]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_log_recover.c
Merge branch 'xfs-torn-log-fixes-4.5' into for-next
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46
47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
48
49 STATIC int
50 xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53 STATIC int
54 xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
57 #if defined(DEBUG)
58 STATIC void
59 xlog_recover_check_summary(
60 struct xlog *);
61 #else
62 #define xlog_recover_check_summary(log)
63 #endif
64 STATIC int
65 xlog_do_recovery_pass(
66 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
67
68 /*
69 * This structure is used during recovery to record the buf log items which
70 * have been canceled and should not be replayed.
71 */
72 struct xfs_buf_cancel {
73 xfs_daddr_t bc_blkno;
74 uint bc_len;
75 int bc_refcount;
76 struct list_head bc_list;
77 };
78
79 /*
80 * Sector aligned buffer routines for buffer create/read/write/access
81 */
82
83 /*
84 * Verify the given count of basic blocks is valid number of blocks
85 * to specify for an operation involving the given XFS log buffer.
86 * Returns nonzero if the count is valid, 0 otherwise.
87 */
88
89 static inline int
90 xlog_buf_bbcount_valid(
91 struct xlog *log,
92 int bbcount)
93 {
94 return bbcount > 0 && bbcount <= log->l_logBBsize;
95 }
96
97 /*
98 * Allocate a buffer to hold log data. The buffer needs to be able
99 * to map to a range of nbblks basic blocks at any valid (basic
100 * block) offset within the log.
101 */
102 STATIC xfs_buf_t *
103 xlog_get_bp(
104 struct xlog *log,
105 int nbblks)
106 {
107 struct xfs_buf *bp;
108
109 if (!xlog_buf_bbcount_valid(log, nbblks)) {
110 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
111 nbblks);
112 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
113 return NULL;
114 }
115
116 /*
117 * We do log I/O in units of log sectors (a power-of-2
118 * multiple of the basic block size), so we round up the
119 * requested size to accommodate the basic blocks required
120 * for complete log sectors.
121 *
122 * In addition, the buffer may be used for a non-sector-
123 * aligned block offset, in which case an I/O of the
124 * requested size could extend beyond the end of the
125 * buffer. If the requested size is only 1 basic block it
126 * will never straddle a sector boundary, so this won't be
127 * an issue. Nor will this be a problem if the log I/O is
128 * done in basic blocks (sector size 1). But otherwise we
129 * extend the buffer by one extra log sector to ensure
130 * there's space to accommodate this possibility.
131 */
132 if (nbblks > 1 && log->l_sectBBsize > 1)
133 nbblks += log->l_sectBBsize;
134 nbblks = round_up(nbblks, log->l_sectBBsize);
135
136 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
137 if (bp)
138 xfs_buf_unlock(bp);
139 return bp;
140 }
141
142 STATIC void
143 xlog_put_bp(
144 xfs_buf_t *bp)
145 {
146 xfs_buf_free(bp);
147 }
148
149 /*
150 * Return the address of the start of the given block number's data
151 * in a log buffer. The buffer covers a log sector-aligned region.
152 */
153 STATIC char *
154 xlog_align(
155 struct xlog *log,
156 xfs_daddr_t blk_no,
157 int nbblks,
158 struct xfs_buf *bp)
159 {
160 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
161
162 ASSERT(offset + nbblks <= bp->b_length);
163 return bp->b_addr + BBTOB(offset);
164 }
165
166
167 /*
168 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
169 */
170 STATIC int
171 xlog_bread_noalign(
172 struct xlog *log,
173 xfs_daddr_t blk_no,
174 int nbblks,
175 struct xfs_buf *bp)
176 {
177 int error;
178
179 if (!xlog_buf_bbcount_valid(log, nbblks)) {
180 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
181 nbblks);
182 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
183 return -EFSCORRUPTED;
184 }
185
186 blk_no = round_down(blk_no, log->l_sectBBsize);
187 nbblks = round_up(nbblks, log->l_sectBBsize);
188
189 ASSERT(nbblks > 0);
190 ASSERT(nbblks <= bp->b_length);
191
192 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
193 XFS_BUF_READ(bp);
194 bp->b_io_length = nbblks;
195 bp->b_error = 0;
196
197 error = xfs_buf_submit_wait(bp);
198 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
199 xfs_buf_ioerror_alert(bp, __func__);
200 return error;
201 }
202
203 STATIC int
204 xlog_bread(
205 struct xlog *log,
206 xfs_daddr_t blk_no,
207 int nbblks,
208 struct xfs_buf *bp,
209 char **offset)
210 {
211 int error;
212
213 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
214 if (error)
215 return error;
216
217 *offset = xlog_align(log, blk_no, nbblks, bp);
218 return 0;
219 }
220
221 /*
222 * Read at an offset into the buffer. Returns with the buffer in it's original
223 * state regardless of the result of the read.
224 */
225 STATIC int
226 xlog_bread_offset(
227 struct xlog *log,
228 xfs_daddr_t blk_no, /* block to read from */
229 int nbblks, /* blocks to read */
230 struct xfs_buf *bp,
231 char *offset)
232 {
233 char *orig_offset = bp->b_addr;
234 int orig_len = BBTOB(bp->b_length);
235 int error, error2;
236
237 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
238 if (error)
239 return error;
240
241 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
242
243 /* must reset buffer pointer even on error */
244 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
245 if (error)
246 return error;
247 return error2;
248 }
249
250 /*
251 * Write out the buffer at the given block for the given number of blocks.
252 * The buffer is kept locked across the write and is returned locked.
253 * This can only be used for synchronous log writes.
254 */
255 STATIC int
256 xlog_bwrite(
257 struct xlog *log,
258 xfs_daddr_t blk_no,
259 int nbblks,
260 struct xfs_buf *bp)
261 {
262 int error;
263
264 if (!xlog_buf_bbcount_valid(log, nbblks)) {
265 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
266 nbblks);
267 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
268 return -EFSCORRUPTED;
269 }
270
271 blk_no = round_down(blk_no, log->l_sectBBsize);
272 nbblks = round_up(nbblks, log->l_sectBBsize);
273
274 ASSERT(nbblks > 0);
275 ASSERT(nbblks <= bp->b_length);
276
277 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
278 XFS_BUF_ZEROFLAGS(bp);
279 xfs_buf_hold(bp);
280 xfs_buf_lock(bp);
281 bp->b_io_length = nbblks;
282 bp->b_error = 0;
283
284 error = xfs_bwrite(bp);
285 if (error)
286 xfs_buf_ioerror_alert(bp, __func__);
287 xfs_buf_relse(bp);
288 return error;
289 }
290
291 #ifdef DEBUG
292 /*
293 * dump debug superblock and log record information
294 */
295 STATIC void
296 xlog_header_check_dump(
297 xfs_mount_t *mp,
298 xlog_rec_header_t *head)
299 {
300 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
301 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
302 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
303 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
304 }
305 #else
306 #define xlog_header_check_dump(mp, head)
307 #endif
308
309 /*
310 * check log record header for recovery
311 */
312 STATIC int
313 xlog_header_check_recover(
314 xfs_mount_t *mp,
315 xlog_rec_header_t *head)
316 {
317 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
318
319 /*
320 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 * a dirty log created in IRIX.
323 */
324 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
325 xfs_warn(mp,
326 "dirty log written in incompatible format - can't recover");
327 xlog_header_check_dump(mp, head);
328 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 XFS_ERRLEVEL_HIGH, mp);
330 return -EFSCORRUPTED;
331 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
332 xfs_warn(mp,
333 "dirty log entry has mismatched uuid - can't recover");
334 xlog_header_check_dump(mp, head);
335 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 XFS_ERRLEVEL_HIGH, mp);
337 return -EFSCORRUPTED;
338 }
339 return 0;
340 }
341
342 /*
343 * read the head block of the log and check the header
344 */
345 STATIC int
346 xlog_header_check_mount(
347 xfs_mount_t *mp,
348 xlog_rec_header_t *head)
349 {
350 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
351
352 if (uuid_is_nil(&head->h_fs_uuid)) {
353 /*
354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 * h_fs_uuid is nil, we assume this log was last mounted
356 * by IRIX and continue.
357 */
358 xfs_warn(mp, "nil uuid in log - IRIX style log");
359 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
360 xfs_warn(mp, "log has mismatched uuid - can't recover");
361 xlog_header_check_dump(mp, head);
362 XFS_ERROR_REPORT("xlog_header_check_mount",
363 XFS_ERRLEVEL_HIGH, mp);
364 return -EFSCORRUPTED;
365 }
366 return 0;
367 }
368
369 STATIC void
370 xlog_recover_iodone(
371 struct xfs_buf *bp)
372 {
373 if (bp->b_error) {
374 /*
375 * We're not going to bother about retrying
376 * this during recovery. One strike!
377 */
378 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
379 xfs_buf_ioerror_alert(bp, __func__);
380 xfs_force_shutdown(bp->b_target->bt_mount,
381 SHUTDOWN_META_IO_ERROR);
382 }
383 }
384 bp->b_iodone = NULL;
385 xfs_buf_ioend(bp);
386 }
387
388 /*
389 * This routine finds (to an approximation) the first block in the physical
390 * log which contains the given cycle. It uses a binary search algorithm.
391 * Note that the algorithm can not be perfect because the disk will not
392 * necessarily be perfect.
393 */
394 STATIC int
395 xlog_find_cycle_start(
396 struct xlog *log,
397 struct xfs_buf *bp,
398 xfs_daddr_t first_blk,
399 xfs_daddr_t *last_blk,
400 uint cycle)
401 {
402 char *offset;
403 xfs_daddr_t mid_blk;
404 xfs_daddr_t end_blk;
405 uint mid_cycle;
406 int error;
407
408 end_blk = *last_blk;
409 mid_blk = BLK_AVG(first_blk, end_blk);
410 while (mid_blk != first_blk && mid_blk != end_blk) {
411 error = xlog_bread(log, mid_blk, 1, bp, &offset);
412 if (error)
413 return error;
414 mid_cycle = xlog_get_cycle(offset);
415 if (mid_cycle == cycle)
416 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
417 else
418 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
419 mid_blk = BLK_AVG(first_blk, end_blk);
420 }
421 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
422 (mid_blk == end_blk && mid_blk-1 == first_blk));
423
424 *last_blk = end_blk;
425
426 return 0;
427 }
428
429 /*
430 * Check that a range of blocks does not contain stop_on_cycle_no.
431 * Fill in *new_blk with the block offset where such a block is
432 * found, or with -1 (an invalid block number) if there is no such
433 * block in the range. The scan needs to occur from front to back
434 * and the pointer into the region must be updated since a later
435 * routine will need to perform another test.
436 */
437 STATIC int
438 xlog_find_verify_cycle(
439 struct xlog *log,
440 xfs_daddr_t start_blk,
441 int nbblks,
442 uint stop_on_cycle_no,
443 xfs_daddr_t *new_blk)
444 {
445 xfs_daddr_t i, j;
446 uint cycle;
447 xfs_buf_t *bp;
448 xfs_daddr_t bufblks;
449 char *buf = NULL;
450 int error = 0;
451
452 /*
453 * Greedily allocate a buffer big enough to handle the full
454 * range of basic blocks we'll be examining. If that fails,
455 * try a smaller size. We need to be able to read at least
456 * a log sector, or we're out of luck.
457 */
458 bufblks = 1 << ffs(nbblks);
459 while (bufblks > log->l_logBBsize)
460 bufblks >>= 1;
461 while (!(bp = xlog_get_bp(log, bufblks))) {
462 bufblks >>= 1;
463 if (bufblks < log->l_sectBBsize)
464 return -ENOMEM;
465 }
466
467 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
468 int bcount;
469
470 bcount = min(bufblks, (start_blk + nbblks - i));
471
472 error = xlog_bread(log, i, bcount, bp, &buf);
473 if (error)
474 goto out;
475
476 for (j = 0; j < bcount; j++) {
477 cycle = xlog_get_cycle(buf);
478 if (cycle == stop_on_cycle_no) {
479 *new_blk = i+j;
480 goto out;
481 }
482
483 buf += BBSIZE;
484 }
485 }
486
487 *new_blk = -1;
488
489 out:
490 xlog_put_bp(bp);
491 return error;
492 }
493
494 /*
495 * Potentially backup over partial log record write.
496 *
497 * In the typical case, last_blk is the number of the block directly after
498 * a good log record. Therefore, we subtract one to get the block number
499 * of the last block in the given buffer. extra_bblks contains the number
500 * of blocks we would have read on a previous read. This happens when the
501 * last log record is split over the end of the physical log.
502 *
503 * extra_bblks is the number of blocks potentially verified on a previous
504 * call to this routine.
505 */
506 STATIC int
507 xlog_find_verify_log_record(
508 struct xlog *log,
509 xfs_daddr_t start_blk,
510 xfs_daddr_t *last_blk,
511 int extra_bblks)
512 {
513 xfs_daddr_t i;
514 xfs_buf_t *bp;
515 char *offset = NULL;
516 xlog_rec_header_t *head = NULL;
517 int error = 0;
518 int smallmem = 0;
519 int num_blks = *last_blk - start_blk;
520 int xhdrs;
521
522 ASSERT(start_blk != 0 || *last_blk != start_blk);
523
524 if (!(bp = xlog_get_bp(log, num_blks))) {
525 if (!(bp = xlog_get_bp(log, 1)))
526 return -ENOMEM;
527 smallmem = 1;
528 } else {
529 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
530 if (error)
531 goto out;
532 offset += ((num_blks - 1) << BBSHIFT);
533 }
534
535 for (i = (*last_blk) - 1; i >= 0; i--) {
536 if (i < start_blk) {
537 /* valid log record not found */
538 xfs_warn(log->l_mp,
539 "Log inconsistent (didn't find previous header)");
540 ASSERT(0);
541 error = -EIO;
542 goto out;
543 }
544
545 if (smallmem) {
546 error = xlog_bread(log, i, 1, bp, &offset);
547 if (error)
548 goto out;
549 }
550
551 head = (xlog_rec_header_t *)offset;
552
553 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
554 break;
555
556 if (!smallmem)
557 offset -= BBSIZE;
558 }
559
560 /*
561 * We hit the beginning of the physical log & still no header. Return
562 * to caller. If caller can handle a return of -1, then this routine
563 * will be called again for the end of the physical log.
564 */
565 if (i == -1) {
566 error = 1;
567 goto out;
568 }
569
570 /*
571 * We have the final block of the good log (the first block
572 * of the log record _before_ the head. So we check the uuid.
573 */
574 if ((error = xlog_header_check_mount(log->l_mp, head)))
575 goto out;
576
577 /*
578 * We may have found a log record header before we expected one.
579 * last_blk will be the 1st block # with a given cycle #. We may end
580 * up reading an entire log record. In this case, we don't want to
581 * reset last_blk. Only when last_blk points in the middle of a log
582 * record do we update last_blk.
583 */
584 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
585 uint h_size = be32_to_cpu(head->h_size);
586
587 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
588 if (h_size % XLOG_HEADER_CYCLE_SIZE)
589 xhdrs++;
590 } else {
591 xhdrs = 1;
592 }
593
594 if (*last_blk - i + extra_bblks !=
595 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
596 *last_blk = i;
597
598 out:
599 xlog_put_bp(bp);
600 return error;
601 }
602
603 /*
604 * Head is defined to be the point of the log where the next log write
605 * could go. This means that incomplete LR writes at the end are
606 * eliminated when calculating the head. We aren't guaranteed that previous
607 * LR have complete transactions. We only know that a cycle number of
608 * current cycle number -1 won't be present in the log if we start writing
609 * from our current block number.
610 *
611 * last_blk contains the block number of the first block with a given
612 * cycle number.
613 *
614 * Return: zero if normal, non-zero if error.
615 */
616 STATIC int
617 xlog_find_head(
618 struct xlog *log,
619 xfs_daddr_t *return_head_blk)
620 {
621 xfs_buf_t *bp;
622 char *offset;
623 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
624 int num_scan_bblks;
625 uint first_half_cycle, last_half_cycle;
626 uint stop_on_cycle;
627 int error, log_bbnum = log->l_logBBsize;
628
629 /* Is the end of the log device zeroed? */
630 error = xlog_find_zeroed(log, &first_blk);
631 if (error < 0) {
632 xfs_warn(log->l_mp, "empty log check failed");
633 return error;
634 }
635 if (error == 1) {
636 *return_head_blk = first_blk;
637
638 /* Is the whole lot zeroed? */
639 if (!first_blk) {
640 /* Linux XFS shouldn't generate totally zeroed logs -
641 * mkfs etc write a dummy unmount record to a fresh
642 * log so we can store the uuid in there
643 */
644 xfs_warn(log->l_mp, "totally zeroed log");
645 }
646
647 return 0;
648 }
649
650 first_blk = 0; /* get cycle # of 1st block */
651 bp = xlog_get_bp(log, 1);
652 if (!bp)
653 return -ENOMEM;
654
655 error = xlog_bread(log, 0, 1, bp, &offset);
656 if (error)
657 goto bp_err;
658
659 first_half_cycle = xlog_get_cycle(offset);
660
661 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
662 error = xlog_bread(log, last_blk, 1, bp, &offset);
663 if (error)
664 goto bp_err;
665
666 last_half_cycle = xlog_get_cycle(offset);
667 ASSERT(last_half_cycle != 0);
668
669 /*
670 * If the 1st half cycle number is equal to the last half cycle number,
671 * then the entire log is stamped with the same cycle number. In this
672 * case, head_blk can't be set to zero (which makes sense). The below
673 * math doesn't work out properly with head_blk equal to zero. Instead,
674 * we set it to log_bbnum which is an invalid block number, but this
675 * value makes the math correct. If head_blk doesn't changed through
676 * all the tests below, *head_blk is set to zero at the very end rather
677 * than log_bbnum. In a sense, log_bbnum and zero are the same block
678 * in a circular file.
