASSERT(!(flags & XFS_BLF_CANCEL));
2050 return NULL;
2051 }
2052
2053 /*
2054 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2055 * otherwise return 0. If the buffer is actually a buffer cancel item
2056 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2057 * table and remove it from the table if this is the last reference.
2058 *
2059 * We remove the cancel record from the table when we encounter its last
2060 * occurrence in the log so that if the same buffer is re-used again after its
2061 * last cancellation we actually replay the changes made at that point.
2062 */
2063 STATIC int
2064 xlog_check_buffer_cancelled(
2065 struct xlog *log,
2066 xfs_daddr_t blkno,
2067 uint len,
2068 unsigned short flags)
2069 {
2070 struct xfs_buf_cancel *bcp;
2071
2072 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2073 if (!bcp)
2074 return 0;
2075
2076 /*
2077 * We've go a match, so return 1 so that the recovery of this buffer
2078 * is cancelled. If this buffer is actually a buffer cancel log
2079 * item, then decrement the refcount on the one in the table and
2080 * remove it if this is the last reference.
2081 */
2082 if (flags & XFS_BLF_CANCEL) {
2083 if (--bcp->bc_refcount == 0) {
2084 list_del(&bcp->bc_list);
2085 kmem_free(bcp);
2086 }
2087 }
2088 return 1;
2089 }
2090
2091 /*
2092 * Perform recovery for a buffer full of inodes. In these buffers, the only
2093 * data which should be recovered is that which corresponds to the
2094 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2095 * data for the inodes is always logged through the inodes themselves rather
2096 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2097 *
2098 * The only time when buffers full of inodes are fully recovered is when the
2099 * buffer is full of newly allocated inodes. In this case the buffer will
2100 * not be marked as an inode buffer and so will be sent to
2101 * xlog_recover_do_reg_buffer() below during recovery.
2102 */
2103 STATIC int
2104 xlog_recover_do_inode_buffer(
2105 struct xfs_mount *mp,
2106 xlog_recover_item_t *item,
2107 struct xfs_buf *bp,
2108 xfs_buf_log_format_t *buf_f)
2109 {
2110 int i;
2111 int item_index = 0;
2112 int bit = 0;
2113 int nbits = 0;
2114 int reg_buf_offset = 0;
2115 int reg_buf_bytes = 0;
2116 int next_unlinked_offset;
2117 int inodes_per_buf;
2118 xfs_agino_t *logged_nextp;
2119 xfs_agino_t *buffer_nextp;
2120
2121 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2122
2123 /*
2124 * Post recovery validation only works properly on CRC enabled
2125 * filesystems.
2126 */
2127 if (xfs_sb_version_hascrc(&mp->m_sb))
2128 bp->b_ops = &xfs_inode_buf_ops;
2129
2130 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2131 for (i = 0; i < inodes_per_buf; i++) {
2132 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2133 offsetof(xfs_dinode_t, di_next_unlinked);
2134
2135 while (next_unlinked_offset >=
2136 (reg_buf_offset + reg_buf_bytes)) {
2137 /*
2138 * The next di_next_unlinked field is beyond
2139 * the current logged region. Find the next
2140 * logged region that contains or is beyond
2141 * the current di_next_unlinked field.
2142 */
2143 bit += nbits;
2144 bit = xfs_next_bit(buf_f->blf_data_map,
2145 buf_f->blf_map_size, bit);
2146
2147 /*
2148 * If there are no more logged regions in the
2149 * buffer, then we're done.
2150 */
2151 if (bit == -1)
2152 return 0;
2153
2154 nbits = xfs_contig_bits(buf_f->blf_data_map,
2155 buf_f->blf_map_size, bit);
2156 ASSERT(nbits > 0);
2157 reg_buf_offset = bit << XFS_BLF_SHIFT;
2158 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2159 item_index++;
2160 }
2161
2162 /*
2163 * If the current logged region starts after the current
2164 * di_next_unlinked field, then move on to the next
2165 * di_next_unlinked field.
2166 */
2167 if (next_unlinked_offset < reg_buf_offset)
2168 continue;
2169
2170 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2171 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2172 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2173 BBTOB(bp->b_io_length));
2174
2175 /*
2176 * The current logged region contains a copy of the
2177 * current di_next_unlinked field. Extract its value
2178 * and copy it to the buffer copy.
2179 */
2180 logged_nextp = item->ri_buf[item_index].i_addr +
2181 next_unlinked_offset - reg_buf_offset;
2182 if (unlikely(*logged_nextp == 0)) {
2183 xfs_alert(mp,
2184 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2185 "Trying to replay bad (0) inode di_next_unlinked field.",
2186 item, bp);
2187 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2188 XFS_ERRLEVEL_LOW, mp);
2189 return -EFSCORRUPTED;
2190 }
2191
2192 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2193 *buffer_nextp = *logged_nextp;
2194
2195 /*
2196 * If necessary, recalculate the CRC in the on-disk inode. We
2197 * have to leave the inode in a consistent state for whoever
2198 * reads it next....
2199 */
2200 xfs_dinode_calc_crc(mp,
2201 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2202
2203 }
2204
2205 return 0;
2206 }
2207
2208 /*
2209 * V5 filesystems know the age of the buffer on disk being recovered. We can
2210 * have newer objects on disk than we are replaying, and so for these cases we
2211 * don't want to replay the current change as that will make the buffer contents
2212 * temporarily invalid on disk.
2213 *
2214 * The magic number might not match the buffer type we are going to recover
2215 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2216 * extract the LSN of the existing object in the buffer based on it's current
2217 * magic number. If we don't recognise the magic number in the buffer, then
2218 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2219 * so can recover the buffer.
2220 *
2221 * Note: we cannot rely solely on magic number matches to determine that the
2222 * buffer has a valid LSN - we also need to verify that it belongs to this
2223 * filesystem, so we need to extract the object's LSN and compare it to that
2224 * which we read from the superblock. If the UUIDs don't match, then we've got a
2225 * stale metadata block from an old filesystem instance that we need to recover
2226 * over the top of.
2227 */
2228 static xfs_lsn_t
2229 xlog_recover_get_buf_lsn(
2230 struct xfs_mount *mp,
2231 struct xfs_buf *bp)
2232 {
2233 uint32_t magic32;
2234 uint16_t magic16;
2235 uint16_t magicda;
2236 void *blk = bp->b_addr;
2237 uuid_t *uuid;
2238 xfs_lsn_t lsn = -1;
2239
2240 /* v4 filesystems always recover immediately */
2241 if (!xfs_sb_version_hascrc(&mp->m_sb))
2242 goto recover_immediately;
2243
2244 magic32 = be32_to_cpu(*(__be32 *)blk);
2245 switch (magic32) {
2246 case XFS_ABTB_CRC_MAGIC:
2247 case XFS_ABTC_CRC_MAGIC:
2248 case XFS_ABTB_MAGIC:
2249 case XFS_ABTC_MAGIC:
2250 case XFS_RMAP_CRC_MAGIC:
2251 case XFS_REFC_CRC_MAGIC:
2252 case XFS_IBT_CRC_MAGIC:
2253 case XFS_IBT_MAGIC: {
2254 struct xfs_btree_block *btb = blk;
2255
2256 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2257 uuid = &btb->bb_u.s.bb_uuid;
2258 break;
2259 }
2260 case XFS_BMAP_CRC_MAGIC:
2261 case XFS_BMAP_MAGIC: {
2262 struct xfs_btree_block *btb = blk;
2263
2264 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2265 uuid = &btb->bb_u.l.bb_uuid;
2266 break;
2267 }
2268 case XFS_AGF_MAGIC:
2269 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2270 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2271 break;
2272 case XFS_AGFL_MAGIC:
2273 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2274 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2275 break;
2276 case XFS_AGI_MAGIC:
2277 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2278 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2279 break;
2280 case XFS_SYMLINK_MAGIC:
2281 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2282 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2283 break;
2284 case XFS_DIR3_BLOCK_MAGIC:
2285 case XFS_DIR3_DATA_MAGIC:
2286 case XFS_DIR3_FREE_MAGIC:
2287 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2288 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2289 break;
2290 case XFS_ATTR3_RMT_MAGIC:
2291 /*
2292 * Remote attr blocks are written synchronously, rather than
2293 * being logged. That means they do not contain a valid LSN
2294 * (i.e. transactionally ordered) in them, and hence any time we
2295 * see a buffer to replay over the top of a remote attribute
2296 * block we should simply do so.
2297 */
2298 goto recover_immediately;
2299 case XFS_SB_MAGIC:
2300 /*
2301 * superblock uuids are magic. We may or may not have a
2302 * sb_meta_uuid on disk, but it will be set in the in-core
2303 * superblock. We set the uuid pointer for verification
2304 * according to the superblock feature mask to ensure we check
2305 * the relevant UUID in the superblock.
2306 */
2307 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2308 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2309 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2310 else
2311 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2312 break;
2313 default:
2314 break;
2315 }
2316
2317 if (lsn != (xfs_lsn_t)-1) {
2318 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2319 goto recover_immediately;
2320 return lsn;
2321 }
2322
2323 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2324 switch (magicda) {
2325 case XFS_DIR3_LEAF1_MAGIC:
2326 case XFS_DIR3_LEAFN_MAGIC:
2327 case XFS_DA3_NODE_MAGIC:
2328 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2329 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2330 break;
2331 default:
2332 break;
2333 }
2334
2335 if (lsn != (xfs_lsn_t)-1) {
2336 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2337 goto recover_immediately;
2338 return lsn;
2339 }
2340
2341 /*
2342 * We do individual object checks on dquot and inode buffers as they
2343 * have their own individual LSN records. Also, we could have a stale
2344 * buffer here, so we have to at least recognise these buffer types.
2345 *
2346 * A notd complexity here is inode unlinked list processing - it logs
2347 * the inode directly in the buffer, but we don't know which inodes have
2348 * been modified, and there is no global buffer LSN. Hence we need to
2349 * recover all inode buffer types immediately. This problem will be
2350 * fixed by logical logging of the unlinked list modifications.
2351 */
2352 magic16 = be16_to_cpu(*(__be16 *)blk);
2353 switch (magic16) {
2354 case XFS_DQUOT_MAGIC:
2355 case XFS_DINODE_MAGIC:
2356 goto recover_immediately;
2357 default:
2358 break;
2359 }
2360
2361 /* unknown buffer contents, recover immediately */
2362
2363 recover_immediately:
2364 return (xfs_lsn_t)-1;
2365
2366 }
2367
2368 /*
2369 * Validate the recovered buffer is of the correct type and attach the
2370 * appropriate buffer operations to them for writeback. Magic numbers are in a
2371 * few places:
2372 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2373 * the first 32 bits of the buffer (most blocks),
2374 * inside a struct xfs_da_blkinfo at the start of the buffer.
2375 */
2376 static void
2377 xlog_recover_validate_buf_type(
2378 struct xfs_mount *mp,
2379 struct xfs_buf *bp,
2380 xfs_buf_log_format_t *buf_f,
2381 xfs_lsn_t current_lsn)
2382 {
2383 struct xfs_da_blkinfo *info = bp->b_addr;
2384 uint32_t magic32;
2385 uint16_t magic16;
2386 uint16_t magicda;
2387 char *warnmsg = NULL;
2388
2389 /*
2390 * We can only do post recovery validation on items on CRC enabled
2391 * fielsystems as we need to know when the buffer was written to be able
2392 * to determine if we should have replayed the item. If we replay old
2393 * metadata over a newer buffer, then it will enter a temporarily
2394 * inconsistent state resulting in verification failures. Hence for now
2395 * just avoid the verification stage for non-crc filesystems
2396 */
2397 if (!xfs_sb_version_hascrc(&mp->m_sb))
2398 return;
2399
2400 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2401 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2402 magicda = be16_to_cpu(info->magic);
2403 switch (xfs_blft_from_flags(buf_f)) {
2404 case XFS_BLFT_BTREE_BUF:
2405 switch (magic32) {
2406 case XFS_ABTB_CRC_MAGIC:
2407 case XFS_ABTC_CRC_MAGIC:
2408 case XFS_ABTB_MAGIC:
2409 case XFS_ABTC_MAGIC:
2410 bp->b_ops = &xfs_allocbt_buf_ops;
2411 break;
2412 case XFS_IBT_CRC_MAGIC:
2413 case XFS_FIBT_CRC_MAGIC:
2414 case XFS_IBT_MAGIC:
2415 case XFS_FIBT_MAGIC:
2416 bp->b_ops = &xfs_inobt_buf_ops;
2417 break;
2418 case XFS_BMAP_CRC_MAGIC:
2419 case XFS_BMAP_MAGIC:
2420 bp->b_ops = &xfs_bmbt_buf_ops;
2421 break;
2422 case XFS_RMAP_CRC_MAGIC:
2423 bp->b_ops = &xfs_rmapbt_buf_ops;
2424 break;
2425 case XFS_REFC_CRC_MAGIC:
2426 bp->b_ops = &xfs_refcountbt_buf_ops;
2427 break;
2428 default:
2429 warnmsg = "Bad btree block magic!";
2430 break;
2431 }
2432 break;
2433 case XFS_BLFT_AGF_BUF:
2434 if (magic32 != XFS_AGF_MAGIC) {
2435 warnmsg = "Bad AGF block magic!";
2436 break;
2437 }
2438 bp->b_ops = &xfs_agf_buf_ops;
2439 break;
2440 case XFS_BLFT_AGFL_BUF:
2441 if (magic32 != XFS_AGFL_MAGIC) {
2442 warnmsg = "Bad AGFL block magic!";
2443 break;
2444 }
2445 bp->b_ops = &xfs_agfl_buf_ops;
2446 break;
2447 case XFS_BLFT_AGI_BUF:
2448 if (magic32 != XFS_AGI_MAGIC) {
2449 warnmsg = "Bad AGI block magic!";
2450 break;
2451 }
2452 bp->b_ops = &xfs_agi_buf_ops;
2453 break;
2454 case XFS_BLFT_UDQUOT_BUF:
2455 case XFS_BLFT_PDQUOT_BUF:
2456 case XFS_BLFT_GDQUOT_BUF:
2457 #ifdef CONFIG_XFS_QUOTA
2458 if (magic16 != XFS_DQUOT_MAGIC) {
2459 warnmsg = "Bad DQUOT block magic!";
2460 break;
2461 }
2462 bp->b_ops = &xfs_dquot_buf_ops;
2463 #else
2464 xfs_alert(mp,
2465 "Trying to recover dquots without QUOTA support built in!");
2466 ASSERT(0);
2467 #endif
2468 break;
2469 case XFS_BLFT_DINO_BUF:
2470 if (magic16 != XFS_DINODE_MAGIC) {
2471 warnmsg = "Bad INODE block magic!";
2472 break;
2473 }
2474 bp->b_ops = &xfs_inode_buf_ops;
2475 break;
2476 case XFS_BLFT_SYMLINK_BUF:
2477 if (magic32 != XFS_SYMLINK_MAGIC) {
2478 warnmsg = "Bad symlink block magic!";
2479 break;
2480 }
2481 bp->b_ops = &xfs_symlink_buf_ops;
2482 break;
2483 case XFS_BLFT_DIR_BLOCK_BUF:
2484 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2485 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2486 warnmsg = "Bad dir block magic!";
2487 break;
2488 }
2489 bp->b_ops = &xfs_dir3_block_buf_ops;
2490 break;
2491 case XFS_BLFT_DIR_DATA_BUF:
2492 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2493 magic32 != XFS_DIR3_DATA_MAGIC) {
2494 warnmsg = "Bad dir data magic!";
2495 break;
2496 }
2497 bp->b_ops = &xfs_dir3_data_buf_ops;
2498 break;
2499 case XFS_BLFT_DIR_FREE_BUF:
2500 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2501 magic32 != XFS_DIR3_FREE_MAGIC) {
2502 warnmsg = "Bad dir3 free magic!";
2503 break;
2504 }
2505 bp->b_ops = &xfs_dir3_free_buf_ops;
2506 break;
2507 case XFS_BLFT_DIR_LEAF1_BUF:
2508 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2509 magicda != XFS_DIR3_LEAF1_MAGIC) {
2510 warnmsg = "Bad dir leaf1 magic!";
2511 break;
2512 }
2513 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2514 break;
2515 case XFS_BLFT_DIR_LEAFN_BUF:
2516 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2517 magicda != XFS_DIR3_LEAFN_MAGIC) {
2518 warnmsg = "Bad dir leafn magic!";
2519 break;
2520 }
2521 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2522 break;
2523 case XFS_BLFT_DA_NODE_BUF:
2524 if (magicda != XFS_DA_NODE_MAGIC &&
2525 magicda != XFS_DA3_NODE_MAGIC) {
2526 warnmsg = "Bad da node magic!";
2527 break;
2528 }
2529 bp->b_ops = &xfs_da3_node_buf_ops;
2530 break;
2531 case XFS_BLFT_ATTR_LEAF_BUF:
2532 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2533 magicda != XFS_ATTR3_LEAF_MAGIC) {
2534 warnmsg = "Bad attr leaf magic!";
2535 break;
2536 }
2537 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2538 break;
2539 case XFS_BLFT_ATTR_RMT_BUF:
2540 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2541 warnmsg = "Bad attr remote magic!";
2542 break;
2543 }
2544 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2545 break;
2546 case XFS_BLFT_SB_BUF:
2547 if (magic32 != XFS_SB_MAGIC) {
2548 warnmsg = "Bad SB block magic!";
2549 break;
2550 }
2551 bp->b_ops = &xfs_sb_buf_ops;
2552 break;
2553 #ifdef CONFIG_XFS_RT
2554 case XFS_BLFT_RTBITMAP_BUF:
2555 case XFS_BLFT_RTSUMMARY_BUF:
2556 /* no magic numbers for verification of RT buffers */
2557 bp->b_ops = &xfs_rtbuf_ops;
2558 break;
2559 #endif /* CONFIG_XFS_RT */
2560 default:
2561 xfs_warn(mp, "Unknown buffer type %d!",
2562 xfs_blft_from_flags(buf_f));
2563 break;
2564 }
2565
2566 /*
2567 * Nothing else to do in the case of a NULL current LSN as this means
2568 * the buffer is more recent than the change in the log and will be
2569 * skipped.
