]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_log_recover.c
Merge tag 'iio-fixes-for-3.16a' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_dinode.h"
46 #include "xfs_error.h"
47 #include "xfs_dir2.h"
48
49 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
50
51 STATIC int
52 xlog_find_zeroed(
53 struct xlog *,
54 xfs_daddr_t *);
55 STATIC int
56 xlog_clear_stale_blocks(
57 struct xlog *,
58 xfs_lsn_t);
59 #if defined(DEBUG)
60 STATIC void
61 xlog_recover_check_summary(
62 struct xlog *);
63 #else
64 #define xlog_recover_check_summary(log)
65 #endif
66
67 /*
68 * This structure is used during recovery to record the buf log items which
69 * have been canceled and should not be replayed.
70 */
71 struct xfs_buf_cancel {
72 xfs_daddr_t bc_blkno;
73 uint bc_len;
74 int bc_refcount;
75 struct list_head bc_list;
76 };
77
78 /*
79 * Sector aligned buffer routines for buffer create/read/write/access
80 */
81
82 /*
83 * Verify the given count of basic blocks is valid number of blocks
84 * to specify for an operation involving the given XFS log buffer.
85 * Returns nonzero if the count is valid, 0 otherwise.
86 */
87
88 static inline int
89 xlog_buf_bbcount_valid(
90 struct xlog *log,
91 int bbcount)
92 {
93 return bbcount > 0 && bbcount <= log->l_logBBsize;
94 }
95
96 /*
97 * Allocate a buffer to hold log data. The buffer needs to be able
98 * to map to a range of nbblks basic blocks at any valid (basic
99 * block) offset within the log.
100 */
101 STATIC xfs_buf_t *
102 xlog_get_bp(
103 struct xlog *log,
104 int nbblks)
105 {
106 struct xfs_buf *bp;
107
108 if (!xlog_buf_bbcount_valid(log, nbblks)) {
109 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
110 nbblks);
111 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
112 return NULL;
113 }
114
115 /*
116 * We do log I/O in units of log sectors (a power-of-2
117 * multiple of the basic block size), so we round up the
118 * requested size to accommodate the basic blocks required
119 * for complete log sectors.
120 *
121 * In addition, the buffer may be used for a non-sector-
122 * aligned block offset, in which case an I/O of the
123 * requested size could extend beyond the end of the
124 * buffer. If the requested size is only 1 basic block it
125 * will never straddle a sector boundary, so this won't be
126 * an issue. Nor will this be a problem if the log I/O is
127 * done in basic blocks (sector size 1). But otherwise we
128 * extend the buffer by one extra log sector to ensure
129 * there's space to accommodate this possibility.
130 */
131 if (nbblks > 1 && log->l_sectBBsize > 1)
132 nbblks += log->l_sectBBsize;
133 nbblks = round_up(nbblks, log->l_sectBBsize);
134
135 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
136 if (bp)
137 xfs_buf_unlock(bp);
138 return bp;
139 }
140
141 STATIC void
142 xlog_put_bp(
143 xfs_buf_t *bp)
144 {
145 xfs_buf_free(bp);
146 }
147
148 /*
149 * Return the address of the start of the given block number's data
150 * in a log buffer. The buffer covers a log sector-aligned region.
151 */
152 STATIC xfs_caddr_t
153 xlog_align(
154 struct xlog *log,
155 xfs_daddr_t blk_no,
156 int nbblks,
157 struct xfs_buf *bp)
158 {
159 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
160
161 ASSERT(offset + nbblks <= bp->b_length);
162 return bp->b_addr + BBTOB(offset);
163 }
164
165
166 /*
167 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
168 */
169 STATIC int
170 xlog_bread_noalign(
171 struct xlog *log,
172 xfs_daddr_t blk_no,
173 int nbblks,
174 struct xfs_buf *bp)
175 {
176 int error;
177
178 if (!xlog_buf_bbcount_valid(log, nbblks)) {
179 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
180 nbblks);
181 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
182 return EFSCORRUPTED;
183 }
184
185 blk_no = round_down(blk_no, log->l_sectBBsize);
186 nbblks = round_up(nbblks, log->l_sectBBsize);
187
188 ASSERT(nbblks > 0);
189 ASSERT(nbblks <= bp->b_length);
190
191 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
192 XFS_BUF_READ(bp);
193 bp->b_io_length = nbblks;
194 bp->b_error = 0;
195
196 if (XFS_FORCED_SHUTDOWN(log->l_mp))
197 return XFS_ERROR(EIO);
198
199 xfs_buf_iorequest(bp);
200 error = xfs_buf_iowait(bp);
201 if (error)
202 xfs_buf_ioerror_alert(bp, __func__);
203 return error;
204 }
205
206 STATIC int
207 xlog_bread(
208 struct xlog *log,
209 xfs_daddr_t blk_no,
210 int nbblks,
211 struct xfs_buf *bp,
212 xfs_caddr_t *offset)
213 {
214 int error;
215
216 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
217 if (error)
218 return error;
219
220 *offset = xlog_align(log, blk_no, nbblks, bp);
221 return 0;
222 }
223
224 /*
225 * Read at an offset into the buffer. Returns with the buffer in it's original
226 * state regardless of the result of the read.
227 */
228 STATIC int
229 xlog_bread_offset(
230 struct xlog *log,
231 xfs_daddr_t blk_no, /* block to read from */
232 int nbblks, /* blocks to read */
233 struct xfs_buf *bp,
234 xfs_caddr_t offset)
235 {
236 xfs_caddr_t orig_offset = bp->b_addr;
237 int orig_len = BBTOB(bp->b_length);
238 int error, error2;
239
240 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
241 if (error)
242 return error;
243
244 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
245
246 /* must reset buffer pointer even on error */
247 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
248 if (error)
249 return error;
250 return error2;
251 }
252
253 /*
254 * Write out the buffer at the given block for the given number of blocks.
255 * The buffer is kept locked across the write and is returned locked.
256 * This can only be used for synchronous log writes.
257 */
258 STATIC int
259 xlog_bwrite(
260 struct xlog *log,
261 xfs_daddr_t blk_no,
262 int nbblks,
263 struct xfs_buf *bp)
264 {
265 int error;
266
267 if (!xlog_buf_bbcount_valid(log, nbblks)) {
268 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
269 nbblks);
270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
271 return EFSCORRUPTED;
272 }
273
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
276
277 ASSERT(nbblks > 0);
278 ASSERT(nbblks <= bp->b_length);
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 XFS_BUF_ZEROFLAGS(bp);
282 xfs_buf_hold(bp);
283 xfs_buf_lock(bp);
284 bp->b_io_length = nbblks;
285 bp->b_error = 0;
286
287 error = xfs_bwrite(bp);
288 if (error)
289 xfs_buf_ioerror_alert(bp, __func__);
290 xfs_buf_relse(bp);
291 return error;
292 }
293
294 #ifdef DEBUG
295 /*
296 * dump debug superblock and log record information
297 */
298 STATIC void
299 xlog_header_check_dump(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302 {
303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
305 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
307 }
308 #else
309 #define xlog_header_check_dump(mp, head)
310 #endif
311
312 /*
313 * check log record header for recovery
314 */
315 STATIC int
316 xlog_header_check_recover(
317 xfs_mount_t *mp,
318 xlog_rec_header_t *head)
319 {
320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
321
322 /*
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
326 */
327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 xfs_warn(mp,
329 "dirty log written in incompatible format - can't recover");
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH, mp);
333 return XFS_ERROR(EFSCORRUPTED);
334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 xfs_warn(mp,
336 "dirty log entry has mismatched uuid - can't recover");
337 xlog_header_check_dump(mp, head);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH, mp);
340 return XFS_ERROR(EFSCORRUPTED);
341 }
342 return 0;
343 }
344
345 /*
346 * read the head block of the log and check the header
347 */
348 STATIC int
349 xlog_header_check_mount(
350 xfs_mount_t *mp,
351 xlog_rec_header_t *head)
352 {
353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354
355 if (uuid_is_nil(&head->h_fs_uuid)) {
356 /*
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is nil, we assume this log was last mounted
359 * by IRIX and continue.
360 */
361 xfs_warn(mp, "nil uuid in log - IRIX style log");
362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
363 xfs_warn(mp, "log has mismatched uuid - can't recover");
364 xlog_header_check_dump(mp, head);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH, mp);
367 return XFS_ERROR(EFSCORRUPTED);
368 }
369 return 0;
370 }
371
372 STATIC void
373 xlog_recover_iodone(
374 struct xfs_buf *bp)
375 {
376 if (bp->b_error) {
377 /*
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
380 */
381 xfs_buf_ioerror_alert(bp, __func__);
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
384 }
385 bp->b_iodone = NULL;
386 xfs_buf_ioend(bp, 0);
387 }
388
389 /*
390 * This routine finds (to an approximation) the first block in the physical
391 * log which contains the given cycle. It uses a binary search algorithm.
392 * Note that the algorithm can not be perfect because the disk will not
393 * necessarily be perfect.
394 */
395 STATIC int
396 xlog_find_cycle_start(
397 struct xlog *log,
398 struct xfs_buf *bp,
399 xfs_daddr_t first_blk,
400 xfs_daddr_t *last_blk,
401 uint cycle)
402 {
403 xfs_caddr_t offset;
404 xfs_daddr_t mid_blk;
405 xfs_daddr_t end_blk;
406 uint mid_cycle;
407 int error;
408
409 end_blk = *last_blk;
410 mid_blk = BLK_AVG(first_blk, end_blk);
411 while (mid_blk != first_blk && mid_blk != end_blk) {
412 error = xlog_bread(log, mid_blk, 1, bp, &offset);
413 if (error)
414 return error;
415 mid_cycle = xlog_get_cycle(offset);
416 if (mid_cycle == cycle)
417 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
418 else
419 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
420 mid_blk = BLK_AVG(first_blk, end_blk);
421 }
422 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
423 (mid_blk == end_blk && mid_blk-1 == first_blk));
424
425 *last_blk = end_blk;
426
427 return 0;
428 }
429
430 /*
431 * Check that a range of blocks does not contain stop_on_cycle_no.
432 * Fill in *new_blk with the block offset where such a block is
433 * found, or with -1 (an invalid block number) if there is no such
434 * block in the range. The scan needs to occur from front to back
435 * and the pointer into the region must be updated since a later
436 * routine will need to perform another test.
437 */
438 STATIC int
439 xlog_find_verify_cycle(
440 struct xlog *log,
441 xfs_daddr_t start_blk,
442 int nbblks,
443 uint stop_on_cycle_no,
444 xfs_daddr_t *new_blk)
445 {
446 xfs_daddr_t i, j;
447 uint cycle;
448 xfs_buf_t *bp;
449 xfs_daddr_t bufblks;
450 xfs_caddr_t buf = NULL;
451 int error = 0;
452
453 /*
454 * Greedily allocate a buffer big enough to handle the full
455 * range of basic blocks we'll be examining. If that fails,
456 * try a smaller size. We need to be able to read at least
457 * a log sector, or we're out of luck.
458 */
459 bufblks = 1 << ffs(nbblks);
460 while (bufblks > log->l_logBBsize)
461 bufblks >>= 1;
462 while (!(bp = xlog_get_bp(log, bufblks))) {
463 bufblks >>= 1;
464 if (bufblks < log->l_sectBBsize)
465 return ENOMEM;
466 }
467
468 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
469 int bcount;
470
471 bcount = min(bufblks, (start_blk + nbblks - i));
472
473 error = xlog_bread(log, i, bcount, bp, &buf);
474 if (error)
475 goto out;
476
477 for (j = 0; j < bcount; j++) {
478 cycle = xlog_get_cycle(buf);
479 if (cycle == stop_on_cycle_no) {
480 *new_blk = i+j;
481 goto out;
482 }
483
484 buf += BBSIZE;
485 }
486 }
487
488 *new_blk = -1;
489
490 out:
491 xlog_put_bp(bp);
492 return error;
493 }
494
495 /*
496 * Potentially backup over partial log record write.
497 *
498 * In the typical case, last_blk is the number of the block directly after
499 * a good log record. Therefore, we subtract one to get the block number
500 * of the last block in the given buffer. extra_bblks contains the number
501 * of blocks we would have read on a previous read. This happens when the
502 * last log record is split over the end of the physical log.
503 *
504 * extra_bblks is the number of blocks potentially verified on a previous
505 * call to this routine.
506 */
507 STATIC int
508 xlog_find_verify_log_record(
509 struct xlog *log,
510 xfs_daddr_t start_blk,
511 xfs_daddr_t *last_blk,
512 int extra_bblks)
513 {
514 xfs_daddr_t i;
515 xfs_buf_t *bp;
516 xfs_caddr_t offset = NULL;
517 xlog_rec_header_t *head = NULL;
518 int error = 0;
519 int smallmem = 0;
520 int num_blks = *last_blk - start_blk;
521 int xhdrs;
522
523 ASSERT(start_blk != 0 || *last_blk != start_blk);
524
525 if (!(bp = xlog_get_bp(log, num_blks))) {
526 if (!(bp = xlog_get_bp(log, 1)))
527 return ENOMEM;
528 smallmem = 1;
529 } else {
530 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
531 if (error)
532 goto out;
533 offset += ((num_blks - 1) << BBSHIFT);
534 }
535
536 for (i = (*last_blk) - 1; i >= 0; i--) {
537 if (i < start_blk) {
538 /* valid log record not found */
539 xfs_warn(log->l_mp,
540 "Log inconsistent (didn't find previous header)");
541 ASSERT(0);
542 error = XFS_ERROR(EIO);
543 goto out;
544 }
545
546 if (smallmem) {
547 error = xlog_bread(log, i, 1, bp, &offset);
548 if (error)
549 goto out;
550 }
551
552 head = (xlog_rec_header_t *)offset;
553
554 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
555 break;
556
557 if (!smallmem)
558 offset -= BBSIZE;
559 }
560
561 /*
562 * We hit the beginning of the physical log & still no header. Return
563 * to caller. If caller can handle a return of -1, then this routine
564 * will be called again for the end of the physical log.
565 */
566 if (i == -1) {
567 error = -1;
568 goto out;
569 }
570
571 /*
572 * We have the final block of the good log (the first block
573 * of the log record _before_ the head. So we check the uuid.
574 */
575 if ((error = xlog_header_check_mount(log->l_mp, head)))
576 goto out;
577
578 /*
579 * We may have found a log record header before we expected one.
580 * last_blk will be the 1st block # with a given cycle #. We may end
581 * up reading an entire log record. In this case, we don't want to
582 * reset last_blk. Only when last_blk points in the middle of a log
583 * record do we update last_blk.
584 */
585 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
586 uint h_size = be32_to_cpu(head->h_size);
587
588 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
589 if (h_size % XLOG_HEADER_CYCLE_SIZE)
590 xhdrs++;
591 } else {
592 xhdrs = 1;
593 }
594
595 if (*last_blk - i + extra_bblks !=
596 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
597 *last_blk = i;
598
599 out:
600 xlog_put_bp(bp);
601 return error;
602 }
603
604 /*
605 * Head is defined to be the point of the log where the next log write
606 * could go. This means that incomplete LR writes at the end are
607 * eliminated when calculating the head. We aren't guaranteed that previous
608 * LR have complete transactions. We only know that a cycle number of
609 * current cycle number -1 won't be present in the log if we start writing
610 * from our current block number.
611 *
612 * last_blk contains the block number of the first block with a given
613 * cycle number.
614 *
615 * Return: zero if normal, non-zero if error.
616 */
617 STATIC int
618 xlog_find_head(
619 struct xlog *log,
620 xfs_daddr_t *return_head_blk)
621 {
622 xfs_buf_t *bp;
623 xfs_caddr_t offset;
624 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
625 int num_scan_bblks;
626 uint first_half_cycle, last_half_cycle;
627 uint stop_on_cycle;
628 int error, log_bbnum = log->l_logBBsize;
629
630 /* Is the end of the log device zeroed? */
631 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
632 *return_head_blk = first_blk;
633
634 /* Is the whole lot zeroed? */
635 if (!first_blk) {
636 /* Linux XFS shouldn't generate totally zeroed logs -
637 * mkfs etc write a dummy unmount record to a fresh
638 * log so we can store the uuid in there
639 */
640 xfs_warn(log->l_mp, "totally zeroed log");
641 }
642
643 return 0;
644 } else if (error) {
645 xfs_warn(log->l_mp, "empty log check failed");
646 return error;
647 }
648
649 first_blk = 0; /* get cycle # of 1st block */
650 bp = xlog_get_bp(log, 1);
651 if (!bp)
652 return ENOMEM;
653
654 error = xlog_bread(log, 0, 1, bp, &offset);
655 if (error)
656 goto bp_err;
657
658 first_half_cycle = xlog_get_cycle(offset);
659
660 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
661 error = xlog_bread(log, last_blk, 1, bp, &offset);
662 if (error)
663 goto bp_err;
664
665 last_half_cycle = xlog_get_cycle(offset);
666 ASSERT(last_half_cycle != 0);
667
668 /*
669 * If the 1st half cycle number is equal to the last half cycle number,
670 * then the entire log is stamped with the same cycle number. In this
671 * case, head_blk can't be set to zero (which makes sense). The below
672 * math doesn't work out properly with head_blk equal to zero. Instead,
673 * we set it to log_bbnum which is an invalid block number, but this
674 * value makes the math correct. If head_blk doesn't changed through
675 * all the tests below, *head_blk is set to zero at the very end rather
676 * than log_bbnum. In a sense, log_bbnum and zero are the same block
677 * in a circular file.