679 */
680 if (first_half_cycle == last_half_cycle) {
681 /*
682 * In this case we believe that the entire log should have
683 * cycle number last_half_cycle. We need to scan backwards
684 * from the end verifying that there are no holes still
685 * containing last_half_cycle - 1. If we find such a hole,
686 * then the start of that hole will be the new head. The
687 * simple case looks like
688 * x | x ... | x - 1 | x
689 * Another case that fits this picture would be
690 * x | x + 1 | x ... | x
691 * In this case the head really is somewhere at the end of the
692 * log, as one of the latest writes at the beginning was
693 * incomplete.
694 * One more case is
695 * x | x + 1 | x ... | x - 1 | x
696 * This is really the combination of the above two cases, and
697 * the head has to end up at the start of the x-1 hole at the
698 * end of the log.
699 *
700 * In the 256k log case, we will read from the beginning to the
701 * end of the log and search for cycle numbers equal to x-1.
702 * We don't worry about the x+1 blocks that we encounter,
703 * because we know that they cannot be the head since the log
704 * started with x.
705 */
706 head_blk = log_bbnum;
707 stop_on_cycle = last_half_cycle - 1;
708 } else {
709 /*
710 * In this case we want to find the first block with cycle
711 * number matching last_half_cycle. We expect the log to be
712 * some variation on
713 * x + 1 ... | x ... | x
714 * The first block with cycle number x (last_half_cycle) will
715 * be where the new head belongs. First we do a binary search
716 * for the first occurrence of last_half_cycle. The binary
717 * search may not be totally accurate, so then we scan back
718 * from there looking for occurrences of last_half_cycle before
719 * us. If that backwards scan wraps around the beginning of
720 * the log, then we look for occurrences of last_half_cycle - 1
721 * at the end of the log. The cases we're looking for look
722 * like
723 * v binary search stopped here
724 * x + 1 ... | x | x + 1 | x ... | x
725 * ^ but we want to locate this spot
726 * or
727 * <---------> less than scan distance
728 * x + 1 ... | x ... | x - 1 | x
729 * ^ we want to locate this spot
730 */
731 stop_on_cycle = last_half_cycle;
732 if ((error = xlog_find_cycle_start(log, bp, first_blk,
733 &head_blk, last_half_cycle)))
734 goto bp_err;
735 }
736
737 /*
738 * Now validate the answer. Scan back some number of maximum possible
739 * blocks and make sure each one has the expected cycle number. The
740 * maximum is determined by the total possible amount of buffering
741 * in the in-core log. The following number can be made tighter if
742 * we actually look at the block size of the filesystem.
743 */
744 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
745 if (head_blk >= num_scan_bblks) {
746 /*
747 * We are guaranteed that the entire check can be performed
748 * in one buffer.
749 */
750 start_blk = head_blk - num_scan_bblks;
751 if ((error = xlog_find_verify_cycle(log,
752 start_blk, num_scan_bblks,
753 stop_on_cycle, &new_blk)))
754 goto bp_err;
755 if (new_blk != -1)
756 head_blk = new_blk;
757 } else { /* need to read 2 parts of log */
758 /*
759 * We are going to scan backwards in the log in two parts.
760 * First we scan the physical end of the log. In this part
761 * of the log, we are looking for blocks with cycle number
762 * last_half_cycle - 1.
763 * If we find one, then we know that the log starts there, as
764 * we've found a hole that didn't get written in going around
765 * the end of the physical log. The simple case for this is
766 * x + 1 ... | x ... | x - 1 | x
767 * <---------> less than scan distance
768 * If all of the blocks at the end of the log have cycle number
769 * last_half_cycle, then we check the blocks at the start of
770 * the log looking for occurrences of last_half_cycle. If we
771 * find one, then our current estimate for the location of the
772 * first occurrence of last_half_cycle is wrong and we move
773 * back to the hole we've found. This case looks like
774 * x + 1 ... | x | x + 1 | x ...
775 * ^ binary search stopped here
776 * Another case we need to handle that only occurs in 256k
777 * logs is
778 * x + 1 ... | x ... | x+1 | x ...
779 * ^ binary search stops here
780 * In a 256k log, the scan at the end of the log will see the
781 * x + 1 blocks. We need to skip past those since that is
782 * certainly not the head of the log. By searching for
783 * last_half_cycle-1 we accomplish that.
784 */
785 ASSERT(head_blk <= INT_MAX &&
786 (xfs_daddr_t) num_scan_bblks >= head_blk);
787 start_blk = log_bbnum - (num_scan_bblks - head_blk);
788 if ((error = xlog_find_verify_cycle(log, start_blk,
789 num_scan_bblks - (int)head_blk,
790 (stop_on_cycle - 1), &new_blk)))
791 goto bp_err;
792 if (new_blk != -1) {
793 head_blk = new_blk;
794 goto validate_head;
795 }
796
797 /*
798 * Scan beginning of log now. The last part of the physical
799 * log is good. This scan needs to verify that it doesn't find
800 * the last_half_cycle.
801 */
802 start_blk = 0;
803 ASSERT(head_blk <= INT_MAX);
804 if ((error = xlog_find_verify_cycle(log,
805 start_blk, (int)head_blk,
806 stop_on_cycle, &new_blk)))
807 goto bp_err;
808 if (new_blk != -1)
809 head_blk = new_blk;
810 }
811
812 validate_head:
813 /*
814 * Now we need to make sure head_blk is not pointing to a block in
815 * the middle of a log record.
816 */
817 num_scan_bblks = XLOG_REC_SHIFT(log);
818 if (head_blk >= num_scan_bblks) {
819 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
820
821 /* start ptr at last block ptr before head_blk */
822 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
823 if (error == 1)
824 error = -EIO;
825 if (error)
826 goto bp_err;
827 } else {
828 start_blk = 0;
829 ASSERT(head_blk <= INT_MAX);
830 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
831 if (error < 0)
832 goto bp_err;
833 if (error == 1) {
834 /* We hit the beginning of the log during our search */
835 start_blk = log_bbnum - (num_scan_bblks - head_blk);
836 new_blk = log_bbnum;
837 ASSERT(start_blk <= INT_MAX &&
838 (xfs_daddr_t) log_bbnum-start_blk >= 0);
839 ASSERT(head_blk <= INT_MAX);
840 error = xlog_find_verify_log_record(log, start_blk,
841 &new_blk, (int)head_blk);
842 if (error == 1)
843 error = -EIO;
844 if (error)
845 goto bp_err;
846 if (new_blk != log_bbnum)
847 head_blk = new_blk;
848 } else if (error)
849 goto bp_err;
850 }
851
852 xlog_put_bp(bp);
853 if (head_blk == log_bbnum)
854 *return_head_blk = 0;
855 else
856 *return_head_blk = head_blk;
857 /*
858 * When returning here, we have a good block number. Bad block
859 * means that during a previous crash, we didn't have a clean break
860 * from cycle number N to cycle number N-1. In this case, we need
861 * to find the first block with cycle number N-1.
862 */
863 return 0;
864
865 bp_err:
866 xlog_put_bp(bp);
867
868 if (error)
869 xfs_warn(log->l_mp, "failed to find log head");
870 return error;
871 }
872
873 /*
874 * Seek backwards in the log for log record headers.
875 *
876 * Given a starting log block, walk backwards until we find the provided number
877 * of records or hit the provided tail block. The return value is the number of
878 * records encountered or a negative error code. The log block and buffer
879 * pointer of the last record seen are returned in rblk and rhead respectively.
880 */
881 STATIC int
882 xlog_rseek_logrec_hdr(
883 struct xlog *log,
884 xfs_daddr_t head_blk,
885 xfs_daddr_t tail_blk,
886 int count,
887 struct xfs_buf *bp,
888 xfs_daddr_t *rblk,
889 struct xlog_rec_header **rhead,
890 bool *wrapped)
891 {
892 int i;
893 int error;
894 int found = 0;
895 char *offset = NULL;
896 xfs_daddr_t end_blk;
897
898 *wrapped = false;
899
900 /*
901 * Walk backwards from the head block until we hit the tail or the first
902 * block in the log.
903 */
904 end_blk = head_blk > tail_blk ? tail_blk : 0;
905 for (i = (int) head_blk - 1; i >= end_blk; i--) {
906 error = xlog_bread(log, i, 1, bp, &offset);
907 if (error)
908 goto out_error;
909
910 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
911 *rblk = i;
912 *rhead = (struct xlog_rec_header *) offset;
913 if (++found == count)
914 break;
915 }
916 }
917
918 /*
919 * If we haven't hit the tail block or the log record header count,
920 * start looking again from the end of the physical log. Note that
921 * callers can pass head == tail if the tail is not yet known.
922 */
923 if (tail_blk >= head_blk && found != count) {
924 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
925 error = xlog_bread(log, i, 1, bp, &offset);
926 if (error)
927 goto out_error;
928
929 if (*(__be32 *)offset ==
930 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
931 *wrapped = true;
932 *rblk = i;
933 *rhead = (struct xlog_rec_header *) offset;
934 if (++found == count)
935 break;
936 }
937 }
938 }
939
940 return found;
941
942 out_error:
943 return error;
944 }
945
946 /*
947 * Seek forward in the log for log record headers.
948 *
949 * Given head and tail blocks, walk forward from the tail block until we find
950 * the provided number of records or hit the head block. The return value is the
951 * number of records encountered or a negative error code. The log block and
952 * buffer pointer of the last record seen are returned in rblk and rhead
953 * respectively.
954 */
955 STATIC int
956 xlog_seek_logrec_hdr(
957 struct xlog *log,
958 xfs_daddr_t head_blk,
959 xfs_daddr_t tail_blk,
960 int count,
961 struct xfs_buf *bp,
962 xfs_daddr_t *rblk,
963 struct xlog_rec_header **rhead,
964 bool *wrapped)
965 {
966 int i;
967 int error;
968 int found = 0;
969 char *offset = NULL;
970 xfs_daddr_t end_blk;
971
972 *wrapped = false;
973
974 /*
975 * Walk forward from the tail block until we hit the head or the last
976 * block in the log.
977 */
978 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
979 for (i = (int) tail_blk; i <= end_blk; i++) {
980 error = xlog_bread(log, i, 1, bp, &offset);
981 if (error)
982 goto out_error;
983
984 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
985 *rblk = i;
986 *rhead = (struct xlog_rec_header *) offset;
987 if (++found == count)
988 break;
989 }
990 }
991
992 /*
993 * If we haven't hit the head block or the log record header count,
994 * start looking again from the start of the physical log.
995 */
996 if (tail_blk > head_blk && found != count) {
997 for (i = 0; i < (int) head_blk; i++) {
998 error = xlog_bread(log, i, 1, bp, &offset);
999 if (error)
1000 goto out_error;
1001
1002 if (*(__be32 *)offset ==
1003 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1004 *wrapped = true;
1005 *rblk = i;
1006 *rhead = (struct xlog_rec_header *) offset;
1007 if (++found == count)
1008 break;
1009 }
1010 }
1011 }
1012
1013 return found;
1014
1015 out_error:
1016 return error;
1017 }
1018
1019 /*
1020 * Check the log tail for torn writes. This is required when torn writes are
1021 * detected at the head and the head had to be walked back to a previous record.
1022 * The tail of the previous record must now be verified to ensure the torn
1023 * writes didn't corrupt the previous tail.
1024 *
1025 * Return an error if CRC verification fails as recovery cannot proceed.
1026 */
1027 STATIC int
1028 xlog_verify_tail(
1029 struct xlog *log,
1030 xfs_daddr_t head_blk,
1031 xfs_daddr_t tail_blk)
1032 {
1033 struct xlog_rec_header *thead;
1034 struct xfs_buf *bp;
1035 xfs_daddr_t first_bad;
1036 int count;
1037 int error = 0;
1038 bool wrapped;
1039 xfs_daddr_t tmp_head;
1040
1041 bp = xlog_get_bp(log, 1);
1042 if (!bp)
1043 return -ENOMEM;
1044
1045 /*
1046 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1047 * a temporary head block that points after the last possible
1048 * concurrently written record of the tail.
1049 */
1050 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1051 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1052 &wrapped);
1053 if (count < 0) {
1054 error = count;
1055 goto out;
1056 }
1057
1058 /*
1059 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1060 * into the actual log head. tmp_head points to the start of the record
1061 * so update it to the actual head block.
1062 */
1063 if (count < XLOG_MAX_ICLOGS + 1)
1064 tmp_head = head_blk;
1065
1066 /*
1067 * We now have a tail and temporary head block that covers at least
1068 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1069 * records were completely written. Run a CRC verification pass from
1070 * tail to head and return the result.
1071 */
1072 error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1073 XLOG_RECOVER_CRCPASS, &first_bad);
1074
1075 out:
1076 xlog_put_bp(bp);
1077 return error;
1078 }
1079
1080 /*
1081 * Detect and trim torn writes from the head of the log.
1082 *
1083 * Storage without sector atomicity guarantees can result in torn writes in the
1084 * log in the event of a crash. Our only means to detect this scenario is via
1085 * CRC verification. While we can't always be certain that CRC verification
1086 * failure is due to a torn write vs. an unrelated corruption, we do know that
1087 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1088 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1089 * the log and treat failures in this range as torn writes as a matter of
1090 * policy. In the event of CRC failure, the head is walked back to the last good
1091 * record in the log and the tail is updated from that record and verified.
1092 */
1093 STATIC int
1094 xlog_verify_head(
1095 struct xlog *log,
1096 xfs_daddr_t *head_blk, /* in/out: unverified head */
1097 xfs_daddr_t *tail_blk, /* out: tail block */
1098 struct xfs_buf *bp,
1099 xfs_daddr_t *rhead_blk, /* start blk of last record */
1100 struct xlog_rec_header **rhead, /* ptr to last record */
1101 bool *wrapped) /* last rec. wraps phys. log */
1102 {
1103 struct xlog_rec_header *tmp_rhead;
1104 struct xfs_buf *tmp_bp;
1105 xfs_daddr_t first_bad;
1106 xfs_daddr_t tmp_rhead_blk;
1107 int found;
1108 int error;
1109 bool tmp_wrapped;
1110
1111 /*
1112 * Check the head of the log for torn writes. Search backwards from the
1113 * head until we hit the tail or the maximum number of log record I/Os
1114 * that could have been in flight at one time. Use a temporary buffer so
1115 * we don't trash the rhead/bp pointers from the caller.
1116 */
1117 tmp_bp = xlog_get_bp(log, 1);
1118 if (!tmp_bp)
1119 return -ENOMEM;
1120 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1121 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1122 &tmp_rhead, &tmp_wrapped);
1123 xlog_put_bp(tmp_bp);
1124 if (error < 0)
1125 return error;
1126
1127 /*
1128 * Now run a CRC verification pass over the records starting at the
1129 * block found above to the current head. If a CRC failure occurs, the
1130 * log block of the first bad record is saved in first_bad.
1131 */
1132 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1133 XLOG_RECOVER_CRCPASS, &first_bad);
1134 if (error == -EFSBADCRC) {
1135 /*
1136 * We've hit a potential torn write. Reset the error and warn
1137 * about it.
1138 */
1139 error = 0;
1140 xfs_warn(log->l_mp,
1141 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1142 first_bad, *head_blk);
1143
1144 /*
1145 * Get the header block and buffer pointer for the last good
1146 * record before the bad record.
1147 *
1148 * Note that xlog_find_tail() clears the blocks at the new head
1149 * (i.e., the records with invalid CRC) if the cycle number
1150 * matches the the current cycle.
1151 */
1152 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1153 rhead_blk, rhead, wrapped);
1154 if (found < 0)
1155 return found;
1156 if (found == 0) /* XXX: right thing to do here? */
1157 return -EIO;
1158
1159 /*
1160 * Reset the head block to the starting block of the first bad
1161 * log record and set the tail block based on the last good
1162 * record.
1163 *
1164 * Bail out if the updated head/tail match as this indicates
1165 * possible corruption outside of the acceptable
1166 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1167 */
1168 *head_blk = first_bad;
1169 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1170 if (*head_blk == *tail_blk) {
1171 ASSERT(0);
1172 return 0;
1173 }
1174
1175 /*
1176 * Now verify the tail based on the updated head. This is
1177 * required because the torn writes trimmed from the head could
1178 * have been written over the tail of a previous record. Return
1179 * any errors since recovery cannot proceed if the tail is
1180 * corrupt.
1181 *
1182 * XXX: This leaves a gap in truly robust protection from torn
1183 * writes in the log. If the head is behind the tail, the tail
1184 * pushes forward to create some space and then a crash occurs
1185 * causing the writes into the previous record's tail region to
1186 * tear, log recovery isn't able to recover.
1187 *
1188 * How likely is this to occur? If possible, can we do something
1189 * more intelligent here? Is it safe to push the tail forward if
1190 * we can determine that the tail is within the range of the
1191 * torn write (e.g., the kernel can only overwrite the tail if
1192 * it has actually been pushed forward)? Alternatively, could we
1193 * somehow prevent this condition at runtime?