2570 */
2571 if (current_lsn == NULLCOMMITLSN)
2572 return;
2573
2574 if (warnmsg) {
2575 xfs_warn(mp, warnmsg);
2576 ASSERT(0);
2577 }
2578
2579 /*
2580 * We must update the metadata LSN of the buffer as it is written out to
2581 * ensure that older transactions never replay over this one and corrupt
2582 * the buffer. This can occur if log recovery is interrupted at some
2583 * point after the current transaction completes, at which point a
2584 * subsequent mount starts recovery from the beginning.
2585 *
2586 * Write verifiers update the metadata LSN from log items attached to
2587 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2588 * the verifier. We'll clean it up in our ->iodone() callback.
2589 */
2590 if (bp->b_ops) {
2591 struct xfs_buf_log_item *bip;
2592
2593 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2594 bp->b_iodone = xlog_recover_iodone;
2595 xfs_buf_item_init(bp, mp);
2596 bip = bp->b_fspriv;
2597 bip->bli_item.li_lsn = current_lsn;
2598 }
2599 }
2600
2601 /*
2602 * Perform a 'normal' buffer recovery. Each logged region of the
2603 * buffer should be copied over the corresponding region in the
2604 * given buffer. The bitmap in the buf log format structure indicates
2605 * where to place the logged data.
2606 */
2607 STATIC void
2608 xlog_recover_do_reg_buffer(
2609 struct xfs_mount *mp,
2610 xlog_recover_item_t *item,
2611 struct xfs_buf *bp,
2612 xfs_buf_log_format_t *buf_f,
2613 xfs_lsn_t current_lsn)
2614 {
2615 int i;
2616 int bit;
2617 int nbits;
2618 int error;
2619
2620 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2621
2622 bit = 0;
2623 i = 1; /* 0 is the buf format structure */
2624 while (1) {
2625 bit = xfs_next_bit(buf_f->blf_data_map,
2626 buf_f->blf_map_size, bit);
2627 if (bit == -1)
2628 break;
2629 nbits = xfs_contig_bits(buf_f->blf_data_map,
2630 buf_f->blf_map_size, bit);
2631 ASSERT(nbits > 0);
2632 ASSERT(item->ri_buf[i].i_addr != NULL);
2633 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2634 ASSERT(BBTOB(bp->b_io_length) >=
2635 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2636
2637 /*
2638 * The dirty regions logged in the buffer, even though
2639 * contiguous, may span multiple chunks. This is because the
2640 * dirty region may span a physical page boundary in a buffer
2641 * and hence be split into two separate vectors for writing into
2642 * the log. Hence we need to trim nbits back to the length of
2643 * the current region being copied out of the log.
2644 */
2645 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2646 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2647
2648 /*
2649 * Do a sanity check if this is a dquot buffer. Just checking
2650 * the first dquot in the buffer should do. XXXThis is
2651 * probably a good thing to do for other buf types also.
2652 */
2653 error = 0;
2654 if (buf_f->blf_flags &
2655 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2656 if (item->ri_buf[i].i_addr == NULL) {
2657 xfs_alert(mp,
2658 "XFS: NULL dquot in %s.", __func__);
2659 goto next;
2660 }
2661 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2662 xfs_alert(mp,
2663 "XFS: dquot too small (%d) in %s.",
2664 item->ri_buf[i].i_len, __func__);
2665 goto next;
2666 }
2667 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2668 -1, 0, XFS_QMOPT_DOWARN,
2669 "dquot_buf_recover");
2670 if (error)
2671 goto next;
2672 }
2673
2674 memcpy(xfs_buf_offset(bp,
2675 (uint)bit << XFS_BLF_SHIFT), /* dest */
2676 item->ri_buf[i].i_addr, /* source */
2677 nbits<<XFS_BLF_SHIFT); /* length */
2678 next:
2679 i++;
2680 bit += nbits;
2681 }
2682
2683 /* Shouldn't be any more regions */
2684 ASSERT(i == item->ri_total);
2685
2686 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2687 }
2688
2689 /*
2690 * Perform a dquot buffer recovery.
2691 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2692 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2693 * Else, treat it as a regular buffer and do recovery.
2694 *
2695 * Return false if the buffer was tossed and true if we recovered the buffer to
2696 * indicate to the caller if the buffer needs writing.
2697 */
2698 STATIC bool
2699 xlog_recover_do_dquot_buffer(
2700 struct xfs_mount *mp,
2701 struct xlog *log,
2702 struct xlog_recover_item *item,
2703 struct xfs_buf *bp,
2704 struct xfs_buf_log_format *buf_f)
2705 {
2706 uint type;
2707
2708 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2709
2710 /*
2711 * Filesystems are required to send in quota flags at mount time.
2712 */
2713 if (!mp->m_qflags)
2714 return false;
2715
2716 type = 0;
2717 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2718 type |= XFS_DQ_USER;
2719 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2720 type |= XFS_DQ_PROJ;
2721 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2722 type |= XFS_DQ_GROUP;
2723 /*
2724 * This type of quotas was turned off, so ignore this buffer
2725 */
2726 if (log->l_quotaoffs_flag & type)
2727 return false;
2728
2729 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2730 return true;
2731 }
2732
2733 /*
2734 * This routine replays a modification made to a buffer at runtime.
2735 * There are actually two types of buffer, regular and inode, which
2736 * are handled differently. Inode buffers are handled differently
2737 * in that we only recover a specific set of data from them, namely
2738 * the inode di_next_unlinked fields. This is because all other inode
2739 * data is actually logged via inode records and any data we replay
2740 * here which overlaps that may be stale.
2741 *
2742 * When meta-data buffers are freed at run time we log a buffer item
2743 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2744 * of the buffer in the log should not be replayed at recovery time.
2745 * This is so that if the blocks covered by the buffer are reused for
2746 * file data before we crash we don't end up replaying old, freed
2747 * meta-data into a user's file.
2748 *
2749 * To handle the cancellation of buffer log items, we make two passes
2750 * over the log during recovery. During the first we build a table of
2751 * those buffers which have been cancelled, and during the second we
2752 * only replay those buffers which do not have corresponding cancel
2753 * records in the table. See xlog_recover_buffer_pass[1,2] above
2754 * for more details on the implementation of the table of cancel records.
2755 */
2756 STATIC int
2757 xlog_recover_buffer_pass2(
2758 struct xlog *log,
2759 struct list_head *buffer_list,
2760 struct xlog_recover_item *item,
2761 xfs_lsn_t current_lsn)
2762 {
2763 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2764 xfs_mount_t *mp = log->l_mp;
2765 xfs_buf_t *bp;
2766 int error;
2767 uint buf_flags;
2768 xfs_lsn_t lsn;
2769
2770 /*
2771 * In this pass we only want to recover all the buffers which have
2772 * not been cancelled and are not cancellation buffers themselves.
2773 */
2774 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2775 buf_f->blf_len, buf_f->blf_flags)) {
2776 trace_xfs_log_recover_buf_cancel(log, buf_f);
2777 return 0;
2778 }
2779
2780 trace_xfs_log_recover_buf_recover(log, buf_f);
2781
2782 buf_flags = 0;
2783 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2784 buf_flags |= XBF_UNMAPPED;
2785
2786 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2787 buf_flags, NULL);
2788 if (!bp)
2789 return -ENOMEM;
2790 error = bp->b_error;
2791 if (error) {
2792 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2793 goto out_release;
2794 }
2795
2796 /*
2797 * Recover the buffer only if we get an LSN from it and it's less than
2798 * the lsn of the transaction we are replaying.
2799 *
2800 * Note that we have to be extremely careful of readahead here.
2801 * Readahead does not attach verfiers to the buffers so if we don't
2802 * actually do any replay after readahead because of the LSN we found
2803 * in the buffer if more recent than that current transaction then we
2804 * need to attach the verifier directly. Failure to do so can lead to
2805 * future recovery actions (e.g. EFI and unlinked list recovery) can
2806 * operate on the buffers and they won't get the verifier attached. This
2807 * can lead to blocks on disk having the correct content but a stale
2808 * CRC.
2809 *
2810 * It is safe to assume these clean buffers are currently up to date.
2811 * If the buffer is dirtied by a later transaction being replayed, then
2812 * the verifier will be reset to match whatever recover turns that
2813 * buffer into.
2814 */
2815 lsn = xlog_recover_get_buf_lsn(mp, bp);
2816 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2817 trace_xfs_log_recover_buf_skip(log, buf_f);
2818 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2819 goto out_release;
2820 }
2821
2822 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2823 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2824 if (error)
2825 goto out_release;
2826 } else if (buf_f->blf_flags &
2827 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2828 bool dirty;
2829
2830 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2831 if (!dirty)
2832 goto out_release;
2833 } else {
2834 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2835 }
2836
2837 /*
2838 * Perform delayed write on the buffer. Asynchronous writes will be
2839 * slower when taking into account all the buffers to be flushed.
2840 *
2841 * Also make sure that only inode buffers with good sizes stay in
2842 * the buffer cache. The kernel moves inodes in buffers of 1 block
2843 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2844 * buffers in the log can be a different size if the log was generated
2845 * by an older kernel using unclustered inode buffers or a newer kernel
2846 * running with a different inode cluster size. Regardless, if the
2847 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2848 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2849 * the buffer out of the buffer cache so that the buffer won't
2850 * overlap with future reads of those inodes.
2851 */
2852 if (XFS_DINODE_MAGIC ==
2853 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2854 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2855 (uint32_t)log->l_mp->m_inode_cluster_size))) {
2856 xfs_buf_stale(bp);
2857 error = xfs_bwrite(bp);
2858 } else {
2859 ASSERT(bp->b_target->bt_mount == mp);
2860 bp->b_iodone = xlog_recover_iodone;
2861 xfs_buf_delwri_queue(bp, buffer_list);
2862 }
2863
2864 out_release:
2865 xfs_buf_relse(bp);
2866 return error;
2867 }
2868
2869 /*
2870 * Inode fork owner changes
2871 *
2872 * If we have been told that we have to reparent the inode fork, it's because an
2873 * extent swap operation on a CRC enabled filesystem has been done and we are
2874 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2875 * owners of it.
2876 *
2877 * The complexity here is that we don't have an inode context to work with, so
2878 * after we've replayed the inode we need to instantiate one. This is where the
2879 * fun begins.
2880 *
2881 * We are in the middle of log recovery, so we can't run transactions. That
2882 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2883 * that will result in the corresponding iput() running the inode through
2884 * xfs_inactive(). If we've just replayed an inode core that changes the link
2885 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2886 * transactions (bad!).
2887 *
2888 * So, to avoid this, we instantiate an inode directly from the inode core we've
2889 * just recovered. We have the buffer still locked, and all we really need to
2890 * instantiate is the inode core and the forks being modified. We can do this
2891 * manually, then run the inode btree owner change, and then tear down the
2892 * xfs_inode without having to run any transactions at all.
2893 *
2894 * Also, because we don't have a transaction context available here but need to
2895 * gather all the buffers we modify for writeback so we pass the buffer_list
2896 * instead for the operation to use.