678 */
679 if (first_half_cycle == last_half_cycle) {
680 /*
681 * In this case we believe that the entire log should have
682 * cycle number last_half_cycle. We need to scan backwards
683 * from the end verifying that there are no holes still
684 * containing last_half_cycle - 1. If we find such a hole,
685 * then the start of that hole will be the new head. The
686 * simple case looks like
687 * x | x ... | x - 1 | x
688 * Another case that fits this picture would be
689 * x | x + 1 | x ... | x
690 * In this case the head really is somewhere at the end of the
691 * log, as one of the latest writes at the beginning was
692 * incomplete.
693 * One more case is
694 * x | x + 1 | x ... | x - 1 | x
695 * This is really the combination of the above two cases, and
696 * the head has to end up at the start of the x-1 hole at the
697 * end of the log.
698 *
699 * In the 256k log case, we will read from the beginning to the
700 * end of the log and search for cycle numbers equal to x-1.
701 * We don't worry about the x+1 blocks that we encounter,
702 * because we know that they cannot be the head since the log
703 * started with x.
704 */
705 head_blk = log_bbnum;
706 stop_on_cycle = last_half_cycle - 1;
707 } else {
708 /*
709 * In this case we want to find the first block with cycle
710 * number matching last_half_cycle. We expect the log to be
711 * some variation on
712 * x + 1 ... | x ... | x
713 * The first block with cycle number x (last_half_cycle) will
714 * be where the new head belongs. First we do a binary search
715 * for the first occurrence of last_half_cycle. The binary
716 * search may not be totally accurate, so then we scan back
717 * from there looking for occurrences of last_half_cycle before
718 * us. If that backwards scan wraps around the beginning of
719 * the log, then we look for occurrences of last_half_cycle - 1
720 * at the end of the log. The cases we're looking for look
721 * like
722 * v binary search stopped here
723 * x + 1 ... | x | x + 1 | x ... | x
724 * ^ but we want to locate this spot
725 * or
726 * <---------> less than scan distance
727 * x + 1 ... | x ... | x - 1 | x
728 * ^ we want to locate this spot
729 */
730 stop_on_cycle = last_half_cycle;
731 if ((error = xlog_find_cycle_start(log, bp, first_blk,
732 &head_blk, last_half_cycle)))
733 goto bp_err;
734 }
735
736 /*
737 * Now validate the answer. Scan back some number of maximum possible
738 * blocks and make sure each one has the expected cycle number. The
739 * maximum is determined by the total possible amount of buffering
740 * in the in-core log. The following number can be made tighter if
741 * we actually look at the block size of the filesystem.
742 */
743 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
744 if (head_blk >= num_scan_bblks) {
745 /*
746 * We are guaranteed that the entire check can be performed
747 * in one buffer.
748 */
749 start_blk = head_blk - num_scan_bblks;
750 if ((error = xlog_find_verify_cycle(log,
751 start_blk, num_scan_bblks,
752 stop_on_cycle, &new_blk)))
753 goto bp_err;
754 if (new_blk != -1)
755 head_blk = new_blk;
756 } else { /* need to read 2 parts of log */
757 /*
758 * We are going to scan backwards in the log in two parts.
759 * First we scan the physical end of the log. In this part
760 * of the log, we are looking for blocks with cycle number
761 * last_half_cycle - 1.
762 * If we find one, then we know that the log starts there, as
763 * we've found a hole that didn't get written in going around
764 * the end of the physical log. The simple case for this is
765 * x + 1 ... | x ... | x - 1 | x
766 * <---------> less than scan distance
767 * If all of the blocks at the end of the log have cycle number
768 * last_half_cycle, then we check the blocks at the start of
769 * the log looking for occurrences of last_half_cycle. If we
770 * find one, then our current estimate for the location of the
771 * first occurrence of last_half_cycle is wrong and we move
772 * back to the hole we've found. This case looks like
773 * x + 1 ... | x | x + 1 | x ...
774 * ^ binary search stopped here
775 * Another case we need to handle that only occurs in 256k
776 * logs is
777 * x + 1 ... | x ... | x+1 | x ...
778 * ^ binary search stops here
779 * In a 256k log, the scan at the end of the log will see the
780 * x + 1 blocks. We need to skip past those since that is
781 * certainly not the head of the log. By searching for
782 * last_half_cycle-1 we accomplish that.
783 */
784 ASSERT(head_blk <= INT_MAX &&
785 (xfs_daddr_t) num_scan_bblks >= head_blk);
786 start_blk = log_bbnum - (num_scan_bblks - head_blk);
787 if ((error = xlog_find_verify_cycle(log, start_blk,
788 num_scan_bblks - (int)head_blk,
789 (stop_on_cycle - 1), &new_blk)))
790 goto bp_err;
791 if (new_blk != -1) {
792 head_blk = new_blk;
793 goto validate_head;
794 }
795
796 /*
797 * Scan beginning of log now. The last part of the physical
798 * log is good. This scan needs to verify that it doesn't find
799 * the last_half_cycle.
800 */
801 start_blk = 0;
802 ASSERT(head_blk <= INT_MAX);
803 if ((error = xlog_find_verify_cycle(log,
804 start_blk, (int)head_blk,
805 stop_on_cycle, &new_blk)))
806 goto bp_err;
807 if (new_blk != -1)
808 head_blk = new_blk;
809 }
810
811 validate_head:
812 /*
813 * Now we need to make sure head_blk is not pointing to a block in
814 * the middle of a log record.
815 */
816 num_scan_bblks = XLOG_REC_SHIFT(log);
817 if (head_blk >= num_scan_bblks) {
818 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
819
820 /* start ptr at last block ptr before head_blk */
821 if ((error = xlog_find_verify_log_record(log, start_blk,
822 &head_blk, 0)) == -1) {
823 error = XFS_ERROR(EIO);
824 goto bp_err;
825 } else if (error)
826 goto bp_err;
827 } else {
828 start_blk = 0;
829 ASSERT(head_blk <= INT_MAX);
830 if ((error = xlog_find_verify_log_record(log, start_blk,
831 &head_blk, 0)) == -1) {
832 /* We hit the beginning of the log during our search */
833 start_blk = log_bbnum - (num_scan_bblks - head_blk);
834 new_blk = log_bbnum;
835 ASSERT(start_blk <= INT_MAX &&
836 (xfs_daddr_t) log_bbnum-start_blk >= 0);
837 ASSERT(head_blk <= INT_MAX);
838 if ((error = xlog_find_verify_log_record(log,
839 start_blk, &new_blk,
840 (int)head_blk)) == -1) {
841 error = XFS_ERROR(EIO);
842 goto bp_err;
843 } else if (error)
844 goto bp_err;
845 if (new_blk != log_bbnum)
846 head_blk = new_blk;
847 } else if (error)
848 goto bp_err;
849 }
850
851 xlog_put_bp(bp);
852 if (head_blk == log_bbnum)
853 *return_head_blk = 0;
854 else
855 *return_head_blk = head_blk;
856 /*
857 * When returning here, we have a good block number. Bad block
858 * means that during a previous crash, we didn't have a clean break
859 * from cycle number N to cycle number N-1. In this case, we need
860 * to find the first block with cycle number N-1.
861 */
862 return 0;
863
864 bp_err:
865 xlog_put_bp(bp);
866
867 if (error)
868 xfs_warn(log->l_mp, "failed to find log head");
869 return error;
870 }
871
872 /*
873 * Find the sync block number or the tail of the log.
874 *
875 * This will be the block number of the last record to have its
876 * associated buffers synced to disk. Every log record header has
877 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
878 * to get a sync block number. The only concern is to figure out which
879 * log record header to believe.
880 *
881 * The following algorithm uses the log record header with the largest
882 * lsn. The entire log record does not need to be valid. We only care
883 * that the header is valid.
884 *
885 * We could speed up search by using current head_blk buffer, but it is not
886 * available.
887 */
888 STATIC int
889 xlog_find_tail(
890 struct xlog *log,
891 xfs_daddr_t *head_blk,
892 xfs_daddr_t *tail_blk)
893 {
894 xlog_rec_header_t *rhead;
895 xlog_op_header_t *op_head;
896 xfs_caddr_t offset = NULL;
897 xfs_buf_t *bp;
898 int error, i, found;
899 xfs_daddr_t umount_data_blk;
900 xfs_daddr_t after_umount_blk;
901 xfs_lsn_t tail_lsn;
902 int hblks;
903
904 found = 0;
905
906 /*
907 * Find previous log record
908 */
909 if ((error = xlog_find_head(log, head_blk)))
910 return error;
911
912 bp = xlog_get_bp(log, 1);
913 if (!bp)
914 return ENOMEM;
915 if (*head_blk == 0) { /* special case */
916 error = xlog_bread(log, 0, 1, bp, &offset);
917 if (error)
918 goto done;
919
920 if (xlog_get_cycle(offset) == 0) {
921 *tail_blk = 0;
922 /* leave all other log inited values alone */
923 goto done;
924 }
925 }
926
927 /*
928 * Search backwards looking for log record header block
929 */
930 ASSERT(*head_blk < INT_MAX);
931 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
932 error = xlog_bread(log, i, 1, bp, &offset);
933 if (error)
934 goto done;
935
936 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
937 found = 1;
938 break;
939 }
940 }
941 /*
942 * If we haven't found the log record header block, start looking
943 * again from the end of the physical log. XXXmiken: There should be
944 * a check here to make sure we didn't search more than N blocks in
945 * the previous code.
946 */
947 if (!found) {
948 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
949 error = xlog_bread(log, i, 1, bp, &offset);
950 if (error)
951 goto done;
952
953 if (*(__be32 *)offset ==
954 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
955 found = 2;
956 break;
957 }
958 }
959 }
960 if (!found) {
961 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
962 xlog_put_bp(bp);
963 ASSERT(0);
964 return XFS_ERROR(EIO);
965 }
966
967 /* find blk_no of tail of log */
968 rhead = (xlog_rec_header_t *)offset;
969 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
970
971 /*
972 * Reset log values according to the state of the log when we
973 * crashed. In the case where head_blk == 0, we bump curr_cycle
974 * one because the next write starts a new cycle rather than
975 * continuing the cycle of the last good log record. At this
976 * point we have guaranteed that all partial log records have been
977 * accounted for. Therefore, we know that the last good log record
978 * written was complete and ended exactly on the end boundary
979 * of the physical log.
980 */
981 log->l_prev_block = i;
982 log->l_curr_block = (int)*head_blk;
983 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
984 if (found == 2)
985 log->l_curr_cycle++;
986 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
987 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
988 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
989 BBTOB(log->l_curr_block));
990 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
991 BBTOB(log->l_curr_block));
992
993 /*
994 * Look for unmount record. If we find it, then we know there
995 * was a clean unmount. Since 'i' could be the last block in
996 * the physical log, we convert to a log block before comparing
997 * to the head_blk.
998 *
999 * Save the current tail lsn to use to pass to
1000 * xlog_clear_stale_blocks() below. We won't want to clear the
1001 * unmount record if there is one, so we pass the lsn of the
1002 * unmount record rather than the block after it.
1003 */
1004 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1005 int h_size = be32_to_cpu(rhead->h_size);
1006 int h_version = be32_to_cpu(rhead->h_version);
1007
1008 if ((h_version & XLOG_VERSION_2) &&
1009 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1010 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1011 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1012 hblks++;
1013 } else {
1014 hblks = 1;
1015 }
1016 } else {
1017 hblks = 1;
1018 }
1019 after_umount_blk = (i + hblks + (int)
1020 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1021 tail_lsn = atomic64_read(&log->l_tail_lsn);
1022 if (*head_blk == after_umount_blk &&
1023 be32_to_cpu(rhead->h_num_logops) == 1) {
1024 umount_data_blk = (i + hblks) % log->l_logBBsize;
1025 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1026 if (error)
1027 goto done;
1028
1029 op_head = (xlog_op_header_t *)offset;
1030 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1031 /*
1032 * Set tail and last sync so that newly written
1033 * log records will point recovery to after the
1034 * current unmount record.
1035 */
1036 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1037 log->l_curr_cycle, after_umount_blk);
1038 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 *tail_blk = after_umount_blk;
1041
1042 /*
1043 * Note that the unmount was clean. If the unmount
1044 * was not clean, we need to know this to rebuild the
1045 * superblock counters from the perag headers if we
1046 * have a filesystem using non-persistent counters.
1047 */
1048 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1049 }
1050 }
1051
1052 /*
1053 * Make sure that there are no blocks in front of the head
1054 * with the same cycle number as the head. This can happen
1055 * because we allow multiple outstanding log writes concurrently,
1056 * and the later writes might make it out before earlier ones.
1057 *
1058 * We use the lsn from before modifying it so that we'll never
1059 * overwrite the unmount record after a clean unmount.
1060 *
1061 * Do this only if we are going to recover the filesystem
1062 *
1063 * NOTE: This used to say "if (!readonly)"
1064 * However on Linux, we can & do recover a read-only filesystem.
1065 * We only skip recovery if NORECOVERY is specified on mount,
1066 * in which case we would not be here.
1067 *
1068 * But... if the -device- itself is readonly, just skip this.
1069 * We can't recover this device anyway, so it won't matter.
1070 */
1071 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1072 error = xlog_clear_stale_blocks(log, tail_lsn);
1073
1074 done:
1075 xlog_put_bp(bp);
1076
1077 if (error)
1078 xfs_warn(log->l_mp, "failed to locate log tail");
1079 return error;
1080 }
1081
1082 /*
1083 * Is the log zeroed at all?
1084 *
1085 * The last binary search should be changed to perform an X block read
1086 * once X becomes small enough. You can then search linearly through
1087 * the X blocks. This will cut down on the number of reads we need to do.
1088 *
1089 * If the log is partially zeroed, this routine will pass back the blkno
1090 * of the first block with cycle number 0. It won't have a complete LR
1091 * preceding it.
1092 *
1093 * Return:
1094 * 0 => the log is completely written to
1095 * -1 => use *blk_no as the first block of the log
1096 * >0 => error has occurred
1097 */
1098 STATIC int
1099 xlog_find_zeroed(
1100 struct xlog *log,
1101 xfs_daddr_t *blk_no)
1102 {
1103 xfs_buf_t *bp;
1104 xfs_caddr_t offset;
1105 uint first_cycle, last_cycle;
1106 xfs_daddr_t new_blk, last_blk, start_blk;
1107 xfs_daddr_t num_scan_bblks;
1108 int error, log_bbnum = log->l_logBBsize;
1109
1110 *blk_no = 0;
1111
1112 /* check totally zeroed log */
1113 bp = xlog_get_bp(log, 1);
1114 if (!bp)
1115 return ENOMEM;
1116 error = xlog_bread(log, 0, 1, bp, &offset);
1117 if (error)
1118 goto bp_err;
1119
1120 first_cycle = xlog_get_cycle(offset);
1121 if (first_cycle == 0) { /* completely zeroed log */
1122 *blk_no = 0;
1123 xlog_put_bp(bp);
1124 return -1;
1125 }
1126
1127 /* check partially zeroed log */
1128 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1129 if (error)
1130 goto bp_err;
1131
1132 last_cycle = xlog_get_cycle(offset);
1133 if (last_cycle != 0) { /* log completely written to */
1134 xlog_put_bp(bp);
1135 return 0;
1136 } else if (first_cycle != 1) {
1137 /*
1138 * If the cycle of the last block is zero, the cycle of
1139 * the first block must be 1. If it's not, maybe we're
1140 * not looking at a log... Bail out.
1141 */
1142 xfs_warn(log->l_mp,
1143 "Log inconsistent or not a log (last==0, first!=1)");
1144 error = XFS_ERROR(EINVAL);
1145 goto bp_err;
1146 }
1147
1148 /* we have a partially zeroed log */
1149 last_blk = log_bbnum-1;
1150 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1151 goto bp_err;
1152
1153 /*
1154 * Validate the answer. Because there is no way to guarantee that
1155 * the entire log is made up of log records which are the same size,
1156 * we scan over the defined maximum blocks. At this point, the maximum
1157 * is not chosen to mean anything special. XXXmiken
1158 */
1159 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1160 ASSERT(num_scan_bblks <= INT_MAX);
1161
1162 if (last_blk < num_scan_bblks)
1163 num_scan_bblks = last_blk;
1164 start_blk = last_blk - num_scan_bblks;
1165
1166 /*
1167 * We search for any instances of cycle number 0 that occur before
1168 * our current estimate of the head. What we're trying to detect is
1169 * 1 ... | 0 | 1 | 0...
1170 * ^ binary search ends here
1171 */
1172 if ((error = xlog_find_verify_cycle(log, start_blk,
1173 (int)num_scan_bblks, 0, &new_blk)))
1174 goto bp_err;
1175 if (new_blk != -1)
1176 last_blk = new_blk;
1177
1178 /*
1179 * Potentially backup over partial log record write. We don't need
1180 * to search the end of the log because we know it is zero.
1181 */
1182 if ((error = xlog_find_verify_log_record(log, start_blk,
1183 &last_blk, 0)) == -1) {
1184 error = XFS_ERROR(EIO);
1185 goto bp_err;
1186 } else if (error)
1187 goto bp_err;
1188
1189 *blk_no = last_blk;
1190 bp_err:
1191 xlog_put_bp(bp);
1192 if (error)
1193 return error;
1194 return -1;
1195 }
1196
1197 /*
1198 * These are simple subroutines used by xlog_clear_stale_blocks() below
1199 * to initialize a buffer full of empty log record headers and write
1200 * them into the log.