1194 */
1195 error = xlog_verify_tail(log, *head_blk, *tail_blk);
1196 }
1197
1198 return error;
1199 }
1200
1201 /*
1202 * Check whether the head of the log points to an unmount record. In other
1203 * words, determine whether the log is clean. If so, update the in-core state
1204 * appropriately.
1205 */
1206 static int
1207 xlog_check_unmount_rec(
1208 struct xlog *log,
1209 xfs_daddr_t *head_blk,
1210 xfs_daddr_t *tail_blk,
1211 struct xlog_rec_header *rhead,
1212 xfs_daddr_t rhead_blk,
1213 struct xfs_buf *bp,
1214 bool *clean)
1215 {
1216 struct xlog_op_header *op_head;
1217 xfs_daddr_t umount_data_blk;
1218 xfs_daddr_t after_umount_blk;
1219 int hblks;
1220 int error;
1221 char *offset;
1222
1223 *clean = false;
1224
1225 /*
1226 * Look for unmount record. If we find it, then we know there was a
1227 * clean unmount. Since 'i' could be the last block in the physical
1228 * log, we convert to a log block before comparing to the head_blk.
1229 *
1230 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1231 * below. We won't want to clear the unmount record if there is one, so
1232 * we pass the lsn of the unmount record rather than the block after it.
1233 */
1234 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1235 int h_size = be32_to_cpu(rhead->h_size);
1236 int h_version = be32_to_cpu(rhead->h_version);
1237
1238 if ((h_version & XLOG_VERSION_2) &&
1239 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1240 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1241 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1242 hblks++;
1243 } else {
1244 hblks = 1;
1245 }
1246 } else {
1247 hblks = 1;
1248 }
1249 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1250 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1251 if (*head_blk == after_umount_blk &&
1252 be32_to_cpu(rhead->h_num_logops) == 1) {
1253 umount_data_blk = rhead_blk + hblks;
1254 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1255 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1256 if (error)
1257 return error;
1258
1259 op_head = (struct xlog_op_header *)offset;
1260 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1261 /*
1262 * Set tail and last sync so that newly written log
1263 * records will point recovery to after the current
1264 * unmount record.
1265 */
1266 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1267 log->l_curr_cycle, after_umount_blk);
1268 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1269 log->l_curr_cycle, after_umount_blk);
1270 *tail_blk = after_umount_blk;
1271
1272 *clean = true;
1273 }
1274 }
1275
1276 return 0;
1277 }
1278
1279 static void
1280 xlog_set_state(
1281 struct xlog *log,
1282 xfs_daddr_t head_blk,
1283 struct xlog_rec_header *rhead,
1284 xfs_daddr_t rhead_blk,
1285 bool bump_cycle)
1286 {
1287 /*
1288 * Reset log values according to the state of the log when we
1289 * crashed. In the case where head_blk == 0, we bump curr_cycle
1290 * one because the next write starts a new cycle rather than
1291 * continuing the cycle of the last good log record. At this
1292 * point we have guaranteed that all partial log records have been
1293 * accounted for. Therefore, we know that the last good log record
1294 * written was complete and ended exactly on the end boundary
1295 * of the physical log.
1296 */
1297 log->l_prev_block = rhead_blk;
1298 log->l_curr_block = (int)head_blk;
1299 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1300 if (bump_cycle)
1301 log->l_curr_cycle++;
1302 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1303 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1304 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1305 BBTOB(log->l_curr_block));
1306 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1307 BBTOB(log->l_curr_block));
1308 }
1309
1310 /*
1311 * Find the sync block number or the tail of the log.
1312 *
1313 * This will be the block number of the last record to have its
1314 * associated buffers synced to disk. Every log record header has
1315 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1316 * to get a sync block number. The only concern is to figure out which
1317 * log record header to believe.
1318 *
1319 * The following algorithm uses the log record header with the largest
1320 * lsn. The entire log record does not need to be valid. We only care
1321 * that the header is valid.
1322 *
1323 * We could speed up search by using current head_blk buffer, but it is not
1324 * available.
1325 */
1326 STATIC int
1327 xlog_find_tail(
1328 struct xlog *log,
1329 xfs_daddr_t *head_blk,
1330 xfs_daddr_t *tail_blk)
1331 {
1332 xlog_rec_header_t *rhead;
1333 char *offset = NULL;
1334 xfs_buf_t *bp;
1335 int error;
1336 xfs_daddr_t rhead_blk;
1337 xfs_lsn_t tail_lsn;
1338 bool wrapped = false;
1339 bool clean = false;
1340
1341 /*
1342 * Find previous log record
1343 */
1344 if ((error = xlog_find_head(log, head_blk)))
1345 return error;
1346 ASSERT(*head_blk < INT_MAX);
1347
1348 bp = xlog_get_bp(log, 1);
1349 if (!bp)
1350 return -ENOMEM;
1351 if (*head_blk == 0) { /* special case */
1352 error = xlog_bread(log, 0, 1, bp, &offset);
1353 if (error)
1354 goto done;
1355
1356 if (xlog_get_cycle(offset) == 0) {
1357 *tail_blk = 0;
1358 /* leave all other log inited values alone */
1359 goto done;
1360 }
1361 }
1362
1363 /*
1364 * Search backwards through the log looking for the log record header
1365 * block. This wraps all the way back around to the head so something is
1366 * seriously wrong if we can't find it.
1367 */
1368 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1369 &rhead_blk, &rhead, &wrapped);
1370 if (error < 0)
1371 return error;
1372 if (!error) {
1373 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1374 return -EIO;
1375 }
1376 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1377
1378 /*
1379 * Set the log state based on the current head record.
1380 */
1381 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1382 tail_lsn = atomic64_read(&log->l_tail_lsn);
1383
1384 /*
1385 * Look for an unmount record at the head of the log. This sets the log
1386 * state to determine whether recovery is necessary.
1387 */
1388 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1389 rhead_blk, bp, &clean);
1390 if (error)
1391 goto done;
1392
1393 /*
1394 * Verify the log head if the log is not clean (e.g., we have anything
1395 * but an unmount record at the head). This uses CRC verification to
1396 * detect and trim torn writes. If discovered, CRC failures are
1397 * considered torn writes and the log head is trimmed accordingly.
1398 *
1399 * Note that we can only run CRC verification when the log is dirty
1400 * because there's no guarantee that the log data behind an unmount
1401 * record is compatible with the current architecture.
1402 */
1403 if (!clean) {
1404 xfs_daddr_t orig_head = *head_blk;
1405
1406 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1407 &rhead_blk, &rhead, &wrapped);
1408 if (error)
1409 goto done;
1410
1411 /* update in-core state again if the head changed */
1412 if (*head_blk != orig_head) {
1413 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1414 wrapped);
1415 tail_lsn = atomic64_read(&log->l_tail_lsn);
1416 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1417 rhead, rhead_blk, bp,
1418 &clean);
1419 if (error)
1420 goto done;
1421 }
1422 }
1423
1424 /*
1425 * Note that the unmount was clean. If the unmount was not clean, we
1426 * need to know this to rebuild the superblock counters from the perag
1427 * headers if we have a filesystem using non-persistent counters.
1428 */
1429 if (clean)
1430 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1431
1432 /*
1433 * Make sure that there are no blocks in front of the head
1434 * with the same cycle number as the head. This can happen
1435 * because we allow multiple outstanding log writes concurrently,
1436 * and the later writes might make it out before earlier ones.
1437 *
1438 * We use the lsn from before modifying it so that we'll never
1439 * overwrite the unmount record after a clean unmount.
1440 *
1441 * Do this only if we are going to recover the filesystem
1442 *
1443 * NOTE: This used to say "if (!readonly)"
1444 * However on Linux, we can & do recover a read-only filesystem.
1445 * We only skip recovery if NORECOVERY is specified on mount,
1446 * in which case we would not be here.
1447 *
1448 * But... if the -device- itself is readonly, just skip this.
1449 * We can't recover this device anyway, so it won't matter.
1450 */
1451 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1452 error = xlog_clear_stale_blocks(log, tail_lsn);
1453
1454 done:
1455 xlog_put_bp(bp);
1456
1457 if (error)
1458 xfs_warn(log->l_mp, "failed to locate log tail");
1459 return error;
1460 }
1461
1462 /*
1463 * Is the log zeroed at all?
1464 *
1465 * The last binary search should be changed to perform an X block read
1466 * once X becomes small enough. You can then search linearly through
1467 * the X blocks. This will cut down on the number of reads we need to do.
1468 *
1469 * If the log is partially zeroed, this routine will pass back the blkno
1470 * of the first block with cycle number 0. It won't have a complete LR
1471 * preceding it.
1472 *
1473 * Return:
1474 * 0 => the log is completely written to
1475 * 1 => use *blk_no as the first block of the log
1476 * <0 => error has occurred
1477 */
1478 STATIC int
1479 xlog_find_zeroed(
1480 struct xlog *log,
1481 xfs_daddr_t *blk_no)
1482 {
1483 xfs_buf_t *bp;
1484 char *offset;
1485 uint first_cycle, last_cycle;
1486 xfs_daddr_t new_blk, last_blk, start_blk;
1487 xfs_daddr_t num_scan_bblks;
1488 int error, log_bbnum = log->l_logBBsize;
1489
1490 *blk_no = 0;
1491
1492 /* check totally zeroed log */
1493 bp = xlog_get_bp(log, 1);
1494 if (!bp)
1495 return -ENOMEM;
1496 error = xlog_bread(log, 0, 1, bp, &offset);
1497 if (error)
1498 goto bp_err;
1499
1500 first_cycle = xlog_get_cycle(offset);
1501 if (first_cycle == 0) { /* completely zeroed log */
1502 *blk_no = 0;
1503 xlog_put_bp(bp);
1504 return 1;
1505 }
1506
1507 /* check partially zeroed log */
1508 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1509 if (error)
1510 goto bp_err;
1511
1512 last_cycle = xlog_get_cycle(offset);
1513 if (last_cycle != 0) { /* log completely written to */
1514 xlog_put_bp(bp);
1515 return 0;
1516 } else if (first_cycle != 1) {
1517 /*
1518 * If the cycle of the last block is zero, the cycle of
1519 * the first block must be 1. If it's not, maybe we're
1520 * not looking at a log... Bail out.
1521 */
1522 xfs_warn(log->l_mp,
1523 "Log inconsistent or not a log (last==0, first!=1)");
1524 error = -EINVAL;
1525 goto bp_err;
1526 }
1527
1528 /* we have a partially zeroed log */
1529 last_blk = log_bbnum-1;
1530 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1531 goto bp_err;
1532
1533 /*
1534 * Validate the answer. Because there is no way to guarantee that
1535 * the entire log is made up of log records which are the same size,
1536 * we scan over the defined maximum blocks. At this point, the maximum
1537 * is not chosen to mean anything special. XXXmiken
1538 */
1539 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1540 ASSERT(num_scan_bblks <= INT_MAX);
1541
1542 if (last_blk < num_scan_bblks)
1543 num_scan_bblks = last_blk;
1544 start_blk = last_blk - num_scan_bblks;
1545
1546 /*
1547 * We search for any instances of cycle number 0 that occur before
1548 * our current estimate of the head. What we're trying to detect is
1549 * 1 ... | 0 | 1 | 0...
1550 * ^ binary search ends here
1551 */
1552 if ((error = xlog_find_verify_cycle(log, start_blk,
1553 (int)num_scan_bblks, 0, &new_blk)))
1554 goto bp_err;
1555 if (new_blk != -1)
1556 last_blk = new_blk;
1557
1558 /*
1559 * Potentially backup over partial log record write. We don't need
1560 * to search the end of the log because we know it is zero.
1561 */
1562 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1563 if (error == 1)
1564 error = -EIO;
1565 if (error)
1566 goto bp_err;
1567
1568 *blk_no = last_blk;
1569 bp_err:
1570 xlog_put_bp(bp);
1571 if (error)
1572 return error;
1573 return 1;
1574 }
1575
1576 /*
1577 * These are simple subroutines used by xlog_clear_stale_blocks() below
1578 * to initialize a buffer full of empty log record headers and write
1579 * them into the log.
1580 */
1581 STATIC void
1582 xlog_add_record(
1583 struct xlog *log,
1584 char *buf,
1585 int cycle,
1586 int block,
1587 int tail_cycle,
1588 int tail_block)
1589 {
1590 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1591
1592 memset(buf, 0, BBSIZE);
1593 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1594 recp->h_cycle = cpu_to_be32(cycle);
1595 recp->h_version = cpu_to_be32(
1596 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1597 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1598 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1599 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1600 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1601 }
1602
1603 STATIC int
1604 xlog_write_log_records(
1605 struct xlog *log,
1606 int cycle,
1607 int start_block,
1608 int blocks,
1609 int tail_cycle,
1610 int tail_block)
1611 {
1612 char *offset;
1613 xfs_buf_t *bp;
1614 int balign, ealign;
1615 int sectbb = log->l_sectBBsize;
1616 int end_block = start_block + blocks;
1617 int bufblks;
1618 int error = 0;
1619 int i, j = 0;
1620
1621 /*
1622 * Greedily allocate a buffer big enough to handle the full
1623 * range of basic blocks to be written. If that fails, try
1624 * a smaller size. We need to be able to write at least a
1625 * log sector, or we're out of luck.
1626 */
1627 bufblks = 1 << ffs(blocks);
1628 while (bufblks > log->l_logBBsize)
1629 bufblks >>= 1;
1630 while (!(bp = xlog_get_bp(log, bufblks))) {
1631 bufblks >>= 1;
1632 if (bufblks < sectbb)
1633 return -ENOMEM;
1634 }
1635
1636 /* We may need to do a read at the start to fill in part of
1637 * the buffer in the starting sector not covered by the first
1638 * write below.
1639 */
1640 balign = round_down(start_block, sectbb);
1641 if (balign != start_block) {
1642 error = xlog_bread_noalign(log, start_block, 1, bp);
1643 if (error)
1644 goto out_put_bp;
1645
1646 j = start_block - balign;
1647 }
1648
1649 for (i = start_block; i < end_block; i += bufblks) {
1650 int bcount, endcount;
1651
1652 bcount = min(bufblks, end_block - start_block);
1653 endcount = bcount - j;
1654
1655 /* We may need to do a read at the end to fill in part of
1656 * the buffer in the final sector not covered by the write.
1657 * If this is the same sector as the above read, skip it.
1658 */
1659 ealign = round_down(end_block, sectbb);
1660 if (j == 0 && (start_block + endcount > ealign)) {
1661 offset = bp->b_addr + BBTOB(ealign - start_block);
1662 error = xlog_bread_offset(log, ealign, sectbb,
1663 bp, offset);
1664 if (error)
1665 break;
1666
1667 }
1668
1669 offset = xlog_align(log, start_block, endcount, bp);
1670 for (; j < endcount; j++) {
1671 xlog_add_record(log, offset, cycle, i+j,
1672 tail_cycle, tail_block);
1673 offset += BBSIZE;
1674 }
1675 error = xlog_bwrite(log, start_block, endcount, bp);
1676 if (error)
1677 break;
1678 start_block += endcount;
1679 j = 0;
1680 }
1681
1682 out_put_bp:
1683 xlog_put_bp(bp);
1684 return error;
1685 }
1686
1687 /*
1688 * This routine is called to blow away any incomplete log writes out
1689 * in front of the log head. We do this so that we won't become confused
1690 * if we come up, write only a little bit more, and then crash again.
1691 * If we leave the partial log records out there, this situation could
1692 * cause us to think those partial writes are valid blocks since they
1693 * have the current cycle number. We get rid of them by overwriting them
1694 * with empty log records with the old cycle number rather than the
1695 * current one.
1696 *
1697 * The tail lsn is passed in rather than taken from
1698 * the log so that we will not write over the unmount record after a
1699 * clean unmount in a 512 block log. Doing so would leave the log without
1700 * any valid log records in it until a new one was written. If we crashed
1701 * during that time we would not be able to recover.
1702 */
1703 STATIC int
1704 xlog_clear_stale_blocks(
1705 struct xlog *log,
1706 xfs_lsn_t tail_lsn)
1707 {
1708 int tail_cycle, head_cycle;
1709 int tail_block, head_block;
1710 int tail_distance, max_distance;
1711 int distance;
1712 int error;
1713
1714 tail_cycle = CYCLE_LSN(tail_lsn);
1715 tail_block = BLOCK_LSN(tail_lsn);
1716 head_cycle = log->l_curr_cycle;
1717 head_block = log->l_curr_block;
1718
1719 /*
1720 * Figure out the distance between the new head of the log
1721 * and the tail. We want to write over any blocks beyond the
1722 * head that we may have written just before the crash, but
1723 * we don't want to overwrite the tail of the log.
1724 */
1725 if (head_cycle == tail_cycle) {
1726 /*
1727 * The tail is behind the head in the physical log,
1728 * so the distance from the head to the tail is the
1729 * distance from the head to the end of the log plus
1730 * the distance from the beginning of the log to the
1731 * tail.
1732 */
1733 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1734 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1735 XFS_ERRLEVEL_LOW, log->l_mp);
1736 return -EFSCORRUPTED;
1737 }
1738 tail_distance = tail_block + (log->l_logBBsize - head_block);
1739 } else {
1740 /*
1741 * The head is behind the tail in the physical log,
1742 * so the distance from the head to the tail is just
1743 * the tail block minus the head block.