2897 */
2898
2899 STATIC int
2900 xfs_recover_inode_owner_change(
2901 struct xfs_mount *mp,
2902 struct xfs_dinode *dip,
2903 struct xfs_inode_log_format *in_f,
2904 struct list_head *buffer_list)
2905 {
2906 struct xfs_inode *ip;
2907 int error;
2908
2909 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2910
2911 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2912 if (!ip)
2913 return -ENOMEM;
2914
2915 /* instantiate the inode */
2916 xfs_inode_from_disk(ip, dip);
2917 ASSERT(ip->i_d.di_version >= 3);
2918
2919 error = xfs_iformat_fork(ip, dip);
2920 if (error)
2921 goto out_free_ip;
2922
2923
2924 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2925 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2926 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2927 ip->i_ino, buffer_list);
2928 if (error)
2929 goto out_free_ip;
2930 }
2931
2932 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2933 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2934 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2935 ip->i_ino, buffer_list);
2936 if (error)
2937 goto out_free_ip;
2938 }
2939
2940 out_free_ip:
2941 xfs_inode_free(ip);
2942 return error;
2943 }
2944
2945 STATIC int
2946 xlog_recover_inode_pass2(
2947 struct xlog *log,
2948 struct list_head *buffer_list,
2949 struct xlog_recover_item *item,
2950 xfs_lsn_t current_lsn)
2951 {
2952 xfs_inode_log_format_t *in_f;
2953 xfs_mount_t *mp = log->l_mp;
2954 xfs_buf_t *bp;
2955 xfs_dinode_t *dip;
2956 int len;
2957 char *src;
2958 char *dest;
2959 int error;
2960 int attr_index;
2961 uint fields;
2962 struct xfs_log_dinode *ldip;
2963 uint isize;
2964 int need_free = 0;
2965
2966 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2967 in_f = item->ri_buf[0].i_addr;
2968 } else {
2969 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2970 need_free = 1;
2971 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2972 if (error)
2973 goto error;
2974 }
2975
2976 /*
2977 * Inode buffers can be freed, look out for it,
2978 * and do not replay the inode.
2979 */
2980 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2981 in_f->ilf_len, 0)) {
2982 error = 0;
2983 trace_xfs_log_recover_inode_cancel(log, in_f);
2984 goto error;
2985 }
2986 trace_xfs_log_recover_inode_recover(log, in_f);
2987
2988 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2989 &xfs_inode_buf_ops);
2990 if (!bp) {
2991 error = -ENOMEM;
2992 goto error;
2993 }
2994 error = bp->b_error;
2995 if (error) {
2996 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2997 goto out_release;
2998 }
2999 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3000 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3001
3002 /*
3003 * Make sure the place we're flushing out to really looks
3004 * like an inode!
3005 */
3006 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3007 xfs_alert(mp,
3008 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3009 __func__, dip, bp, in_f->ilf_ino);
3010 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3011 XFS_ERRLEVEL_LOW, mp);
3012 error = -EFSCORRUPTED;
3013 goto out_release;
3014 }
3015 ldip = item->ri_buf[1].i_addr;
3016 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3017 xfs_alert(mp,
3018 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3019 __func__, item, in_f->ilf_ino);
3020 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3021 XFS_ERRLEVEL_LOW, mp);
3022 error = -EFSCORRUPTED;
3023 goto out_release;
3024 }
3025
3026 /*
3027 * If the inode has an LSN in it, recover the inode only if it's less
3028 * than the lsn of the transaction we are replaying. Note: we still
3029 * need to replay an owner change even though the inode is more recent
3030 * than the transaction as there is no guarantee that all the btree
3031 * blocks are more recent than this transaction, too.
3032 */
3033 if (dip->di_version >= 3) {
3034 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3035
3036 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3037 trace_xfs_log_recover_inode_skip(log, in_f);
3038 error = 0;
3039 goto out_owner_change;
3040 }
3041 }
3042
3043 /*
3044 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3045 * are transactional and if ordering is necessary we can determine that
3046 * more accurately by the LSN field in the V3 inode core. Don't trust
3047 * the inode versions we might be changing them here - use the
3048 * superblock flag to determine whether we need to look at di_flushiter
3049 * to skip replay when the on disk inode is newer than the log one
3050 */
3051 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3052 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3053 /*
3054 * Deal with the wrap case, DI_MAX_FLUSH is less
3055 * than smaller numbers
3056 */
3057 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3058 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3059 /* do nothing */
3060 } else {
3061 trace_xfs_log_recover_inode_skip(log, in_f);
3062 error = 0;
3063 goto out_release;
3064 }
3065 }
3066
3067 /* Take the opportunity to reset the flush iteration count */
3068 ldip->di_flushiter = 0;
3069
3070 if (unlikely(S_ISREG(ldip->di_mode))) {
3071 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3072 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3073 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3074 XFS_ERRLEVEL_LOW, mp, ldip);
3075 xfs_alert(mp,
3076 "%s: Bad regular inode log record, rec ptr 0x%p, "
3077 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3078 __func__, item, dip, bp, in_f->ilf_ino);
3079 error = -EFSCORRUPTED;
3080 goto out_release;
3081 }
3082 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3083 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3084 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3085 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3086 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3087 XFS_ERRLEVEL_LOW, mp, ldip);
3088 xfs_alert(mp,
3089 "%s: Bad dir inode log record, rec ptr 0x%p, "
3090 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3091 __func__, item, dip, bp, in_f->ilf_ino);
3092 error = -EFSCORRUPTED;
3093 goto out_release;
3094 }
3095 }
3096 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3097 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3098 XFS_ERRLEVEL_LOW, mp, ldip);
3099 xfs_alert(mp,
3100 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3101 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3102 __func__, item, dip, bp, in_f->ilf_ino,
3103 ldip->di_nextents + ldip->di_anextents,
3104 ldip->di_nblocks);
3105 error = -EFSCORRUPTED;
3106 goto out_release;
3107 }
3108 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3109 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3110 XFS_ERRLEVEL_LOW, mp, ldip);
3111 xfs_alert(mp,
3112 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3113 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3114 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3115 error = -EFSCORRUPTED;
3116 goto out_release;
3117 }
3118 isize = xfs_log_dinode_size(ldip->di_version);
3119 if (unlikely(item->ri_buf[1].i_len > isize)) {
3120 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3121 XFS_ERRLEVEL_LOW, mp, ldip);
3122 xfs_alert(mp,
3123 "%s: Bad inode log record length %d, rec ptr 0x%p",
3124 __func__, item->ri_buf[1].i_len, item);
3125 error = -EFSCORRUPTED;
3126 goto out_release;
3127 }
3128
3129 /* recover the log dinode inode into the on disk inode */
3130 xfs_log_dinode_to_disk(ldip, dip);
3131
3132 /* the rest is in on-disk format */
3133 if (item->ri_buf[1].i_len > isize) {
3134 memcpy((char *)dip + isize,
3135 item->ri_buf[1].i_addr + isize,
3136 item->ri_buf[1].i_len - isize);
3137 }
3138
3139 fields = in_f->ilf_fields;
3140 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3141 case XFS_ILOG_DEV:
3142 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3143 break;
3144 case XFS_ILOG_UUID:
3145 memcpy(XFS_DFORK_DPTR(dip),
3146 &in_f->ilf_u.ilfu_uuid,
3147 sizeof(uuid_t));
3148 break;
3149 }
3150
3151 if (in_f->ilf_size == 2)
3152 goto out_owner_change;
3153 len = item->ri_buf[2].i_len;
3154 src = item->ri_buf[2].i_addr;
3155 ASSERT(in_f->ilf_size <= 4);
3156 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3157 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3158 (len == in_f->ilf_dsize));
3159
3160 switch (fields & XFS_ILOG_DFORK) {
3161 case XFS_ILOG_DDATA:
3162 case XFS_ILOG_DEXT:
3163 memcpy(XFS_DFORK_DPTR(dip), src, len);
3164 break;
3165
3166 case XFS_ILOG_DBROOT:
3167 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3168 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3169 XFS_DFORK_DSIZE(dip, mp));
3170 break;
3171
3172 default:
3173 /*
3174 * There are no data fork flags set.
3175 */
3176 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3177 break;
3178 }
3179
3180 /*
3181 * If we logged any attribute data, recover it. There may or
3182 * may not have been any other non-core data logged in this
3183 * transaction.
3184 */
3185 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3186 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3187 attr_index = 3;
3188 } else {
3189 attr_index = 2;
3190 }
3191 len = item->ri_buf[attr_index].i_len;
3192 src = item->ri_buf[attr_index].i_addr;
3193 ASSERT(len == in_f->ilf_asize);
3194
3195 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3196 case XFS_ILOG_ADATA:
3197 case XFS_ILOG_AEXT:
3198 dest = XFS_DFORK_APTR(dip);
3199 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3200 memcpy(dest, src, len);
3201 break;
3202
3203 case XFS_ILOG_ABROOT:
3204 dest = XFS_DFORK_APTR(dip);
3205 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3206 len, (xfs_bmdr_block_t*)dest,
3207 XFS_DFORK_ASIZE(dip, mp));
3208 break;
3209
3210 default:
3211 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3212 ASSERT(0);
3213 error = -EIO;
3214 goto out_release;
3215 }
3216 }
3217
3218 out_owner_change:
3219 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3220 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3221 buffer_list);
3222 /* re-generate the checksum. */
3223 xfs_dinode_calc_crc(log->l_mp, dip);
3224
3225 ASSERT(bp->b_target->bt_mount == mp);
3226 bp->b_iodone = xlog_recover_iodone;
3227 xfs_buf_delwri_queue(bp, buffer_list);
3228
3229 out_release:
3230 xfs_buf_relse(bp);
3231 error:
3232 if (need_free)
3233 kmem_free(in_f);
3234 return error;
3235 }
3236
3237 /*
3238 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3239 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3240 * of that type.
3241 */
3242 STATIC int
3243 xlog_recover_quotaoff_pass1(
3244 struct xlog *log,
3245 struct xlog_recover_item *item)
3246 {
3247 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3248 ASSERT(qoff_f);
3249
3250 /*
3251 * The logitem format's flag tells us if this was user quotaoff,
3252 * group/project quotaoff or both.
3253 */
3254 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3255 log->l_quotaoffs_flag |= XFS_DQ_USER;
3256 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3257 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3258 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3259 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3260
3261 return 0;
3262 }
3263
3264 /*
3265 * Recover a dquot record
3266 */
3267 STATIC int
3268 xlog_recover_dquot_pass2(
3269 struct xlog *log,
3270 struct list_head *buffer_list,
3271 struct xlog_recover_item *item,
3272 xfs_lsn_t current_lsn)
3273 {
3274 xfs_mount_t *mp = log->l_mp;
3275 xfs_buf_t *bp;
3276 struct xfs_disk_dquot *ddq, *recddq;
3277 int error;
3278 xfs_dq_logformat_t *dq_f;
3279 uint type;
3280
3281
3282 /*
3283 * Filesystems are required to send in quota flags at mount time.
3284 */
3285 if (mp->m_qflags == 0)
3286 return 0;
3287
3288 recddq = item->ri_buf[1].i_addr;
3289 if (recddq == NULL) {
3290 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3291 return -EIO;
3292 }
3293 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3294 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3295 item->ri_buf[1].i_len, __func__);
3296 return -EIO;
3297 }
3298
3299 /*
3300 * This type of quotas was turned off, so ignore this record.
3301 */
3302 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3303 ASSERT(type);
3304 if (log->l_quotaoffs_flag & type)
3305 return 0;
3306
3307 /*
3308 * At this point we know that quota was _not_ turned off.
3309 * Since the mount flags are not indicating to us otherwise, this
3310 * must mean that quota is on, and the dquot needs to be replayed.
3311 * Remember that we may not have fully recovered the superblock yet,
3312 * so we can't do the usual trick of looking at the SB quota bits.
3313 *
3314 * The other possibility, of course, is that the quota subsystem was
3315 * removed since the last mount - ENOSYS.
3316 */
3317 dq_f = item->ri_buf[0].i_addr;
3318 ASSERT(dq_f);
3319 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3320 "xlog_recover_dquot_pass2 (log copy)");
3321 if (error)
3322 return -EIO;
3323 ASSERT(dq_f->qlf_len == 1);
3324
3325 /*
3326 * At this point we are assuming that the dquots have been allocated
3327 * and hence the buffer has valid dquots stamped in it. It should,
3328 * therefore, pass verifier validation. If the dquot is bad, then the
3329 * we'll return an error here, so we don't need to specifically check
3330 * the dquot in the buffer after the verifier has run.
3331 */
3332 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3333 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3334 &xfs_dquot_buf_ops);
3335 if (error)
3336 return error;
3337
3338 ASSERT(bp);
3339 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3340
3341 /*
3342 * If the dquot has an LSN in it, recover the dquot only if it's less
3343 * than the lsn of the transaction we are replaying.
3344 */
3345 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3346 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3347 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3348
3349 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3350 goto out_release;
3351 }
3352 }
3353
3354 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3355 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3356 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3357 XFS_DQUOT_CRC_OFF);
3358 }
3359
3360 ASSERT(dq_f->qlf_size == 2);
3361 ASSERT(bp->b_target->bt_mount == mp);
3362 bp->b_iodone = xlog_recover_iodone;
3363 xfs_buf_delwri_queue(bp, buffer_list);
3364
3365 out_release:
3366 xfs_buf_relse(bp);
3367 return 0;
3368 }
3369
3370 /*
3371 * This routine is called to create an in-core extent free intent
3372 * item from the efi format structure which was logged on disk.
3373 * It allocates an in-core efi, copies the extents from the format
3374 * structure into it, and adds the efi to the AIL with the given
3375 * LSN.
3376 */
3377 STATIC int
3378 xlog_recover_efi_pass2(
3379 struct xlog *log,
3380 struct xlog_recover_item *item,
3381 xfs_lsn_t lsn)
3382 {
3383 int error;
3384 struct xfs_mount *mp = log->l_mp;
3385 struct xfs_efi_log_item *efip;
3386 struct xfs_efi_log_format *efi_formatp;
3387
3388 efi_formatp = item->ri_buf[0].i_addr;
3389
3390 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3391 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3392 if (error) {
3393 xfs_efi_item_free(efip);
3394 return error;
3395 }
3396 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3397
3398 spin_lock(&log->l_ailp->xa_lock);
3399 /*
3400 * The EFI has two references. One for the EFD and one for EFI to ensure
3401 * it makes it into the AIL. Insert the EFI into the AIL directly and
3402 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3403 * AIL lock.
3404 */
3405 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3406 xfs_efi_release(efip);
3407 return 0;
3408 }
3409
3410
3411 /*
3412 * This routine is called when an EFD format structure is found in a committed
3413 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3414 * was still in the log. To do this it searches the AIL for the EFI with an id
3415 * equal to that in the EFD format structure. If we find it we drop the EFD
3416 * reference, which removes the EFI from the AIL and frees it.
3417 */
3418 STATIC int
3419 xlog_recover_efd_pass2(
3420 struct xlog *log,
3421 struct xlog_recover_item *item)
3422 {
3423 xfs_efd_log_format_t *efd_formatp;
3424 xfs_efi_log_item_t *efip = NULL;
3425 xfs_log_item_t *lip;
3426 uint64_t efi_id;
3427 struct xfs_ail_cursor cur;
3428 struct xfs_ail *ailp = log->l_ailp;
3429
3430 efd_formatp = item->ri_buf[0].i_addr;
3431 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3432 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3433 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3434 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3435 efi_id = efd_formatp->efd_efi_id;
3436
3437 /*
3438 * Search for the EFI with the id in the EFD format structure in the
3439 * AIL.