1201 */
1202 STATIC void
1203 xlog_add_record(
1204 struct xlog *log,
1205 xfs_caddr_t buf,
1206 int cycle,
1207 int block,
1208 int tail_cycle,
1209 int tail_block)
1210 {
1211 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1212
1213 memset(buf, 0, BBSIZE);
1214 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1215 recp->h_cycle = cpu_to_be32(cycle);
1216 recp->h_version = cpu_to_be32(
1217 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1218 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1219 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1220 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1221 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1222 }
1223
1224 STATIC int
1225 xlog_write_log_records(
1226 struct xlog *log,
1227 int cycle,
1228 int start_block,
1229 int blocks,
1230 int tail_cycle,
1231 int tail_block)
1232 {
1233 xfs_caddr_t offset;
1234 xfs_buf_t *bp;
1235 int balign, ealign;
1236 int sectbb = log->l_sectBBsize;
1237 int end_block = start_block + blocks;
1238 int bufblks;
1239 int error = 0;
1240 int i, j = 0;
1241
1242 /*
1243 * Greedily allocate a buffer big enough to handle the full
1244 * range of basic blocks to be written. If that fails, try
1245 * a smaller size. We need to be able to write at least a
1246 * log sector, or we're out of luck.
1247 */
1248 bufblks = 1 << ffs(blocks);
1249 while (bufblks > log->l_logBBsize)
1250 bufblks >>= 1;
1251 while (!(bp = xlog_get_bp(log, bufblks))) {
1252 bufblks >>= 1;
1253 if (bufblks < sectbb)
1254 return ENOMEM;
1255 }
1256
1257 /* We may need to do a read at the start to fill in part of
1258 * the buffer in the starting sector not covered by the first
1259 * write below.
1260 */
1261 balign = round_down(start_block, sectbb);
1262 if (balign != start_block) {
1263 error = xlog_bread_noalign(log, start_block, 1, bp);
1264 if (error)
1265 goto out_put_bp;
1266
1267 j = start_block - balign;
1268 }
1269
1270 for (i = start_block; i < end_block; i += bufblks) {
1271 int bcount, endcount;
1272
1273 bcount = min(bufblks, end_block - start_block);
1274 endcount = bcount - j;
1275
1276 /* We may need to do a read at the end to fill in part of
1277 * the buffer in the final sector not covered by the write.
1278 * If this is the same sector as the above read, skip it.
1279 */
1280 ealign = round_down(end_block, sectbb);
1281 if (j == 0 && (start_block + endcount > ealign)) {
1282 offset = bp->b_addr + BBTOB(ealign - start_block);
1283 error = xlog_bread_offset(log, ealign, sectbb,
1284 bp, offset);
1285 if (error)
1286 break;
1287
1288 }
1289
1290 offset = xlog_align(log, start_block, endcount, bp);
1291 for (; j < endcount; j++) {
1292 xlog_add_record(log, offset, cycle, i+j,
1293 tail_cycle, tail_block);
1294 offset += BBSIZE;
1295 }
1296 error = xlog_bwrite(log, start_block, endcount, bp);
1297 if (error)
1298 break;
1299 start_block += endcount;
1300 j = 0;
1301 }
1302
1303 out_put_bp:
1304 xlog_put_bp(bp);
1305 return error;
1306 }
1307
1308 /*
1309 * This routine is called to blow away any incomplete log writes out
1310 * in front of the log head. We do this so that we won't become confused
1311 * if we come up, write only a little bit more, and then crash again.
1312 * If we leave the partial log records out there, this situation could
1313 * cause us to think those partial writes are valid blocks since they
1314 * have the current cycle number. We get rid of them by overwriting them
1315 * with empty log records with the old cycle number rather than the
1316 * current one.
1317 *
1318 * The tail lsn is passed in rather than taken from
1319 * the log so that we will not write over the unmount record after a
1320 * clean unmount in a 512 block log. Doing so would leave the log without
1321 * any valid log records in it until a new one was written. If we crashed
1322 * during that time we would not be able to recover.
1323 */
1324 STATIC int
1325 xlog_clear_stale_blocks(
1326 struct xlog *log,
1327 xfs_lsn_t tail_lsn)
1328 {
1329 int tail_cycle, head_cycle;
1330 int tail_block, head_block;
1331 int tail_distance, max_distance;
1332 int distance;
1333 int error;
1334
1335 tail_cycle = CYCLE_LSN(tail_lsn);
1336 tail_block = BLOCK_LSN(tail_lsn);
1337 head_cycle = log->l_curr_cycle;
1338 head_block = log->l_curr_block;
1339
1340 /*
1341 * Figure out the distance between the new head of the log
1342 * and the tail. We want to write over any blocks beyond the
1343 * head that we may have written just before the crash, but
1344 * we don't want to overwrite the tail of the log.
1345 */
1346 if (head_cycle == tail_cycle) {
1347 /*
1348 * The tail is behind the head in the physical log,
1349 * so the distance from the head to the tail is the
1350 * distance from the head to the end of the log plus
1351 * the distance from the beginning of the log to the
1352 * tail.
1353 */
1354 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1355 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1356 XFS_ERRLEVEL_LOW, log->l_mp);
1357 return XFS_ERROR(EFSCORRUPTED);
1358 }
1359 tail_distance = tail_block + (log->l_logBBsize - head_block);
1360 } else {
1361 /*
1362 * The head is behind the tail in the physical log,
1363 * so the distance from the head to the tail is just
1364 * the tail block minus the head block.
1365 */
1366 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1367 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1368 XFS_ERRLEVEL_LOW, log->l_mp);
1369 return XFS_ERROR(EFSCORRUPTED);
1370 }
1371 tail_distance = tail_block - head_block;
1372 }
1373
1374 /*
1375 * If the head is right up against the tail, we can't clear
1376 * anything.
1377 */
1378 if (tail_distance <= 0) {
1379 ASSERT(tail_distance == 0);
1380 return 0;
1381 }
1382
1383 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1384 /*
1385 * Take the smaller of the maximum amount of outstanding I/O
1386 * we could have and the distance to the tail to clear out.
1387 * We take the smaller so that we don't overwrite the tail and
1388 * we don't waste all day writing from the head to the tail
1389 * for no reason.
1390 */
1391 max_distance = MIN(max_distance, tail_distance);
1392
1393 if ((head_block + max_distance) <= log->l_logBBsize) {
1394 /*
1395 * We can stomp all the blocks we need to without
1396 * wrapping around the end of the log. Just do it
1397 * in a single write. Use the cycle number of the
1398 * current cycle minus one so that the log will look like:
1399 * n ... | n - 1 ...
1400 */
1401 error = xlog_write_log_records(log, (head_cycle - 1),
1402 head_block, max_distance, tail_cycle,
1403 tail_block);
1404 if (error)
1405 return error;
1406 } else {
1407 /*
1408 * We need to wrap around the end of the physical log in
1409 * order to clear all the blocks. Do it in two separate
1410 * I/Os. The first write should be from the head to the
1411 * end of the physical log, and it should use the current
1412 * cycle number minus one just like above.
1413 */
1414 distance = log->l_logBBsize - head_block;
1415 error = xlog_write_log_records(log, (head_cycle - 1),
1416 head_block, distance, tail_cycle,
1417 tail_block);
1418
1419 if (error)
1420 return error;
1421
1422 /*
1423 * Now write the blocks at the start of the physical log.
1424 * This writes the remainder of the blocks we want to clear.
1425 * It uses the current cycle number since we're now on the
1426 * same cycle as the head so that we get:
1427 * n ... n ... | n - 1 ...
1428 * ^^^^^ blocks we're writing
1429 */
1430 distance = max_distance - (log->l_logBBsize - head_block);
1431 error = xlog_write_log_records(log, head_cycle, 0, distance,
1432 tail_cycle, tail_block);
1433 if (error)
1434 return error;
1435 }
1436
1437 return 0;
1438 }
1439
1440 /******************************************************************************
1441 *
1442 * Log recover routines
1443 *
1444 ******************************************************************************
1445 */
1446
1447 STATIC xlog_recover_t *
1448 xlog_recover_find_tid(
1449 struct hlist_head *head,
1450 xlog_tid_t tid)
1451 {
1452 xlog_recover_t *trans;
1453
1454 hlist_for_each_entry(trans, head, r_list) {
1455 if (trans->r_log_tid == tid)
1456 return trans;
1457 }
1458 return NULL;
1459 }
1460
1461 STATIC void
1462 xlog_recover_new_tid(
1463 struct hlist_head *head,
1464 xlog_tid_t tid,
1465 xfs_lsn_t lsn)
1466 {
1467 xlog_recover_t *trans;
1468
1469 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1470 trans->r_log_tid = tid;
1471 trans->r_lsn = lsn;
1472 INIT_LIST_HEAD(&trans->r_itemq);
1473
1474 INIT_HLIST_NODE(&trans->r_list);
1475 hlist_add_head(&trans->r_list, head);
1476 }
1477
1478 STATIC void
1479 xlog_recover_add_item(
1480 struct list_head *head)
1481 {
1482 xlog_recover_item_t *item;
1483
1484 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1485 INIT_LIST_HEAD(&item->ri_list);
1486 list_add_tail(&item->ri_list, head);
1487 }
1488
1489 STATIC int
1490 xlog_recover_add_to_cont_trans(
1491 struct xlog *log,
1492 struct xlog_recover *trans,
1493 xfs_caddr_t dp,
1494 int len)
1495 {
1496 xlog_recover_item_t *item;
1497 xfs_caddr_t ptr, old_ptr;
1498 int old_len;
1499
1500 if (list_empty(&trans->r_itemq)) {
1501 /* finish copying rest of trans header */
1502 xlog_recover_add_item(&trans->r_itemq);
1503 ptr = (xfs_caddr_t) &trans->r_theader +
1504 sizeof(xfs_trans_header_t) - len;
1505 memcpy(ptr, dp, len); /* d, s, l */
1506 return 0;
1507 }
1508 /* take the tail entry */
1509 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1510
1511 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1512 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1513
1514 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1515 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1516 item->ri_buf[item->ri_cnt-1].i_len += len;
1517 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1518 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1519 return 0;
1520 }
1521
1522 /*
1523 * The next region to add is the start of a new region. It could be
1524 * a whole region or it could be the first part of a new region. Because
1525 * of this, the assumption here is that the type and size fields of all
1526 * format structures fit into the first 32 bits of the structure.
1527 *
1528 * This works because all regions must be 32 bit aligned. Therefore, we
1529 * either have both fields or we have neither field. In the case we have
1530 * neither field, the data part of the region is zero length. We only have
1531 * a log_op_header and can throw away the header since a new one will appear
1532 * later. If we have at least 4 bytes, then we can determine how many regions
1533 * will appear in the current log item.
1534 */
1535 STATIC int
1536 xlog_recover_add_to_trans(
1537 struct xlog *log,
1538 struct xlog_recover *trans,
1539 xfs_caddr_t dp,
1540 int len)
1541 {
1542 xfs_inode_log_format_t *in_f; /* any will do */
1543 xlog_recover_item_t *item;
1544 xfs_caddr_t ptr;
1545
1546 if (!len)
1547 return 0;
1548 if (list_empty(&trans->r_itemq)) {
1549 /* we need to catch log corruptions here */
1550 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1551 xfs_warn(log->l_mp, "%s: bad header magic number",
1552 __func__);
1553 ASSERT(0);
1554 return XFS_ERROR(EIO);
1555 }
1556 if (len == sizeof(xfs_trans_header_t))
1557 xlog_recover_add_item(&trans->r_itemq);
1558 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1559 return 0;
1560 }
1561
1562 ptr = kmem_alloc(len, KM_SLEEP);
1563 memcpy(ptr, dp, len);
1564 in_f = (xfs_inode_log_format_t *)ptr;
1565
1566 /* take the tail entry */
1567 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1568 if (item->ri_total != 0 &&
1569 item->ri_total == item->ri_cnt) {
1570 /* tail item is in use, get a new one */
1571 xlog_recover_add_item(&trans->r_itemq);
1572 item = list_entry(trans->r_itemq.prev,
1573 xlog_recover_item_t, ri_list);
1574 }
1575
1576 if (item->ri_total == 0) { /* first region to be added */
1577 if (in_f->ilf_size == 0 ||
1578 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1579 xfs_warn(log->l_mp,
1580 "bad number of regions (%d) in inode log format",
1581 in_f->ilf_size);
1582 ASSERT(0);
1583 kmem_free(ptr);
1584 return XFS_ERROR(EIO);
1585 }
1586
1587 item->ri_total = in_f->ilf_size;
1588 item->ri_buf =
1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 KM_SLEEP);
1591 }
1592 ASSERT(item->ri_total > item->ri_cnt);
1593 /* Description region is ri_buf[0] */
1594 item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 item->ri_buf[item->ri_cnt].i_len = len;
1596 item->ri_cnt++;
1597 trace_xfs_log_recover_item_add(log, trans, item, 0);
1598 return 0;
1599 }
1600
1601 /*
1602 * Sort the log items in the transaction.
1603 *
1604 * The ordering constraints are defined by the inode allocation and unlink
1605 * behaviour. The rules are:
1606 *
1607 * 1. Every item is only logged once in a given transaction. Hence it
1608 * represents the last logged state of the item. Hence ordering is
1609 * dependent on the order in which operations need to be performed so
1610 * required initial conditions are always met.
1611 *
1612 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1613 * there's nothing to replay from them so we can simply cull them
1614 * from the transaction. However, we can't do that until after we've
1615 * replayed all the other items because they may be dependent on the
1616 * cancelled buffer and replaying the cancelled buffer can remove it
1617 * form the cancelled buffer table. Hence they have tobe done last.
1618 *
1619 * 3. Inode allocation buffers must be replayed before inode items that
1620 * read the buffer and replay changes into it. For filesystems using the
1621 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1622 * treated the same as inode allocation buffers as they create and
1623 * initialise the buffers directly.
1624 *
1625 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1626 * This ensures that inodes are completely flushed to the inode buffer
1627 * in a "free" state before we remove the unlinked inode list pointer.
1628 *
1629 * Hence the ordering needs to be inode allocation buffers first, inode items
1630 * second, inode unlink buffers third and cancelled buffers last.
1631 *
1632 * But there's a problem with that - we can't tell an inode allocation buffer
1633 * apart from a regular buffer, so we can't separate them. We can, however,
1634 * tell an inode unlink buffer from the others, and so we can separate them out
1635 * from all the other buffers and move them to last.
1636 *
1637 * Hence, 4 lists, in order from head to tail:
1638 * - buffer_list for all buffers except cancelled/inode unlink buffers
1639 * - item_list for all non-buffer items
1640 * - inode_buffer_list for inode unlink buffers
1641 * - cancel_list for the cancelled buffers
1642 *
1643 * Note that we add objects to the tail of the lists so that first-to-last
1644 * ordering is preserved within the lists. Adding objects to the head of the
1645 * list means when we traverse from the head we walk them in last-to-first
1646 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1647 * but for all other items there may be specific ordering that we need to
1648 * preserve.
1649 */
1650 STATIC int
1651 xlog_recover_reorder_trans(
1652 struct xlog *log,
1653 struct xlog_recover *trans,
1654 int pass)
1655 {
1656 xlog_recover_item_t *item, *n;
1657 int error = 0;
1658 LIST_HEAD(sort_list);
1659 LIST_HEAD(cancel_list);
1660 LIST_HEAD(buffer_list);
1661 LIST_HEAD(inode_buffer_list);
1662 LIST_HEAD(inode_list);
1663
1664 list_splice_init(&trans->r_itemq, &sort_list);
1665 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1666 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1667
1668 switch (ITEM_TYPE(item)) {
1669 case XFS_LI_ICREATE:
1670 list_move_tail(&item->ri_list, &buffer_list);
1671 break;
1672 case XFS_LI_BUF:
1673 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1674 trace_xfs_log_recover_item_reorder_head(log,
1675 trans, item, pass);
1676 list_move(&item->ri_list, &cancel_list);
1677 break;
1678 }
1679 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1680 list_move(&item->ri_list, &inode_buffer_list);
1681 break;
1682 }
1683 list_move_tail(&item->ri_list, &buffer_list);
1684 break;
1685 case XFS_LI_INODE:
1686 case XFS_LI_DQUOT:
1687 case XFS_LI_QUOTAOFF:
1688 case XFS_LI_EFD:
1689 case XFS_LI_EFI:
1690 trace_xfs_log_recover_item_reorder_tail(log,
1691 trans, item, pass);
1692 list_move_tail(&item->ri_list, &inode_list);
1693 break;
1694 default:
1695 xfs_warn(log->l_mp,
1696 "%s: unrecognized type of log operation",
1697 __func__);
1698 ASSERT(0);
1699 /*
1700 * return the remaining items back to the transaction
1701 * item list so they can be freed in caller.
1702 */
1703 if (!list_empty(&sort_list))
1704 list_splice_init(&sort_list, &trans->r_itemq);
1705 error = XFS_ERROR(EIO);
1706 goto out;
1707 }
1708 }
1709 out:
1710 ASSERT(list_empty(&sort_list));
1711 if (!list_empty(&buffer_list))
1712 list_splice(&buffer_list, &trans->r_itemq);
1713 if (!list_empty(&inode_list))
1714 list_splice_tail(&inode_list, &trans->r_itemq);
1715 if (!list_empty(&inode_buffer_list))
1716 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1717 if (!list_empty(&cancel_list))
1718 list_splice_tail(&cancel_list, &trans->r_itemq);
1719 return error;
1720 }
1721
1722 /*
1723 * Build up the table of buf cancel records so that we don't replay
1724 * cancelled data in the second pass. For buffer records that are
1725 * not cancel records, there is nothing to do here so we just return.
1726 *
1727 * If we get a cancel record which is already in the table, this indicates
1728 * that the buffer was cancelled multiple times. In order to ensure
1729 * that during pass 2 we keep the record in the table until we reach its
1730 * last occurrence in the log, we keep a reference count in the cancel
1731 * record in the table to tell us how many times we expect to see this
1732 * record during the second pass.
1733 */
1734 STATIC int
1735 xlog_recover_buffer_pass1(
1736 struct xlog *log,
1737 struct xlog_recover_item *item)
1738 {
1739 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1740 struct list_head *bucket;
1741 struct xfs_buf_cancel *bcp;
1742
1743 /*
1744 * If this isn't a cancel buffer item, then just return.