1744 */
1745 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1747 XFS_ERRLEVEL_LOW, log->l_mp);
1748 return -EFSCORRUPTED;
1749 }
1750 tail_distance = tail_block - head_block;
1751 }
1752
1753 /*
1754 * If the head is right up against the tail, we can't clear
1755 * anything.
1756 */
1757 if (tail_distance <= 0) {
1758 ASSERT(tail_distance == 0);
1759 return 0;
1760 }
1761
1762 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1763 /*
1764 * Take the smaller of the maximum amount of outstanding I/O
1765 * we could have and the distance to the tail to clear out.
1766 * We take the smaller so that we don't overwrite the tail and
1767 * we don't waste all day writing from the head to the tail
1768 * for no reason.
1769 */
1770 max_distance = MIN(max_distance, tail_distance);
1771
1772 if ((head_block + max_distance) <= log->l_logBBsize) {
1773 /*
1774 * We can stomp all the blocks we need to without
1775 * wrapping around the end of the log. Just do it
1776 * in a single write. Use the cycle number of the
1777 * current cycle minus one so that the log will look like:
1778 * n ... | n - 1 ...
1779 */
1780 error = xlog_write_log_records(log, (head_cycle - 1),
1781 head_block, max_distance, tail_cycle,
1782 tail_block);
1783 if (error)
1784 return error;
1785 } else {
1786 /*
1787 * We need to wrap around the end of the physical log in
1788 * order to clear all the blocks. Do it in two separate
1789 * I/Os. The first write should be from the head to the
1790 * end of the physical log, and it should use the current
1791 * cycle number minus one just like above.
1792 */
1793 distance = log->l_logBBsize - head_block;
1794 error = xlog_write_log_records(log, (head_cycle - 1),
1795 head_block, distance, tail_cycle,
1796 tail_block);
1797
1798 if (error)
1799 return error;
1800
1801 /*
1802 * Now write the blocks at the start of the physical log.
1803 * This writes the remainder of the blocks we want to clear.
1804 * It uses the current cycle number since we're now on the
1805 * same cycle as the head so that we get:
1806 * n ... n ... | n - 1 ...
1807 * ^^^^^ blocks we're writing
1808 */
1809 distance = max_distance - (log->l_logBBsize - head_block);
1810 error = xlog_write_log_records(log, head_cycle, 0, distance,
1811 tail_cycle, tail_block);
1812 if (error)
1813 return error;
1814 }
1815
1816 return 0;
1817 }
1818
1819 /******************************************************************************
1820 *
1821 * Log recover routines
1822 *
1823 ******************************************************************************
1824 */
1825
1826 /*
1827 * Sort the log items in the transaction.
1828 *
1829 * The ordering constraints are defined by the inode allocation and unlink
1830 * behaviour. The rules are:
1831 *
1832 * 1. Every item is only logged once in a given transaction. Hence it
1833 * represents the last logged state of the item. Hence ordering is
1834 * dependent on the order in which operations need to be performed so
1835 * required initial conditions are always met.
1836 *
1837 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1838 * there's nothing to replay from them so we can simply cull them
1839 * from the transaction. However, we can't do that until after we've
1840 * replayed all the other items because they may be dependent on the
1841 * cancelled buffer and replaying the cancelled buffer can remove it
1842 * form the cancelled buffer table. Hence they have tobe done last.
1843 *
1844 * 3. Inode allocation buffers must be replayed before inode items that
1845 * read the buffer and replay changes into it. For filesystems using the
1846 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1847 * treated the same as inode allocation buffers as they create and
1848 * initialise the buffers directly.
1849 *
1850 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1851 * This ensures that inodes are completely flushed to the inode buffer
1852 * in a "free" state before we remove the unlinked inode list pointer.
1853 *
1854 * Hence the ordering needs to be inode allocation buffers first, inode items
1855 * second, inode unlink buffers third and cancelled buffers last.
1856 *
1857 * But there's a problem with that - we can't tell an inode allocation buffer
1858 * apart from a regular buffer, so we can't separate them. We can, however,
1859 * tell an inode unlink buffer from the others, and so we can separate them out
1860 * from all the other buffers and move them to last.
1861 *
1862 * Hence, 4 lists, in order from head to tail:
1863 * - buffer_list for all buffers except cancelled/inode unlink buffers
1864 * - item_list for all non-buffer items
1865 * - inode_buffer_list for inode unlink buffers
1866 * - cancel_list for the cancelled buffers
1867 *
1868 * Note that we add objects to the tail of the lists so that first-to-last
1869 * ordering is preserved within the lists. Adding objects to the head of the
1870 * list means when we traverse from the head we walk them in last-to-first
1871 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1872 * but for all other items there may be specific ordering that we need to
1873 * preserve.
1874 */
1875 STATIC int
1876 xlog_recover_reorder_trans(
1877 struct xlog *log,
1878 struct xlog_recover *trans,
1879 int pass)
1880 {
1881 xlog_recover_item_t *item, *n;
1882 int error = 0;
1883 LIST_HEAD(sort_list);
1884 LIST_HEAD(cancel_list);
1885 LIST_HEAD(buffer_list);
1886 LIST_HEAD(inode_buffer_list);
1887 LIST_HEAD(inode_list);
1888
1889 list_splice_init(&trans->r_itemq, &sort_list);
1890 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1891 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1892
1893 switch (ITEM_TYPE(item)) {
1894 case XFS_LI_ICREATE:
1895 list_move_tail(&item->ri_list, &buffer_list);
1896 break;
1897 case XFS_LI_BUF:
1898 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1899 trace_xfs_log_recover_item_reorder_head(log,
1900 trans, item, pass);
1901 list_move(&item->ri_list, &cancel_list);
1902 break;
1903 }
1904 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1905 list_move(&item->ri_list, &inode_buffer_list);
1906 break;
1907 }
1908 list_move_tail(&item->ri_list, &buffer_list);
1909 break;
1910 case XFS_LI_INODE:
1911 case XFS_LI_DQUOT:
1912 case XFS_LI_QUOTAOFF:
1913 case XFS_LI_EFD:
1914 case XFS_LI_EFI:
1915 trace_xfs_log_recover_item_reorder_tail(log,
1916 trans, item, pass);
1917 list_move_tail(&item->ri_list, &inode_list);
1918 break;
1919 default:
1920 xfs_warn(log->l_mp,
1921 "%s: unrecognized type of log operation",
1922 __func__);
1923 ASSERT(0);
1924 /*
1925 * return the remaining items back to the transaction
1926 * item list so they can be freed in caller.
1927 */
1928 if (!list_empty(&sort_list))
1929 list_splice_init(&sort_list, &trans->r_itemq);
1930 error = -EIO;
1931 goto out;
1932 }
1933 }
1934 out:
1935 ASSERT(list_empty(&sort_list));
1936 if (!list_empty(&buffer_list))
1937 list_splice(&buffer_list, &trans->r_itemq);
1938 if (!list_empty(&inode_list))
1939 list_splice_tail(&inode_list, &trans->r_itemq);
1940 if (!list_empty(&inode_buffer_list))
1941 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1942 if (!list_empty(&cancel_list))
1943 list_splice_tail(&cancel_list, &trans->r_itemq);
1944 return error;
1945 }
1946
1947 /*
1948 * Build up the table of buf cancel records so that we don't replay
1949 * cancelled data in the second pass. For buffer records that are
1950 * not cancel records, there is nothing to do here so we just return.
1951 *
1952 * If we get a cancel record which is already in the table, this indicates
1953 * that the buffer was cancelled multiple times. In order to ensure
1954 * that during pass 2 we keep the record in the table until we reach its
1955 * last occurrence in the log, we keep a reference count in the cancel
1956 * record in the table to tell us how many times we expect to see this
1957 * record during the second pass.
1958 */
1959 STATIC int
1960 xlog_recover_buffer_pass1(
1961 struct xlog *log,
1962 struct xlog_recover_item *item)
1963 {
1964 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1965 struct list_head *bucket;
1966 struct xfs_buf_cancel *bcp;
1967
1968 /*
1969 * If this isn't a cancel buffer item, then just return.
1970 */
1971 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1972 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1973 return 0;
1974 }
1975
1976 /*
1977 * Insert an xfs_buf_cancel record into the hash table of them.
1978 * If there is already an identical record, bump its reference count.
1979 */
1980 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1981 list_for_each_entry(bcp, bucket, bc_list) {
1982 if (bcp->bc_blkno == buf_f->blf_blkno &&
1983 bcp->bc_len == buf_f->blf_len) {
1984 bcp->bc_refcount++;
1985 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1986 return 0;
1987 }
1988 }
1989
1990 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1991 bcp->bc_blkno = buf_f->blf_blkno;
1992 bcp->bc_len = buf_f->blf_len;
1993 bcp->bc_refcount = 1;
1994 list_add_tail(&bcp->bc_list, bucket);
1995
1996 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1997 return 0;
1998 }
1999
2000 /*
2001 * Check to see whether the buffer being recovered has a corresponding
2002 * entry in the buffer cancel record table. If it is, return the cancel
2003 * buffer structure to the caller.
2004 */
2005 STATIC struct xfs_buf_cancel *
2006 xlog_peek_buffer_cancelled(
2007 struct xlog *log,
2008 xfs_daddr_t blkno,
2009 uint len,
2010 ushort flags)
2011 {
2012 struct list_head *bucket;
2013 struct xfs_buf_cancel *bcp;
2014
2015 if (!log->l_buf_cancel_table) {
2016 /* empty table means no cancelled buffers in the log */
2017 ASSERT(!(flags & XFS_BLF_CANCEL));
2018 return NULL;
2019 }
2020
2021 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2022 list_for_each_entry(bcp, bucket, bc_list) {
2023 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2024 return bcp;
2025 }
2026
2027 /*
2028 * We didn't find a corresponding entry in the table, so return 0 so
2029 * that the buffer is NOT cancelled.
2030 */
2031 ASSERT(!(flags & XFS_BLF_CANCEL));
2032 return NULL;
2033 }
2034
2035 /*
2036 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2037 * otherwise return 0. If the buffer is actually a buffer cancel item
2038 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2039 * table and remove it from the table if this is the last reference.
2040 *
2041 * We remove the cancel record from the table when we encounter its last
2042 * occurrence in the log so that if the same buffer is re-used again after its
2043 * last cancellation we actually replay the changes made at that point.
2044 */
2045 STATIC int
2046 xlog_check_buffer_cancelled(
2047 struct xlog *log,
2048 xfs_daddr_t blkno,
2049 uint len,
2050 ushort flags)
2051 {
2052 struct xfs_buf_cancel *bcp;
2053
2054 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2055 if (!bcp)
2056 return 0;
2057
2058 /*
2059 * We've go a match, so return 1 so that the recovery of this buffer
2060 * is cancelled. If this buffer is actually a buffer cancel log
2061 * item, then decrement the refcount on the one in the table and
2062 * remove it if this is the last reference.
2063 */
2064 if (flags & XFS_BLF_CANCEL) {
2065 if (--bcp->bc_refcount == 0) {
2066 list_del(&bcp->bc_list);
2067 kmem_free(bcp);
2068 }
2069 }
2070 return 1;
2071 }
2072
2073 /*
2074 * Perform recovery for a buffer full of inodes. In these buffers, the only
2075 * data which should be recovered is that which corresponds to the
2076 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2077 * data for the inodes is always logged through the inodes themselves rather
2078 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2079 *
2080 * The only time when buffers full of inodes are fully recovered is when the
2081 * buffer is full of newly allocated inodes. In this case the buffer will
2082 * not be marked as an inode buffer and so will be sent to
2083 * xlog_recover_do_reg_buffer() below during recovery.
2084 */
2085 STATIC int
2086 xlog_recover_do_inode_buffer(
2087 struct xfs_mount *mp,
2088 xlog_recover_item_t *item,
2089 struct xfs_buf *bp,
2090 xfs_buf_log_format_t *buf_f)
2091 {
2092 int i;
2093 int item_index = 0;
2094 int bit = 0;
2095 int nbits = 0;
2096 int reg_buf_offset = 0;
2097 int reg_buf_bytes = 0;
2098 int next_unlinked_offset;
2099 int inodes_per_buf;
2100 xfs_agino_t *logged_nextp;
2101 xfs_agino_t *buffer_nextp;
2102
2103 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2104
2105 /*
2106 * Post recovery validation only works properly on CRC enabled
2107 * filesystems.
2108 */
2109 if (xfs_sb_version_hascrc(&mp->m_sb))
2110 bp->b_ops = &xfs_inode_buf_ops;
2111
2112 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2113 for (i = 0; i < inodes_per_buf; i++) {
2114 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2115 offsetof(xfs_dinode_t, di_next_unlinked);
2116
2117 while (next_unlinked_offset >=
2118 (reg_buf_offset + reg_buf_bytes)) {
2119 /*
2120 * The next di_next_unlinked field is beyond
2121 * the current logged region. Find the next
2122 * logged region that contains or is beyond
2123 * the current di_next_unlinked field.
2124 */
2125 bit += nbits;
2126 bit = xfs_next_bit(buf_f->blf_data_map,
2127 buf_f->blf_map_size, bit);
2128
2129 /*
2130 * If there are no more logged regions in the
2131 * buffer, then we're done.
2132 */
2133 if (bit == -1)
2134 return 0;
2135
2136 nbits = xfs_contig_bits(buf_f->blf_data_map,
2137 buf_f->blf_map_size, bit);
2138 ASSERT(nbits > 0);
2139 reg_buf_offset = bit << XFS_BLF_SHIFT;
2140 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2141 item_index++;
2142 }
2143
2144 /*
2145 * If the current logged region starts after the current
2146 * di_next_unlinked field, then move on to the next
2147 * di_next_unlinked field.
2148 */
2149 if (next_unlinked_offset < reg_buf_offset)
2150 continue;
2151
2152 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2153 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2154 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2155 BBTOB(bp->b_io_length));
2156
2157 /*
2158 * The current logged region contains a copy of the
2159 * current di_next_unlinked field. Extract its value
2160 * and copy it to the buffer copy.
2161 */
2162 logged_nextp = item->ri_buf[item_index].i_addr +
2163 next_unlinked_offset - reg_buf_offset;
2164 if (unlikely(*logged_nextp == 0)) {
2165 xfs_alert(mp,
2166 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2167 "Trying to replay bad (0) inode di_next_unlinked field.",
2168 item, bp);
2169 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2170 XFS_ERRLEVEL_LOW, mp);
2171 return -EFSCORRUPTED;
2172 }
2173
2174 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2175 *buffer_nextp = *logged_nextp;
2176
2177 /*
2178 * If necessary, recalculate the CRC in the on-disk inode. We
2179 * have to leave the inode in a consistent state for whoever
2180 * reads it next....
2181 */
2182 xfs_dinode_calc_crc(mp,
2183 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2184
2185 }
2186
2187 return 0;
2188 }
2189
2190 /*
2191 * V5 filesystems know the age of the buffer on disk being recovered. We can
2192 * have newer objects on disk than we are replaying, and so for these cases we
2193 * don't want to replay the current change as that will make the buffer contents
2194 * temporarily invalid on disk.
2195 *
2196 * The magic number might not match the buffer type we are going to recover
2197 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2198 * extract the LSN of the existing object in the buffer based on it's current
2199 * magic number. If we don't recognise the magic number in the buffer, then
2200 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2201 * so can recover the buffer.
2202 *
2203 * Note: we cannot rely solely on magic number matches to determine that the
2204 * buffer has a valid LSN - we also need to verify that it belongs to this
2205 * filesystem, so we need to extract the object's LSN and compare it to that
2206 * which we read from the superblock. If the UUIDs don't match, then we've got a
2207 * stale metadata block from an old filesystem instance that we need to recover
2208 * over the top of.
2209 */
2210 static xfs_lsn_t
2211 xlog_recover_get_buf_lsn(
2212 struct xfs_mount *mp,
2213 struct xfs_buf *bp)
2214 {
2215 __uint32_t magic32;
2216 __uint16_t magic16;
2217 __uint16_t magicda;
2218 void *blk = bp->b_addr;
2219 uuid_t *uuid;
2220 xfs_lsn_t lsn = -1;
2221
2222 /* v4 filesystems always recover immediately */
2223 if (!xfs_sb_version_hascrc(&mp->m_sb))
2224 goto recover_immediately;
2225
2226 magic32 = be32_to_cpu(*(__be32 *)blk);
2227 switch (magic32) {
2228 case XFS_ABTB_CRC_MAGIC:
2229 case XFS_ABTC_CRC_MAGIC:
2230 case XFS_ABTB_MAGIC:
2231 case XFS_ABTC_MAGIC:
2232 case XFS_IBT_CRC_MAGIC:
2233 case XFS_IBT_MAGIC: {
2234 struct xfs_btree_block *btb = blk;
2235
2236 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2237 uuid = &btb->bb_u.s.bb_uuid;
2238 break;
2239 }
2240 case XFS_BMAP_CRC_MAGIC:
2241 case XFS_BMAP_MAGIC: {
2242 struct xfs_btree_block *btb = blk;
2243
2244 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2245 uuid = &btb->bb_u.l.bb_uuid;
2246 break;
2247 }
2248 case XFS_AGF_MAGIC:
2249 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2250 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2251 break;
2252 case XFS_AGFL_MAGIC:
2253 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2254 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2255 break;
2256 case XFS_AGI_MAGIC:
2257 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2258 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2259 break;
2260 case XFS_SYMLINK_MAGIC:
2261 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2262 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2263 break;
2264 case XFS_DIR3_BLOCK_MAGIC:
2265 case XFS_DIR3_DATA_MAGIC:
2266 case XFS_DIR3_FREE_MAGIC:
2267 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2268 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2269 break;
2270 case XFS_ATTR3_RMT_MAGIC:
2271 /*
2272 * Remote attr blocks are written synchronously, rather than
2273 * being logged. That means they do not contain a valid LSN
2274 * (i.e. transactionally ordered) in them, and hence any time we
2275 * see a buffer to replay over the top of a remote attribute
2276 * block we should simply do so.