3440 */
3441 spin_lock(&ailp->xa_lock);
3442 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3443 while (lip != NULL) {
3444 if (lip->li_type == XFS_LI_EFI) {
3445 efip = (xfs_efi_log_item_t *)lip;
3446 if (efip->efi_format.efi_id == efi_id) {
3447 /*
3448 * Drop the EFD reference to the EFI. This
3449 * removes the EFI from the AIL and frees it.
3450 */
3451 spin_unlock(&ailp->xa_lock);
3452 xfs_efi_release(efip);
3453 spin_lock(&ailp->xa_lock);
3454 break;
3455 }
3456 }
3457 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3458 }
3459
3460 xfs_trans_ail_cursor_done(&cur);
3461 spin_unlock(&ailp->xa_lock);
3462
3463 return 0;
3464 }
3465
3466 /*
3467 * This routine is called to create an in-core extent rmap update
3468 * item from the rui format structure which was logged on disk.
3469 * It allocates an in-core rui, copies the extents from the format
3470 * structure into it, and adds the rui to the AIL with the given
3471 * LSN.
3472 */
3473 STATIC int
3474 xlog_recover_rui_pass2(
3475 struct xlog *log,
3476 struct xlog_recover_item *item,
3477 xfs_lsn_t lsn)
3478 {
3479 int error;
3480 struct xfs_mount *mp = log->l_mp;
3481 struct xfs_rui_log_item *ruip;
3482 struct xfs_rui_log_format *rui_formatp;
3483
3484 rui_formatp = item->ri_buf[0].i_addr;
3485
3486 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3487 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3488 if (error) {
3489 xfs_rui_item_free(ruip);
3490 return error;
3491 }
3492 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3493
3494 spin_lock(&log->l_ailp->xa_lock);
3495 /*
3496 * The RUI has two references. One for the RUD and one for RUI to ensure
3497 * it makes it into the AIL. Insert the RUI into the AIL directly and
3498 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3499 * AIL lock.
3500 */
3501 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3502 xfs_rui_release(ruip);
3503 return 0;
3504 }
3505
3506
3507 /*
3508 * This routine is called when an RUD format structure is found in a committed
3509 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3510 * was still in the log. To do this it searches the AIL for the RUI with an id
3511 * equal to that in the RUD format structure. If we find it we drop the RUD
3512 * reference, which removes the RUI from the AIL and frees it.
3513 */
3514 STATIC int
3515 xlog_recover_rud_pass2(
3516 struct xlog *log,
3517 struct xlog_recover_item *item)
3518 {
3519 struct xfs_rud_log_format *rud_formatp;
3520 struct xfs_rui_log_item *ruip = NULL;
3521 struct xfs_log_item *lip;
3522 uint64_t rui_id;
3523 struct xfs_ail_cursor cur;
3524 struct xfs_ail *ailp = log->l_ailp;
3525
3526 rud_formatp = item->ri_buf[0].i_addr;
3527 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3528 rui_id = rud_formatp->rud_rui_id;
3529
3530 /*
3531 * Search for the RUI with the id in the RUD format structure in the
3532 * AIL.
3533 */
3534 spin_lock(&ailp->xa_lock);
3535 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3536 while (lip != NULL) {
3537 if (lip->li_type == XFS_LI_RUI) {
3538 ruip = (struct xfs_rui_log_item *)lip;
3539 if (ruip->rui_format.rui_id == rui_id) {
3540 /*
3541 * Drop the RUD reference to the RUI. This
3542 * removes the RUI from the AIL and frees it.
3543 */
3544 spin_unlock(&ailp->xa_lock);
3545 xfs_rui_release(ruip);
3546 spin_lock(&ailp->xa_lock);
3547 break;
3548 }
3549 }
3550 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3551 }
3552
3553 xfs_trans_ail_cursor_done(&cur);
3554 spin_unlock(&ailp->xa_lock);
3555
3556 return 0;
3557 }
3558
3559 /*
3560 * Copy an CUI format buffer from the given buf, and into the destination
3561 * CUI format structure. The CUI/CUD items were designed not to need any
3562 * special alignment handling.
3563 */
3564 static int
3565 xfs_cui_copy_format(
3566 struct xfs_log_iovec *buf,
3567 struct xfs_cui_log_format *dst_cui_fmt)
3568 {
3569 struct xfs_cui_log_format *src_cui_fmt;
3570 uint len;
3571
3572 src_cui_fmt = buf->i_addr;
3573 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3574
3575 if (buf->i_len == len) {
3576 memcpy(dst_cui_fmt, src_cui_fmt, len);
3577 return 0;
3578 }
3579 return -EFSCORRUPTED;
3580 }
3581
3582 /*
3583 * This routine is called to create an in-core extent refcount update
3584 * item from the cui format structure which was logged on disk.
3585 * It allocates an in-core cui, copies the extents from the format
3586 * structure into it, and adds the cui to the AIL with the given
3587 * LSN.
3588 */
3589 STATIC int
3590 xlog_recover_cui_pass2(
3591 struct xlog *log,
3592 struct xlog_recover_item *item,
3593 xfs_lsn_t lsn)
3594 {
3595 int error;
3596 struct xfs_mount *mp = log->l_mp;
3597 struct xfs_cui_log_item *cuip;
3598 struct xfs_cui_log_format *cui_formatp;
3599
3600 cui_formatp = item->ri_buf[0].i_addr;
3601
3602 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3603 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3604 if (error) {
3605 xfs_cui_item_free(cuip);
3606 return error;
3607 }
3608 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3609
3610 spin_lock(&log->l_ailp->xa_lock);
3611 /*
3612 * The CUI has two references. One for the CUD and one for CUI to ensure
3613 * it makes it into the AIL. Insert the CUI into the AIL directly and
3614 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3615 * AIL lock.
3616 */
3617 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3618 xfs_cui_release(cuip);
3619 return 0;
3620 }
3621
3622
3623 /*
3624 * This routine is called when an CUD format structure is found in a committed
3625 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3626 * was still in the log. To do this it searches the AIL for the CUI with an id
3627 * equal to that in the CUD format structure. If we find it we drop the CUD
3628 * reference, which removes the CUI from the AIL and frees it.
3629 */
3630 STATIC int
3631 xlog_recover_cud_pass2(
3632 struct xlog *log,
3633 struct xlog_recover_item *item)
3634 {
3635 struct xfs_cud_log_format *cud_formatp;
3636 struct xfs_cui_log_item *cuip = NULL;
3637 struct xfs_log_item *lip;
3638 uint64_t cui_id;
3639 struct xfs_ail_cursor cur;
3640 struct xfs_ail *ailp = log->l_ailp;
3641
3642 cud_formatp = item->ri_buf[0].i_addr;
3643 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3644 return -EFSCORRUPTED;
3645 cui_id = cud_formatp->cud_cui_id;
3646
3647 /*
3648 * Search for the CUI with the id in the CUD format structure in the
3649 * AIL.
3650 */
3651 spin_lock(&ailp->xa_lock);
3652 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3653 while (lip != NULL) {
3654 if (lip->li_type == XFS_LI_CUI) {
3655 cuip = (struct xfs_cui_log_item *)lip;
3656 if (cuip->cui_format.cui_id == cui_id) {
3657 /*
3658 * Drop the CUD reference to the CUI. This
3659 * removes the CUI from the AIL and frees it.
3660 */
3661 spin_unlock(&ailp->xa_lock);
3662 xfs_cui_release(cuip);
3663 spin_lock(&ailp->xa_lock);
3664 break;
3665 }
3666 }
3667 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3668 }
3669
3670 xfs_trans_ail_cursor_done(&cur);
3671 spin_unlock(&ailp->xa_lock);
3672
3673 return 0;
3674 }
3675
3676 /*
3677 * Copy an BUI format buffer from the given buf, and into the destination
3678 * BUI format structure. The BUI/BUD items were designed not to need any
3679 * special alignment handling.
3680 */
3681 static int
3682 xfs_bui_copy_format(
3683 struct xfs_log_iovec *buf,
3684 struct xfs_bui_log_format *dst_bui_fmt)
3685 {
3686 struct xfs_bui_log_format *src_bui_fmt;
3687 uint len;
3688
3689 src_bui_fmt = buf->i_addr;
3690 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3691
3692 if (buf->i_len == len) {
3693 memcpy(dst_bui_fmt, src_bui_fmt, len);
3694 return 0;
3695 }
3696 return -EFSCORRUPTED;
3697 }
3698
3699 /*
3700 * This routine is called to create an in-core extent bmap update
3701 * item from the bui format structure which was logged on disk.
3702 * It allocates an in-core bui, copies the extents from the format
3703 * structure into it, and adds the bui to the AIL with the given
3704 * LSN.
3705 */
3706 STATIC int
3707 xlog_recover_bui_pass2(
3708 struct xlog *log,
3709 struct xlog_recover_item *item,
3710 xfs_lsn_t lsn)
3711 {
3712 int error;
3713 struct xfs_mount *mp = log->l_mp;
3714 struct xfs_bui_log_item *buip;
3715 struct xfs_bui_log_format *bui_formatp;
3716
3717 bui_formatp = item->ri_buf[0].i_addr;
3718
3719 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3720 return -EFSCORRUPTED;
3721 buip = xfs_bui_init(mp);
3722 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3723 if (error) {
3724 xfs_bui_item_free(buip);
3725 return error;
3726 }
3727 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3728
3729 spin_lock(&log->l_ailp->xa_lock);
3730 /*
3731 * The RUI has two references. One for the RUD and one for RUI to ensure
3732 * it makes it into the AIL. Insert the RUI into the AIL directly and
3733 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3734 * AIL lock.
3735 */
3736 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3737 xfs_bui_release(buip);
3738 return 0;
3739 }
3740
3741
3742 /*
3743 * This routine is called when an BUD format structure is found in a committed
3744 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3745 * was still in the log. To do this it searches the AIL for the BUI with an id
3746 * equal to that in the BUD format structure. If we find it we drop the BUD
3747 * reference, which removes the BUI from the AIL and frees it.
3748 */
3749 STATIC int
3750 xlog_recover_bud_pass2(
3751 struct xlog *log,
3752 struct xlog_recover_item *item)
3753 {
3754 struct xfs_bud_log_format *bud_formatp;
3755 struct xfs_bui_log_item *buip = NULL;
3756 struct xfs_log_item *lip;
3757 uint64_t bui_id;
3758 struct xfs_ail_cursor cur;
3759 struct xfs_ail *ailp = log->l_ailp;
3760
3761 bud_formatp = item->ri_buf[0].i_addr;
3762 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3763 return -EFSCORRUPTED;
3764 bui_id = bud_formatp->bud_bui_id;
3765
3766 /*
3767 * Search for the BUI with the id in the BUD format structure in the
3768 * AIL.
3769 */
3770 spin_lock(&ailp->xa_lock);
3771 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3772 while (lip != NULL) {
3773 if (lip->li_type == XFS_LI_BUI) {
3774 buip = (struct xfs_bui_log_item *)lip;
3775 if (buip->bui_format.bui_id == bui_id) {
3776 /*
3777 * Drop the BUD reference to the BUI. This
3778 * removes the BUI from the AIL and frees it.
3779 */
3780 spin_unlock(&ailp->xa_lock);
3781 xfs_bui_release(buip);
3782 spin_lock(&ailp->xa_lock);
3783 break;
3784 }
3785 }
3786 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3787 }
3788
3789 xfs_trans_ail_cursor_done(&cur);
3790 spin_unlock(&ailp->xa_lock);
3791
3792 return 0;
3793 }
3794
3795 /*
3796 * This routine is called when an inode create format structure is found in a
3797 * committed transaction in the log. It's purpose is to initialise the inodes
3798 * being allocated on disk. This requires us to get inode cluster buffers that
3799 * match the range to be initialised, stamped with inode templates and written
3800 * by delayed write so that subsequent modifications will hit the cached buffer
3801 * and only need writing out at the end of recovery.
3802 */
3803 STATIC int
3804 xlog_recover_do_icreate_pass2(
3805 struct xlog *log,
3806 struct list_head *buffer_list,
3807 xlog_recover_item_t *item)
3808 {
3809 struct xfs_mount *mp = log->l_mp;
3810 struct xfs_icreate_log *icl;
3811 xfs_agnumber_t agno;
3812 xfs_agblock_t agbno;
3813 unsigned int count;
3814 unsigned int isize;
3815 xfs_agblock_t length;
3816 int blks_per_cluster;
3817 int bb_per_cluster;
3818 int cancel_count;
3819 int nbufs;
3820 int i;
3821
3822 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3823 if (icl->icl_type != XFS_LI_ICREATE) {
3824 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3825 return -EINVAL;
3826 }
3827
3828 if (icl->icl_size != 1) {
3829 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3830 return -EINVAL;
3831 }
3832
3833 agno = be32_to_cpu(icl->icl_ag);
3834 if (agno >= mp->m_sb.sb_agcount) {
3835 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3836 return -EINVAL;
3837 }
3838 agbno = be32_to_cpu(icl->icl_agbno);
3839 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3840 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3841 return -EINVAL;
3842 }
3843 isize = be32_to_cpu(icl->icl_isize);
3844 if (isize != mp->m_sb.sb_inodesize) {
3845 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3846 return -EINVAL;
3847 }
3848 count = be32_to_cpu(icl->icl_count);
3849 if (!count) {
3850 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3851 return -EINVAL;
3852 }
3853 length = be32_to_cpu(icl->icl_length);
3854 if (!length || length >= mp->m_sb.sb_agblocks) {
3855 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3856 return -EINVAL;
3857 }
3858
3859 /*
3860 * The inode chunk is either full or sparse and we only support
3861 * m_ialloc_min_blks sized sparse allocations at this time.
3862 */
3863 if (length != mp->m_ialloc_blks &&
3864 length != mp->m_ialloc_min_blks) {
3865 xfs_warn(log->l_mp,
3866 "%s: unsupported chunk length", __FUNCTION__);
3867 return -EINVAL;
3868 }
3869
3870 /* verify inode count is consistent with extent length */
3871 if ((count >> mp->m_sb.sb_inopblog) != length) {
3872 xfs_warn(log->l_mp,
3873 "%s: inconsistent inode count and chunk length",
3874 __FUNCTION__);
3875 return -EINVAL;
3876 }
3877
3878 /*
3879 * The icreate transaction can cover multiple cluster buffers and these
3880 * buffers could have been freed and reused. Check the individual
3881 * buffers for cancellation so we don't overwrite anything written after
3882 * a cancellation.