1745 */
1746 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1747 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1748 return 0;
1749 }
1750
1751 /*
1752 * Insert an xfs_buf_cancel record into the hash table of them.
1753 * If there is already an identical record, bump its reference count.
1754 */
1755 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1756 list_for_each_entry(bcp, bucket, bc_list) {
1757 if (bcp->bc_blkno == buf_f->blf_blkno &&
1758 bcp->bc_len == buf_f->blf_len) {
1759 bcp->bc_refcount++;
1760 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1761 return 0;
1762 }
1763 }
1764
1765 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1766 bcp->bc_blkno = buf_f->blf_blkno;
1767 bcp->bc_len = buf_f->blf_len;
1768 bcp->bc_refcount = 1;
1769 list_add_tail(&bcp->bc_list, bucket);
1770
1771 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1772 return 0;
1773 }
1774
1775 /*
1776 * Check to see whether the buffer being recovered has a corresponding
1777 * entry in the buffer cancel record table. If it is, return the cancel
1778 * buffer structure to the caller.
1779 */
1780 STATIC struct xfs_buf_cancel *
1781 xlog_peek_buffer_cancelled(
1782 struct xlog *log,
1783 xfs_daddr_t blkno,
1784 uint len,
1785 ushort flags)
1786 {
1787 struct list_head *bucket;
1788 struct xfs_buf_cancel *bcp;
1789
1790 if (!log->l_buf_cancel_table) {
1791 /* empty table means no cancelled buffers in the log */
1792 ASSERT(!(flags & XFS_BLF_CANCEL));
1793 return NULL;
1794 }
1795
1796 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1797 list_for_each_entry(bcp, bucket, bc_list) {
1798 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1799 return bcp;
1800 }
1801
1802 /*
1803 * We didn't find a corresponding entry in the table, so return 0 so
1804 * that the buffer is NOT cancelled.
1805 */
1806 ASSERT(!(flags & XFS_BLF_CANCEL));
1807 return NULL;
1808 }
1809
1810 /*
1811 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1812 * otherwise return 0. If the buffer is actually a buffer cancel item
1813 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1814 * table and remove it from the table if this is the last reference.
1815 *
1816 * We remove the cancel record from the table when we encounter its last
1817 * occurrence in the log so that if the same buffer is re-used again after its
1818 * last cancellation we actually replay the changes made at that point.
1819 */
1820 STATIC int
1821 xlog_check_buffer_cancelled(
1822 struct xlog *log,
1823 xfs_daddr_t blkno,
1824 uint len,
1825 ushort flags)
1826 {
1827 struct xfs_buf_cancel *bcp;
1828
1829 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1830 if (!bcp)
1831 return 0;
1832
1833 /*
1834 * We've go a match, so return 1 so that the recovery of this buffer
1835 * is cancelled. If this buffer is actually a buffer cancel log
1836 * item, then decrement the refcount on the one in the table and
1837 * remove it if this is the last reference.
1838 */
1839 if (flags & XFS_BLF_CANCEL) {
1840 if (--bcp->bc_refcount == 0) {
1841 list_del(&bcp->bc_list);
1842 kmem_free(bcp);
1843 }
1844 }
1845 return 1;
1846 }
1847
1848 /*
1849 * Perform recovery for a buffer full of inodes. In these buffers, the only
1850 * data which should be recovered is that which corresponds to the
1851 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1852 * data for the inodes is always logged through the inodes themselves rather
1853 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1854 *
1855 * The only time when buffers full of inodes are fully recovered is when the
1856 * buffer is full of newly allocated inodes. In this case the buffer will
1857 * not be marked as an inode buffer and so will be sent to
1858 * xlog_recover_do_reg_buffer() below during recovery.
1859 */
1860 STATIC int
1861 xlog_recover_do_inode_buffer(
1862 struct xfs_mount *mp,
1863 xlog_recover_item_t *item,
1864 struct xfs_buf *bp,
1865 xfs_buf_log_format_t *buf_f)
1866 {
1867 int i;
1868 int item_index = 0;
1869 int bit = 0;
1870 int nbits = 0;
1871 int reg_buf_offset = 0;
1872 int reg_buf_bytes = 0;
1873 int next_unlinked_offset;
1874 int inodes_per_buf;
1875 xfs_agino_t *logged_nextp;
1876 xfs_agino_t *buffer_nextp;
1877
1878 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1879
1880 /*
1881 * Post recovery validation only works properly on CRC enabled
1882 * filesystems.
1883 */
1884 if (xfs_sb_version_hascrc(&mp->m_sb))
1885 bp->b_ops = &xfs_inode_buf_ops;
1886
1887 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1888 for (i = 0; i < inodes_per_buf; i++) {
1889 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1890 offsetof(xfs_dinode_t, di_next_unlinked);
1891
1892 while (next_unlinked_offset >=
1893 (reg_buf_offset + reg_buf_bytes)) {
1894 /*
1895 * The next di_next_unlinked field is beyond
1896 * the current logged region. Find the next
1897 * logged region that contains or is beyond
1898 * the current di_next_unlinked field.
1899 */
1900 bit += nbits;
1901 bit = xfs_next_bit(buf_f->blf_data_map,
1902 buf_f->blf_map_size, bit);
1903
1904 /*
1905 * If there are no more logged regions in the
1906 * buffer, then we're done.
1907 */
1908 if (bit == -1)
1909 return 0;
1910
1911 nbits = xfs_contig_bits(buf_f->blf_data_map,
1912 buf_f->blf_map_size, bit);
1913 ASSERT(nbits > 0);
1914 reg_buf_offset = bit << XFS_BLF_SHIFT;
1915 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1916 item_index++;
1917 }
1918
1919 /*
1920 * If the current logged region starts after the current
1921 * di_next_unlinked field, then move on to the next
1922 * di_next_unlinked field.
1923 */
1924 if (next_unlinked_offset < reg_buf_offset)
1925 continue;
1926
1927 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1928 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1929 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1930 BBTOB(bp->b_io_length));
1931
1932 /*
1933 * The current logged region contains a copy of the
1934 * current di_next_unlinked field. Extract its value
1935 * and copy it to the buffer copy.
1936 */
1937 logged_nextp = item->ri_buf[item_index].i_addr +
1938 next_unlinked_offset - reg_buf_offset;
1939 if (unlikely(*logged_nextp == 0)) {
1940 xfs_alert(mp,
1941 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1942 "Trying to replay bad (0) inode di_next_unlinked field.",
1943 item, bp);
1944 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1945 XFS_ERRLEVEL_LOW, mp);
1946 return XFS_ERROR(EFSCORRUPTED);
1947 }
1948
1949 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1950 next_unlinked_offset);
1951 *buffer_nextp = *logged_nextp;
1952
1953 /*
1954 * If necessary, recalculate the CRC in the on-disk inode. We
1955 * have to leave the inode in a consistent state for whoever
1956 * reads it next....
1957 */
1958 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1959 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1960
1961 }
1962
1963 return 0;
1964 }
1965
1966 /*
1967 * V5 filesystems know the age of the buffer on disk being recovered. We can
1968 * have newer objects on disk than we are replaying, and so for these cases we
1969 * don't want to replay the current change as that will make the buffer contents
1970 * temporarily invalid on disk.
1971 *
1972 * The magic number might not match the buffer type we are going to recover
1973 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1974 * extract the LSN of the existing object in the buffer based on it's current
1975 * magic number. If we don't recognise the magic number in the buffer, then
1976 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1977 * so can recover the buffer.
1978 *
1979 * Note: we cannot rely solely on magic number matches to determine that the
1980 * buffer has a valid LSN - we also need to verify that it belongs to this
1981 * filesystem, so we need to extract the object's LSN and compare it to that
1982 * which we read from the superblock. If the UUIDs don't match, then we've got a
1983 * stale metadata block from an old filesystem instance that we need to recover
1984 * over the top of.
1985 */
1986 static xfs_lsn_t
1987 xlog_recover_get_buf_lsn(
1988 struct xfs_mount *mp,
1989 struct xfs_buf *bp)
1990 {
1991 __uint32_t magic32;
1992 __uint16_t magic16;
1993 __uint16_t magicda;
1994 void *blk = bp->b_addr;
1995 uuid_t *uuid;
1996 xfs_lsn_t lsn = -1;
1997
1998 /* v4 filesystems always recover immediately */
1999 if (!xfs_sb_version_hascrc(&mp->m_sb))
2000 goto recover_immediately;
2001
2002 magic32 = be32_to_cpu(*(__be32 *)blk);
2003 switch (magic32) {
2004 case XFS_ABTB_CRC_MAGIC:
2005 case XFS_ABTC_CRC_MAGIC:
2006 case XFS_ABTB_MAGIC:
2007 case XFS_ABTC_MAGIC:
2008 case XFS_IBT_CRC_MAGIC:
2009 case XFS_IBT_MAGIC: {
2010 struct xfs_btree_block *btb = blk;
2011
2012 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2013 uuid = &btb->bb_u.s.bb_uuid;
2014 break;
2015 }
2016 case XFS_BMAP_CRC_MAGIC:
2017 case XFS_BMAP_MAGIC: {
2018 struct xfs_btree_block *btb = blk;
2019
2020 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2021 uuid = &btb->bb_u.l.bb_uuid;
2022 break;
2023 }
2024 case XFS_AGF_MAGIC:
2025 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2026 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2027 break;
2028 case XFS_AGFL_MAGIC:
2029 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2030 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2031 break;
2032 case XFS_AGI_MAGIC:
2033 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2034 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2035 break;
2036 case XFS_SYMLINK_MAGIC:
2037 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2038 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2039 break;
2040 case XFS_DIR3_BLOCK_MAGIC:
2041 case XFS_DIR3_DATA_MAGIC:
2042 case XFS_DIR3_FREE_MAGIC:
2043 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2044 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2045 break;
2046 case XFS_ATTR3_RMT_MAGIC:
2047 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2048 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2049 break;
2050 case XFS_SB_MAGIC:
2051 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2052 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2053 break;
2054 default:
2055 break;
2056 }
2057
2058 if (lsn != (xfs_lsn_t)-1) {
2059 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2060 goto recover_immediately;
2061 return lsn;
2062 }
2063
2064 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2065 switch (magicda) {
2066 case XFS_DIR3_LEAF1_MAGIC:
2067 case XFS_DIR3_LEAFN_MAGIC:
2068 case XFS_DA3_NODE_MAGIC:
2069 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2070 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2071 break;
2072 default:
2073 break;
2074 }
2075
2076 if (lsn != (xfs_lsn_t)-1) {
2077 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2078 goto recover_immediately;
2079 return lsn;
2080 }
2081
2082 /*
2083 * We do individual object checks on dquot and inode buffers as they
2084 * have their own individual LSN records. Also, we could have a stale
2085 * buffer here, so we have to at least recognise these buffer types.
2086 *
2087 * A notd complexity here is inode unlinked list processing - it logs
2088 * the inode directly in the buffer, but we don't know which inodes have
2089 * been modified, and there is no global buffer LSN. Hence we need to
2090 * recover all inode buffer types immediately. This problem will be
2091 * fixed by logical logging of the unlinked list modifications.
2092 */
2093 magic16 = be16_to_cpu(*(__be16 *)blk);
2094 switch (magic16) {
2095 case XFS_DQUOT_MAGIC:
2096 case XFS_DINODE_MAGIC:
2097 goto recover_immediately;
2098 default:
2099 break;
2100 }
2101
2102 /* unknown buffer contents, recover immediately */
2103
2104 recover_immediately:
2105 return (xfs_lsn_t)-1;
2106
2107 }
2108
2109 /*
2110 * Validate the recovered buffer is of the correct type and attach the
2111 * appropriate buffer operations to them for writeback. Magic numbers are in a
2112 * few places:
2113 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2114 * the first 32 bits of the buffer (most blocks),
2115 * inside a struct xfs_da_blkinfo at the start of the buffer.
2116 */
2117 static void
2118 xlog_recover_validate_buf_type(
2119 struct xfs_mount *mp,
2120 struct xfs_buf *bp,
2121 xfs_buf_log_format_t *buf_f)
2122 {
2123 struct xfs_da_blkinfo *info = bp->b_addr;
2124 __uint32_t magic32;
2125 __uint16_t magic16;
2126 __uint16_t magicda;
2127
2128 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2129 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2130 magicda = be16_to_cpu(info->magic);
2131 switch (xfs_blft_from_flags(buf_f)) {
2132 case XFS_BLFT_BTREE_BUF:
2133 switch (magic32) {
2134 case XFS_ABTB_CRC_MAGIC:
2135 case XFS_ABTC_CRC_MAGIC:
2136 case XFS_ABTB_MAGIC:
2137 case XFS_ABTC_MAGIC:
2138 bp->b_ops = &xfs_allocbt_buf_ops;
2139 break;
2140 case XFS_IBT_CRC_MAGIC:
2141 case XFS_FIBT_CRC_MAGIC:
2142 case XFS_IBT_MAGIC:
2143 case XFS_FIBT_MAGIC:
2144 bp->b_ops = &xfs_inobt_buf_ops;
2145 break;
2146 case XFS_BMAP_CRC_MAGIC:
2147 case XFS_BMAP_MAGIC:
2148 bp->b_ops = &xfs_bmbt_buf_ops;
2149 break;
2150 default:
2151 xfs_warn(mp, "Bad btree block magic!");
2152 ASSERT(0);
2153 break;
2154 }
2155 break;
2156 case XFS_BLFT_AGF_BUF:
2157 if (magic32 != XFS_AGF_MAGIC) {
2158 xfs_warn(mp, "Bad AGF block magic!");
2159 ASSERT(0);
2160 break;
2161 }
2162 bp->b_ops = &xfs_agf_buf_ops;
2163 break;
2164 case XFS_BLFT_AGFL_BUF:
2165 if (!xfs_sb_version_hascrc(&mp->m_sb))
2166 break;
2167 if (magic32 != XFS_AGFL_MAGIC) {
2168 xfs_warn(mp, "Bad AGFL block magic!");
2169 ASSERT(0);
2170 break;
2171 }
2172 bp->b_ops = &xfs_agfl_buf_ops;
2173 break;
2174 case XFS_BLFT_AGI_BUF:
2175 if (magic32 != XFS_AGI_MAGIC) {
2176 xfs_warn(mp, "Bad AGI block magic!");
2177 ASSERT(0);
2178 break;
2179 }
2180 bp->b_ops = &xfs_agi_buf_ops;
2181 break;
2182 case XFS_BLFT_UDQUOT_BUF:
2183 case XFS_BLFT_PDQUOT_BUF:
2184 case XFS_BLFT_GDQUOT_BUF:
2185 #ifdef CONFIG_XFS_QUOTA
2186 if (magic16 != XFS_DQUOT_MAGIC) {
2187 xfs_warn(mp, "Bad DQUOT block magic!");
2188 ASSERT(0);
2189 break;
2190 }
2191 bp->b_ops = &xfs_dquot_buf_ops;
2192 #else
2193 xfs_alert(mp,
2194 "Trying to recover dquots without QUOTA support built in!");
2195 ASSERT(0);
2196 #endif
2197 break;
2198 case XFS_BLFT_DINO_BUF:
2199 /*
2200 * we get here with inode allocation buffers, not buffers that
2201 * track unlinked list changes.
2202 */
2203 if (magic16 != XFS_DINODE_MAGIC) {
2204 xfs_warn(mp, "Bad INODE block magic!");
2205 ASSERT(0);
2206 break;
2207 }
2208 bp->b_ops = &xfs_inode_buf_ops;
2209 break;
2210 case XFS_BLFT_SYMLINK_BUF:
2211 if (magic32 != XFS_SYMLINK_MAGIC) {
2212 xfs_warn(mp, "Bad symlink block magic!");
2213 ASSERT(0);
2214 break;
2215 }
2216 bp->b_ops = &xfs_symlink_buf_ops;
2217 break;
2218 case XFS_BLFT_DIR_BLOCK_BUF:
2219 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2220 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2221 xfs_warn(mp, "Bad dir block magic!");
2222 ASSERT(0);
2223 break;
2224 }
2225 bp->b_ops = &xfs_dir3_block_buf_ops;
2226 break;
2227 case XFS_BLFT_DIR_DATA_BUF:
2228 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2229 magic32 != XFS_DIR3_DATA_MAGIC) {
2230 xfs_warn(mp, "Bad dir data magic!");
2231 ASSERT(0);
2232 break;
2233 }
2234 bp->b_ops = &xfs_dir3_data_buf_ops;
2235 break;
2236 case XFS_BLFT_DIR_FREE_BUF:
2237 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2238 magic32 != XFS_DIR3_FREE_MAGIC) {
2239 xfs_warn(mp, "Bad dir3 free magic!");
2240 ASSERT(0);
2241 break;
2242 }
2243 bp->b_ops = &xfs_dir3_free_buf_ops;
2244 break;
2245 case XFS_BLFT_DIR_LEAF1_BUF:
2246 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2247 magicda != XFS_DIR3_LEAF1_MAGIC) {
2248 xfs_warn(mp, "Bad dir leaf1 magic!");
2249 ASSERT(0);
2250 break;
2251 }
2252 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2253 break;
2254 case XFS_BLFT_DIR_LEAFN_BUF:
2255 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2256 magicda != XFS_DIR3_LEAFN_MAGIC) {
2257 xfs_warn(mp, "Bad dir leafn magic!");
2258 ASSERT(0);
2259 break;
2260 }
2261 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2262 break;
2263 case XFS_BLFT_DA_NODE_BUF:
2264 if (magicda != XFS_DA_NODE_MAGIC &&
2265 magicda != XFS_DA3_NODE_MAGIC) {
2266 xfs_warn(mp, "Bad da node magic!");
2267 ASSERT(0);
2268 break;
2269 }
2270 bp->b_ops = &xfs_da3_node_buf_ops;
2271 break;
2272 case XFS_BLFT_ATTR_LEAF_BUF:
2273 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2274 magicda != XFS_ATTR3_LEAF_MAGIC) {
2275 xfs_warn(mp, "Bad attr leaf magic!");
2276 ASSERT(0);
2277 break;
2278 }
2279 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2280 break;
2281 case XFS_BLFT_ATTR_RMT_BUF:
2282 if (!xfs_sb_version_hascrc(&mp->m_sb))
2283 break;
2284 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2285 xfs_warn(mp, "Bad attr remote magic!");
2286 ASSERT(0);
2287 break;
2288 }
2289 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2290 break;
2291 case XFS_BLFT_SB_BUF:
2292 if (magic32 != XFS_SB_MAGIC) {
2293 xfs_warn(mp, "Bad SB block magic!");
2294 ASSERT(0);
2295 break;
2296 }
2297 bp->b_ops = &xfs_sb_buf_ops;
2298 break;
2299 default:
2300 xfs_warn(mp, "Unknown buffer type %d!",
2301 xfs_blft_from_flags(buf_f));
2302 break;
2303 }
2304 }
2305
2306 /*
2307 * Perform a 'normal' buffer recovery. Each logged region of the
2308 * buffer should be copied over the corresponding region in the
2309 * given buffer. The bitmap in the buf log format structure indicates
2310 * where to place the logged data.