2277 */
2278 goto recover_immediately;
2279 case XFS_SB_MAGIC:
2280 /*
2281 * superblock uuids are magic. We may or may not have a
2282 * sb_meta_uuid on disk, but it will be set in the in-core
2283 * superblock. We set the uuid pointer for verification
2284 * according to the superblock feature mask to ensure we check
2285 * the relevant UUID in the superblock.
2286 */
2287 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2288 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2289 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2290 else
2291 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2292 break;
2293 default:
2294 break;
2295 }
2296
2297 if (lsn != (xfs_lsn_t)-1) {
2298 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2299 goto recover_immediately;
2300 return lsn;
2301 }
2302
2303 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2304 switch (magicda) {
2305 case XFS_DIR3_LEAF1_MAGIC:
2306 case XFS_DIR3_LEAFN_MAGIC:
2307 case XFS_DA3_NODE_MAGIC:
2308 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2309 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2310 break;
2311 default:
2312 break;
2313 }
2314
2315 if (lsn != (xfs_lsn_t)-1) {
2316 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2317 goto recover_immediately;
2318 return lsn;
2319 }
2320
2321 /*
2322 * We do individual object checks on dquot and inode buffers as they
2323 * have their own individual LSN records. Also, we could have a stale
2324 * buffer here, so we have to at least recognise these buffer types.
2325 *
2326 * A notd complexity here is inode unlinked list processing - it logs
2327 * the inode directly in the buffer, but we don't know which inodes have
2328 * been modified, and there is no global buffer LSN. Hence we need to
2329 * recover all inode buffer types immediately. This problem will be
2330 * fixed by logical logging of the unlinked list modifications.
2331 */
2332 magic16 = be16_to_cpu(*(__be16 *)blk);
2333 switch (magic16) {
2334 case XFS_DQUOT_MAGIC:
2335 case XFS_DINODE_MAGIC:
2336 goto recover_immediately;
2337 default:
2338 break;
2339 }
2340
2341 /* unknown buffer contents, recover immediately */
2342
2343 recover_immediately:
2344 return (xfs_lsn_t)-1;
2345
2346 }
2347
2348 /*
2349 * Validate the recovered buffer is of the correct type and attach the
2350 * appropriate buffer operations to them for writeback. Magic numbers are in a
2351 * few places:
2352 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2353 * the first 32 bits of the buffer (most blocks),
2354 * inside a struct xfs_da_blkinfo at the start of the buffer.
2355 */
2356 static void
2357 xlog_recover_validate_buf_type(
2358 struct xfs_mount *mp,
2359 struct xfs_buf *bp,
2360 xfs_buf_log_format_t *buf_f)
2361 {
2362 struct xfs_da_blkinfo *info = bp->b_addr;
2363 __uint32_t magic32;
2364 __uint16_t magic16;
2365 __uint16_t magicda;
2366
2367 /*
2368 * We can only do post recovery validation on items on CRC enabled
2369 * fielsystems as we need to know when the buffer was written to be able
2370 * to determine if we should have replayed the item. If we replay old
2371 * metadata over a newer buffer, then it will enter a temporarily
2372 * inconsistent state resulting in verification failures. Hence for now
2373 * just avoid the verification stage for non-crc filesystems
2374 */
2375 if (!xfs_sb_version_hascrc(&mp->m_sb))
2376 return;
2377
2378 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2379 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2380 magicda = be16_to_cpu(info->magic);
2381 switch (xfs_blft_from_flags(buf_f)) {
2382 case XFS_BLFT_BTREE_BUF:
2383 switch (magic32) {
2384 case XFS_ABTB_CRC_MAGIC:
2385 case XFS_ABTC_CRC_MAGIC:
2386 case XFS_ABTB_MAGIC:
2387 case XFS_ABTC_MAGIC:
2388 bp->b_ops = &xfs_allocbt_buf_ops;
2389 break;
2390 case XFS_IBT_CRC_MAGIC:
2391 case XFS_FIBT_CRC_MAGIC:
2392 case XFS_IBT_MAGIC:
2393 case XFS_FIBT_MAGIC:
2394 bp->b_ops = &xfs_inobt_buf_ops;
2395 break;
2396 case XFS_BMAP_CRC_MAGIC:
2397 case XFS_BMAP_MAGIC:
2398 bp->b_ops = &xfs_bmbt_buf_ops;
2399 break;
2400 default:
2401 xfs_warn(mp, "Bad btree block magic!");
2402 ASSERT(0);
2403 break;
2404 }
2405 break;
2406 case XFS_BLFT_AGF_BUF:
2407 if (magic32 != XFS_AGF_MAGIC) {
2408 xfs_warn(mp, "Bad AGF block magic!");
2409 ASSERT(0);
2410 break;
2411 }
2412 bp->b_ops = &xfs_agf_buf_ops;
2413 break;
2414 case XFS_BLFT_AGFL_BUF:
2415 if (magic32 != XFS_AGFL_MAGIC) {
2416 xfs_warn(mp, "Bad AGFL block magic!");
2417 ASSERT(0);
2418 break;
2419 }
2420 bp->b_ops = &xfs_agfl_buf_ops;
2421 break;
2422 case XFS_BLFT_AGI_BUF:
2423 if (magic32 != XFS_AGI_MAGIC) {
2424 xfs_warn(mp, "Bad AGI block magic!");
2425 ASSERT(0);
2426 break;
2427 }
2428 bp->b_ops = &xfs_agi_buf_ops;
2429 break;
2430 case XFS_BLFT_UDQUOT_BUF:
2431 case XFS_BLFT_PDQUOT_BUF:
2432 case XFS_BLFT_GDQUOT_BUF:
2433 #ifdef CONFIG_XFS_QUOTA
2434 if (magic16 != XFS_DQUOT_MAGIC) {
2435 xfs_warn(mp, "Bad DQUOT block magic!");
2436 ASSERT(0);
2437 break;
2438 }
2439 bp->b_ops = &xfs_dquot_buf_ops;
2440 #else
2441 xfs_alert(mp,
2442 "Trying to recover dquots without QUOTA support built in!");
2443 ASSERT(0);
2444 #endif
2445 break;
2446 case XFS_BLFT_DINO_BUF:
2447 if (magic16 != XFS_DINODE_MAGIC) {
2448 xfs_warn(mp, "Bad INODE block magic!");
2449 ASSERT(0);
2450 break;
2451 }
2452 bp->b_ops = &xfs_inode_buf_ops;
2453 break;
2454 case XFS_BLFT_SYMLINK_BUF:
2455 if (magic32 != XFS_SYMLINK_MAGIC) {
2456 xfs_warn(mp, "Bad symlink block magic!");
2457 ASSERT(0);
2458 break;
2459 }
2460 bp->b_ops = &xfs_symlink_buf_ops;
2461 break;
2462 case XFS_BLFT_DIR_BLOCK_BUF:
2463 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2464 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2465 xfs_warn(mp, "Bad dir block magic!");
2466 ASSERT(0);
2467 break;
2468 }
2469 bp->b_ops = &xfs_dir3_block_buf_ops;
2470 break;
2471 case XFS_BLFT_DIR_DATA_BUF:
2472 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2473 magic32 != XFS_DIR3_DATA_MAGIC) {
2474 xfs_warn(mp, "Bad dir data magic!");
2475 ASSERT(0);
2476 break;
2477 }
2478 bp->b_ops = &xfs_dir3_data_buf_ops;
2479 break;
2480 case XFS_BLFT_DIR_FREE_BUF:
2481 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2482 magic32 != XFS_DIR3_FREE_MAGIC) {
2483 xfs_warn(mp, "Bad dir3 free magic!");
2484 ASSERT(0);
2485 break;
2486 }
2487 bp->b_ops = &xfs_dir3_free_buf_ops;
2488 break;
2489 case XFS_BLFT_DIR_LEAF1_BUF:
2490 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2491 magicda != XFS_DIR3_LEAF1_MAGIC) {
2492 xfs_warn(mp, "Bad dir leaf1 magic!");
2493 ASSERT(0);
2494 break;
2495 }
2496 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2497 break;
2498 case XFS_BLFT_DIR_LEAFN_BUF:
2499 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2500 magicda != XFS_DIR3_LEAFN_MAGIC) {
2501 xfs_warn(mp, "Bad dir leafn magic!");
2502 ASSERT(0);
2503 break;
2504 }
2505 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2506 break;
2507 case XFS_BLFT_DA_NODE_BUF:
2508 if (magicda != XFS_DA_NODE_MAGIC &&
2509 magicda != XFS_DA3_NODE_MAGIC) {
2510 xfs_warn(mp, "Bad da node magic!");
2511 ASSERT(0);
2512 break;
2513 }
2514 bp->b_ops = &xfs_da3_node_buf_ops;
2515 break;
2516 case XFS_BLFT_ATTR_LEAF_BUF:
2517 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2518 magicda != XFS_ATTR3_LEAF_MAGIC) {
2519 xfs_warn(mp, "Bad attr leaf magic!");
2520 ASSERT(0);
2521 break;
2522 }
2523 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2524 break;
2525 case XFS_BLFT_ATTR_RMT_BUF:
2526 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2527 xfs_warn(mp, "Bad attr remote magic!");
2528 ASSERT(0);
2529 break;
2530 }
2531 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2532 break;
2533 case XFS_BLFT_SB_BUF:
2534 if (magic32 != XFS_SB_MAGIC) {
2535 xfs_warn(mp, "Bad SB block magic!");
2536 ASSERT(0);
2537 break;
2538 }
2539 bp->b_ops = &xfs_sb_buf_ops;
2540 break;
2541 default:
2542 xfs_warn(mp, "Unknown buffer type %d!",
2543 xfs_blft_from_flags(buf_f));
2544 break;
2545 }
2546 }
2547
2548 /*
2549 * Perform a 'normal' buffer recovery. Each logged region of the
2550 * buffer should be copied over the corresponding region in the
2551 * given buffer. The bitmap in the buf log format structure indicates
2552 * where to place the logged data.
2553 */
2554 STATIC void
2555 xlog_recover_do_reg_buffer(
2556 struct xfs_mount *mp,
2557 xlog_recover_item_t *item,
2558 struct xfs_buf *bp,
2559 xfs_buf_log_format_t *buf_f)
2560 {
2561 int i;
2562 int bit;
2563 int nbits;
2564 int error;
2565
2566 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2567
2568 bit = 0;
2569 i = 1; /* 0 is the buf format structure */
2570 while (1) {
2571 bit = xfs_next_bit(buf_f->blf_data_map,
2572 buf_f->blf_map_size, bit);
2573 if (bit == -1)
2574 break;
2575 nbits = xfs_contig_bits(buf_f->blf_data_map,
2576 buf_f->blf_map_size, bit);
2577 ASSERT(nbits > 0);
2578 ASSERT(item->ri_buf[i].i_addr != NULL);
2579 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2580 ASSERT(BBTOB(bp->b_io_length) >=
2581 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2582
2583 /*
2584 * The dirty regions logged in the buffer, even though
2585 * contiguous, may span multiple chunks. This is because the
2586 * dirty region may span a physical page boundary in a buffer
2587 * and hence be split into two separate vectors for writing into
2588 * the log. Hence we need to trim nbits back to the length of
2589 * the current region being copied out of the log.
2590 */
2591 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2592 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2593
2594 /*
2595 * Do a sanity check if this is a dquot buffer. Just checking
2596 * the first dquot in the buffer should do. XXXThis is
2597 * probably a good thing to do for other buf types also.
2598 */
2599 error = 0;
2600 if (buf_f->blf_flags &
2601 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2602 if (item->ri_buf[i].i_addr == NULL) {
2603 xfs_alert(mp,
2604 "XFS: NULL dquot in %s.", __func__);
2605 goto next;
2606 }
2607 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2608 xfs_alert(mp,
2609 "XFS: dquot too small (%d) in %s.",
2610 item->ri_buf[i].i_len, __func__);
2611 goto next;
2612 }
2613 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2614 -1, 0, XFS_QMOPT_DOWARN,
2615 "dquot_buf_recover");
2616 if (error)
2617 goto next;
2618 }
2619
2620 memcpy(xfs_buf_offset(bp,
2621 (uint)bit << XFS_BLF_SHIFT), /* dest */
2622 item->ri_buf[i].i_addr, /* source */
2623 nbits<<XFS_BLF_SHIFT); /* length */
2624 next:
2625 i++;
2626 bit += nbits;
2627 }
2628
2629 /* Shouldn't be any more regions */
2630 ASSERT(i == item->ri_total);
2631
2632 xlog_recover_validate_buf_type(mp, bp, buf_f);
2633 }
2634
2635 /*
2636 * Perform a dquot buffer recovery.
2637 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2638 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2639 * Else, treat it as a regular buffer and do recovery.
2640 *
2641 * Return false if the buffer was tossed and true if we recovered the buffer to
2642 * indicate to the caller if the buffer needs writing.
2643 */
2644 STATIC bool
2645 xlog_recover_do_dquot_buffer(
2646 struct xfs_mount *mp,
2647 struct xlog *log,
2648 struct xlog_recover_item *item,
2649 struct xfs_buf *bp,
2650 struct xfs_buf_log_format *buf_f)
2651 {
2652 uint type;
2653
2654 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2655
2656 /*
2657 * Filesystems are required to send in quota flags at mount time.
2658 */
2659 if (!mp->m_qflags)
2660 return false;
2661
2662 type = 0;
2663 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2664 type |= XFS_DQ_USER;
2665 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2666 type |= XFS_DQ_PROJ;
2667 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2668 type |= XFS_DQ_GROUP;
2669 /*
2670 * This type of quotas was turned off, so ignore this buffer
2671 */
2672 if (log->l_quotaoffs_flag & type)
2673 return false;
2674
2675 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2676 return true;
2677 }
2678
2679 /*
2680 * This routine replays a modification made to a buffer at runtime.
2681 * There are actually two types of buffer, regular and inode, which
2682 * are handled differently. Inode buffers are handled differently
2683 * in that we only recover a specific set of data from them, namely
2684 * the inode di_next_unlinked fields. This is because all other inode
2685 * data is actually logged via inode records and any data we replay
2686 * here which overlaps that may be stale.
2687 *
2688 * When meta-data buffers are freed at run time we log a buffer item
2689 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2690 * of the buffer in the log should not be replayed at recovery time.
2691 * This is so that if the blocks covered by the buffer are reused for
2692 * file data before we crash we don't end up replaying old, freed
2693 * meta-data into a user's file.
2694 *
2695 * To handle the cancellation of buffer log items, we make two passes
2696 * over the log during recovery. During the first we build a table of
2697 * those buffers which have been cancelled, and during the second we
2698 * only replay those buffers which do not have corresponding cancel
2699 * records in the table. See xlog_recover_buffer_pass[1,2] above
2700 * for more details on the implementation of the table of cancel records.
2701 */
2702 STATIC int
2703 xlog_recover_buffer_pass2(
2704 struct xlog *log,
2705 struct list_head *buffer_list,
2706 struct xlog_recover_item *item,
2707 xfs_lsn_t current_lsn)
2708 {
2709 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2710 xfs_mount_t *mp = log->l_mp;
2711 xfs_buf_t *bp;
2712 int error;
2713 uint buf_flags;
2714 xfs_lsn_t lsn;
2715
2716 /*
2717 * In this pass we only want to recover all the buffers which have
2718 * not been cancelled and are not cancellation buffers themselves.
2719 */
2720 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2721 buf_f->blf_len, buf_f->blf_flags)) {
2722 trace_xfs_log_recover_buf_cancel(log, buf_f);
2723 return 0;
2724 }
2725
2726 trace_xfs_log_recover_buf_recover(log, buf_f);
2727
2728 buf_flags = 0;
2729 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2730 buf_flags |= XBF_UNMAPPED;
2731
2732 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2733 buf_flags, NULL);
2734 if (!bp)
2735 return -ENOMEM;
2736 error = bp->b_error;
2737 if (error) {
2738 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2739 goto out_release;
2740 }
2741
2742 /*
2743 * Recover the buffer only if we get an LSN from it and it's less than
2744 * the lsn of the transaction we are replaying.
2745 *
2746 * Note that we have to be extremely careful of readahead here.
2747 * Readahead does not attach verfiers to the buffers so if we don't
2748 * actually do any replay after readahead because of the LSN we found
2749 * in the buffer if more recent than that current transaction then we
2750 * need to attach the verifier directly. Failure to do so can lead to
2751 * future recovery actions (e.g. EFI and unlinked list recovery) can
2752 * operate on the buffers and they won't get the verifier attached. This
2753 * can lead to blocks on disk having the correct content but a stale
2754 * CRC.
2755 *
2756 * It is safe to assume these clean buffers are currently up to date.