3883 */
3884 blks_per_cluster = xfs_icluster_size_fsb(mp);
3885 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3886 nbufs = length / blks_per_cluster;
3887 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3888 xfs_daddr_t daddr;
3889
3890 daddr = XFS_AGB_TO_DADDR(mp, agno,
3891 agbno + i * blks_per_cluster);
3892 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3893 cancel_count++;
3894 }
3895
3896 /*
3897 * We currently only use icreate for a single allocation at a time. This
3898 * means we should expect either all or none of the buffers to be
3899 * cancelled. Be conservative and skip replay if at least one buffer is
3900 * cancelled, but warn the user that something is awry if the buffers
3901 * are not consistent.
3902 *
3903 * XXX: This must be refined to only skip cancelled clusters once we use
3904 * icreate for multiple chunk allocations.
3905 */
3906 ASSERT(!cancel_count || cancel_count == nbufs);
3907 if (cancel_count) {
3908 if (cancel_count != nbufs)
3909 xfs_warn(mp,
3910 "WARNING: partial inode chunk cancellation, skipped icreate.");
3911 trace_xfs_log_recover_icreate_cancel(log, icl);
3912 return 0;
3913 }
3914
3915 trace_xfs_log_recover_icreate_recover(log, icl);
3916 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3917 length, be32_to_cpu(icl->icl_gen));
3918 }
3919
3920 STATIC void
3921 xlog_recover_buffer_ra_pass2(
3922 struct xlog *log,
3923 struct xlog_recover_item *item)
3924 {
3925 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3926 struct xfs_mount *mp = log->l_mp;
3927
3928 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3929 buf_f->blf_len, buf_f->blf_flags)) {
3930 return;
3931 }
3932
3933 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3934 buf_f->blf_len, NULL);
3935 }
3936
3937 STATIC void
3938 xlog_recover_inode_ra_pass2(
3939 struct xlog *log,
3940 struct xlog_recover_item *item)
3941 {
3942 struct xfs_inode_log_format ilf_buf;
3943 struct xfs_inode_log_format *ilfp;
3944 struct xfs_mount *mp = log->l_mp;
3945 int error;
3946
3947 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3948 ilfp = item->ri_buf[0].i_addr;
3949 } else {
3950 ilfp = &ilf_buf;
3951 memset(ilfp, 0, sizeof(*ilfp));
3952 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3953 if (error)
3954 return;
3955 }
3956
3957 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3958 return;
3959
3960 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3961 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3962 }
3963
3964 STATIC void
3965 xlog_recover_dquot_ra_pass2(
3966 struct xlog *log,
3967 struct xlog_recover_item *item)
3968 {
3969 struct xfs_mount *mp = log->l_mp;
3970 struct xfs_disk_dquot *recddq;
3971 struct xfs_dq_logformat *dq_f;
3972 uint type;
3973 int len;
3974
3975
3976 if (mp->m_qflags == 0)
3977 return;
3978
3979 recddq = item->ri_buf[1].i_addr;
3980 if (recddq == NULL)
3981 return;
3982 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3983 return;
3984
3985 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3986 ASSERT(type);
3987 if (log->l_quotaoffs_flag & type)
3988 return;
3989
3990 dq_f = item->ri_buf[0].i_addr;
3991 ASSERT(dq_f);
3992 ASSERT(dq_f->qlf_len == 1);
3993
3994 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3995 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3996 return;
3997
3998 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3999 &xfs_dquot_buf_ra_ops);
4000 }
4001
4002 STATIC void
4003 xlog_recover_ra_pass2(
4004 struct xlog *log,
4005 struct xlog_recover_item *item)
4006 {
4007 switch (ITEM_TYPE(item)) {
4008 case XFS_LI_BUF:
4009 xlog_recover_buffer_ra_pass2(log, item);
4010 break;
4011 case XFS_LI_INODE:
4012 xlog_recover_inode_ra_pass2(log, item);
4013 break;
4014 case XFS_LI_DQUOT:
4015 xlog_recover_dquot_ra_pass2(log, item);
4016 break;
4017 case XFS_LI_EFI:
4018 case XFS_LI_EFD:
4019 case XFS_LI_QUOTAOFF:
4020 case XFS_LI_RUI:
4021 case XFS_LI_RUD:
4022 case XFS_LI_CUI:
4023 case XFS_LI_CUD:
4024 case XFS_LI_BUI:
4025 case XFS_LI_BUD:
4026 default:
4027 break;
4028 }
4029 }
4030
4031 STATIC int
4032 xlog_recover_commit_pass1(
4033 struct xlog *log,
4034 struct xlog_recover *trans,
4035 struct xlog_recover_item *item)
4036 {
4037 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4038
4039 switch (ITEM_TYPE(item)) {
4040 case XFS_LI_BUF:
4041 return xlog_recover_buffer_pass1(log, item);
4042 case XFS_LI_QUOTAOFF:
4043 return xlog_recover_quotaoff_pass1(log, item);
4044 case XFS_LI_INODE:
4045 case XFS_LI_EFI:
4046 case XFS_LI_EFD:
4047 case XFS_LI_DQUOT:
4048 case XFS_LI_ICREATE:
4049 case XFS_LI_RUI:
4050 case XFS_LI_RUD:
4051 case XFS_LI_CUI:
4052 case XFS_LI_CUD:
4053 case XFS_LI_BUI:
4054 case XFS_LI_BUD:
4055 /* nothing to do in pass 1 */
4056 return 0;
4057 default:
4058 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4059 __func__, ITEM_TYPE(item));
4060 ASSERT(0);
4061 return -EIO;
4062 }
4063 }
4064
4065 STATIC int
4066 xlog_recover_commit_pass2(
4067 struct xlog *log,
4068 struct xlog_recover *trans,
4069 struct list_head *buffer_list,
4070 struct xlog_recover_item *item)
4071 {
4072 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4073
4074 switch (ITEM_TYPE(item)) {
4075 case XFS_LI_BUF:
4076 return xlog_recover_buffer_pass2(log, buffer_list, item,
4077 trans->r_lsn);
4078 case XFS_LI_INODE:
4079 return xlog_recover_inode_pass2(log, buffer_list, item,
4080 trans->r_lsn);
4081 case XFS_LI_EFI:
4082 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4083 case XFS_LI_EFD:
4084 return xlog_recover_efd_pass2(log, item);
4085 case XFS_LI_RUI:
4086 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4087 case XFS_LI_RUD:
4088 return xlog_recover_rud_pass2(log, item);
4089 case XFS_LI_CUI:
4090 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4091 case XFS_LI_CUD:
4092 return xlog_recover_cud_pass2(log, item);
4093 case XFS_LI_BUI:
4094 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4095 case XFS_LI_BUD:
4096 return xlog_recover_bud_pass2(log, item);
4097 case XFS_LI_DQUOT:
4098 return xlog_recover_dquot_pass2(log, buffer_list, item,
4099 trans->r_lsn);
4100 case XFS_LI_ICREATE:
4101 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4102 case XFS_LI_QUOTAOFF:
4103 /* nothing to do in pass2 */
4104 return 0;
4105 default:
4106 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4107 __func__, ITEM_TYPE(item));
4108 ASSERT(0);
4109 return -EIO;
4110 }
4111 }
4112
4113 STATIC int
4114 xlog_recover_items_pass2(
4115 struct xlog *log,
4116 struct xlog_recover *trans,
4117 struct list_head *buffer_list,
4118 struct list_head *item_list)
4119 {
4120 struct xlog_recover_item *item;
4121 int error = 0;
4122
4123 list_for_each_entry(item, item_list, ri_list) {
4124 error = xlog_recover_commit_pass2(log, trans,
4125 buffer_list, item);
4126 if (error)
4127 return error;
4128 }
4129
4130 return error;
4131 }
4132
4133 /*
4134 * Perform the transaction.
4135 *
4136 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4137 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4138 */
4139 STATIC int
4140 xlog_recover_commit_trans(
4141 struct xlog *log,
4142 struct xlog_recover *trans,
4143 int pass,
4144 struct list_head *buffer_list)
4145 {
4146 int error = 0;
4147 int items_queued = 0;
4148 struct xlog_recover_item *item;
4149 struct xlog_recover_item *next;
4150 LIST_HEAD (ra_list);
4151 LIST_HEAD (done_list);
4152
4153 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4154
4155 hlist_del_init(&trans->r_list);
4156
4157 error = xlog_recover_reorder_trans(log, trans, pass);
4158 if (error)
4159 return error;
4160
4161 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4162 switch (pass) {
4163 case XLOG_RECOVER_PASS1:
4164 error = xlog_recover_commit_pass1(log, trans, item);
4165 break;
4166 case XLOG_RECOVER_PASS2:
4167 xlog_recover_ra_pass2(log, item);
4168 list_move_tail(&item->ri_list, &ra_list);
4169 items_queued++;
4170 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4171 error = xlog_recover_items_pass2(log, trans,
4172 buffer_list, &ra_list);
4173 list_splice_tail_init(&ra_list, &done_list);
4174 items_queued = 0;
4175 }
4176
4177 break;
4178 default:
4179 ASSERT(0);
4180 }
4181
4182 if (error)
4183 goto out;
4184 }
4185
4186 out:
4187 if (!list_empty(&ra_list)) {
4188 if (!error)
4189 error = xlog_recover_items_pass2(log, trans,
4190 buffer_list, &ra_list);
4191 list_splice_tail_init(&ra_list, &done_list);
4192 }
4193
4194 if (!list_empty(&done_list))
4195 list_splice_init(&done_list, &trans->r_itemq);
4196
4197 return error;
4198 }
4199
4200 STATIC void
4201 xlog_recover_add_item(
4202 struct list_head *head)
4203 {
4204 xlog_recover_item_t *item;
4205
4206 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4207 INIT_LIST_HEAD(&item->ri_list);
4208 list_add_tail(&item->ri_list, head);
4209 }
4210
4211 STATIC int
4212 xlog_recover_add_to_cont_trans(
4213 struct xlog *log,
4214 struct xlog_recover *trans,
4215 char *dp,
4216 int len)
4217 {
4218 xlog_recover_item_t *item;
4219 char *ptr, *old_ptr;
4220 int old_len;
4221
4222 /*
4223 * If the transaction is empty, the header was split across this and the
4224 * previous record. Copy the rest of the header.
4225 */
4226 if (list_empty(&trans->r_itemq)) {
4227 ASSERT(len <= sizeof(struct xfs_trans_header));
4228 if (len > sizeof(struct xfs_trans_header)) {
4229 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4230 return -EIO;
4231 }
4232
4233 xlog_recover_add_item(&trans->r_itemq);
4234 ptr = (char *)&trans->r_theader +
4235 sizeof(struct xfs_trans_header) - len;
4236 memcpy(ptr, dp, len);
4237 return 0;
4238 }
4239
4240 /* take the tail entry */
4241 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4242
4243 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4244 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4245
4246 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4247 memcpy(&ptr[old_len], dp, len);
4248 item->ri_buf[item->ri_cnt-1].i_len += len;
4249 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4250 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4251 return 0;
4252 }
4253
4254 /*
4255 * The next region to add is the start of a new region. It could be
4256 * a whole region or it could be the first part of a new region. Because
4257 * of this, the assumption here is that the type and size fields of all
4258 * format structures fit into the first 32 bits of the structure.
4259 *
4260 * This works because all regions must be 32 bit aligned. Therefore, we
4261 * either have both fields or we have neither field. In the case we have
4262 * neither field, the data part of the region is zero length. We only have
4263 * a log_op_header and can throw away the header since a new one will appear
4264 * later. If we have at least 4 bytes, then we can determine how many regions
4265 * will appear in the current log item.
4266 */
4267 STATIC int
4268 xlog_recover_add_to_trans(
4269 struct xlog *log,
4270 struct xlog_recover *trans,
4271 char *dp,
4272 int len)
4273 {
4274 xfs_inode_log_format_t *in_f; /* any will do */
4275 xlog_recover_item_t *item;
4276 char *ptr;
4277
4278 if (!len)
4279 return 0;
4280 if (list_empty(&trans->r_itemq)) {
4281 /* we need to catch log corruptions here */
4282 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4283 xfs_warn(log->l_mp, "%s: bad header magic number",
4284 __func__);
4285 ASSERT(0);
4286 return -EIO;
4287 }
4288
4289 if (len > sizeof(struct xfs_trans_header)) {
4290 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4291 ASSERT(0);
4292 return -EIO;
4293 }
4294
4295 /*
4296 * The transaction header can be arbitrarily split across op
4297 * records. If we don't have the whole thing here, copy what we
4298 * do have and handle the rest in the next record.
4299 */
4300 if (len == sizeof(struct xfs_trans_header))
4301 xlog_recover_add_item(&trans->r_itemq);
4302 memcpy(&trans->r_theader, dp, len);
4303 return 0;
4304 }
4305
4306 ptr = kmem_alloc(len, KM_SLEEP);
4307 memcpy(ptr, dp, len);
4308 in_f = (xfs_inode_log_format_t *)ptr;
4309
4310 /* take the tail entry */
4311 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4312 if (item->ri_total != 0 &&
4313 item->ri_total == item->ri_cnt) {
4314 /* tail item is in use, get a new one */
4315 xlog_recover_add_item(&trans->r_itemq);
4316 item = list_entry(trans->r_itemq.prev,
4317 xlog_recover_item_t, ri_list);
4318 }
4319
4320 if (item->ri_total == 0) { /* first region to be added */
4321 if (in_f->ilf_size == 0 ||
4322 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4323 xfs_warn(log->l_mp,
4324 "bad number of regions (%d) in inode log format",
4325 in_f->ilf_size);
4326 ASSERT(0);
4327 kmem_free(ptr);
4328 return -EIO;
4329 }
4330
4331 item->ri_total = in_f->ilf_size;
4332 item->ri_buf =
4333 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4334 KM_SLEEP);
4335 }
4336 ASSERT(item->ri_total > item->ri_cnt);
4337 /* Description region is ri_buf[0] */
4338 item->ri_buf[item->ri_cnt].i_addr = ptr;
4339 item->ri_buf[item->ri_cnt].i_len = len;
4340 item->ri_cnt++;
4341 trace_xfs_log_recover_item_add(log, trans, item, 0);
4342 return 0;
4343 }
4344
4345 /*
4346 * Free up any resources allocated by the transaction
4347 *
4348 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4349 */
4350 STATIC void
4351 xlog_recover_free_trans(
4352 struct xlog_recover *trans)
4353 {
4354 xlog_recover_item_t *item, *n;
4355 int i;
4356
4357 hlist_del_init(&trans->r_list);
4358
4359 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4360 /* Free the regions in the item. */
4361 list_del(&item->ri_list);
4362 for (i = 0; i < item->ri_cnt; i++)
4363 kmem_free(item->ri_buf[i].i_addr);
4364 /* Free the item itself */
4365 kmem_free(item->ri_buf);
4366 kmem_free(item);
4367 }
4368 /* Free the transaction recover structure */
4369 kmem_free(trans);
4370 }
4371
4372 /*
4373 * On error or completion, trans is freed.