2311 */
2312 STATIC void
2313 xlog_recover_do_reg_buffer(
2314 struct xfs_mount *mp,
2315 xlog_recover_item_t *item,
2316 struct xfs_buf *bp,
2317 xfs_buf_log_format_t *buf_f)
2318 {
2319 int i;
2320 int bit;
2321 int nbits;
2322 int error;
2323
2324 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2325
2326 bit = 0;
2327 i = 1; /* 0 is the buf format structure */
2328 while (1) {
2329 bit = xfs_next_bit(buf_f->blf_data_map,
2330 buf_f->blf_map_size, bit);
2331 if (bit == -1)
2332 break;
2333 nbits = xfs_contig_bits(buf_f->blf_data_map,
2334 buf_f->blf_map_size, bit);
2335 ASSERT(nbits > 0);
2336 ASSERT(item->ri_buf[i].i_addr != NULL);
2337 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2338 ASSERT(BBTOB(bp->b_io_length) >=
2339 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2340
2341 /*
2342 * The dirty regions logged in the buffer, even though
2343 * contiguous, may span multiple chunks. This is because the
2344 * dirty region may span a physical page boundary in a buffer
2345 * and hence be split into two separate vectors for writing into
2346 * the log. Hence we need to trim nbits back to the length of
2347 * the current region being copied out of the log.
2348 */
2349 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2350 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2351
2352 /*
2353 * Do a sanity check if this is a dquot buffer. Just checking
2354 * the first dquot in the buffer should do. XXXThis is
2355 * probably a good thing to do for other buf types also.
2356 */
2357 error = 0;
2358 if (buf_f->blf_flags &
2359 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2360 if (item->ri_buf[i].i_addr == NULL) {
2361 xfs_alert(mp,
2362 "XFS: NULL dquot in %s.", __func__);
2363 goto next;
2364 }
2365 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2366 xfs_alert(mp,
2367 "XFS: dquot too small (%d) in %s.",
2368 item->ri_buf[i].i_len, __func__);
2369 goto next;
2370 }
2371 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2372 -1, 0, XFS_QMOPT_DOWARN,
2373 "dquot_buf_recover");
2374 if (error)
2375 goto next;
2376 }
2377
2378 memcpy(xfs_buf_offset(bp,
2379 (uint)bit << XFS_BLF_SHIFT), /* dest */
2380 item->ri_buf[i].i_addr, /* source */
2381 nbits<<XFS_BLF_SHIFT); /* length */
2382 next:
2383 i++;
2384 bit += nbits;
2385 }
2386
2387 /* Shouldn't be any more regions */
2388 ASSERT(i == item->ri_total);
2389
2390 /*
2391 * We can only do post recovery validation on items on CRC enabled
2392 * fielsystems as we need to know when the buffer was written to be able
2393 * to determine if we should have replayed the item. If we replay old
2394 * metadata over a newer buffer, then it will enter a temporarily
2395 * inconsistent state resulting in verification failures. Hence for now
2396 * just avoid the verification stage for non-crc filesystems
2397 */
2398 if (xfs_sb_version_hascrc(&mp->m_sb))
2399 xlog_recover_validate_buf_type(mp, bp, buf_f);
2400 }
2401
2402 /*
2403 * Perform a dquot buffer recovery.
2404 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2405 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2406 * Else, treat it as a regular buffer and do recovery.
2407 */
2408 STATIC void
2409 xlog_recover_do_dquot_buffer(
2410 struct xfs_mount *mp,
2411 struct xlog *log,
2412 struct xlog_recover_item *item,
2413 struct xfs_buf *bp,
2414 struct xfs_buf_log_format *buf_f)
2415 {
2416 uint type;
2417
2418 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2419
2420 /*
2421 * Filesystems are required to send in quota flags at mount time.
2422 */
2423 if (mp->m_qflags == 0) {
2424 return;
2425 }
2426
2427 type = 0;
2428 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2429 type |= XFS_DQ_USER;
2430 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2431 type |= XFS_DQ_PROJ;
2432 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2433 type |= XFS_DQ_GROUP;
2434 /*
2435 * This type of quotas was turned off, so ignore this buffer
2436 */
2437 if (log->l_quotaoffs_flag & type)
2438 return;
2439
2440 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2441 }
2442
2443 /*
2444 * This routine replays a modification made to a buffer at runtime.
2445 * There are actually two types of buffer, regular and inode, which
2446 * are handled differently. Inode buffers are handled differently
2447 * in that we only recover a specific set of data from them, namely
2448 * the inode di_next_unlinked fields. This is because all other inode
2449 * data is actually logged via inode records and any data we replay
2450 * here which overlaps that may be stale.
2451 *
2452 * When meta-data buffers are freed at run time we log a buffer item
2453 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2454 * of the buffer in the log should not be replayed at recovery time.
2455 * This is so that if the blocks covered by the buffer are reused for
2456 * file data before we crash we don't end up replaying old, freed
2457 * meta-data into a user's file.
2458 *
2459 * To handle the cancellation of buffer log items, we make two passes
2460 * over the log during recovery. During the first we build a table of
2461 * those buffers which have been cancelled, and during the second we
2462 * only replay those buffers which do not have corresponding cancel
2463 * records in the table. See xlog_recover_buffer_pass[1,2] above
2464 * for more details on the implementation of the table of cancel records.
2465 */
2466 STATIC int
2467 xlog_recover_buffer_pass2(
2468 struct xlog *log,
2469 struct list_head *buffer_list,
2470 struct xlog_recover_item *item,
2471 xfs_lsn_t current_lsn)
2472 {
2473 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2474 xfs_mount_t *mp = log->l_mp;
2475 xfs_buf_t *bp;
2476 int error;
2477 uint buf_flags;
2478 xfs_lsn_t lsn;
2479
2480 /*
2481 * In this pass we only want to recover all the buffers which have
2482 * not been cancelled and are not cancellation buffers themselves.
2483 */
2484 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2485 buf_f->blf_len, buf_f->blf_flags)) {
2486 trace_xfs_log_recover_buf_cancel(log, buf_f);
2487 return 0;
2488 }
2489
2490 trace_xfs_log_recover_buf_recover(log, buf_f);
2491
2492 buf_flags = 0;
2493 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2494 buf_flags |= XBF_UNMAPPED;
2495
2496 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2497 buf_flags, NULL);
2498 if (!bp)
2499 return XFS_ERROR(ENOMEM);
2500 error = bp->b_error;
2501 if (error) {
2502 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2503 goto out_release;
2504 }
2505
2506 /*
2507 * recover the buffer only if we get an LSN from it and it's less than
2508 * the lsn of the transaction we are replaying.
2509 */
2510 lsn = xlog_recover_get_buf_lsn(mp, bp);
2511 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2512 goto out_release;
2513
2514 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2515 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2516 } else if (buf_f->blf_flags &
2517 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2518 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2519 } else {
2520 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2521 }
2522 if (error)
2523 goto out_release;
2524
2525 /*
2526 * Perform delayed write on the buffer. Asynchronous writes will be
2527 * slower when taking into account all the buffers to be flushed.
2528 *
2529 * Also make sure that only inode buffers with good sizes stay in
2530 * the buffer cache. The kernel moves inodes in buffers of 1 block
2531 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2532 * buffers in the log can be a different size if the log was generated
2533 * by an older kernel using unclustered inode buffers or a newer kernel
2534 * running with a different inode cluster size. Regardless, if the
2535 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2536 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2537 * the buffer out of the buffer cache so that the buffer won't
2538 * overlap with future reads of those inodes.
2539 */
2540 if (XFS_DINODE_MAGIC ==
2541 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2542 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2543 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2544 xfs_buf_stale(bp);
2545 error = xfs_bwrite(bp);
2546 } else {
2547 ASSERT(bp->b_target->bt_mount == mp);
2548 bp->b_iodone = xlog_recover_iodone;
2549 xfs_buf_delwri_queue(bp, buffer_list);
2550 }
2551
2552 out_release:
2553 xfs_buf_relse(bp);
2554 return error;
2555 }
2556
2557 /*
2558 * Inode fork owner changes
2559 *
2560 * If we have been told that we have to reparent the inode fork, it's because an
2561 * extent swap operation on a CRC enabled filesystem has been done and we are
2562 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2563 * owners of it.
2564 *
2565 * The complexity here is that we don't have an inode context to work with, so
2566 * after we've replayed the inode we need to instantiate one. This is where the
2567 * fun begins.
2568 *
2569 * We are in the middle of log recovery, so we can't run transactions. That
2570 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2571 * that will result in the corresponding iput() running the inode through
2572 * xfs_inactive(). If we've just replayed an inode core that changes the link
2573 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2574 * transactions (bad!).
2575 *
2576 * So, to avoid this, we instantiate an inode directly from the inode core we've
2577 * just recovered. We have the buffer still locked, and all we really need to
2578 * instantiate is the inode core and the forks being modified. We can do this
2579 * manually, then run the inode btree owner change, and then tear down the
2580 * xfs_inode without having to run any transactions at all.
2581 *
2582 * Also, because we don't have a transaction context available here but need to
2583 * gather all the buffers we modify for writeback so we pass the buffer_list
2584 * instead for the operation to use.
2585 */
2586
2587 STATIC int
2588 xfs_recover_inode_owner_change(
2589 struct xfs_mount *mp,
2590 struct xfs_dinode *dip,
2591 struct xfs_inode_log_format *in_f,
2592 struct list_head *buffer_list)
2593 {
2594 struct xfs_inode *ip;
2595 int error;
2596
2597 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2598
2599 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2600 if (!ip)
2601 return ENOMEM;
2602
2603 /* instantiate the inode */
2604 xfs_dinode_from_disk(&ip->i_d, dip);
2605 ASSERT(ip->i_d.di_version >= 3);
2606
2607 error = xfs_iformat_fork(ip, dip);
2608 if (error)
2609 goto out_free_ip;
2610
2611
2612 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2613 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2614 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2615 ip->i_ino, buffer_list);
2616 if (error)
2617 goto out_free_ip;
2618 }
2619
2620 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2621 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2622 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2623 ip->i_ino, buffer_list);
2624 if (error)
2625 goto out_free_ip;
2626 }
2627
2628 out_free_ip:
2629 xfs_inode_free(ip);
2630 return error;
2631 }
2632
2633 STATIC int
2634 xlog_recover_inode_pass2(
2635 struct xlog *log,
2636 struct list_head *buffer_list,
2637 struct xlog_recover_item *item,
2638 xfs_lsn_t current_lsn)
2639 {
2640 xfs_inode_log_format_t *in_f;
2641 xfs_mount_t *mp = log->l_mp;
2642 xfs_buf_t *bp;
2643 xfs_dinode_t *dip;
2644 int len;
2645 xfs_caddr_t src;
2646 xfs_caddr_t dest;
2647 int error;
2648 int attr_index;
2649 uint fields;
2650 xfs_icdinode_t *dicp;
2651 uint isize;
2652 int need_free = 0;
2653
2654 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2655 in_f = item->ri_buf[0].i_addr;
2656 } else {
2657 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2658 need_free = 1;
2659 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2660 if (error)
2661 goto error;
2662 }
2663
2664 /*
2665 * Inode buffers can be freed, look out for it,
2666 * and do not replay the inode.
2667 */
2668 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2669 in_f->ilf_len, 0)) {
2670 error = 0;
2671 trace_xfs_log_recover_inode_cancel(log, in_f);
2672 goto error;
2673 }
2674 trace_xfs_log_recover_inode_recover(log, in_f);
2675
2676 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2677 &xfs_inode_buf_ops);
2678 if (!bp) {
2679 error = ENOMEM;
2680 goto error;
2681 }
2682 error = bp->b_error;
2683 if (error) {
2684 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2685 goto out_release;
2686 }
2687 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2688 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2689
2690 /*
2691 * Make sure the place we're flushing out to really looks
2692 * like an inode!
2693 */
2694 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2695 xfs_alert(mp,
2696 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2697 __func__, dip, bp, in_f->ilf_ino);
2698 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2699 XFS_ERRLEVEL_LOW, mp);
2700 error = EFSCORRUPTED;
2701 goto out_release;
2702 }
2703 dicp = item->ri_buf[1].i_addr;
2704 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2705 xfs_alert(mp,
2706 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2707 __func__, item, in_f->ilf_ino);
2708 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2709 XFS_ERRLEVEL_LOW, mp);
2710 error = EFSCORRUPTED;
2711 goto out_release;
2712 }
2713
2714 /*
2715 * If the inode has an LSN in it, recover the inode only if it's less
2716 * than the lsn of the transaction we are replaying. Note: we still
2717 * need to replay an owner change even though the inode is more recent
2718 * than the transaction as there is no guarantee that all the btree
2719 * blocks are more recent than this transaction, too.
2720 */
2721 if (dip->di_version >= 3) {
2722 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2723
2724 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2725 trace_xfs_log_recover_inode_skip(log, in_f);
2726 error = 0;
2727 goto out_owner_change;
2728 }
2729 }
2730
2731 /*
2732 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2733 * are transactional and if ordering is necessary we can determine that
2734 * more accurately by the LSN field in the V3 inode core. Don't trust
2735 * the inode versions we might be changing them here - use the
2736 * superblock flag to determine whether we need to look at di_flushiter
2737 * to skip replay when the on disk inode is newer than the log one
2738 */
2739 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2740 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2741 /*
2742 * Deal with the wrap case, DI_MAX_FLUSH is less
2743 * than smaller numbers
2744 */
2745 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2746 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2747 /* do nothing */
2748 } else {
2749 trace_xfs_log_recover_inode_skip(log, in_f);
2750 error = 0;
2751 goto out_release;
2752 }
2753 }
2754
2755 /* Take the opportunity to reset the flush iteration count */
2756 dicp->di_flushiter = 0;
2757
2758 if (unlikely(S_ISREG(dicp->di_mode))) {
2759 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2760 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2761 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2762 XFS_ERRLEVEL_LOW, mp, dicp);
2763 xfs_alert(mp,
2764 "%s: Bad regular inode log record, rec ptr 0x%p, "
2765 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2766 __func__, item, dip, bp, in_f->ilf_ino);
2767 error = EFSCORRUPTED;
2768 goto out_release;
2769 }
2770 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2771 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2772 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2773 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2774 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2775 XFS_ERRLEVEL_LOW, mp, dicp);
2776 xfs_alert(mp,
2777 "%s: Bad dir inode log record, rec ptr 0x%p, "
2778 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2779 __func__, item, dip, bp, in_f->ilf_ino);
2780 error = EFSCORRUPTED;
2781 goto out_release;
2782 }
2783 }
2784 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2785 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2786 XFS_ERRLEVEL_LOW, mp, dicp);
2787 xfs_alert(mp,
2788 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2789 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2790 __func__, item, dip, bp, in_f->ilf_ino,
2791 dicp->di_nextents + dicp->di_anextents,
2792 dicp->di_nblocks);
2793 error = EFSCORRUPTED;
2794 goto out_release;
2795 }
2796 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2797 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2798 XFS_ERRLEVEL_LOW, mp, dicp);
2799 xfs_alert(mp,
2800 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2801 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2802 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2803 error = EFSCORRUPTED;
2804 goto out_release;
2805 }
2806 isize = xfs_icdinode_size(dicp->di_version);
2807 if (unlikely(item->ri_buf[1].i_len > isize)) {
2808 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2809 XFS_ERRLEVEL_LOW, mp, dicp);
2810 xfs_alert(mp,
2811 "%s: Bad inode log record length %d, rec ptr 0x%p",
2812 __func__, item->ri_buf[1].i_len, item);
2813 error = EFSCORRUPTED;
2814 goto out_release;
2815 }
2816
2817 /* The core is in in-core format */
2818 xfs_dinode_to_disk(dip, dicp);
2819
2820 /* the rest is in on-disk format */
2821 if (item->ri_buf[1].i_len > isize) {
2822 memcpy((char *)dip + isize,
2823 item->ri_buf[1].i_addr + isize,
2824 item->ri_buf[1].i_len - isize);
2825 }
2826
2827 fields = in_f->ilf_fields;
2828 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2829 case XFS_ILOG_DEV:
2830 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2831 break;
2832 case XFS_ILOG_UUID:
2833 memcpy(XFS_DFORK_DPTR(dip),
2834 &in_f->ilf_u.ilfu_uuid,
2835 sizeof(uuid_t));
2836 break;
2837 }
2838
2839 if (in_f->ilf_size == 2)
2840 goto out_owner_change;
2841 len = item->ri_buf[2].i_len;
2842 src = item->ri_buf[2].i_addr;
2843 ASSERT(in_f->ilf_size <= 4);
2844 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2845 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2846 (len == in_f->ilf_dsize));
2847
2848 switch (fields & XFS_ILOG_DFORK) {
2849 case XFS_ILOG_DDATA:
2850 case XFS_ILOG_DEXT:
2851 memcpy(XFS_DFORK_DPTR(dip), src, len);
2852 break;
2853
2854 case XFS_ILOG_DBROOT:
2855 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2856 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2857 XFS_DFORK_DSIZE(dip, mp));
2858 break;
2859
2860 default:
2861 /*
2862 * There are no data fork flags set.