2757 * If the buffer is dirtied by a later transaction being replayed, then
2758 * the verifier will be reset to match whatever recover turns that
2759 * buffer into.
2760 */
2761 lsn = xlog_recover_get_buf_lsn(mp, bp);
2762 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2763 xlog_recover_validate_buf_type(mp, bp, buf_f);
2764 goto out_release;
2765 }
2766
2767 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2768 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2769 if (error)
2770 goto out_release;
2771 } else if (buf_f->blf_flags &
2772 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2773 bool dirty;
2774
2775 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2776 if (!dirty)
2777 goto out_release;
2778 } else {
2779 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2780 }
2781
2782 /*
2783 * Perform delayed write on the buffer. Asynchronous writes will be
2784 * slower when taking into account all the buffers to be flushed.
2785 *
2786 * Also make sure that only inode buffers with good sizes stay in
2787 * the buffer cache. The kernel moves inodes in buffers of 1 block
2788 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2789 * buffers in the log can be a different size if the log was generated
2790 * by an older kernel using unclustered inode buffers or a newer kernel
2791 * running with a different inode cluster size. Regardless, if the
2792 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2793 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2794 * the buffer out of the buffer cache so that the buffer won't
2795 * overlap with future reads of those inodes.
2796 */
2797 if (XFS_DINODE_MAGIC ==
2798 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2799 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2800 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2801 xfs_buf_stale(bp);
2802 error = xfs_bwrite(bp);
2803 } else {
2804 ASSERT(bp->b_target->bt_mount == mp);
2805 bp->b_iodone = xlog_recover_iodone;
2806 xfs_buf_delwri_queue(bp, buffer_list);
2807 }
2808
2809 out_release:
2810 xfs_buf_relse(bp);
2811 return error;
2812 }
2813
2814 /*
2815 * Inode fork owner changes
2816 *
2817 * If we have been told that we have to reparent the inode fork, it's because an
2818 * extent swap operation on a CRC enabled filesystem has been done and we are
2819 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2820 * owners of it.
2821 *
2822 * The complexity here is that we don't have an inode context to work with, so
2823 * after we've replayed the inode we need to instantiate one. This is where the
2824 * fun begins.
2825 *
2826 * We are in the middle of log recovery, so we can't run transactions. That
2827 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2828 * that will result in the corresponding iput() running the inode through
2829 * xfs_inactive(). If we've just replayed an inode core that changes the link
2830 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2831 * transactions (bad!).
2832 *
2833 * So, to avoid this, we instantiate an inode directly from the inode core we've
2834 * just recovered. We have the buffer still locked, and all we really need to
2835 * instantiate is the inode core and the forks being modified. We can do this
2836 * manually, then run the inode btree owner change, and then tear down the
2837 * xfs_inode without having to run any transactions at all.
2838 *
2839 * Also, because we don't have a transaction context available here but need to
2840 * gather all the buffers we modify for writeback so we pass the buffer_list
2841 * instead for the operation to use.
2842 */
2843
2844 STATIC int
2845 xfs_recover_inode_owner_change(
2846 struct xfs_mount *mp,
2847 struct xfs_dinode *dip,
2848 struct xfs_inode_log_format *in_f,
2849 struct list_head *buffer_list)
2850 {
2851 struct xfs_inode *ip;
2852 int error;
2853
2854 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2855
2856 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2857 if (!ip)
2858 return -ENOMEM;
2859
2860 /* instantiate the inode */
2861 xfs_dinode_from_disk(&ip->i_d, dip);
2862 ASSERT(ip->i_d.di_version >= 3);
2863
2864 error = xfs_iformat_fork(ip, dip);
2865 if (error)
2866 goto out_free_ip;
2867
2868
2869 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2870 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2871 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2872 ip->i_ino, buffer_list);
2873 if (error)
2874 goto out_free_ip;
2875 }
2876
2877 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2878 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2879 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2880 ip->i_ino, buffer_list);
2881 if (error)
2882 goto out_free_ip;
2883 }
2884
2885 out_free_ip:
2886 xfs_inode_free(ip);
2887 return error;
2888 }
2889
2890 STATIC int
2891 xlog_recover_inode_pass2(
2892 struct xlog *log,
2893 struct list_head *buffer_list,
2894 struct xlog_recover_item *item,
2895 xfs_lsn_t current_lsn)
2896 {
2897 xfs_inode_log_format_t *in_f;
2898 xfs_mount_t *mp = log->l_mp;
2899 xfs_buf_t *bp;
2900 xfs_dinode_t *dip;
2901 int len;
2902 char *src;
2903 char *dest;
2904 int error;
2905 int attr_index;
2906 uint fields;
2907 xfs_icdinode_t *dicp;
2908 uint isize;
2909 int need_free = 0;
2910
2911 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2912 in_f = item->ri_buf[0].i_addr;
2913 } else {
2914 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2915 need_free = 1;
2916 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2917 if (error)
2918 goto error;
2919 }
2920
2921 /*
2922 * Inode buffers can be freed, look out for it,
2923 * and do not replay the inode.
2924 */
2925 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2926 in_f->ilf_len, 0)) {
2927 error = 0;
2928 trace_xfs_log_recover_inode_cancel(log, in_f);
2929 goto error;
2930 }
2931 trace_xfs_log_recover_inode_recover(log, in_f);
2932
2933 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2934 &xfs_inode_buf_ops);
2935 if (!bp) {
2936 error = -ENOMEM;
2937 goto error;
2938 }
2939 error = bp->b_error;
2940 if (error) {
2941 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2942 goto out_release;
2943 }
2944 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2945 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2946
2947 /*
2948 * Make sure the place we're flushing out to really looks
2949 * like an inode!
2950 */
2951 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2952 xfs_alert(mp,
2953 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2954 __func__, dip, bp, in_f->ilf_ino);
2955 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2956 XFS_ERRLEVEL_LOW, mp);
2957 error = -EFSCORRUPTED;
2958 goto out_release;
2959 }
2960 dicp = item->ri_buf[1].i_addr;
2961 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2962 xfs_alert(mp,
2963 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2964 __func__, item, in_f->ilf_ino);
2965 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2966 XFS_ERRLEVEL_LOW, mp);
2967 error = -EFSCORRUPTED;
2968 goto out_release;
2969 }
2970
2971 /*
2972 * If the inode has an LSN in it, recover the inode only if it's less
2973 * than the lsn of the transaction we are replaying. Note: we still
2974 * need to replay an owner change even though the inode is more recent
2975 * than the transaction as there is no guarantee that all the btree
2976 * blocks are more recent than this transaction, too.
2977 */
2978 if (dip->di_version >= 3) {
2979 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2980
2981 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2982 trace_xfs_log_recover_inode_skip(log, in_f);
2983 error = 0;
2984 goto out_owner_change;
2985 }
2986 }
2987
2988 /*
2989 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2990 * are transactional and if ordering is necessary we can determine that
2991 * more accurately by the LSN field in the V3 inode core. Don't trust
2992 * the inode versions we might be changing them here - use the
2993 * superblock flag to determine whether we need to look at di_flushiter
2994 * to skip replay when the on disk inode is newer than the log one
2995 */
2996 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2997 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2998 /*
2999 * Deal with the wrap case, DI_MAX_FLUSH is less
3000 * than smaller numbers
3001 */
3002 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3003 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3004 /* do nothing */
3005 } else {
3006 trace_xfs_log_recover_inode_skip(log, in_f);
3007 error = 0;
3008 goto out_release;
3009 }
3010 }
3011
3012 /* Take the opportunity to reset the flush iteration count */
3013 dicp->di_flushiter = 0;
3014
3015 if (unlikely(S_ISREG(dicp->di_mode))) {
3016 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
3017 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
3018 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3019 XFS_ERRLEVEL_LOW, mp, dicp);
3020 xfs_alert(mp,
3021 "%s: Bad regular inode log record, rec ptr 0x%p, "
3022 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3023 __func__, item, dip, bp, in_f->ilf_ino);
3024 error = -EFSCORRUPTED;
3025 goto out_release;
3026 }
3027 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
3028 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
3029 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
3030 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
3031 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3032 XFS_ERRLEVEL_LOW, mp, dicp);
3033 xfs_alert(mp,
3034 "%s: Bad dir inode log record, rec ptr 0x%p, "
3035 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3036 __func__, item, dip, bp, in_f->ilf_ino);
3037 error = -EFSCORRUPTED;
3038 goto out_release;
3039 }
3040 }
3041 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
3042 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3043 XFS_ERRLEVEL_LOW, mp, dicp);
3044 xfs_alert(mp,
3045 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3046 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3047 __func__, item, dip, bp, in_f->ilf_ino,
3048 dicp->di_nextents + dicp->di_anextents,
3049 dicp->di_nblocks);
3050 error = -EFSCORRUPTED;
3051 goto out_release;
3052 }
3053 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
3054 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3055 XFS_ERRLEVEL_LOW, mp, dicp);
3056 xfs_alert(mp,
3057 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3058 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3059 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
3060 error = -EFSCORRUPTED;
3061 goto out_release;
3062 }
3063 isize = xfs_icdinode_size(dicp->di_version);
3064 if (unlikely(item->ri_buf[1].i_len > isize)) {
3065 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3066 XFS_ERRLEVEL_LOW, mp, dicp);
3067 xfs_alert(mp,
3068 "%s: Bad inode log record length %d, rec ptr 0x%p",
3069 __func__, item->ri_buf[1].i_len, item);
3070 error = -EFSCORRUPTED;
3071 goto out_release;
3072 }
3073
3074 /* The core is in in-core format */
3075 xfs_dinode_to_disk(dip, dicp);
3076
3077 /* the rest is in on-disk format */
3078 if (item->ri_buf[1].i_len > isize) {
3079 memcpy((char *)dip + isize,
3080 item->ri_buf[1].i_addr + isize,
3081 item->ri_buf[1].i_len - isize);
3082 }
3083
3084 fields = in_f->ilf_fields;
3085 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3086 case XFS_ILOG_DEV:
3087 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3088 break;
3089 case XFS_ILOG_UUID:
3090 memcpy(XFS_DFORK_DPTR(dip),
3091 &in_f->ilf_u.ilfu_uuid,
3092 sizeof(uuid_t));
3093 break;
3094 }
3095
3096 if (in_f->ilf_size == 2)
3097 goto out_owner_change;
3098 len = item->ri_buf[2].i_len;
3099 src = item->ri_buf[2].i_addr;
3100 ASSERT(in_f->ilf_size <= 4);
3101 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3102 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3103 (len == in_f->ilf_dsize));
3104
3105 switch (fields & XFS_ILOG_DFORK) {
3106 case XFS_ILOG_DDATA:
3107 case XFS_ILOG_DEXT:
3108 memcpy(XFS_DFORK_DPTR(dip), src, len);
3109 break;
3110
3111 case XFS_ILOG_DBROOT:
3112 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3113 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3114 XFS_DFORK_DSIZE(dip, mp));
3115 break;
3116
3117 default:
3118 /*
3119 * There are no data fork flags set.
3120 */
3121 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3122 break;
3123 }
3124
3125 /*
3126 * If we logged any attribute data, recover it. There may or
3127 * may not have been any other non-core data logged in this
3128 * transaction.
3129 */
3130 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3131 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3132 attr_index = 3;
3133 } else {
3134 attr_index = 2;
3135 }
3136 len = item->ri_buf[attr_index].i_len;
3137 src = item->ri_buf[attr_index].i_addr;
3138 ASSERT(len == in_f->ilf_asize);
3139
3140 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3141 case XFS_ILOG_ADATA:
3142 case XFS_ILOG_AEXT:
3143 dest = XFS_DFORK_APTR(dip);
3144 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3145 memcpy(dest, src, len);
3146 break;
3147
3148 case XFS_ILOG_ABROOT:
3149 dest = XFS_DFORK_APTR(dip);
3150 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3151 len, (xfs_bmdr_block_t*)dest,
3152 XFS_DFORK_ASIZE(dip, mp));
3153 break;
3154
3155 default:
3156 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3157 ASSERT(0);
3158 error = -EIO;
3159 goto out_release;
3160 }
3161 }
3162
3163 out_owner_change:
3164 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3165 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3166 buffer_list);
3167 /* re-generate the checksum. */
3168 xfs_dinode_calc_crc(log->l_mp, dip);
3169
3170 ASSERT(bp->b_target->bt_mount == mp);
3171 bp->b_iodone = xlog_recover_iodone;
3172 xfs_buf_delwri_queue(bp, buffer_list);
3173
3174 out_release:
3175 xfs_buf_relse(bp);
3176 error:
3177 if (need_free)
3178 kmem_free(in_f);
3179 return error;
3180 }
3181
3182 /*
3183 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3184 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3185 * of that type.
3186 */
3187 STATIC int
3188 xlog_recover_quotaoff_pass1(
3189 struct xlog *log,
3190 struct xlog_recover_item *item)
3191 {
3192 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3193 ASSERT(qoff_f);
3194
3195 /*
3196 * The logitem format's flag tells us if this was user quotaoff,
3197 * group/project quotaoff or both.
3198 */
3199 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3200 log->l_quotaoffs_flag |= XFS_DQ_USER;
3201 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3202 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3203 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3204 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3205
3206 return 0;
3207 }
3208
3209 /*
3210 * Recover a dquot record
3211 */
3212 STATIC int
3213 xlog_recover_dquot_pass2(
3214 struct xlog *log,
3215 struct list_head *buffer_list,
3216 struct xlog_recover_item *item,
3217 xfs_lsn_t current_lsn)
3218 {
3219 xfs_mount_t *mp = log->l_mp;
3220 xfs_buf_t *bp;
3221 struct xfs_disk_dquot *ddq, *recddq;
3222 int error;
3223 xfs_dq_logformat_t *dq_f;
3224 uint type;
3225
3226
3227 /*
3228 * Filesystems are required to send in quota flags at mount time.
3229 */
3230 if (mp->m_qflags == 0)
3231 return 0;
3232
3233 recddq = item->ri_buf[1].i_addr;
3234 if (recddq == NULL) {
3235 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3236 return -EIO;
3237 }
3238 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3239 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3240 item->ri_buf[1].i_len, __func__);
3241 return -EIO;
3242 }
3243
3244 /*
3245 * This type of quotas was turned off, so ignore this record.
3246 */
3247 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3248 ASSERT(type);
3249 if (log->l_quotaoffs_flag & type)
3250 return 0;
3251
3252 /*
3253 * At this point we know that quota was _not_ turned off.
3254 * Since the mount flags are not indicating to us otherwise, this
3255 * must mean that quota is on, and the dquot needs to be replayed.
3256 * Remember that we may not have fully recovered the superblock yet,
3257 * so we can't do the usual trick of looking at the SB quota bits.
3258 *
3259 * The other possibility, of course, is that the quota subsystem was
3260 * removed since the last mount - ENOSYS.
3261 */
3262 dq_f = item->ri_buf[0].i_addr;
3263 ASSERT(dq_f);
3264 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3265 "xlog_recover_dquot_pass2 (log copy)");
3266 if (error)
3267 return -EIO;
3268 ASSERT(dq_f->qlf_len == 1);
3269
3270 /*
3271 * At this point we are assuming that the dquots have been allocated
3272 * and hence the buffer has valid dquots stamped in it. It should,
3273 * therefore, pass verifier validation. If the dquot is bad, then the
3274 * we'll return an error here, so we don't need to specifically check
3275 * the dquot in the buffer after the verifier has run.
3276 */
3277 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3278 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3279 &xfs_dquot_buf_ops);
3280 if (error)
3281 return error;
3282
3283 ASSERT(bp);
3284 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3285
3286 /*
3287 * If the dquot has an LSN in it, recover the dquot only if it's less
3288 * than the lsn of the transaction we are replaying.
3289 */
3290 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3291 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3292 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3293
3294 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3295 goto out_release;
3296 }
3297 }
3298
3299 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3300 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3301 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3302 XFS_DQUOT_CRC_OFF);
3303 }
3304
3305 ASSERT(dq_f->qlf_size == 2);
3306 ASSERT(bp->b_target->bt_mount == mp);
3307 bp->b_iodone = xlog_recover_iodone;
3308 xfs_buf_delwri_queue(bp, buffer_list);
3309
3310 out_release:
3311 xfs_buf_relse(bp);
3312 return 0;
3313 }
3314
3315 /*
3316 * This routine is called to create an in-core extent free intent
3317 * item from the efi format structure which was logged on disk.
3318 * It allocates an in-core efi, copies the extents from the format
3319 * structure into it, and adds the efi to the AIL with the given
3320 * LSN.
3321 */
3322 STATIC int
3323 xlog_recover_efi_pass2(
3324 struct xlog *log,
3325 struct xlog_recover_item *item,
3326 xfs_lsn_t lsn)
3327 {
3328 int error;
3329 struct xfs_mount *mp = log->l_mp;
3330 struct xfs_efi_log_item *efip;
3331 struct xfs_efi_log_format *efi_formatp;
3332
3333 efi_formatp = item->ri_buf[0].i_addr;
3334
3335 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3336 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3337 if (error) {
3338 xfs_efi_item_free(efip);
3339 return error;
3340 }
3341 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3342
3343 spin_lock(&log->l_ailp->xa_lock);
3344 /*
3345 * The EFI has two references. One for the EFD and one for EFI to ensure
3346 * it makes it into the AIL. Insert the EFI into the AIL directly and
3347 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3348 * AIL lock.