4374 */
4375 STATIC int
4376 xlog_recovery_process_trans(
4377 struct xlog *log,
4378 struct xlog_recover *trans,
4379 char *dp,
4380 unsigned int len,
4381 unsigned int flags,
4382 int pass,
4383 struct list_head *buffer_list)
4384 {
4385 int error = 0;
4386 bool freeit = false;
4387
4388 /* mask off ophdr transaction container flags */
4389 flags &= ~XLOG_END_TRANS;
4390 if (flags & XLOG_WAS_CONT_TRANS)
4391 flags &= ~XLOG_CONTINUE_TRANS;
4392
4393 /*
4394 * Callees must not free the trans structure. We'll decide if we need to
4395 * free it or not based on the operation being done and it's result.
4396 */
4397 switch (flags) {
4398 /* expected flag values */
4399 case 0:
4400 case XLOG_CONTINUE_TRANS:
4401 error = xlog_recover_add_to_trans(log, trans, dp, len);
4402 break;
4403 case XLOG_WAS_CONT_TRANS:
4404 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4405 break;
4406 case XLOG_COMMIT_TRANS:
4407 error = xlog_recover_commit_trans(log, trans, pass,
4408 buffer_list);
4409 /* success or fail, we are now done with this transaction. */
4410 freeit = true;
4411 break;
4412
4413 /* unexpected flag values */
4414 case XLOG_UNMOUNT_TRANS:
4415 /* just skip trans */
4416 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4417 freeit = true;
4418 break;
4419 case XLOG_START_TRANS:
4420 default:
4421 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4422 ASSERT(0);
4423 error = -EIO;
4424 break;
4425 }
4426 if (error || freeit)
4427 xlog_recover_free_trans(trans);
4428 return error;
4429 }
4430
4431 /*
4432 * Lookup the transaction recovery structure associated with the ID in the
4433 * current ophdr. If the transaction doesn't exist and the start flag is set in
4434 * the ophdr, then allocate a new transaction for future ID matches to find.
4435 * Either way, return what we found during the lookup - an existing transaction
4436 * or nothing.
4437 */
4438 STATIC struct xlog_recover *
4439 xlog_recover_ophdr_to_trans(
4440 struct hlist_head rhash[],
4441 struct xlog_rec_header *rhead,
4442 struct xlog_op_header *ohead)
4443 {
4444 struct xlog_recover *trans;
4445 xlog_tid_t tid;
4446 struct hlist_head *rhp;
4447
4448 tid = be32_to_cpu(ohead->oh_tid);
4449 rhp = &rhash[XLOG_RHASH(tid)];
4450 hlist_for_each_entry(trans, rhp, r_list) {
4451 if (trans->r_log_tid == tid)
4452 return trans;
4453 }
4454
4455 /*
4456 * skip over non-start transaction headers - we could be
4457 * processing slack space before the next transaction starts
4458 */
4459 if (!(ohead->oh_flags & XLOG_START_TRANS))
4460 return NULL;
4461
4462 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4463
4464 /*
4465 * This is a new transaction so allocate a new recovery container to
4466 * hold the recovery ops that will follow.
4467 */
4468 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4469 trans->r_log_tid = tid;
4470 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4471 INIT_LIST_HEAD(&trans->r_itemq);
4472 INIT_HLIST_NODE(&trans->r_list);
4473 hlist_add_head(&trans->r_list, rhp);
4474
4475 /*
4476 * Nothing more to do for this ophdr. Items to be added to this new
4477 * transaction will be in subsequent ophdr containers.
4478 */
4479 return NULL;
4480 }
4481
4482 STATIC int
4483 xlog_recover_process_ophdr(
4484 struct xlog *log,
4485 struct hlist_head rhash[],
4486 struct xlog_rec_header *rhead,
4487 struct xlog_op_header *ohead,
4488 char *dp,
4489 char *end,
4490 int pass,
4491 struct list_head *buffer_list)
4492 {
4493 struct xlog_recover *trans;
4494 unsigned int len;
4495 int error;
4496
4497 /* Do we understand who wrote this op? */
4498 if (ohead->oh_clientid != XFS_TRANSACTION &&
4499 ohead->oh_clientid != XFS_LOG) {
4500 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4501 __func__, ohead->oh_clientid);
4502 ASSERT(0);
4503 return -EIO;
4504 }
4505
4506 /*
4507 * Check the ophdr contains all the data it is supposed to contain.
4508 */
4509 len = be32_to_cpu(ohead->oh_len);
4510 if (dp + len > end) {
4511 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4512 WARN_ON(1);
4513 return -EIO;
4514 }
4515
4516 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4517 if (!trans) {
4518 /* nothing to do, so skip over this ophdr */
4519 return 0;
4520 }
4521
4522 /*
4523 * The recovered buffer queue is drained only once we know that all
4524 * recovery items for the current LSN have been processed. This is
4525 * required because:
4526 *
4527 * - Buffer write submission updates the metadata LSN of the buffer.
4528 * - Log recovery skips items with a metadata LSN >= the current LSN of
4529 * the recovery item.
4530 * - Separate recovery items against the same metadata buffer can share
4531 * a current LSN. I.e., consider that the LSN of a recovery item is
4532 * defined as the starting LSN of the first record in which its
4533 * transaction appears, that a record can hold multiple transactions,
4534 * and/or that a transaction can span multiple records.
4535 *
4536 * In other words, we are allowed to submit a buffer from log recovery
4537 * once per current LSN. Otherwise, we may incorrectly skip recovery
4538 * items and cause corruption.
4539 *
4540 * We don't know up front whether buffers are updated multiple times per
4541 * LSN. Therefore, track the current LSN of each commit log record as it
4542 * is processed and drain the queue when it changes. Use commit records
4543 * because they are ordered correctly by the logging code.
4544 */
4545 if (log->l_recovery_lsn != trans->r_lsn &&
4546 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4547 error = xfs_buf_delwri_submit(buffer_list);
4548 if (error)
4549 return error;
4550 log->l_recovery_lsn = trans->r_lsn;
4551 }
4552
4553 return xlog_recovery_process_trans(log, trans, dp, len,
4554 ohead->oh_flags, pass, buffer_list);
4555 }
4556
4557 /*
4558 * There are two valid states of the r_state field. 0 indicates that the
4559 * transaction structure is in a normal state. We have either seen the
4560 * start of the transaction or the last operation we added was not a partial
4561 * operation. If the last operation we added to the transaction was a
4562 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4563 *
4564 * NOTE: skip LRs with 0 data length.
4565 */
4566 STATIC int
4567 xlog_recover_process_data(
4568 struct xlog *log,
4569 struct hlist_head rhash[],
4570 struct xlog_rec_header *rhead,
4571 char *dp,
4572 int pass,
4573 struct list_head *buffer_list)
4574 {
4575 struct xlog_op_header *ohead;
4576 char *end;
4577 int num_logops;
4578 int error;
4579
4580 end = dp + be32_to_cpu(rhead->h_len);
4581 num_logops = be32_to_cpu(rhead->h_num_logops);
4582
4583 /* check the log format matches our own - else we can't recover */
4584 if (xlog_header_check_recover(log->l_mp, rhead))
4585 return -EIO;
4586
4587 trace_xfs_log_recover_record(log, rhead, pass);
4588 while ((dp < end) && num_logops) {
4589
4590 ohead = (struct xlog_op_header *)dp;
4591 dp += sizeof(*ohead);
4592 ASSERT(dp <= end);
4593
4594 /* errors will abort recovery */
4595 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4596 dp, end, pass, buffer_list);
4597 if (error)
4598 return error;
4599
4600 dp += be32_to_cpu(ohead->oh_len);
4601 num_logops--;
4602 }
4603 return 0;
4604 }
4605
4606 /* Recover the EFI if necessary. */
4607 STATIC int
4608 xlog_recover_process_efi(
4609 struct xfs_mount *mp,
4610 struct xfs_ail *ailp,
4611 struct xfs_log_item *lip)
4612 {
4613 struct xfs_efi_log_item *efip;
4614 int error;
4615
4616 /*
4617 * Skip EFIs that we've already processed.
4618 */
4619 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4620 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4621 return 0;
4622
4623 spin_unlock(&ailp->xa_lock);
4624 error = xfs_efi_recover(mp, efip);
4625 spin_lock(&ailp->xa_lock);
4626
4627 return error;
4628 }
4629
4630 /* Release the EFI since we're cancelling everything. */
4631 STATIC void
4632 xlog_recover_cancel_efi(
4633 struct xfs_mount *mp,
4634 struct xfs_ail *ailp,
4635 struct xfs_log_item *lip)
4636 {
4637 struct xfs_efi_log_item *efip;
4638
4639 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4640
4641 spin_unlock(&ailp->xa_lock);
4642 xfs_efi_release(efip);
4643 spin_lock(&ailp->xa_lock);
4644 }
4645
4646 /* Recover the RUI if necessary. */
4647 STATIC int
4648 xlog_recover_process_rui(
4649 struct xfs_mount *mp,
4650 struct xfs_ail *ailp,
4651 struct xfs_log_item *lip)
4652 {
4653 struct xfs_rui_log_item *ruip;
4654 int error;
4655
4656 /*
4657 * Skip RUIs that we've already processed.
4658 */
4659 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4660 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4661 return 0;
4662
4663 spin_unlock(&ailp->xa_lock);
4664 error = xfs_rui_recover(mp, ruip);
4665 spin_lock(&ailp->xa_lock);
4666
4667 return error;
4668 }
4669
4670 /* Release the RUI since we're cancelling everything. */
4671 STATIC void
4672 xlog_recover_cancel_rui(
4673 struct xfs_mount *mp,
4674 struct xfs_ail *ailp,
4675 struct xfs_log_item *lip)
4676 {
4677 struct xfs_rui_log_item *ruip;
4678
4679 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4680
4681 spin_unlock(&ailp->xa_lock);
4682 xfs_rui_release(ruip);
4683 spin_lock(&ailp->xa_lock);
4684 }
4685
4686 /* Recover the CUI if necessary. */
4687 STATIC int
4688 xlog_recover_process_cui(
4689 struct xfs_mount *mp,
4690 struct xfs_ail *ailp,
4691 struct xfs_log_item *lip)
4692 {
4693 struct xfs_cui_log_item *cuip;
4694 int error;
4695
4696 /*
4697 * Skip CUIs that we've already processed.
4698 */
4699 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4700 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4701 return 0;
4702
4703 spin_unlock(&ailp->xa_lock);
4704 error = xfs_cui_recover(mp, cuip);
4705 spin_lock(&ailp->xa_lock);
4706
4707 return error;
4708 }
4709
4710 /* Release the CUI since we're cancelling everything. */
4711 STATIC void
4712 xlog_recover_cancel_cui(
4713 struct xfs_mount *mp,
4714 struct xfs_ail *ailp,
4715 struct xfs_log_item *lip)
4716 {
4717 struct xfs_cui_log_item *cuip;
4718
4719 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4720
4721 spin_unlock(&ailp->xa_lock);
4722 xfs_cui_release(cuip);
4723 spin_lock(&ailp->xa_lock);
4724 }
4725
4726 /* Recover the BUI if necessary. */
4727 STATIC int
4728 xlog_recover_process_bui(
4729 struct xfs_mount *mp,
4730 struct xfs_ail *ailp,
4731 struct xfs_log_item *lip)
4732 {
4733 struct xfs_bui_log_item *buip;
4734 int error;
4735
4736 /*
4737 * Skip BUIs that we've already processed.
4738 */
4739 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4740 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4741 return 0;
4742
4743 spin_unlock(&ailp->xa_lock);
4744 error = xfs_bui_recover(mp, buip);
4745 spin_lock(&ailp->xa_lock);
4746
4747 return error;
4748 }
4749
4750 /* Release the BUI since we're cancelling everything. */
4751 STATIC void
4752 xlog_recover_cancel_bui(
4753 struct xfs_mount *mp,
4754 struct xfs_ail *ailp,
4755 struct xfs_log_item *lip)
4756 {
4757 struct xfs_bui_log_item *buip;
4758
4759 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4760
4761 spin_unlock(&ailp->xa_lock);
4762 xfs_bui_release(buip);
4763 spin_lock(&ailp->xa_lock);
4764 }
4765
4766 /* Is this log item a deferred action intent? */
4767 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4768 {
4769 switch (lip->li_type) {
4770 case XFS_LI_EFI:
4771 case XFS_LI_RUI:
4772 case XFS_LI_CUI:
4773 case XFS_LI_BUI:
4774 return true;
4775 default:
4776 return false;
4777 }
4778 }
4779
4780 /*
4781 * When this is called, all of the log intent items which did not have
4782 * corresponding log done items should be in the AIL. What we do now
4783 * is update the data structures associated with each one.
4784 *
4785 * Since we process the log intent items in normal transactions, they
4786 * will be removed at some point after the commit. This prevents us
4787 * from just walking down the list processing each one. We'll use a
4788 * flag in the intent item to skip those that we've already processed
4789 * and use the AIL iteration mechanism's generation count to try to
4790 * speed this up at least a bit.
4791 *
4792 * When we start, we know that the intents are the only things in the
4793 * AIL. As we process them, however, other items are added to the
4794 * AIL.
4795 */
4796 STATIC int
4797 xlog_recover_process_intents(
4798 struct xlog *log)
4799 {
4800 struct xfs_log_item *lip;
4801 int error = 0;
4802 struct xfs_ail_cursor cur;
4803 struct xfs_ail *ailp;
4804 xfs_lsn_t last_lsn;
4805
4806 ailp = log->l_ailp;
4807 spin_lock(&ailp->xa_lock);
4808 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4809 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4810 while (lip != NULL) {
4811 /*
4812 * We're done when we see something other than an intent.
4813 * There should be no intents left in the AIL now.
4814 */
4815 if (!xlog_item_is_intent(lip)) {
4816 #ifdef DEBUG
4817 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4818 ASSERT(!xlog_item_is_intent(lip));
4819 #endif
4820 break;
4821 }
4822
4823 /*
4824 * We should never see a redo item with a LSN higher than
4825 * the last transaction we found in the log at the start
4826 * of recovery.
4827 */
4828 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4829
4830 switch (lip->li_type) {
4831 case XFS_LI_EFI:
4832 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4833 break;
4834 case XFS_LI_RUI:
4835 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4836 break;
4837 case XFS_LI_CUI:
4838 error = xlog_recover_process_cui(log->l_mp, ailp, lip);
4839 break;
4840 case XFS_LI_BUI:
4841 error = xlog_recover_process_bui(log->l_mp, ailp, lip);
4842 break;
4843 }
4844 if (error)
4845 goto out;
4846 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4847 }
4848 out:
4849 xfs_trans_ail_cursor_done(&cur);
4850 spin_unlock(&ailp->xa_lock);
4851 return error;
4852 }
4853
4854 /*
4855 * A cancel occurs when the mount has failed and we're bailing out.