2863 */
2864 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2865 break;
2866 }
2867
2868 /*
2869 * If we logged any attribute data, recover it. There may or
2870 * may not have been any other non-core data logged in this
2871 * transaction.
2872 */
2873 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2874 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2875 attr_index = 3;
2876 } else {
2877 attr_index = 2;
2878 }
2879 len = item->ri_buf[attr_index].i_len;
2880 src = item->ri_buf[attr_index].i_addr;
2881 ASSERT(len == in_f->ilf_asize);
2882
2883 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2884 case XFS_ILOG_ADATA:
2885 case XFS_ILOG_AEXT:
2886 dest = XFS_DFORK_APTR(dip);
2887 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2888 memcpy(dest, src, len);
2889 break;
2890
2891 case XFS_ILOG_ABROOT:
2892 dest = XFS_DFORK_APTR(dip);
2893 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2894 len, (xfs_bmdr_block_t*)dest,
2895 XFS_DFORK_ASIZE(dip, mp));
2896 break;
2897
2898 default:
2899 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2900 ASSERT(0);
2901 error = EIO;
2902 goto out_release;
2903 }
2904 }
2905
2906 out_owner_change:
2907 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2908 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2909 buffer_list);
2910 /* re-generate the checksum. */
2911 xfs_dinode_calc_crc(log->l_mp, dip);
2912
2913 ASSERT(bp->b_target->bt_mount == mp);
2914 bp->b_iodone = xlog_recover_iodone;
2915 xfs_buf_delwri_queue(bp, buffer_list);
2916
2917 out_release:
2918 xfs_buf_relse(bp);
2919 error:
2920 if (need_free)
2921 kmem_free(in_f);
2922 return XFS_ERROR(error);
2923 }
2924
2925 /*
2926 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2927 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2928 * of that type.
2929 */
2930 STATIC int
2931 xlog_recover_quotaoff_pass1(
2932 struct xlog *log,
2933 struct xlog_recover_item *item)
2934 {
2935 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2936 ASSERT(qoff_f);
2937
2938 /*
2939 * The logitem format's flag tells us if this was user quotaoff,
2940 * group/project quotaoff or both.
2941 */
2942 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2943 log->l_quotaoffs_flag |= XFS_DQ_USER;
2944 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2945 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2946 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2947 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2948
2949 return (0);
2950 }
2951
2952 /*
2953 * Recover a dquot record
2954 */
2955 STATIC int
2956 xlog_recover_dquot_pass2(
2957 struct xlog *log,
2958 struct list_head *buffer_list,
2959 struct xlog_recover_item *item,
2960 xfs_lsn_t current_lsn)
2961 {
2962 xfs_mount_t *mp = log->l_mp;
2963 xfs_buf_t *bp;
2964 struct xfs_disk_dquot *ddq, *recddq;
2965 int error;
2966 xfs_dq_logformat_t *dq_f;
2967 uint type;
2968
2969
2970 /*
2971 * Filesystems are required to send in quota flags at mount time.
2972 */
2973 if (mp->m_qflags == 0)
2974 return (0);
2975
2976 recddq = item->ri_buf[1].i_addr;
2977 if (recddq == NULL) {
2978 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2979 return XFS_ERROR(EIO);
2980 }
2981 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2982 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2983 item->ri_buf[1].i_len, __func__);
2984 return XFS_ERROR(EIO);
2985 }
2986
2987 /*
2988 * This type of quotas was turned off, so ignore this record.
2989 */
2990 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2991 ASSERT(type);
2992 if (log->l_quotaoffs_flag & type)
2993 return (0);
2994
2995 /*
2996 * At this point we know that quota was _not_ turned off.
2997 * Since the mount flags are not indicating to us otherwise, this
2998 * must mean that quota is on, and the dquot needs to be replayed.
2999 * Remember that we may not have fully recovered the superblock yet,
3000 * so we can't do the usual trick of looking at the SB quota bits.
3001 *
3002 * The other possibility, of course, is that the quota subsystem was
3003 * removed since the last mount - ENOSYS.
3004 */
3005 dq_f = item->ri_buf[0].i_addr;
3006 ASSERT(dq_f);
3007 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3008 "xlog_recover_dquot_pass2 (log copy)");
3009 if (error)
3010 return XFS_ERROR(EIO);
3011 ASSERT(dq_f->qlf_len == 1);
3012
3013 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3014 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3015 NULL);
3016 if (error)
3017 return error;
3018
3019 ASSERT(bp);
3020 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3021
3022 /*
3023 * At least the magic num portion should be on disk because this
3024 * was among a chunk of dquots created earlier, and we did some
3025 * minimal initialization then.
3026 */
3027 error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3028 "xlog_recover_dquot_pass2");
3029 if (error) {
3030 xfs_buf_relse(bp);
3031 return XFS_ERROR(EIO);
3032 }
3033
3034 /*
3035 * If the dquot has an LSN in it, recover the dquot only if it's less
3036 * than the lsn of the transaction we are replaying.
3037 */
3038 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3039 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3040 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3041
3042 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3043 goto out_release;
3044 }
3045 }
3046
3047 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3048 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3049 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3050 XFS_DQUOT_CRC_OFF);
3051 }
3052
3053 ASSERT(dq_f->qlf_size == 2);
3054 ASSERT(bp->b_target->bt_mount == mp);
3055 bp->b_iodone = xlog_recover_iodone;
3056 xfs_buf_delwri_queue(bp, buffer_list);
3057
3058 out_release:
3059 xfs_buf_relse(bp);
3060 return 0;
3061 }
3062
3063 /*
3064 * This routine is called to create an in-core extent free intent
3065 * item from the efi format structure which was logged on disk.
3066 * It allocates an in-core efi, copies the extents from the format
3067 * structure into it, and adds the efi to the AIL with the given
3068 * LSN.
3069 */
3070 STATIC int
3071 xlog_recover_efi_pass2(
3072 struct xlog *log,
3073 struct xlog_recover_item *item,
3074 xfs_lsn_t lsn)
3075 {
3076 int error;
3077 xfs_mount_t *mp = log->l_mp;
3078 xfs_efi_log_item_t *efip;
3079 xfs_efi_log_format_t *efi_formatp;
3080
3081 efi_formatp = item->ri_buf[0].i_addr;
3082
3083 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3084 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3085 &(efip->efi_format)))) {
3086 xfs_efi_item_free(efip);
3087 return error;
3088 }
3089 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3090
3091 spin_lock(&log->l_ailp->xa_lock);
3092 /*
3093 * xfs_trans_ail_update() drops the AIL lock.
3094 */
3095 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3096 return 0;
3097 }
3098
3099
3100 /*
3101 * This routine is called when an efd format structure is found in
3102 * a committed transaction in the log. It's purpose is to cancel
3103 * the corresponding efi if it was still in the log. To do this
3104 * it searches the AIL for the efi with an id equal to that in the
3105 * efd format structure. If we find it, we remove the efi from the
3106 * AIL and free it.
3107 */
3108 STATIC int
3109 xlog_recover_efd_pass2(
3110 struct xlog *log,
3111 struct xlog_recover_item *item)
3112 {
3113 xfs_efd_log_format_t *efd_formatp;
3114 xfs_efi_log_item_t *efip = NULL;
3115 xfs_log_item_t *lip;
3116 __uint64_t efi_id;
3117 struct xfs_ail_cursor cur;
3118 struct xfs_ail *ailp = log->l_ailp;
3119
3120 efd_formatp = item->ri_buf[0].i_addr;
3121 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3122 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3123 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3124 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3125 efi_id = efd_formatp->efd_efi_id;
3126
3127 /*
3128 * Search for the efi with the id in the efd format structure
3129 * in the AIL.
3130 */
3131 spin_lock(&ailp->xa_lock);
3132 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3133 while (lip != NULL) {
3134 if (lip->li_type == XFS_LI_EFI) {
3135 efip = (xfs_efi_log_item_t *)lip;
3136 if (efip->efi_format.efi_id == efi_id) {
3137 /*
3138 * xfs_trans_ail_delete() drops the
3139 * AIL lock.
3140 */
3141 xfs_trans_ail_delete(ailp, lip,
3142 SHUTDOWN_CORRUPT_INCORE);
3143 xfs_efi_item_free(efip);
3144 spin_lock(&ailp->xa_lock);
3145 break;
3146 }
3147 }
3148 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3149 }
3150 xfs_trans_ail_cursor_done(&cur);
3151 spin_unlock(&ailp->xa_lock);
3152
3153 return 0;
3154 }
3155
3156 /*
3157 * This routine is called when an inode create format structure is found in a
3158 * committed transaction in the log. It's purpose is to initialise the inodes
3159 * being allocated on disk. This requires us to get inode cluster buffers that
3160 * match the range to be intialised, stamped with inode templates and written
3161 * by delayed write so that subsequent modifications will hit the cached buffer
3162 * and only need writing out at the end of recovery.
3163 */
3164 STATIC int
3165 xlog_recover_do_icreate_pass2(
3166 struct xlog *log,
3167 struct list_head *buffer_list,
3168 xlog_recover_item_t *item)
3169 {
3170 struct xfs_mount *mp = log->l_mp;
3171 struct xfs_icreate_log *icl;
3172 xfs_agnumber_t agno;
3173 xfs_agblock_t agbno;
3174 unsigned int count;
3175 unsigned int isize;
3176 xfs_agblock_t length;
3177
3178 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3179 if (icl->icl_type != XFS_LI_ICREATE) {
3180 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3181 return EINVAL;
3182 }
3183
3184 if (icl->icl_size != 1) {
3185 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3186 return EINVAL;
3187 }
3188
3189 agno = be32_to_cpu(icl->icl_ag);
3190 if (agno >= mp->m_sb.sb_agcount) {
3191 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3192 return EINVAL;
3193 }
3194 agbno = be32_to_cpu(icl->icl_agbno);
3195 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3196 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3197 return EINVAL;
3198 }
3199 isize = be32_to_cpu(icl->icl_isize);
3200 if (isize != mp->m_sb.sb_inodesize) {
3201 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3202 return EINVAL;
3203 }
3204 count = be32_to_cpu(icl->icl_count);
3205 if (!count) {
3206 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3207 return EINVAL;
3208 }
3209 length = be32_to_cpu(icl->icl_length);
3210 if (!length || length >= mp->m_sb.sb_agblocks) {
3211 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3212 return EINVAL;
3213 }
3214
3215 /* existing allocation is fixed value */
3216 ASSERT(count == mp->m_ialloc_inos);
3217 ASSERT(length == mp->m_ialloc_blks);
3218 if (count != mp->m_ialloc_inos ||
3219 length != mp->m_ialloc_blks) {
3220 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3221 return EINVAL;
3222 }
3223
3224 /*
3225 * Inode buffers can be freed. Do not replay the inode initialisation as
3226 * we could be overwriting something written after this inode buffer was
3227 * cancelled.
3228 *
3229 * XXX: we need to iterate all buffers and only init those that are not
3230 * cancelled. I think that a more fine grained factoring of
3231 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3232 * done easily.
3233 */
3234 if (xlog_check_buffer_cancelled(log,
3235 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3236 return 0;
3237
3238 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3239 be32_to_cpu(icl->icl_gen));
3240 return 0;
3241 }
3242
3243 /*
3244 * Free up any resources allocated by the transaction
3245 *
3246 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3247 */
3248 STATIC void
3249 xlog_recover_free_trans(
3250 struct xlog_recover *trans)
3251 {
3252 xlog_recover_item_t *item, *n;
3253 int i;
3254
3255 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3256 /* Free the regions in the item. */
3257 list_del(&item->ri_list);
3258 for (i = 0; i < item->ri_cnt; i++)
3259 kmem_free(item->ri_buf[i].i_addr);
3260 /* Free the item itself */
3261 kmem_free(item->ri_buf);
3262 kmem_free(item);
3263 }
3264 /* Free the transaction recover structure */
3265 kmem_free(trans);
3266 }
3267
3268 STATIC void
3269 xlog_recover_buffer_ra_pass2(
3270 struct xlog *log,
3271 struct xlog_recover_item *item)
3272 {
3273 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3274 struct xfs_mount *mp = log->l_mp;
3275
3276 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3277 buf_f->blf_len, buf_f->blf_flags)) {
3278 return;
3279 }
3280
3281 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3282 buf_f->blf_len, NULL);
3283 }
3284
3285 STATIC void
3286 xlog_recover_inode_ra_pass2(
3287 struct xlog *log,
3288 struct xlog_recover_item *item)
3289 {
3290 struct xfs_inode_log_format ilf_buf;
3291 struct xfs_inode_log_format *ilfp;
3292 struct xfs_mount *mp = log->l_mp;
3293 int error;
3294
3295 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3296 ilfp = item->ri_buf[0].i_addr;
3297 } else {
3298 ilfp = &ilf_buf;
3299 memset(ilfp, 0, sizeof(*ilfp));
3300 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3301 if (error)
3302 return;
3303 }
3304
3305 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3306 return;
3307
3308 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3309 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3310 }
3311
3312 STATIC void
3313 xlog_recover_dquot_ra_pass2(
3314 struct xlog *log,
3315 struct xlog_recover_item *item)
3316 {
3317 struct xfs_mount *mp = log->l_mp;
3318 struct xfs_disk_dquot *recddq;
3319 struct xfs_dq_logformat *dq_f;
3320 uint type;
3321
3322
3323 if (mp->m_qflags == 0)
3324 return;
3325
3326 recddq = item->ri_buf[1].i_addr;
3327 if (recddq == NULL)
3328 return;
3329 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3330 return;
3331
3332 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3333 ASSERT(type);
3334 if (log->l_quotaoffs_flag & type)
3335 return;
3336
3337 dq_f = item->ri_buf[0].i_addr;
3338 ASSERT(dq_f);
3339 ASSERT(dq_f->qlf_len == 1);
3340
3341 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3342 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3343 }
3344
3345 STATIC void
3346 xlog_recover_ra_pass2(
3347 struct xlog *log,
3348 struct xlog_recover_item *item)
3349 {
3350 switch (ITEM_TYPE(item)) {
3351 case XFS_LI_BUF:
3352 xlog_recover_buffer_ra_pass2(log, item);
3353 break;
3354 case XFS_LI_INODE:
3355 xlog_recover_inode_ra_pass2(log, item);
3356 break;
3357 case XFS_LI_DQUOT:
3358 xlog_recover_dquot_ra_pass2(log, item);
3359 break;
3360 case XFS_LI_EFI:
3361 case XFS_LI_EFD:
3362 case XFS_LI_QUOTAOFF:
3363 default:
3364 break;
3365 }
3366 }
3367
3368 STATIC int
3369 xlog_recover_commit_pass1(
3370 struct xlog *log,
3371 struct xlog_recover *trans,
3372 struct xlog_recover_item *item)
3373 {
3374 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3375
3376 switch (ITEM_TYPE(item)) {
3377 case XFS_LI_BUF:
3378 return xlog_recover_buffer_pass1(log, item);
3379 case XFS_LI_QUOTAOFF:
3380 return xlog_recover_quotaoff_pass1(log, item);
3381 case XFS_LI_INODE:
3382 case XFS_LI_EFI:
3383 case XFS_LI_EFD:
3384 case XFS_LI_DQUOT:
3385 case XFS_LI_ICREATE:
3386 /* nothing to do in pass 1 */
3387 return 0;
3388 default:
3389 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3390 __func__, ITEM_TYPE(item));
3391 ASSERT(0);
3392 return XFS_ERROR(EIO);
3393 }
3394 }
3395
3396 STATIC int
3397 xlog_recover_commit_pass2(
3398 struct xlog *log,
3399 struct xlog_recover *trans,
3400 struct list_head *buffer_list,
3401 struct xlog_recover_item *item)
3402 {
3403 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3404
3405 switch (ITEM_TYPE(item)) {
3406 case XFS_LI_BUF:
3407 return xlog_recover_buffer_pass2(log, buffer_list, item,
3408 trans->r_lsn);
3409 case XFS_LI_INODE:
3410 return xlog_recover_inode_pass2(log, buffer_list, item,
3411 trans->r_lsn);
3412 case XFS_LI_EFI:
3413 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3414 case XFS_LI_EFD:
3415 return xlog_recover_efd_pass2(log, item);
3416 case XFS_LI_DQUOT:
3417 return xlog_recover_dquot_pass2(log, buffer_list, item,
3418 trans->r_lsn);
3419 case XFS_LI_ICREATE:
3420 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3421 case XFS_LI_QUOTAOFF:
3422 /* nothing to do in pass2 */
3423 return 0;
3424 default:
3425 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3426 __func__, ITEM_TYPE(item));
3427 ASSERT(0);
3428 return XFS_ERROR(EIO);
3429 }
3430 }
3431
3432 STATIC int
3433 xlog_recover_items_pass2(
3434 struct xlog *log,
3435 struct xlog_recover *trans,
3436 struct list_head *buffer_list,
3437 struct list_head *item_list)
3438 {
3439 struct xlog_recover_item *item;
3440 int error = 0;
3441
3442 list_for_each_entry(item, item_list, ri_list) {
3443 error = xlog_recover_commit_pass2(log, trans,
3444 buffer_list, item);
3445 if (error)
3446 return error;
3447 }
3448
3449 return error;
3450 }
3451
3452 /*
3453 * Perform the transaction.