3349 */
3350 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3351 xfs_efi_release(efip);
3352 return 0;
3353 }
3354
3355
3356 /*
3357 * This routine is called when an EFD format structure is found in a committed
3358 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3359 * was still in the log. To do this it searches the AIL for the EFI with an id
3360 * equal to that in the EFD format structure. If we find it we drop the EFD
3361 * reference, which removes the EFI from the AIL and frees it.
3362 */
3363 STATIC int
3364 xlog_recover_efd_pass2(
3365 struct xlog *log,
3366 struct xlog_recover_item *item)
3367 {
3368 xfs_efd_log_format_t *efd_formatp;
3369 xfs_efi_log_item_t *efip = NULL;
3370 xfs_log_item_t *lip;
3371 __uint64_t efi_id;
3372 struct xfs_ail_cursor cur;
3373 struct xfs_ail *ailp = log->l_ailp;
3374
3375 efd_formatp = item->ri_buf[0].i_addr;
3376 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3377 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3378 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3379 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3380 efi_id = efd_formatp->efd_efi_id;
3381
3382 /*
3383 * Search for the EFI with the id in the EFD format structure in the
3384 * AIL.
3385 */
3386 spin_lock(&ailp->xa_lock);
3387 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3388 while (lip != NULL) {
3389 if (lip->li_type == XFS_LI_EFI) {
3390 efip = (xfs_efi_log_item_t *)lip;
3391 if (efip->efi_format.efi_id == efi_id) {
3392 /*
3393 * Drop the EFD reference to the EFI. This
3394 * removes the EFI from the AIL and frees it.
3395 */
3396 spin_unlock(&ailp->xa_lock);
3397 xfs_efi_release(efip);
3398 spin_lock(&ailp->xa_lock);
3399 break;
3400 }
3401 }
3402 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3403 }
3404
3405 xfs_trans_ail_cursor_done(&cur);
3406 spin_unlock(&ailp->xa_lock);
3407
3408 return 0;
3409 }
3410
3411 /*
3412 * This routine is called when an inode create format structure is found in a
3413 * committed transaction in the log. It's purpose is to initialise the inodes
3414 * being allocated on disk. This requires us to get inode cluster buffers that
3415 * match the range to be intialised, stamped with inode templates and written
3416 * by delayed write so that subsequent modifications will hit the cached buffer
3417 * and only need writing out at the end of recovery.
3418 */
3419 STATIC int
3420 xlog_recover_do_icreate_pass2(
3421 struct xlog *log,
3422 struct list_head *buffer_list,
3423 xlog_recover_item_t *item)
3424 {
3425 struct xfs_mount *mp = log->l_mp;
3426 struct xfs_icreate_log *icl;
3427 xfs_agnumber_t agno;
3428 xfs_agblock_t agbno;
3429 unsigned int count;
3430 unsigned int isize;
3431 xfs_agblock_t length;
3432 int blks_per_cluster;
3433 int bb_per_cluster;
3434 int cancel_count;
3435 int nbufs;
3436 int i;
3437
3438 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3439 if (icl->icl_type != XFS_LI_ICREATE) {
3440 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3441 return -EINVAL;
3442 }
3443
3444 if (icl->icl_size != 1) {
3445 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3446 return -EINVAL;
3447 }
3448
3449 agno = be32_to_cpu(icl->icl_ag);
3450 if (agno >= mp->m_sb.sb_agcount) {
3451 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3452 return -EINVAL;
3453 }
3454 agbno = be32_to_cpu(icl->icl_agbno);
3455 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3456 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3457 return -EINVAL;
3458 }
3459 isize = be32_to_cpu(icl->icl_isize);
3460 if (isize != mp->m_sb.sb_inodesize) {
3461 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3462 return -EINVAL;
3463 }
3464 count = be32_to_cpu(icl->icl_count);
3465 if (!count) {
3466 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3467 return -EINVAL;
3468 }
3469 length = be32_to_cpu(icl->icl_length);
3470 if (!length || length >= mp->m_sb.sb_agblocks) {
3471 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3472 return -EINVAL;
3473 }
3474
3475 /*
3476 * The inode chunk is either full or sparse and we only support
3477 * m_ialloc_min_blks sized sparse allocations at this time.
3478 */
3479 if (length != mp->m_ialloc_blks &&
3480 length != mp->m_ialloc_min_blks) {
3481 xfs_warn(log->l_mp,
3482 "%s: unsupported chunk length", __FUNCTION__);
3483 return -EINVAL;
3484 }
3485
3486 /* verify inode count is consistent with extent length */
3487 if ((count >> mp->m_sb.sb_inopblog) != length) {
3488 xfs_warn(log->l_mp,
3489 "%s: inconsistent inode count and chunk length",
3490 __FUNCTION__);
3491 return -EINVAL;
3492 }
3493
3494 /*
3495 * The icreate transaction can cover multiple cluster buffers and these
3496 * buffers could have been freed and reused. Check the individual
3497 * buffers for cancellation so we don't overwrite anything written after
3498 * a cancellation.
3499 */
3500 blks_per_cluster = xfs_icluster_size_fsb(mp);
3501 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3502 nbufs = length / blks_per_cluster;
3503 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3504 xfs_daddr_t daddr;
3505
3506 daddr = XFS_AGB_TO_DADDR(mp, agno,
3507 agbno + i * blks_per_cluster);
3508 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3509 cancel_count++;
3510 }
3511
3512 /*
3513 * We currently only use icreate for a single allocation at a time. This
3514 * means we should expect either all or none of the buffers to be
3515 * cancelled. Be conservative and skip replay if at least one buffer is
3516 * cancelled, but warn the user that something is awry if the buffers
3517 * are not consistent.
3518 *
3519 * XXX: This must be refined to only skip cancelled clusters once we use
3520 * icreate for multiple chunk allocations.
3521 */
3522 ASSERT(!cancel_count || cancel_count == nbufs);
3523 if (cancel_count) {
3524 if (cancel_count != nbufs)
3525 xfs_warn(mp,
3526 "WARNING: partial inode chunk cancellation, skipped icreate.");
3527 trace_xfs_log_recover_icreate_cancel(log, icl);
3528 return 0;
3529 }
3530
3531 trace_xfs_log_recover_icreate_recover(log, icl);
3532 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3533 length, be32_to_cpu(icl->icl_gen));
3534 }
3535
3536 STATIC void
3537 xlog_recover_buffer_ra_pass2(
3538 struct xlog *log,
3539 struct xlog_recover_item *item)
3540 {
3541 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3542 struct xfs_mount *mp = log->l_mp;
3543
3544 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3545 buf_f->blf_len, buf_f->blf_flags)) {
3546 return;
3547 }
3548
3549 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3550 buf_f->blf_len, NULL);
3551 }
3552
3553 STATIC void
3554 xlog_recover_inode_ra_pass2(
3555 struct xlog *log,
3556 struct xlog_recover_item *item)
3557 {
3558 struct xfs_inode_log_format ilf_buf;
3559 struct xfs_inode_log_format *ilfp;
3560 struct xfs_mount *mp = log->l_mp;
3561 int error;
3562
3563 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3564 ilfp = item->ri_buf[0].i_addr;
3565 } else {
3566 ilfp = &ilf_buf;
3567 memset(ilfp, 0, sizeof(*ilfp));
3568 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3569 if (error)
3570 return;
3571 }
3572
3573 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3574 return;
3575
3576 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3577 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3578 }
3579
3580 STATIC void
3581 xlog_recover_dquot_ra_pass2(
3582 struct xlog *log,
3583 struct xlog_recover_item *item)
3584 {
3585 struct xfs_mount *mp = log->l_mp;
3586 struct xfs_disk_dquot *recddq;
3587 struct xfs_dq_logformat *dq_f;
3588 uint type;
3589 int len;
3590
3591
3592 if (mp->m_qflags == 0)
3593 return;
3594
3595 recddq = item->ri_buf[1].i_addr;
3596 if (recddq == NULL)
3597 return;
3598 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3599 return;
3600
3601 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3602 ASSERT(type);
3603 if (log->l_quotaoffs_flag & type)
3604 return;
3605
3606 dq_f = item->ri_buf[0].i_addr;
3607 ASSERT(dq_f);
3608 ASSERT(dq_f->qlf_len == 1);
3609
3610 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3611 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3612 return;
3613
3614 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3615 &xfs_dquot_buf_ra_ops);
3616 }
3617
3618 STATIC void
3619 xlog_recover_ra_pass2(
3620 struct xlog *log,
3621 struct xlog_recover_item *item)
3622 {
3623 switch (ITEM_TYPE(item)) {
3624 case XFS_LI_BUF:
3625 xlog_recover_buffer_ra_pass2(log, item);
3626 break;
3627 case XFS_LI_INODE:
3628 xlog_recover_inode_ra_pass2(log, item);
3629 break;
3630 case XFS_LI_DQUOT:
3631 xlog_recover_dquot_ra_pass2(log, item);
3632 break;
3633 case XFS_LI_EFI:
3634 case XFS_LI_EFD:
3635 case XFS_LI_QUOTAOFF:
3636 default:
3637 break;
3638 }
3639 }
3640
3641 STATIC int
3642 xlog_recover_commit_pass1(
3643 struct xlog *log,
3644 struct xlog_recover *trans,
3645 struct xlog_recover_item *item)
3646 {
3647 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3648
3649 switch (ITEM_TYPE(item)) {
3650 case XFS_LI_BUF:
3651 return xlog_recover_buffer_pass1(log, item);
3652 case XFS_LI_QUOTAOFF:
3653 return xlog_recover_quotaoff_pass1(log, item);
3654 case XFS_LI_INODE:
3655 case XFS_LI_EFI:
3656 case XFS_LI_EFD:
3657 case XFS_LI_DQUOT:
3658 case XFS_LI_ICREATE:
3659 /* nothing to do in pass 1 */
3660 return 0;
3661 default:
3662 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3663 __func__, ITEM_TYPE(item));
3664 ASSERT(0);
3665 return -EIO;
3666 }
3667 }
3668
3669 STATIC int
3670 xlog_recover_commit_pass2(
3671 struct xlog *log,
3672 struct xlog_recover *trans,
3673 struct list_head *buffer_list,
3674 struct xlog_recover_item *item)
3675 {
3676 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3677
3678 switch (ITEM_TYPE(item)) {
3679 case XFS_LI_BUF:
3680 return xlog_recover_buffer_pass2(log, buffer_list, item,
3681 trans->r_lsn);
3682 case XFS_LI_INODE:
3683 return xlog_recover_inode_pass2(log, buffer_list, item,
3684 trans->r_lsn);
3685 case XFS_LI_EFI:
3686 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3687 case XFS_LI_EFD:
3688 return xlog_recover_efd_pass2(log, item);
3689 case XFS_LI_DQUOT:
3690 return xlog_recover_dquot_pass2(log, buffer_list, item,
3691 trans->r_lsn);
3692 case XFS_LI_ICREATE:
3693 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3694 case XFS_LI_QUOTAOFF:
3695 /* nothing to do in pass2 */
3696 return 0;
3697 default:
3698 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3699 __func__, ITEM_TYPE(item));
3700 ASSERT(0);
3701 return -EIO;
3702 }
3703 }
3704
3705 STATIC int
3706 xlog_recover_items_pass2(
3707 struct xlog *log,
3708 struct xlog_recover *trans,
3709 struct list_head *buffer_list,
3710 struct list_head *item_list)
3711 {
3712 struct xlog_recover_item *item;
3713 int error = 0;
3714
3715 list_for_each_entry(item, item_list, ri_list) {
3716 error = xlog_recover_commit_pass2(log, trans,
3717 buffer_list, item);
3718 if (error)
3719 return error;
3720 }
3721
3722 return error;
3723 }
3724
3725 /*
3726 * Perform the transaction.
3727 *
3728 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3729 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3730 */
3731 STATIC int
3732 xlog_recover_commit_trans(
3733 struct xlog *log,
3734 struct xlog_recover *trans,
3735 int pass)
3736 {
3737 int error = 0;
3738 int error2;
3739 int items_queued = 0;
3740 struct xlog_recover_item *item;
3741 struct xlog_recover_item *next;
3742 LIST_HEAD (buffer_list);
3743 LIST_HEAD (ra_list);
3744 LIST_HEAD (done_list);
3745
3746 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3747
3748 hlist_del(&trans->r_list);
3749
3750 error = xlog_recover_reorder_trans(log, trans, pass);
3751 if (error)
3752 return error;
3753
3754 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3755 switch (pass) {
3756 case XLOG_RECOVER_PASS1:
3757 error = xlog_recover_commit_pass1(log, trans, item);
3758 break;
3759 case XLOG_RECOVER_PASS2:
3760 xlog_recover_ra_pass2(log, item);
3761 list_move_tail(&item->ri_list, &ra_list);
3762 items_queued++;
3763 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3764 error = xlog_recover_items_pass2(log, trans,
3765 &buffer_list, &ra_list);
3766 list_splice_tail_init(&ra_list, &done_list);
3767 items_queued = 0;
3768 }
3769
3770 break;
3771 default:
3772 ASSERT(0);
3773 }
3774
3775 if (error)
3776 goto out;
3777 }
3778
3779 out:
3780 if (!list_empty(&ra_list)) {
3781 if (!error)
3782 error = xlog_recover_items_pass2(log, trans,
3783 &buffer_list, &ra_list);
3784 list_splice_tail_init(&ra_list, &done_list);
3785 }
3786
3787 if (!list_empty(&done_list))
3788 list_splice_init(&done_list, &trans->r_itemq);
3789
3790 error2 = xfs_buf_delwri_submit(&buffer_list);
3791 return error ? error : error2;
3792 }
3793
3794 STATIC void
3795 xlog_recover_add_item(
3796 struct list_head *head)
3797 {
3798 xlog_recover_item_t *item;
3799
3800 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3801 INIT_LIST_HEAD(&item->ri_list);
3802 list_add_tail(&item->ri_list, head);
3803 }
3804
3805 STATIC int
3806 xlog_recover_add_to_cont_trans(
3807 struct xlog *log,
3808 struct xlog_recover *trans,
3809 char *dp,
3810 int len)
3811 {
3812 xlog_recover_item_t *item;
3813 char *ptr, *old_ptr;
3814 int old_len;
3815
3816 /*
3817 * If the transaction is empty, the header was split across this and the
3818 * previous record. Copy the rest of the header.
3819 */
3820 if (list_empty(&trans->r_itemq)) {
3821 ASSERT(len <= sizeof(struct xfs_trans_header));
3822 if (len > sizeof(struct xfs_trans_header)) {
3823 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3824 return -EIO;
3825 }
3826
3827 xlog_recover_add_item(&trans->r_itemq);
3828 ptr = (char *)&trans->r_theader +
3829 sizeof(struct xfs_trans_header) - len;
3830 memcpy(ptr, dp, len);
3831 return 0;
3832 }
3833
3834 /* take the tail entry */
3835 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3836
3837 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3838 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3839
3840 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3841 memcpy(&ptr[old_len], dp, len);
3842 item->ri_buf[item->ri_cnt-1].i_len += len;
3843 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3844 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3845 return 0;
3846 }
3847
3848 /*
3849 * The next region to add is the start of a new region. It could be
3850 * a whole region or it could be the first part of a new region. Because
3851 * of this, the assumption here is that the type and size fields of all
3852 * format structures fit into the first 32 bits of the structure.
3853 *
3854 * This works because all regions must be 32 bit aligned. Therefore, we
3855 * either have both fields or we have neither field. In the case we have
3856 * neither field, the data part of the region is zero length. We only have
3857 * a log_op_header and can throw away the header since a new one will appear
3858 * later. If we have at least 4 bytes, then we can determine how many regions
3859 * will appear in the current log item.
3860 */
3861 STATIC int
3862 xlog_recover_add_to_trans(
3863 struct xlog *log,
3864 struct xlog_recover *trans,
3865 char *dp,
3866 int len)
3867 {
3868 xfs_inode_log_format_t *in_f; /* any will do */
3869 xlog_recover_item_t *item;
3870 char *ptr;
3871
3872 if (!len)
3873 return 0;
3874 if (list_empty(&trans->r_itemq)) {
3875 /* we need to catch log corruptions here */
3876 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3877 xfs_warn(log->l_mp, "%s: bad header magic number",
3878 __func__);
3879 ASSERT(0);
3880 return -EIO;
3881 }
3882
3883 if (len > sizeof(struct xfs_trans_header)) {
3884 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3885 ASSERT(0);
3886 return -EIO;
3887 }
3888
3889 /*
3890 * The transaction header can be arbitrarily split across op
3891 * records. If we don't have the whole thing here, copy what we
3892 * do have and handle the rest in the next record.