4856 * Release all pending log intent items so they don't pin the AIL.
4857 */
4858 STATIC int
4859 xlog_recover_cancel_intents(
4860 struct xlog *log)
4861 {
4862 struct xfs_log_item *lip;
4863 int error = 0;
4864 struct xfs_ail_cursor cur;
4865 struct xfs_ail *ailp;
4866
4867 ailp = log->l_ailp;
4868 spin_lock(&ailp->xa_lock);
4869 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4870 while (lip != NULL) {
4871 /*
4872 * We're done when we see something other than an intent.
4873 * There should be no intents left in the AIL now.
4874 */
4875 if (!xlog_item_is_intent(lip)) {
4876 #ifdef DEBUG
4877 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4878 ASSERT(!xlog_item_is_intent(lip));
4879 #endif
4880 break;
4881 }
4882
4883 switch (lip->li_type) {
4884 case XFS_LI_EFI:
4885 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4886 break;
4887 case XFS_LI_RUI:
4888 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4889 break;
4890 case XFS_LI_CUI:
4891 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4892 break;
4893 case XFS_LI_BUI:
4894 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4895 break;
4896 }
4897
4898 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4899 }
4900
4901 xfs_trans_ail_cursor_done(&cur);
4902 spin_unlock(&ailp->xa_lock);
4903 return error;
4904 }
4905
4906 /*
4907 * This routine performs a transaction to null out a bad inode pointer
4908 * in an agi unlinked inode hash bucket.
4909 */
4910 STATIC void
4911 xlog_recover_clear_agi_bucket(
4912 xfs_mount_t *mp,
4913 xfs_agnumber_t agno,
4914 int bucket)
4915 {
4916 xfs_trans_t *tp;
4917 xfs_agi_t *agi;
4918 xfs_buf_t *agibp;
4919 int offset;
4920 int error;
4921
4922 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4923 if (error)
4924 goto out_error;
4925
4926 error = xfs_read_agi(mp, tp, agno, &agibp);
4927 if (error)
4928 goto out_abort;
4929
4930 agi = XFS_BUF_TO_AGI(agibp);
4931 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4932 offset = offsetof(xfs_agi_t, agi_unlinked) +
4933 (sizeof(xfs_agino_t) * bucket);
4934 xfs_trans_log_buf(tp, agibp, offset,
4935 (offset + sizeof(xfs_agino_t) - 1));
4936
4937 error = xfs_trans_commit(tp);
4938 if (error)
4939 goto out_error;
4940 return;
4941
4942 out_abort:
4943 xfs_trans_cancel(tp);
4944 out_error:
4945 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4946 return;
4947 }
4948
4949 STATIC xfs_agino_t
4950 xlog_recover_process_one_iunlink(
4951 struct xfs_mount *mp,
4952 xfs_agnumber_t agno,
4953 xfs_agino_t agino,
4954 int bucket)
4955 {
4956 struct xfs_buf *ibp;
4957 struct xfs_dinode *dip;
4958 struct xfs_inode *ip;
4959 xfs_ino_t ino;
4960 int error;
4961
4962 ino = XFS_AGINO_TO_INO(mp, agno, agino);
4963 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4964 if (error)
4965 goto fail;
4966
4967 /*
4968 * Get the on disk inode to find the next inode in the bucket.
4969 */
4970 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4971 if (error)
4972 goto fail_iput;
4973
4974 xfs_iflags_clear(ip, XFS_IRECOVERY);
4975 ASSERT(VFS_I(ip)->i_nlink == 0);
4976 ASSERT(VFS_I(ip)->i_mode != 0);
4977
4978 /* setup for the next pass */
4979 agino = be32_to_cpu(dip->di_next_unlinked);
4980 xfs_buf_relse(ibp);
4981
4982 /*
4983 * Prevent any DMAPI event from being sent when the reference on
4984 * the inode is dropped.
4985 */
4986 ip->i_d.di_dmevmask = 0;
4987
4988 IRELE(ip);
4989 return agino;
4990
4991 fail_iput:
4992 IRELE(ip);
4993 fail:
4994 /*
4995 * We can't read in the inode this bucket points to, or this inode
4996 * is messed up. Just ditch this bucket of inodes. We will lose
4997 * some inodes and space, but at least we won't hang.
4998 *
4999 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5000 * clear the inode pointer in the bucket.
5001 */
5002 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5003 return NULLAGINO;
5004 }
5005
5006 /*
5007 * xlog_iunlink_recover
5008 *
5009 * This is called during recovery to process any inodes which
5010 * we unlinked but not freed when the system crashed. These
5011 * inodes will be on the lists in the AGI blocks. What we do
5012 * here is scan all the AGIs and fully truncate and free any
5013 * inodes found on the lists. Each inode is removed from the
5014 * lists when it has been fully truncated and is freed. The
5015 * freeing of the inode and its removal from the list must be
5016 * atomic.
5017 */
5018 STATIC void
5019 xlog_recover_process_iunlinks(
5020 struct xlog *log)
5021 {
5022 xfs_mount_t *mp;
5023 xfs_agnumber_t agno;
5024 xfs_agi_t *agi;
5025 xfs_buf_t *agibp;
5026 xfs_agino_t agino;
5027 int bucket;
5028 int error;
5029 uint mp_dmevmask;
5030
5031 mp = log->l_mp;
5032
5033 /*
5034 * Prevent any DMAPI event from being sent while in this function.
5035 */
5036 mp_dmevmask = mp->m_dmevmask;
5037 mp->m_dmevmask = 0;
5038
5039 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5040 /*
5041 * Find the agi for this ag.
5042 */
5043 error = xfs_read_agi(mp, NULL, agno, &agibp);
5044 if (error) {
5045 /*
5046 * AGI is b0rked. Don't process it.
5047 *
5048 * We should probably mark the filesystem as corrupt
5049 * after we've recovered all the ag's we can....
5050 */
5051 continue;
5052 }
5053 /*
5054 * Unlock the buffer so that it can be acquired in the normal
5055 * course of the transaction to truncate and free each inode.
5056 * Because we are not racing with anyone else here for the AGI
5057 * buffer, we don't even need to hold it locked to read the
5058 * initial unlinked bucket entries out of the buffer. We keep
5059 * buffer reference though, so that it stays pinned in memory
5060 * while we need the buffer.
5061 */
5062 agi = XFS_BUF_TO_AGI(agibp);
5063 xfs_buf_unlock(agibp);
5064
5065 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5066 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5067 while (agino != NULLAGINO) {
5068 agino = xlog_recover_process_one_iunlink(mp,
5069 agno, agino, bucket);
5070 }
5071 }
5072 xfs_buf_rele(agibp);
5073 }
5074
5075 mp->m_dmevmask = mp_dmevmask;
5076 }
5077
5078 STATIC int
5079 xlog_unpack_data(
5080 struct xlog_rec_header *rhead,
5081 char *dp,
5082 struct xlog *log)
5083 {
5084 int i, j, k;
5085
5086 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5087 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5088 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5089 dp += BBSIZE;
5090 }
5091
5092 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5093 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5094 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5095 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5096 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5097 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5098 dp += BBSIZE;
5099 }
5100 }
5101
5102 return 0;
5103 }
5104
5105 /*
5106 * CRC check, unpack and process a log record.
5107 */
5108 STATIC int
5109 xlog_recover_process(
5110 struct xlog *log,
5111 struct hlist_head rhash[],
5112 struct xlog_rec_header *rhead,
5113 char *dp,
5114 int pass,
5115 struct list_head *buffer_list)
5116 {
5117 int error;
5118 __le32 old_crc = rhead->h_crc;
5119 __le32 crc;
5120
5121
5122 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5123
5124 /*
5125 * Nothing else to do if this is a CRC verification pass. Just return
5126 * if this a record with a non-zero crc. Unfortunately, mkfs always
5127 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5128 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5129 * know precisely what failed.
5130 */
5131 if (pass == XLOG_RECOVER_CRCPASS) {
5132 if (old_crc && crc != old_crc)
5133 return -EFSBADCRC;
5134 return 0;
5135 }
5136
5137 /*
5138 * We're in the normal recovery path. Issue a warning if and only if the
5139 * CRC in the header is non-zero. This is an advisory warning and the
5140 * zero CRC check prevents warnings from being emitted when upgrading
5141 * the kernel from one that does not add CRCs by default.
5142 */
5143 if (crc != old_crc) {
5144 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5145 xfs_alert(log->l_mp,
5146 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5147 le32_to_cpu(old_crc),
5148 le32_to_cpu(crc));
5149 xfs_hex_dump(dp, 32);
5150 }
5151
5152 /*
5153 * If the filesystem is CRC enabled, this mismatch becomes a
5154 * fatal log corruption failure.
5155 */
5156 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5157 return -EFSCORRUPTED;
5158 }
5159
5160 error = xlog_unpack_data(rhead, dp, log);
5161 if (error)
5162 return error;
5163
5164 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5165 buffer_list);
5166 }
5167
5168 STATIC int
5169 xlog_valid_rec_header(
5170 struct xlog *log,
5171 struct xlog_rec_header *rhead,
5172 xfs_daddr_t blkno)
5173 {
5174 int hlen;
5175
5176 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5177 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5178 XFS_ERRLEVEL_LOW, log->l_mp);
5179 return -EFSCORRUPTED;
5180 }
5181 if (unlikely(
5182 (!rhead->h_version ||
5183 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5184 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5185 __func__, be32_to_cpu(rhead->h_version));
5186 return -EIO;
5187 }
5188
5189 /* LR body must have data or it wouldn't have been written */
5190 hlen = be32_to_cpu(rhead->h_len);
5191 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5192 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5193 XFS_ERRLEVEL_LOW, log->l_mp);
5194 return -EFSCORRUPTED;
5195 }
5196 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5197 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5198 XFS_ERRLEVEL_LOW, log->l_mp);
5199 return -EFSCORRUPTED;
5200 }
5201 return 0;
5202 }
5203
5204 /*
5205 * Read the log from tail to head and process the log records found.
5206 * Handle the two cases where the tail and head are in the same cycle
5207 * and where the active portion of the log wraps around the end of
5208 * the physical log separately. The pass parameter is passed through
5209 * to the routines called to process the data and is not looked at
5210 * here.
5211 */
5212 STATIC int
5213 xlog_do_recovery_pass(
5214 struct xlog *log,
5215 xfs_daddr_t head_blk,
5216 xfs_daddr_t tail_blk,
5217 int pass,
5218 xfs_daddr_t *first_bad) /* out: first bad log rec */
5219 {
5220 xlog_rec_header_t *rhead;
5221 xfs_daddr_t blk_no;
5222 xfs_daddr_t rhead_blk;
5223 char *offset;
5224 xfs_buf_t *hbp, *dbp;
5225 int error = 0, h_size, h_len;
5226 int error2 = 0;
5227 int bblks, split_bblks;
5228 int hblks, split_hblks, wrapped_hblks;
5229 int i;
5230 struct hlist_head rhash[XLOG_RHASH_SIZE];
5231 LIST_HEAD (buffer_list);
5232
5233 ASSERT(head_blk != tail_blk);
5234 rhead_blk = 0;
5235
5236 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5237 INIT_HLIST_HEAD(&rhash[i]);
5238
5239 /*
5240 * Read the header of the tail block and get the iclog buffer size from
5241 * h_size. Use this to tell how many sectors make up the log header.
5242 */
5243 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5244 /*
5245 * When using variable length iclogs, read first sector of
5246 * iclog header and extract the header size from it. Get a
5247 * new hbp that is the correct size.
5248 */
5249 hbp = xlog_get_bp(log, 1);
5250 if (!hbp)
5251 return -ENOMEM;
5252
5253 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5254 if (error)
5255 goto bread_err1;
5256
5257 rhead = (xlog_rec_header_t *)offset;
5258 error = xlog_valid_rec_header(log, rhead, tail_blk);
5259 if (error)
5260 goto bread_err1;
5261
5262 /*
5263 * xfsprogs has a bug where record length is based on lsunit but
5264 * h_size (iclog size) is hardcoded to 32k. Now that we
5265 * unconditionally CRC verify the unmount record, this means the
5266 * log buffer can be too small for the record and cause an
5267 * overrun.
5268 *
5269 * Detect this condition here. Use lsunit for the buffer size as
5270 * long as this looks like the mkfs case. Otherwise, return an
5271 * error to avoid a buffer overrun.
5272 */
5273 h_size = be32_to_cpu(rhead->h_size);
5274 h_len = be32_to_cpu(rhead->h_len);
5275 if (h_len > h_size) {
5276 if (h_len <= log->l_mp->m_logbsize &&
5277 be32_to_cpu(rhead->h_num_logops) == 1) {
5278 xfs_warn(log->l_mp,
5279 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5280 h_size, log->l_mp->m_logbsize);
5281 h_size = log->l_mp->m_logbsize;
5282 } else
5283 return -EFSCORRUPTED;
5284 }
5285
5286 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5287 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5288 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5289 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5290 hblks++;
5291 xlog_put_bp(hbp);
5292 hbp = xlog_get_bp(log, hblks);
5293 } else {
5294 hblks = 1;
5295 }
5296 } else {
5297 ASSERT(log->l_sectBBsize == 1);
5298 hblks = 1;
5299 hbp = xlog_get_bp(log, 1);
5300 h_size = XLOG_BIG_RECORD_BSIZE;
5301 }
5302
5303 if (!hbp)
5304 return -ENOMEM;
5305 dbp = xlog_get_bp(log, BTOBB(h_size));
5306 if (!dbp) {
5307 xlog_put_bp(hbp);
5308 return -ENOMEM;
5309 }
5310
5311 memset(rhash, 0, sizeof(rhash));
5312 blk_no = rhead_blk = tail_blk;
5313 if (tail_blk > head_blk) {
5314 /*
5315 * Perform recovery around the end of the physical log.
5316 * When the head is not on the same cycle number as the tail,
5317 * we can't do a sequential recovery.
5318 */
5319 while (blk_no < log->l_logBBsize) {
5320 /*
5321 * Check for header wrapping around physical end-of-log
5322 */
5323 offset = hbp->b_addr;
5324 split_hblks = 0;
5325 wrapped_hblks = 0;
5326 if (blk_no + hblks <= log->l_logBBsize) {
5327 /* Read header in one read */
5328 error = xlog_bread(log, blk_no, hblks, hbp,
5329 &offset);
5330 if (error)
5331 goto bread_err2;
5332 } else {
5333 /* This LR is split across physical log end */
5334 if (blk_no != log->l_logBBsize) {
5335 /* some data before physical log end */
5336 ASSERT(blk_no <= INT_MAX);
5337 split_hblks = log->l_logBBsize - (int)blk_no;
5338 ASSERT(split_hblks > 0);
5339 error = xlog_bread(log, blk_no,
5340 split_hblks, hbp,
5341 &offset);
5342 if (error)
5343 goto bread_err2;
5344 }
5345
5346 /*
5347 * Note: this black magic still works with
5348 * large sector sizes (non-512) only because:
5349 * - we increased the buffer size originally
5350 * by 1 sector giving us enough extra space
5351 * for the second read;
5352 * - the log start is guaranteed to be sector
5353 * aligned;
5354 * - we read the log end (LR header start)
5355 * _first_, then the log start (LR header end)
5356 * - order is important.