3454 *
3455 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3456 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3457 */
3458 STATIC int
3459 xlog_recover_commit_trans(
3460 struct xlog *log,
3461 struct xlog_recover *trans,
3462 int pass)
3463 {
3464 int error = 0;
3465 int error2;
3466 int items_queued = 0;
3467 struct xlog_recover_item *item;
3468 struct xlog_recover_item *next;
3469 LIST_HEAD (buffer_list);
3470 LIST_HEAD (ra_list);
3471 LIST_HEAD (done_list);
3472
3473 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3474
3475 hlist_del(&trans->r_list);
3476
3477 error = xlog_recover_reorder_trans(log, trans, pass);
3478 if (error)
3479 return error;
3480
3481 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3482 switch (pass) {
3483 case XLOG_RECOVER_PASS1:
3484 error = xlog_recover_commit_pass1(log, trans, item);
3485 break;
3486 case XLOG_RECOVER_PASS2:
3487 xlog_recover_ra_pass2(log, item);
3488 list_move_tail(&item->ri_list, &ra_list);
3489 items_queued++;
3490 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3491 error = xlog_recover_items_pass2(log, trans,
3492 &buffer_list, &ra_list);
3493 list_splice_tail_init(&ra_list, &done_list);
3494 items_queued = 0;
3495 }
3496
3497 break;
3498 default:
3499 ASSERT(0);
3500 }
3501
3502 if (error)
3503 goto out;
3504 }
3505
3506 out:
3507 if (!list_empty(&ra_list)) {
3508 if (!error)
3509 error = xlog_recover_items_pass2(log, trans,
3510 &buffer_list, &ra_list);
3511 list_splice_tail_init(&ra_list, &done_list);
3512 }
3513
3514 if (!list_empty(&done_list))
3515 list_splice_init(&done_list, &trans->r_itemq);
3516
3517 xlog_recover_free_trans(trans);
3518
3519 error2 = xfs_buf_delwri_submit(&buffer_list);
3520 return error ? error : error2;
3521 }
3522
3523 STATIC int
3524 xlog_recover_unmount_trans(
3525 struct xlog *log)
3526 {
3527 /* Do nothing now */
3528 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3529 return 0;
3530 }
3531
3532 /*
3533 * There are two valid states of the r_state field. 0 indicates that the
3534 * transaction structure is in a normal state. We have either seen the
3535 * start of the transaction or the last operation we added was not a partial
3536 * operation. If the last operation we added to the transaction was a
3537 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3538 *
3539 * NOTE: skip LRs with 0 data length.
3540 */
3541 STATIC int
3542 xlog_recover_process_data(
3543 struct xlog *log,
3544 struct hlist_head rhash[],
3545 struct xlog_rec_header *rhead,
3546 xfs_caddr_t dp,
3547 int pass)
3548 {
3549 xfs_caddr_t lp;
3550 int num_logops;
3551 xlog_op_header_t *ohead;
3552 xlog_recover_t *trans;
3553 xlog_tid_t tid;
3554 int error;
3555 unsigned long hash;
3556 uint flags;
3557
3558 lp = dp + be32_to_cpu(rhead->h_len);
3559 num_logops = be32_to_cpu(rhead->h_num_logops);
3560
3561 /* check the log format matches our own - else we can't recover */
3562 if (xlog_header_check_recover(log->l_mp, rhead))
3563 return (XFS_ERROR(EIO));
3564
3565 while ((dp < lp) && num_logops) {
3566 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3567 ohead = (xlog_op_header_t *)dp;
3568 dp += sizeof(xlog_op_header_t);
3569 if (ohead->oh_clientid != XFS_TRANSACTION &&
3570 ohead->oh_clientid != XFS_LOG) {
3571 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3572 __func__, ohead->oh_clientid);
3573 ASSERT(0);
3574 return (XFS_ERROR(EIO));
3575 }
3576 tid = be32_to_cpu(ohead->oh_tid);
3577 hash = XLOG_RHASH(tid);
3578 trans = xlog_recover_find_tid(&rhash[hash], tid);
3579 if (trans == NULL) { /* not found; add new tid */
3580 if (ohead->oh_flags & XLOG_START_TRANS)
3581 xlog_recover_new_tid(&rhash[hash], tid,
3582 be64_to_cpu(rhead->h_lsn));
3583 } else {
3584 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3585 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3586 __func__, be32_to_cpu(ohead->oh_len));
3587 WARN_ON(1);
3588 return (XFS_ERROR(EIO));
3589 }
3590 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3591 if (flags & XLOG_WAS_CONT_TRANS)
3592 flags &= ~XLOG_CONTINUE_TRANS;
3593 switch (flags) {
3594 case XLOG_COMMIT_TRANS:
3595 error = xlog_recover_commit_trans(log,
3596 trans, pass);
3597 break;
3598 case XLOG_UNMOUNT_TRANS:
3599 error = xlog_recover_unmount_trans(log);
3600 break;
3601 case XLOG_WAS_CONT_TRANS:
3602 error = xlog_recover_add_to_cont_trans(log,
3603 trans, dp,
3604 be32_to_cpu(ohead->oh_len));
3605 break;
3606 case XLOG_START_TRANS:
3607 xfs_warn(log->l_mp, "%s: bad transaction",
3608 __func__);
3609 ASSERT(0);
3610 error = XFS_ERROR(EIO);
3611 break;
3612 case 0:
3613 case XLOG_CONTINUE_TRANS:
3614 error = xlog_recover_add_to_trans(log, trans,
3615 dp, be32_to_cpu(ohead->oh_len));
3616 break;
3617 default:
3618 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3619 __func__, flags);
3620 ASSERT(0);
3621 error = XFS_ERROR(EIO);
3622 break;
3623 }
3624 if (error) {
3625 xlog_recover_free_trans(trans);
3626 return error;
3627 }
3628 }
3629 dp += be32_to_cpu(ohead->oh_len);
3630 num_logops--;
3631 }
3632 return 0;
3633 }
3634
3635 /*
3636 * Process an extent free intent item that was recovered from
3637 * the log. We need to free the extents that it describes.
3638 */
3639 STATIC int
3640 xlog_recover_process_efi(
3641 xfs_mount_t *mp,
3642 xfs_efi_log_item_t *efip)
3643 {
3644 xfs_efd_log_item_t *efdp;
3645 xfs_trans_t *tp;
3646 int i;
3647 int error = 0;
3648 xfs_extent_t *extp;
3649 xfs_fsblock_t startblock_fsb;
3650
3651 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3652
3653 /*
3654 * First check the validity of the extents described by the
3655 * EFI. If any are bad, then assume that all are bad and
3656 * just toss the EFI.
3657 */
3658 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3659 extp = &(efip->efi_format.efi_extents[i]);
3660 startblock_fsb = XFS_BB_TO_FSB(mp,
3661 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3662 if ((startblock_fsb == 0) ||
3663 (extp->ext_len == 0) ||
3664 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3665 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3666 /*
3667 * This will pull the EFI from the AIL and
3668 * free the memory associated with it.
3669 */
3670 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3671 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3672 return XFS_ERROR(EIO);
3673 }
3674 }
3675
3676 tp = xfs_trans_alloc(mp, 0);
3677 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3678 if (error)
3679 goto abort_error;
3680 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3681
3682 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3683 extp = &(efip->efi_format.efi_extents[i]);
3684 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3685 if (error)
3686 goto abort_error;
3687 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3688 extp->ext_len);
3689 }
3690
3691 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3692 error = xfs_trans_commit(tp, 0);
3693 return error;
3694
3695 abort_error:
3696 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3697 return error;
3698 }
3699
3700 /*
3701 * When this is called, all of the EFIs which did not have
3702 * corresponding EFDs should be in the AIL. What we do now
3703 * is free the extents associated with each one.
3704 *
3705 * Since we process the EFIs in normal transactions, they
3706 * will be removed at some point after the commit. This prevents
3707 * us from just walking down the list processing each one.
3708 * We'll use a flag in the EFI to skip those that we've already
3709 * processed and use the AIL iteration mechanism's generation
3710 * count to try to speed this up at least a bit.
3711 *
3712 * When we start, we know that the EFIs are the only things in
3713 * the AIL. As we process them, however, other items are added
3714 * to the AIL. Since everything added to the AIL must come after
3715 * everything already in the AIL, we stop processing as soon as
3716 * we see something other than an EFI in the AIL.
3717 */
3718 STATIC int
3719 xlog_recover_process_efis(
3720 struct xlog *log)
3721 {
3722 xfs_log_item_t *lip;
3723 xfs_efi_log_item_t *efip;
3724 int error = 0;
3725 struct xfs_ail_cursor cur;
3726 struct xfs_ail *ailp;
3727
3728 ailp = log->l_ailp;
3729 spin_lock(&ailp->xa_lock);
3730 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3731 while (lip != NULL) {
3732 /*
3733 * We're done when we see something other than an EFI.
3734 * There should be no EFIs left in the AIL now.
3735 */
3736 if (lip->li_type != XFS_LI_EFI) {
3737 #ifdef DEBUG
3738 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3739 ASSERT(lip->li_type != XFS_LI_EFI);
3740 #endif
3741 break;
3742 }
3743
3744 /*
3745 * Skip EFIs that we've already processed.
3746 */
3747 efip = (xfs_efi_log_item_t *)lip;
3748 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3749 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3750 continue;
3751 }
3752
3753 spin_unlock(&ailp->xa_lock);
3754 error = xlog_recover_process_efi(log->l_mp, efip);
3755 spin_lock(&ailp->xa_lock);
3756 if (error)
3757 goto out;
3758 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3759 }
3760 out:
3761 xfs_trans_ail_cursor_done(&cur);
3762 spin_unlock(&ailp->xa_lock);
3763 return error;
3764 }
3765
3766 /*
3767 * This routine performs a transaction to null out a bad inode pointer
3768 * in an agi unlinked inode hash bucket.
3769 */
3770 STATIC void
3771 xlog_recover_clear_agi_bucket(
3772 xfs_mount_t *mp,
3773 xfs_agnumber_t agno,
3774 int bucket)
3775 {
3776 xfs_trans_t *tp;
3777 xfs_agi_t *agi;
3778 xfs_buf_t *agibp;
3779 int offset;
3780 int error;
3781
3782 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3783 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3784 if (error)
3785 goto out_abort;
3786
3787 error = xfs_read_agi(mp, tp, agno, &agibp);
3788 if (error)
3789 goto out_abort;
3790
3791 agi = XFS_BUF_TO_AGI(agibp);
3792 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3793 offset = offsetof(xfs_agi_t, agi_unlinked) +
3794 (sizeof(xfs_agino_t) * bucket);
3795 xfs_trans_log_buf(tp, agibp, offset,
3796 (offset + sizeof(xfs_agino_t) - 1));
3797
3798 error = xfs_trans_commit(tp, 0);
3799 if (error)
3800 goto out_error;
3801 return;
3802
3803 out_abort:
3804 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3805 out_error:
3806 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3807 return;
3808 }
3809
3810 STATIC xfs_agino_t
3811 xlog_recover_process_one_iunlink(
3812 struct xfs_mount *mp,
3813 xfs_agnumber_t agno,
3814 xfs_agino_t agino,
3815 int bucket)
3816 {
3817 struct xfs_buf *ibp;
3818 struct xfs_dinode *dip;
3819 struct xfs_inode *ip;
3820 xfs_ino_t ino;
3821 int error;
3822
3823 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3824 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3825 if (error)
3826 goto fail;
3827
3828 /*
3829 * Get the on disk inode to find the next inode in the bucket.
3830 */
3831 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3832 if (error)
3833 goto fail_iput;
3834
3835 ASSERT(ip->i_d.di_nlink == 0);
3836 ASSERT(ip->i_d.di_mode != 0);
3837
3838 /* setup for the next pass */
3839 agino = be32_to_cpu(dip->di_next_unlinked);
3840 xfs_buf_relse(ibp);
3841
3842 /*
3843 * Prevent any DMAPI event from being sent when the reference on
3844 * the inode is dropped.
3845 */
3846 ip->i_d.di_dmevmask = 0;
3847
3848 IRELE(ip);
3849 return agino;
3850
3851 fail_iput:
3852 IRELE(ip);
3853 fail:
3854 /*
3855 * We can't read in the inode this bucket points to, or this inode
3856 * is messed up. Just ditch this bucket of inodes. We will lose
3857 * some inodes and space, but at least we won't hang.
3858 *
3859 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3860 * clear the inode pointer in the bucket.
3861 */
3862 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3863 return NULLAGINO;
3864 }
3865
3866 /*
3867 * xlog_iunlink_recover
3868 *
3869 * This is called during recovery to process any inodes which
3870 * we unlinked but not freed when the system crashed. These
3871 * inodes will be on the lists in the AGI blocks. What we do
3872 * here is scan all the AGIs and fully truncate and free any
3873 * inodes found on the lists. Each inode is removed from the
3874 * lists when it has been fully truncated and is freed. The
3875 * freeing of the inode and its removal from the list must be
3876 * atomic.
3877 */
3878 STATIC void
3879 xlog_recover_process_iunlinks(
3880 struct xlog *log)
3881 {
3882 xfs_mount_t *mp;
3883 xfs_agnumber_t agno;
3884 xfs_agi_t *agi;
3885 xfs_buf_t *agibp;
3886 xfs_agino_t agino;
3887 int bucket;
3888 int error;
3889 uint mp_dmevmask;
3890
3891 mp = log->l_mp;
3892
3893 /*
3894 * Prevent any DMAPI event from being sent while in this function.
3895 */
3896 mp_dmevmask = mp->m_dmevmask;
3897 mp->m_dmevmask = 0;
3898
3899 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3900 /*
3901 * Find the agi for this ag.
3902 */
3903 error = xfs_read_agi(mp, NULL, agno, &agibp);
3904 if (error) {
3905 /*
3906 * AGI is b0rked. Don't process it.
3907 *
3908 * We should probably mark the filesystem as corrupt
3909 * after we've recovered all the ag's we can....
3910 */
3911 continue;
3912 }
3913 /*
3914 * Unlock the buffer so that it can be acquired in the normal
3915 * course of the transaction to truncate and free each inode.
3916 * Because we are not racing with anyone else here for the AGI
3917 * buffer, we don't even need to hold it locked to read the
3918 * initial unlinked bucket entries out of the buffer. We keep
3919 * buffer reference though, so that it stays pinned in memory
3920 * while we need the buffer.
3921 */
3922 agi = XFS_BUF_TO_AGI(agibp);
3923 xfs_buf_unlock(agibp);
3924
3925 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3926 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3927 while (agino != NULLAGINO) {
3928 agino = xlog_recover_process_one_iunlink(mp,
3929 agno, agino, bucket);
3930 }
3931 }
3932 xfs_buf_rele(agibp);
3933 }
3934
3935 mp->m_dmevmask = mp_dmevmask;
3936 }
3937
3938 /*
3939 * Upack the log buffer data and crc check it. If the check fails, issue a
3940 * warning if and only if the CRC in the header is non-zero. This makes the
3941 * check an advisory warning, and the zero CRC check will prevent failure
3942 * warnings from being emitted when upgrading the kernel from one that does not
3943 * add CRCs by default.
3944 *
3945 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3946 * corruption failure
3947 */
3948 STATIC int
3949 xlog_unpack_data_crc(
3950 struct xlog_rec_header *rhead,
3951 xfs_caddr_t dp,
3952 struct xlog *log)
3953 {
3954 __le32 crc;
3955
3956 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3957 if (crc != rhead->h_crc) {
3958 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3959 xfs_alert(log->l_mp,
3960 "log record CRC mismatch: found 0x%x, expected 0x%x.",
3961 le32_to_cpu(rhead->h_crc),
3962 le32_to_cpu(crc));
3963 xfs_hex_dump(dp, 32);
3964 }
3965
3966 /*
3967 * If we've detected a log record corruption, then we can't
3968 * recover past this point. Abort recovery if we are enforcing
3969 * CRC protection by punting an error back up the stack.
3970 */
3971 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3972 return EFSCORRUPTED;
3973 }
3974
3975 return 0;
3976 }
3977
3978 STATIC int
3979 xlog_unpack_data(
3980 struct xlog_rec_header *rhead,
3981 xfs_caddr_t dp,
3982 struct xlog *log)
3983 {
3984 int i, j, k;
3985 int error;
3986
3987 error = xlog_unpack_data_crc(rhead, dp, log);
3988 if (error)
3989 return error;
3990
3991 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3992 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3993 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3994 dp += BBSIZE;
3995 }
3996
3997 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3998 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3999 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4000 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4001 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4002 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4003 dp += BBSIZE;
4004 }
4005 }
4006
4007 return 0;
4008 }
4009
4010 STATIC int
4011 xlog_valid_rec_header(
4012 struct xlog *log,
4013 struct xlog_rec_header *rhead,
4014 xfs_daddr_t blkno)
4015 {
4016 int hlen;
4017
4018 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4019 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4020 XFS_ERRLEVEL_LOW, log->l_mp);
4021 return XFS_ERROR(EFSCORRUPTED);
4022 }
4023 if (unlikely(
4024 (!rhead->h_version ||
4025 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4026 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4027 __func__, be32_to_cpu(rhead->h_version));
4028 return XFS_ERROR(EIO);
4029 }
4030
4031 /* LR body must have data or it wouldn't have been written */
4032 hlen = be32_to_cpu(rhead->h_len);
4033 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4034 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4035 XFS_ERRLEVEL_LOW, log->l_mp);
4036 return XFS_ERROR(EFSCORRUPTED);
4037 }
4038 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4039 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4040 XFS_ERRLEVEL_LOW, log->l_mp);
4041 return XFS_ERROR(EFSCORRUPTED);
4042 }
4043 return 0;
4044 }
4045
4046 /*
4047 * Read the log from tail to head and process the log records found.