5357 */
5358 wrapped_hblks = hblks - split_hblks;
5359 error = xlog_bread_offset(log, 0,
5360 wrapped_hblks, hbp,
5361 offset + BBTOB(split_hblks));
5362 if (error)
5363 goto bread_err2;
5364 }
5365 rhead = (xlog_rec_header_t *)offset;
5366 error = xlog_valid_rec_header(log, rhead,
5367 split_hblks ? blk_no : 0);
5368 if (error)
5369 goto bread_err2;
5370
5371 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5372 blk_no += hblks;
5373
5374 /* Read in data for log record */
5375 if (blk_no + bblks <= log->l_logBBsize) {
5376 error = xlog_bread(log, blk_no, bblks, dbp,
5377 &offset);
5378 if (error)
5379 goto bread_err2;
5380 } else {
5381 /* This log record is split across the
5382 * physical end of log */
5383 offset = dbp->b_addr;
5384 split_bblks = 0;
5385 if (blk_no != log->l_logBBsize) {
5386 /* some data is before the physical
5387 * end of log */
5388 ASSERT(!wrapped_hblks);
5389 ASSERT(blk_no <= INT_MAX);
5390 split_bblks =
5391 log->l_logBBsize - (int)blk_no;
5392 ASSERT(split_bblks > 0);
5393 error = xlog_bread(log, blk_no,
5394 split_bblks, dbp,
5395 &offset);
5396 if (error)
5397 goto bread_err2;
5398 }
5399
5400 /*
5401 * Note: this black magic still works with
5402 * large sector sizes (non-512) only because:
5403 * - we increased the buffer size originally
5404 * by 1 sector giving us enough extra space
5405 * for the second read;
5406 * - the log start is guaranteed to be sector
5407 * aligned;
5408 * - we read the log end (LR header start)
5409 * _first_, then the log start (LR header end)
5410 * - order is important.
5411 */
5412 error = xlog_bread_offset(log, 0,
5413 bblks - split_bblks, dbp,
5414 offset + BBTOB(split_bblks));
5415 if (error)
5416 goto bread_err2;
5417 }
5418
5419 error = xlog_recover_process(log, rhash, rhead, offset,
5420 pass, &buffer_list);
5421 if (error)
5422 goto bread_err2;
5423
5424 blk_no += bblks;
5425 rhead_blk = blk_no;
5426 }
5427
5428 ASSERT(blk_no >= log->l_logBBsize);
5429 blk_no -= log->l_logBBsize;
5430 rhead_blk = blk_no;
5431 }
5432
5433 /* read first part of physical log */
5434 while (blk_no < head_blk) {
5435 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5436 if (error)
5437 goto bread_err2;
5438
5439 rhead = (xlog_rec_header_t *)offset;
5440 error = xlog_valid_rec_header(log, rhead, blk_no);
5441 if (error)
5442 goto bread_err2;
5443
5444 /* blocks in data section */
5445 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5446 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5447 &offset);
5448 if (error)
5449 goto bread_err2;
5450
5451 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5452 &buffer_list);
5453 if (error)
5454 goto bread_err2;
5455
5456 blk_no += bblks + hblks;
5457 rhead_blk = blk_no;
5458 }
5459
5460 bread_err2:
5461 xlog_put_bp(dbp);
5462 bread_err1:
5463 xlog_put_bp(hbp);
5464
5465 /*
5466 * Submit buffers that have been added from the last record processed,
5467 * regardless of error status.
5468 */
5469 if (!list_empty(&buffer_list))
5470 error2 = xfs_buf_delwri_submit(&buffer_list);
5471
5472 if (error && first_bad)
5473 *first_bad = rhead_blk;
5474
5475 /*
5476 * Transactions are freed at commit time but transactions without commit
5477 * records on disk are never committed. Free any that may be left in the
5478 * hash table.
5479 */
5480 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5481 struct hlist_node *tmp;
5482 struct xlog_recover *trans;
5483
5484 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5485 xlog_recover_free_trans(trans);
5486 }
5487
5488 return error ? error : error2;
5489 }
5490
5491 /*
5492 * Do the recovery of the log. We actually do this in two phases.
5493 * The two passes are necessary in order to implement the function
5494 * of cancelling a record written into the log. The first pass
5495 * determines those things which have been cancelled, and the
5496 * second pass replays log items normally except for those which
5497 * have been cancelled. The handling of the replay and cancellations
5498 * takes place in the log item type specific routines.
5499 *
5500 * The table of items which have cancel records in the log is allocated
5501 * and freed at this level, since only here do we know when all of
5502 * the log recovery has been completed.
5503 */
5504 STATIC int
5505 xlog_do_log_recovery(
5506 struct xlog *log,
5507 xfs_daddr_t head_blk,
5508 xfs_daddr_t tail_blk)
5509 {
5510 int error, i;
5511
5512 ASSERT(head_blk != tail_blk);
5513
5514 /*
5515 * First do a pass to find all of the cancelled buf log items.
5516 * Store them in the buf_cancel_table for use in the second pass.
5517 */
5518 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5519 sizeof(struct list_head),
5520 KM_SLEEP);
5521 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5522 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5523
5524 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5525 XLOG_RECOVER_PASS1, NULL);
5526 if (error != 0) {
5527 kmem_free(log->l_buf_cancel_table);
5528 log->l_buf_cancel_table = NULL;
5529 return error;
5530 }
5531 /*
5532 * Then do a second pass to actually recover the items in the log.
5533 * When it is complete free the table of buf cancel items.
5534 */
5535 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5536 XLOG_RECOVER_PASS2, NULL);
5537 #ifdef DEBUG
5538 if (!error) {
5539 int i;
5540
5541 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5542 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5543 }
5544 #endif /* DEBUG */
5545
5546 kmem_free(log->l_buf_cancel_table);
5547 log->l_buf_cancel_table = NULL;
5548
5549 return error;
5550 }
5551
5552 /*
5553 * Do the actual recovery
5554 */
5555 STATIC int
5556 xlog_do_recover(
5557 struct xlog *log,
5558 xfs_daddr_t head_blk,
5559 xfs_daddr_t tail_blk)
5560 {
5561 struct xfs_mount *mp = log->l_mp;
5562 int error;
5563 xfs_buf_t *bp;
5564 xfs_sb_t *sbp;
5565
5566 /*
5567 * First replay the images in the log.
5568 */
5569 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5570 if (error)
5571 return error;
5572
5573 /*
5574 * If IO errors happened during recovery, bail out.
5575 */
5576 if (XFS_FORCED_SHUTDOWN(mp)) {
5577 return -EIO;
5578 }
5579
5580 /*
5581 * We now update the tail_lsn since much of the recovery has completed
5582 * and there may be space available to use. If there were no extent
5583 * or iunlinks, we can free up the entire log and set the tail_lsn to
5584 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5585 * lsn of the last known good LR on disk. If there are extent frees
5586 * or iunlinks they will have some entries in the AIL; so we look at
5587 * the AIL to determine how to set the tail_lsn.
5588 */
5589 xlog_assign_tail_lsn(mp);
5590
5591 /*
5592 * Now that we've finished replaying all buffer and inode
5593 * updates, re-read in the superblock and reverify it.
5594 */
5595 bp = xfs_getsb(mp, 0);
5596 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5597 ASSERT(!(bp->b_flags & XBF_WRITE));
5598 bp->b_flags |= XBF_READ;
5599 bp->b_ops = &xfs_sb_buf_ops;
5600
5601 error = xfs_buf_submit_wait(bp);
5602 if (error) {
5603 if (!XFS_FORCED_SHUTDOWN(mp)) {
5604 xfs_buf_ioerror_alert(bp, __func__);
5605 ASSERT(0);
5606 }
5607 xfs_buf_relse(bp);
5608 return error;
5609 }
5610
5611 /* Convert superblock from on-disk format */
5612 sbp = &mp->m_sb;
5613 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5614 xfs_buf_relse(bp);
5615
5616 /* re-initialise in-core superblock and geometry structures */
5617 xfs_reinit_percpu_counters(mp);
5618 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5619 if (error) {
5620 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5621 return error;
5622 }
5623 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5624
5625 xlog_recover_check_summary(log);
5626
5627 /* Normal transactions can now occur */
5628 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5629 return 0;
5630 }
5631
5632 /*
5633 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5634 *
5635 * Return error or zero.
5636 */
5637 int
5638 xlog_recover(
5639 struct xlog *log)
5640 {
5641 xfs_daddr_t head_blk, tail_blk;
5642 int error;
5643
5644 /* find the tail of the log */
5645 error = xlog_find_tail(log, &head_blk, &tail_blk);
5646 if (error)
5647 return error;
5648
5649 /*
5650 * The superblock was read before the log was available and thus the LSN
5651 * could not be verified. Check the superblock LSN against the current
5652 * LSN now that it's known.
5653 */
5654 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5655 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5656 return -EINVAL;
5657
5658 if (tail_blk != head_blk) {
5659 /* There used to be a comment here:
5660 *
5661 * disallow recovery on read-only mounts. note -- mount
5662 * checks for ENOSPC and turns it into an intelligent
5663 * error message.
5664 * ...but this is no longer true. Now, unless you specify
5665 * NORECOVERY (in which case this function would never be
5666 * called), we just go ahead and recover. We do this all
5667 * under the vfs layer, so we can get away with it unless
5668 * the device itself is read-only, in which case we fail.
5669 */
5670 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5671 return error;
5672 }
5673
5674 /*
5675 * Version 5 superblock log feature mask validation. We know the
5676 * log is dirty so check if there are any unknown log features
5677 * in what we need to recover. If there are unknown features
5678 * (e.g. unsupported transactions, then simply reject the
5679 * attempt at recovery before touching anything.
5680 */
5681 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5682 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5683 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5684 xfs_warn(log->l_mp,
5685 "Superblock has unknown incompatible log features (0x%x) enabled.",
5686 (log->l_mp->m_sb.sb_features_log_incompat &
5687 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5688 xfs_warn(log->l_mp,
5689 "The log can not be fully and/or safely recovered by this kernel.");
5690 xfs_warn(log->l_mp,
5691 "Please recover the log on a kernel that supports the unknown features.");
5692 return -EINVAL;
5693 }
5694
5695 /*
5696 * Delay log recovery if the debug hook is set. This is debug
5697 * instrumention to coordinate simulation of I/O failures with
5698 * log recovery.
5699 */
5700 if (xfs_globals.log_recovery_delay) {
5701 xfs_notice(log->l_mp,
5702 "Delaying log recovery for %d seconds.",
5703 xfs_globals.log_recovery_delay);
5704 msleep(xfs_globals.log_recovery_delay * 1000);
5705 }
5706
5707 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5708 log->l_mp->m_logname ? log->l_mp->m_logname
5709 : "internal");
5710
5711 error = xlog_do_recover(log, head_blk, tail_blk);
5712 log->l_flags |= XLOG_RECOVERY_NEEDED;
5713 }
5714 return error;
5715 }
5716
5717 /*
5718 * In the first part of recovery we replay inodes and buffers and build
5719 * up the list of extent free items which need to be processed. Here
5720 * we process the extent free items and clean up the on disk unlinked
5721 * inode lists. This is separated from the first part of recovery so
5722 * that the root and real-time bitmap inodes can be read in from disk in
5723 * between the two stages. This is necessary so that we can free space
5724 * in the real-time portion of the file system.
5725 */
5726 int
5727 xlog_recover_finish(
5728 struct xlog *log)
5729 {
5730 /*
5731 * Now we're ready to do the transactions needed for the
5732 * rest of recovery. Start with completing all the extent
5733 * free intent records and then process the unlinked inode
5734 * lists. At this point, we essentially run in normal mode
5735 * except that we're still performing recovery actions
5736 * rather than accepting new requests.
5737 */
5738 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5739 int error;
5740 error = xlog_recover_process_intents(log);
5741 if (error) {
5742 xfs_alert(log->l_mp, "Failed to recover intents");
5743 return error;
5744 }
5745
5746 /*
5747 * Sync the log to get all the intents out of the AIL.
5748 * This isn't absolutely necessary, but it helps in
5749 * case the unlink transactions would have problems
5750 * pushing the intents out of the way.
5751 */
5752 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5753
5754 xlog_recover_process_iunlinks(log);
5755
5756 xlog_recover_check_summary(log);
5757
5758 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5759 log->l_mp->m_logname ? log->l_mp->m_logname
5760 : "internal");
5761 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5762 } else {
5763 xfs_info(log->l_mp, "Ending clean mount");
5764 }
5765 return 0;
5766 }
5767
5768 int
5769 xlog_recover_cancel(
5770 struct xlog *log)
5771 {
5772 int error = 0;
5773
5774 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5775 error = xlog_recover_cancel_intents(log);
5776
5777 return error;
5778 }
5779
5780 #if defined(DEBUG)
5781 /*
5782 * Read all of the agf and agi counters and check that they
5783 * are consistent with the superblock counters.
5784 */
5785 void
5786 xlog_recover_check_summary(
5787 struct xlog *log)
5788 {
5789 xfs_mount_t *mp;
5790 xfs_agf_t *agfp;
5791 xfs_buf_t *agfbp;
5792 xfs_buf_t *agibp;
5793 xfs_agnumber_t agno;
5794 uint64_t freeblks;
5795 uint64_t itotal;
5796 uint64_t ifree;
5797 int error;
5798
5799 mp = log->l_mp;
5800
5801 freeblks = 0LL;
5802 itotal = 0LL;
5803 ifree = 0LL;
5804 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5805 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5806 if (error) {
5807 xfs_alert(mp, "%s agf read failed agno %d error %d",
5808 __func__, agno, error);
5809 } else {
5810 agfp = XFS_BUF_TO_AGF(agfbp);
5811 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5812 be32_to_cpu(agfp->agf_flcount);
5813 xfs_buf_relse(agfbp);
5814 }
5815
5816 error = xfs_read_agi(mp, NULL, agno, &agibp);
5817 if (error) {
5818 xfs_alert(mp, "%s agi read failed agno %d error %d",
5819 __func__, agno, error);
5820 } else {
5821 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5822
5823 itotal += be32_to_cpu(agi->agi_count);
5824 ifree += be32_to_cpu(agi->agi_freecount);
5825 xfs_buf_relse(agibp);
5826 }
5827 }
5828 }
5829 #endif /* DEBUG */