4048 * Handle the two cases where the tail and head are in the same cycle
4049 * and where the active portion of the log wraps around the end of
4050 * the physical log separately. The pass parameter is passed through
4051 * to the routines called to process the data and is not looked at
4052 * here.
4053 */
4054 STATIC int
4055 xlog_do_recovery_pass(
4056 struct xlog *log,
4057 xfs_daddr_t head_blk,
4058 xfs_daddr_t tail_blk,
4059 int pass)
4060 {
4061 xlog_rec_header_t *rhead;
4062 xfs_daddr_t blk_no;
4063 xfs_caddr_t offset;
4064 xfs_buf_t *hbp, *dbp;
4065 int error = 0, h_size;
4066 int bblks, split_bblks;
4067 int hblks, split_hblks, wrapped_hblks;
4068 struct hlist_head rhash[XLOG_RHASH_SIZE];
4069
4070 ASSERT(head_blk != tail_blk);
4071
4072 /*
4073 * Read the header of the tail block and get the iclog buffer size from
4074 * h_size. Use this to tell how many sectors make up the log header.
4075 */
4076 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4077 /*
4078 * When using variable length iclogs, read first sector of
4079 * iclog header and extract the header size from it. Get a
4080 * new hbp that is the correct size.
4081 */
4082 hbp = xlog_get_bp(log, 1);
4083 if (!hbp)
4084 return ENOMEM;
4085
4086 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4087 if (error)
4088 goto bread_err1;
4089
4090 rhead = (xlog_rec_header_t *)offset;
4091 error = xlog_valid_rec_header(log, rhead, tail_blk);
4092 if (error)
4093 goto bread_err1;
4094 h_size = be32_to_cpu(rhead->h_size);
4095 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4096 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4097 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4098 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4099 hblks++;
4100 xlog_put_bp(hbp);
4101 hbp = xlog_get_bp(log, hblks);
4102 } else {
4103 hblks = 1;
4104 }
4105 } else {
4106 ASSERT(log->l_sectBBsize == 1);
4107 hblks = 1;
4108 hbp = xlog_get_bp(log, 1);
4109 h_size = XLOG_BIG_RECORD_BSIZE;
4110 }
4111
4112 if (!hbp)
4113 return ENOMEM;
4114 dbp = xlog_get_bp(log, BTOBB(h_size));
4115 if (!dbp) {
4116 xlog_put_bp(hbp);
4117 return ENOMEM;
4118 }
4119
4120 memset(rhash, 0, sizeof(rhash));
4121 if (tail_blk <= head_blk) {
4122 for (blk_no = tail_blk; blk_no < head_blk; ) {
4123 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4124 if (error)
4125 goto bread_err2;
4126
4127 rhead = (xlog_rec_header_t *)offset;
4128 error = xlog_valid_rec_header(log, rhead, blk_no);
4129 if (error)
4130 goto bread_err2;
4131
4132 /* blocks in data section */
4133 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4134 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4135 &offset);
4136 if (error)
4137 goto bread_err2;
4138
4139 error = xlog_unpack_data(rhead, offset, log);
4140 if (error)
4141 goto bread_err2;
4142
4143 error = xlog_recover_process_data(log,
4144 rhash, rhead, offset, pass);
4145 if (error)
4146 goto bread_err2;
4147 blk_no += bblks + hblks;
4148 }
4149 } else {
4150 /*
4151 * Perform recovery around the end of the physical log.
4152 * When the head is not on the same cycle number as the tail,
4153 * we can't do a sequential recovery as above.
4154 */
4155 blk_no = tail_blk;
4156 while (blk_no < log->l_logBBsize) {
4157 /*
4158 * Check for header wrapping around physical end-of-log
4159 */
4160 offset = hbp->b_addr;
4161 split_hblks = 0;
4162 wrapped_hblks = 0;
4163 if (blk_no + hblks <= log->l_logBBsize) {
4164 /* Read header in one read */
4165 error = xlog_bread(log, blk_no, hblks, hbp,
4166 &offset);
4167 if (error)
4168 goto bread_err2;
4169 } else {
4170 /* This LR is split across physical log end */
4171 if (blk_no != log->l_logBBsize) {
4172 /* some data before physical log end */
4173 ASSERT(blk_no <= INT_MAX);
4174 split_hblks = log->l_logBBsize - (int)blk_no;
4175 ASSERT(split_hblks > 0);
4176 error = xlog_bread(log, blk_no,
4177 split_hblks, hbp,
4178 &offset);
4179 if (error)
4180 goto bread_err2;
4181 }
4182
4183 /*
4184 * Note: this black magic still works with
4185 * large sector sizes (non-512) only because:
4186 * - we increased the buffer size originally
4187 * by 1 sector giving us enough extra space
4188 * for the second read;
4189 * - the log start is guaranteed to be sector
4190 * aligned;
4191 * - we read the log end (LR header start)
4192 * _first_, then the log start (LR header end)
4193 * - order is important.
4194 */
4195 wrapped_hblks = hblks - split_hblks;
4196 error = xlog_bread_offset(log, 0,
4197 wrapped_hblks, hbp,
4198 offset + BBTOB(split_hblks));
4199 if (error)
4200 goto bread_err2;
4201 }
4202 rhead = (xlog_rec_header_t *)offset;
4203 error = xlog_valid_rec_header(log, rhead,
4204 split_hblks ? blk_no : 0);
4205 if (error)
4206 goto bread_err2;
4207
4208 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4209 blk_no += hblks;
4210
4211 /* Read in data for log record */
4212 if (blk_no + bblks <= log->l_logBBsize) {
4213 error = xlog_bread(log, blk_no, bblks, dbp,
4214 &offset);
4215 if (error)
4216 goto bread_err2;
4217 } else {
4218 /* This log record is split across the
4219 * physical end of log */
4220 offset = dbp->b_addr;
4221 split_bblks = 0;
4222 if (blk_no != log->l_logBBsize) {
4223 /* some data is before the physical
4224 * end of log */
4225 ASSERT(!wrapped_hblks);
4226 ASSERT(blk_no <= INT_MAX);
4227 split_bblks =
4228 log->l_logBBsize - (int)blk_no;
4229 ASSERT(split_bblks > 0);
4230 error = xlog_bread(log, blk_no,
4231 split_bblks, dbp,
4232 &offset);
4233 if (error)
4234 goto bread_err2;
4235 }
4236
4237 /*
4238 * Note: this black magic still works with
4239 * large sector sizes (non-512) only because:
4240 * - we increased the buffer size originally
4241 * by 1 sector giving us enough extra space
4242 * for the second read;
4243 * - the log start is guaranteed to be sector
4244 * aligned;
4245 * - we read the log end (LR header start)
4246 * _first_, then the log start (LR header end)
4247 * - order is important.
4248 */
4249 error = xlog_bread_offset(log, 0,
4250 bblks - split_bblks, dbp,
4251 offset + BBTOB(split_bblks));
4252 if (error)
4253 goto bread_err2;
4254 }
4255
4256 error = xlog_unpack_data(rhead, offset, log);
4257 if (error)
4258 goto bread_err2;
4259
4260 error = xlog_recover_process_data(log, rhash,
4261 rhead, offset, pass);
4262 if (error)
4263 goto bread_err2;
4264 blk_no += bblks;
4265 }
4266
4267 ASSERT(blk_no >= log->l_logBBsize);
4268 blk_no -= log->l_logBBsize;
4269
4270 /* read first part of physical log */
4271 while (blk_no < head_blk) {
4272 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4273 if (error)
4274 goto bread_err2;
4275
4276 rhead = (xlog_rec_header_t *)offset;
4277 error = xlog_valid_rec_header(log, rhead, blk_no);
4278 if (error)
4279 goto bread_err2;
4280
4281 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4282 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4283 &offset);
4284 if (error)
4285 goto bread_err2;
4286
4287 error = xlog_unpack_data(rhead, offset, log);
4288 if (error)
4289 goto bread_err2;
4290
4291 error = xlog_recover_process_data(log, rhash,
4292 rhead, offset, pass);
4293 if (error)
4294 goto bread_err2;
4295 blk_no += bblks + hblks;
4296 }
4297 }
4298
4299 bread_err2:
4300 xlog_put_bp(dbp);
4301 bread_err1:
4302 xlog_put_bp(hbp);
4303 return error;
4304 }
4305
4306 /*
4307 * Do the recovery of the log. We actually do this in two phases.
4308 * The two passes are necessary in order to implement the function
4309 * of cancelling a record written into the log. The first pass
4310 * determines those things which have been cancelled, and the
4311 * second pass replays log items normally except for those which
4312 * have been cancelled. The handling of the replay and cancellations
4313 * takes place in the log item type specific routines.
4314 *
4315 * The table of items which have cancel records in the log is allocated
4316 * and freed at this level, since only here do we know when all of
4317 * the log recovery has been completed.
4318 */
4319 STATIC int
4320 xlog_do_log_recovery(
4321 struct xlog *log,
4322 xfs_daddr_t head_blk,
4323 xfs_daddr_t tail_blk)
4324 {
4325 int error, i;
4326
4327 ASSERT(head_blk != tail_blk);
4328
4329 /*
4330 * First do a pass to find all of the cancelled buf log items.
4331 * Store them in the buf_cancel_table for use in the second pass.
4332 */
4333 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4334 sizeof(struct list_head),
4335 KM_SLEEP);
4336 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4337 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4338
4339 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4340 XLOG_RECOVER_PASS1);
4341 if (error != 0) {
4342 kmem_free(log->l_buf_cancel_table);
4343 log->l_buf_cancel_table = NULL;
4344 return error;
4345 }
4346 /*
4347 * Then do a second pass to actually recover the items in the log.
4348 * When it is complete free the table of buf cancel items.
4349 */
4350 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4351 XLOG_RECOVER_PASS2);
4352 #ifdef DEBUG
4353 if (!error) {
4354 int i;
4355
4356 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4357 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4358 }
4359 #endif /* DEBUG */
4360
4361 kmem_free(log->l_buf_cancel_table);
4362 log->l_buf_cancel_table = NULL;
4363
4364 return error;
4365 }
4366
4367 /*
4368 * Do the actual recovery
4369 */
4370 STATIC int
4371 xlog_do_recover(
4372 struct xlog *log,
4373 xfs_daddr_t head_blk,
4374 xfs_daddr_t tail_blk)
4375 {
4376 int error;
4377 xfs_buf_t *bp;
4378 xfs_sb_t *sbp;
4379
4380 /*
4381 * First replay the images in the log.
4382 */
4383 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4384 if (error)
4385 return error;
4386
4387 /*
4388 * If IO errors happened during recovery, bail out.
4389 */
4390 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4391 return (EIO);
4392 }
4393
4394 /*
4395 * We now update the tail_lsn since much of the recovery has completed
4396 * and there may be space available to use. If there were no extent
4397 * or iunlinks, we can free up the entire log and set the tail_lsn to
4398 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4399 * lsn of the last known good LR on disk. If there are extent frees
4400 * or iunlinks they will have some entries in the AIL; so we look at
4401 * the AIL to determine how to set the tail_lsn.
4402 */
4403 xlog_assign_tail_lsn(log->l_mp);
4404
4405 /*
4406 * Now that we've finished replaying all buffer and inode
4407 * updates, re-read in the superblock and reverify it.
4408 */
4409 bp = xfs_getsb(log->l_mp, 0);
4410 XFS_BUF_UNDONE(bp);
4411 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4412 XFS_BUF_READ(bp);
4413 XFS_BUF_UNASYNC(bp);
4414 bp->b_ops = &xfs_sb_buf_ops;
4415
4416 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4417 xfs_buf_relse(bp);
4418 return XFS_ERROR(EIO);
4419 }
4420
4421 xfs_buf_iorequest(bp);
4422 error = xfs_buf_iowait(bp);
4423 if (error) {
4424 xfs_buf_ioerror_alert(bp, __func__);
4425 ASSERT(0);
4426 xfs_buf_relse(bp);
4427 return error;
4428 }
4429
4430 /* Convert superblock from on-disk format */
4431 sbp = &log->l_mp->m_sb;
4432 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4433 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4434 ASSERT(xfs_sb_good_version(sbp));
4435 xfs_buf_relse(bp);
4436
4437 /* We've re-read the superblock so re-initialize per-cpu counters */
4438 xfs_icsb_reinit_counters(log->l_mp);
4439
4440 xlog_recover_check_summary(log);
4441
4442 /* Normal transactions can now occur */
4443 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4444 return 0;
4445 }
4446
4447 /*
4448 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4449 *
4450 * Return error or zero.
4451 */
4452 int
4453 xlog_recover(
4454 struct xlog *log)
4455 {
4456 xfs_daddr_t head_blk, tail_blk;
4457 int error;
4458
4459 /* find the tail of the log */
4460 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4461 return error;
4462
4463 if (tail_blk != head_blk) {
4464 /* There used to be a comment here:
4465 *
4466 * disallow recovery on read-only mounts. note -- mount
4467 * checks for ENOSPC and turns it into an intelligent
4468 * error message.
4469 * ...but this is no longer true. Now, unless you specify
4470 * NORECOVERY (in which case this function would never be
4471 * called), we just go ahead and recover. We do this all
4472 * under the vfs layer, so we can get away with it unless
4473 * the device itself is read-only, in which case we fail.
4474 */
4475 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4476 return error;
4477 }
4478
4479 /*
4480 * Version 5 superblock log feature mask validation. We know the
4481 * log is dirty so check if there are any unknown log features
4482 * in what we need to recover. If there are unknown features
4483 * (e.g. unsupported transactions, then simply reject the
4484 * attempt at recovery before touching anything.
4485 */
4486 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4487 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4488 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4489 xfs_warn(log->l_mp,
4490 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4491 "The log can not be fully and/or safely recovered by this kernel.\n"
4492 "Please recover the log on a kernel that supports the unknown features.",
4493 (log->l_mp->m_sb.sb_features_log_incompat &
4494 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4495 return EINVAL;
4496 }
4497
4498 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4499 log->l_mp->m_logname ? log->l_mp->m_logname
4500 : "internal");
4501
4502 error = xlog_do_recover(log, head_blk, tail_blk);
4503 log->l_flags |= XLOG_RECOVERY_NEEDED;
4504 }
4505 return error;
4506 }
4507
4508 /*
4509 * In the first part of recovery we replay inodes and buffers and build
4510 * up the list of extent free items which need to be processed. Here
4511 * we process the extent free items and clean up the on disk unlinked
4512 * inode lists. This is separated from the first part of recovery so
4513 * that the root and real-time bitmap inodes can be read in from disk in
4514 * between the two stages. This is necessary so that we can free space
4515 * in the real-time portion of the file system.
4516 */
4517 int
4518 xlog_recover_finish(
4519 struct xlog *log)
4520 {
4521 /*
4522 * Now we're ready to do the transactions needed for the
4523 * rest of recovery. Start with completing all the extent
4524 * free intent records and then process the unlinked inode
4525 * lists. At this point, we essentially run in normal mode
4526 * except that we're still performing recovery actions
4527 * rather than accepting new requests.
4528 */
4529 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4530 int error;
4531 error = xlog_recover_process_efis(log);
4532 if (error) {
4533 xfs_alert(log->l_mp, "Failed to recover EFIs");
4534 return error;
4535 }
4536 /*
4537 * Sync the log to get all the EFIs out of the AIL.
4538 * This isn't absolutely necessary, but it helps in
4539 * case the unlink transactions would have problems
4540 * pushing the EFIs out of the way.
4541 */
4542 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4543
4544 xlog_recover_process_iunlinks(log);
4545
4546 xlog_recover_check_summary(log);
4547
4548 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4549 log->l_mp->m_logname ? log->l_mp->m_logname
4550 : "internal");
4551 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4552 } else {
4553 xfs_info(log->l_mp, "Ending clean mount");
4554 }
4555 return 0;
4556 }
4557
4558
4559 #if defined(DEBUG)
4560 /*
4561 * Read all of the agf and agi counters and check that they
4562 * are consistent with the superblock counters.
4563 */
4564 void
4565 xlog_recover_check_summary(
4566 struct xlog *log)
4567 {
4568 xfs_mount_t *mp;
4569 xfs_agf_t *agfp;
4570 xfs_buf_t *agfbp;
4571 xfs_buf_t *agibp;
4572 xfs_agnumber_t agno;
4573 __uint64_t freeblks;
4574 __uint64_t itotal;
4575 __uint64_t ifree;
4576 int error;
4577
4578 mp = log->l_mp;
4579
4580 freeblks = 0LL;
4581 itotal = 0LL;
4582 ifree = 0LL;
4583 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4584 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4585 if (error) {
4586 xfs_alert(mp, "%s agf read failed agno %d error %d",
4587 __func__, agno, error);
4588 } else {
4589 agfp = XFS_BUF_TO_AGF(agfbp);
4590 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4591 be32_to_cpu(agfp->agf_flcount);
4592 xfs_buf_relse(agfbp);
4593 }
4594
4595 error = xfs_read_agi(mp, NULL, agno, &agibp);
4596 if (error) {
4597 xfs_alert(mp, "%s agi read failed agno %d error %d",
4598 __func__, agno, error);
4599 } else {
4600 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4601
4602 itotal += be32_to_cpu(agi->agi_count);
4603 ifree += be32_to_cpu(agi->agi_freecount);
4604 xfs_buf_relse(agibp);
4605 }
4606 }
4607 }
4608 #endif /* DEBUG */