3893 */
3894 if (len == sizeof(struct xfs_trans_header))
3895 xlog_recover_add_item(&trans->r_itemq);
3896 memcpy(&trans->r_theader, dp, len);
3897 return 0;
3898 }
3899
3900 ptr = kmem_alloc(len, KM_SLEEP);
3901 memcpy(ptr, dp, len);
3902 in_f = (xfs_inode_log_format_t *)ptr;
3903
3904 /* take the tail entry */
3905 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3906 if (item->ri_total != 0 &&
3907 item->ri_total == item->ri_cnt) {
3908 /* tail item is in use, get a new one */
3909 xlog_recover_add_item(&trans->r_itemq);
3910 item = list_entry(trans->r_itemq.prev,
3911 xlog_recover_item_t, ri_list);
3912 }
3913
3914 if (item->ri_total == 0) { /* first region to be added */
3915 if (in_f->ilf_size == 0 ||
3916 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3917 xfs_warn(log->l_mp,
3918 "bad number of regions (%d) in inode log format",
3919 in_f->ilf_size);
3920 ASSERT(0);
3921 kmem_free(ptr);
3922 return -EIO;
3923 }
3924
3925 item->ri_total = in_f->ilf_size;
3926 item->ri_buf =
3927 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3928 KM_SLEEP);
3929 }
3930 ASSERT(item->ri_total > item->ri_cnt);
3931 /* Description region is ri_buf[0] */
3932 item->ri_buf[item->ri_cnt].i_addr = ptr;
3933 item->ri_buf[item->ri_cnt].i_len = len;
3934 item->ri_cnt++;
3935 trace_xfs_log_recover_item_add(log, trans, item, 0);
3936 return 0;
3937 }
3938
3939 /*
3940 * Free up any resources allocated by the transaction
3941 *
3942 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3943 */
3944 STATIC void
3945 xlog_recover_free_trans(
3946 struct xlog_recover *trans)
3947 {
3948 xlog_recover_item_t *item, *n;
3949 int i;
3950
3951 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3952 /* Free the regions in the item. */
3953 list_del(&item->ri_list);
3954 for (i = 0; i < item->ri_cnt; i++)
3955 kmem_free(item->ri_buf[i].i_addr);
3956 /* Free the item itself */
3957 kmem_free(item->ri_buf);
3958 kmem_free(item);
3959 }
3960 /* Free the transaction recover structure */
3961 kmem_free(trans);
3962 }
3963
3964 /*
3965 * On error or completion, trans is freed.
3966 */
3967 STATIC int
3968 xlog_recovery_process_trans(
3969 struct xlog *log,
3970 struct xlog_recover *trans,
3971 char *dp,
3972 unsigned int len,
3973 unsigned int flags,
3974 int pass)
3975 {
3976 int error = 0;
3977 bool freeit = false;
3978
3979 /* mask off ophdr transaction container flags */
3980 flags &= ~XLOG_END_TRANS;
3981 if (flags & XLOG_WAS_CONT_TRANS)
3982 flags &= ~XLOG_CONTINUE_TRANS;
3983
3984 /*
3985 * Callees must not free the trans structure. We'll decide if we need to
3986 * free it or not based on the operation being done and it's result.
3987 */
3988 switch (flags) {
3989 /* expected flag values */
3990 case 0:
3991 case XLOG_CONTINUE_TRANS:
3992 error = xlog_recover_add_to_trans(log, trans, dp, len);
3993 break;
3994 case XLOG_WAS_CONT_TRANS:
3995 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3996 break;
3997 case XLOG_COMMIT_TRANS:
3998 error = xlog_recover_commit_trans(log, trans, pass);
3999 /* success or fail, we are now done with this transaction. */
4000 freeit = true;
4001 break;
4002
4003 /* unexpected flag values */
4004 case XLOG_UNMOUNT_TRANS:
4005 /* just skip trans */
4006 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4007 freeit = true;
4008 break;
4009 case XLOG_START_TRANS:
4010 default:
4011 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4012 ASSERT(0);
4013 error = -EIO;
4014 break;
4015 }
4016 if (error || freeit)
4017 xlog_recover_free_trans(trans);
4018 return error;
4019 }
4020
4021 /*
4022 * Lookup the transaction recovery structure associated with the ID in the
4023 * current ophdr. If the transaction doesn't exist and the start flag is set in
4024 * the ophdr, then allocate a new transaction for future ID matches to find.
4025 * Either way, return what we found during the lookup - an existing transaction
4026 * or nothing.
4027 */
4028 STATIC struct xlog_recover *
4029 xlog_recover_ophdr_to_trans(
4030 struct hlist_head rhash[],
4031 struct xlog_rec_header *rhead,
4032 struct xlog_op_header *ohead)
4033 {
4034 struct xlog_recover *trans;
4035 xlog_tid_t tid;
4036 struct hlist_head *rhp;
4037
4038 tid = be32_to_cpu(ohead->oh_tid);
4039 rhp = &rhash[XLOG_RHASH(tid)];
4040 hlist_for_each_entry(trans, rhp, r_list) {
4041 if (trans->r_log_tid == tid)
4042 return trans;
4043 }
4044
4045 /*
4046 * skip over non-start transaction headers - we could be
4047 * processing slack space before the next transaction starts
4048 */
4049 if (!(ohead->oh_flags & XLOG_START_TRANS))
4050 return NULL;
4051
4052 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4053
4054 /*
4055 * This is a new transaction so allocate a new recovery container to
4056 * hold the recovery ops that will follow.
4057 */
4058 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4059 trans->r_log_tid = tid;
4060 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4061 INIT_LIST_HEAD(&trans->r_itemq);
4062 INIT_HLIST_NODE(&trans->r_list);
4063 hlist_add_head(&trans->r_list, rhp);
4064
4065 /*
4066 * Nothing more to do for this ophdr. Items to be added to this new
4067 * transaction will be in subsequent ophdr containers.
4068 */
4069 return NULL;
4070 }
4071
4072 STATIC int
4073 xlog_recover_process_ophdr(
4074 struct xlog *log,
4075 struct hlist_head rhash[],
4076 struct xlog_rec_header *rhead,
4077 struct xlog_op_header *ohead,
4078 char *dp,
4079 char *end,
4080 int pass)
4081 {
4082 struct xlog_recover *trans;
4083 unsigned int len;
4084
4085 /* Do we understand who wrote this op? */
4086 if (ohead->oh_clientid != XFS_TRANSACTION &&
4087 ohead->oh_clientid != XFS_LOG) {
4088 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4089 __func__, ohead->oh_clientid);
4090 ASSERT(0);
4091 return -EIO;
4092 }
4093
4094 /*
4095 * Check the ophdr contains all the data it is supposed to contain.
4096 */
4097 len = be32_to_cpu(ohead->oh_len);
4098 if (dp + len > end) {
4099 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4100 WARN_ON(1);
4101 return -EIO;
4102 }
4103
4104 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4105 if (!trans) {
4106 /* nothing to do, so skip over this ophdr */
4107 return 0;
4108 }
4109
4110 return xlog_recovery_process_trans(log, trans, dp, len,
4111 ohead->oh_flags, pass);
4112 }
4113
4114 /*
4115 * There are two valid states of the r_state field. 0 indicates that the
4116 * transaction structure is in a normal state. We have either seen the
4117 * start of the transaction or the last operation we added was not a partial
4118 * operation. If the last operation we added to the transaction was a
4119 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4120 *
4121 * NOTE: skip LRs with 0 data length.
4122 */
4123 STATIC int
4124 xlog_recover_process_data(
4125 struct xlog *log,
4126 struct hlist_head rhash[],
4127 struct xlog_rec_header *rhead,
4128 char *dp,
4129 int pass)
4130 {
4131 struct xlog_op_header *ohead;
4132 char *end;
4133 int num_logops;
4134 int error;
4135
4136 end = dp + be32_to_cpu(rhead->h_len);
4137 num_logops = be32_to_cpu(rhead->h_num_logops);
4138
4139 /* check the log format matches our own - else we can't recover */
4140 if (xlog_header_check_recover(log->l_mp, rhead))
4141 return -EIO;
4142
4143 while ((dp < end) && num_logops) {
4144
4145 ohead = (struct xlog_op_header *)dp;
4146 dp += sizeof(*ohead);
4147 ASSERT(dp <= end);
4148
4149 /* errors will abort recovery */
4150 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4151 dp, end, pass);
4152 if (error)
4153 return error;
4154
4155 dp += be32_to_cpu(ohead->oh_len);
4156 num_logops--;
4157 }
4158 return 0;
4159 }
4160
4161 /*
4162 * Process an extent free intent item that was recovered from
4163 * the log. We need to free the extents that it describes.
4164 */
4165 STATIC int
4166 xlog_recover_process_efi(
4167 xfs_mount_t *mp,
4168 xfs_efi_log_item_t *efip)
4169 {
4170 xfs_efd_log_item_t *efdp;
4171 xfs_trans_t *tp;
4172 int i;
4173 int error = 0;
4174 xfs_extent_t *extp;
4175 xfs_fsblock_t startblock_fsb;
4176
4177 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
4178
4179 /*
4180 * First check the validity of the extents described by the
4181 * EFI. If any are bad, then assume that all are bad and
4182 * just toss the EFI.
4183 */
4184 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4185 extp = &(efip->efi_format.efi_extents[i]);
4186 startblock_fsb = XFS_BB_TO_FSB(mp,
4187 XFS_FSB_TO_DADDR(mp, extp->ext_start));
4188 if ((startblock_fsb == 0) ||
4189 (extp->ext_len == 0) ||
4190 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
4191 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
4192 /*
4193 * This will pull the EFI from the AIL and
4194 * free the memory associated with it.
4195 */
4196 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
4197 xfs_efi_release(efip);
4198 return -EIO;
4199 }
4200 }
4201
4202 tp = xfs_trans_alloc(mp, 0);
4203 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
4204 if (error)
4205 goto abort_error;
4206 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
4207
4208 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4209 extp = &(efip->efi_format.efi_extents[i]);
4210 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
4211 extp->ext_len);
4212 if (error)
4213 goto abort_error;
4214
4215 }
4216
4217 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
4218 error = xfs_trans_commit(tp);
4219 return error;
4220
4221 abort_error:
4222 xfs_trans_cancel(tp);
4223 return error;
4224 }
4225
4226 /*
4227 * When this is called, all of the EFIs which did not have
4228 * corresponding EFDs should be in the AIL. What we do now
4229 * is free the extents associated with each one.
4230 *
4231 * Since we process the EFIs in normal transactions, they
4232 * will be removed at some point after the commit. This prevents
4233 * us from just walking down the list processing each one.
4234 * We'll use a flag in the EFI to skip those that we've already
4235 * processed and use the AIL iteration mechanism's generation
4236 * count to try to speed this up at least a bit.
4237 *
4238 * When we start, we know that the EFIs are the only things in
4239 * the AIL. As we process them, however, other items are added
4240 * to the AIL. Since everything added to the AIL must come after
4241 * everything already in the AIL, we stop processing as soon as
4242 * we see something other than an EFI in the AIL.
4243 */
4244 STATIC int
4245 xlog_recover_process_efis(
4246 struct xlog *log)
4247 {
4248 struct xfs_log_item *lip;
4249 struct xfs_efi_log_item *efip;
4250 int error = 0;
4251 struct xfs_ail_cursor cur;
4252 struct xfs_ail *ailp;
4253
4254 ailp = log->l_ailp;
4255 spin_lock(&ailp->xa_lock);
4256 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4257 while (lip != NULL) {
4258 /*
4259 * We're done when we see something other than an EFI.
4260 * There should be no EFIs left in the AIL now.
4261 */
4262 if (lip->li_type != XFS_LI_EFI) {
4263 #ifdef DEBUG
4264 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4265 ASSERT(lip->li_type != XFS_LI_EFI);
4266 #endif
4267 break;
4268 }
4269
4270 /*
4271 * Skip EFIs that we've already processed.
4272 */
4273 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4274 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
4275 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4276 continue;
4277 }
4278
4279 spin_unlock(&ailp->xa_lock);
4280 error = xlog_recover_process_efi(log->l_mp, efip);
4281 spin_lock(&ailp->xa_lock);
4282 if (error)
4283 goto out;
4284 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4285 }
4286 out:
4287 xfs_trans_ail_cursor_done(&cur);
4288 spin_unlock(&ailp->xa_lock);
4289 return error;
4290 }
4291
4292 /*
4293 * A cancel occurs when the mount has failed and we're bailing out. Release all
4294 * pending EFIs so they don't pin the AIL.
4295 */
4296 STATIC int
4297 xlog_recover_cancel_efis(
4298 struct xlog *log)
4299 {
4300 struct xfs_log_item *lip;
4301 struct xfs_efi_log_item *efip;
4302 int error = 0;
4303 struct xfs_ail_cursor cur;
4304 struct xfs_ail *ailp;
4305
4306 ailp = log->l_ailp;
4307 spin_lock(&ailp->xa_lock);
4308 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4309 while (lip != NULL) {
4310 /*
4311 * We're done when we see something other than an EFI.
4312 * There should be no EFIs left in the AIL now.
4313 */
4314 if (lip->li_type != XFS_LI_EFI) {
4315 #ifdef DEBUG
4316 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4317 ASSERT(lip->li_type != XFS_LI_EFI);
4318 #endif
4319 break;
4320 }
4321
4322 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4323
4324 spin_unlock(&ailp->xa_lock);
4325 xfs_efi_release(efip);
4326 spin_lock(&ailp->xa_lock);
4327
4328 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4329 }
4330
4331 xfs_trans_ail_cursor_done(&cur);
4332 spin_unlock(&ailp->xa_lock);
4333 return error;
4334 }
4335
4336 /*
4337 * This routine performs a transaction to null out a bad inode pointer
4338 * in an agi unlinked inode hash bucket.
4339 */
4340 STATIC void
4341 xlog_recover_clear_agi_bucket(
4342 xfs_mount_t *mp,
4343 xfs_agnumber_t agno,
4344 int bucket)
4345 {
4346 xfs_trans_t *tp;
4347 xfs_agi_t *agi;
4348 xfs_buf_t *agibp;
4349 int offset;
4350 int error;
4351
4352 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
4353 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
4354 if (error)
4355 goto out_abort;
4356
4357 error = xfs_read_agi(mp, tp, agno, &agibp);
4358 if (error)
4359 goto out_abort;
4360
4361 agi = XFS_BUF_TO_AGI(agibp);
4362 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4363 offset = offsetof(xfs_agi_t, agi_unlinked) +
4364 (sizeof(xfs_agino_t) * bucket);
4365 xfs_trans_log_buf(tp, agibp, offset,
4366 (offset + sizeof(xfs_agino_t) - 1));
4367
4368 error = xfs_trans_commit(tp);
4369 if (error)
4370 goto out_error;
4371 return;
4372
4373 out_abort:
4374 xfs_trans_cancel(tp);
4375 out_error:
4376 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4377 return;
4378 }
4379
4380 STATIC xfs_agino_t
4381 xlog_recover_process_one_iunlink(
4382 struct xfs_mount *mp,
4383 xfs_agnumber_t agno,
4384 xfs_agino_t agino,
4385 int bucket)
4386 {
4387 struct xfs_buf *ibp;
4388 struct xfs_dinode *dip;
4389 struct xfs_inode *ip;
4390 xfs_ino_t ino;
4391 int error;
4392
4393 ino = XFS_AGINO_TO_INO(mp, agno, agino);
4394 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4395 if (error)
4396 goto fail;
4397
4398 /*
4399 * Get the on disk inode to find the next inode in the bucket.
4400 */
4401 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4402 if (error)
4403 goto fail_iput;
4404
4405 ASSERT(ip->i_d.di_nlink == 0);
4406 ASSERT(ip->i_d.di_mode != 0);
4407
4408 /* setup for the next pass */
4409 agino = be32_to_cpu(dip->di_next_unlinked);
4410 xfs_buf_relse(ibp);
4411
4412 /*
4413 * Prevent any DMAPI event from being sent when the reference on
4414 * the inode is dropped.
4415 */
4416 ip->i_d.di_dmevmask = 0;
4417
4418 IRELE(ip);
4419 return agino;
4420
4421 fail_iput:
4422 IRELE(ip);
4423 fail:
4424 /*
4425 * We can't read in the inode this bucket points to, or this inode
4426 * is messed up. Just ditch this bucket of inodes. We will lose
4427 * some inodes and space, but at least we won't hang.
4428 *
4429 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4430 * clear the inode pointer in the bucket.
4431 */
4432 xlog_recover_clear_agi_bucket(mp, agno, bucket);
4433 return NULLAGINO;
4434 }
4435
4436 /*
4437 * xlog_iunlink_recover
4438 *
4439 * This is called during recovery to process any inodes which
4440 * we unlinked but not freed when the system crashed. These
4441 * inodes will be on the lists in the AGI blocks. What we do
4442 * here is scan all the AGIs and fully truncate and free any
4443 * inodes found on the lists. Each inode is removed from the
4444 * lists when it has been fully truncated and is freed. The
4445 * freeing of the inode and its removal from the list must be
4446 * atomic.
4447 */
4448 STATIC void
4449 xlog_recover_process_iunlinks(
4450 struct xlog *log)
4451 {
4452 xfs_mount_t *mp;
4453 xfs_agnumber_t agno;
4454 xfs_agi_t *agi;
4455 xfs_buf_t *agibp;
4456 xfs_agino_t agino;
4457 int bucket;
4458 int error;
4459 uint mp_dmevmask;
4460
4461 mp = log->l_mp;
4462
4463 /*
4464 * Prevent any DMAPI event from being sent while in this function.
4465 */
4466 mp_dmevmask = mp->m_dmevmask;
4467 mp->m_dmevmask = 0;
4468
4469 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4470 /*
4471 * Find the agi for this ag.
4472 */
4473 error = xfs_read_agi(mp, NULL, agno, &agibp);
4474 if (error) {
4475 /*
4476 * AGI is b0rked. Don't process it.
4477 *
4478 * We should probably mark the filesystem as corrupt
4479 * after we've recovered all the ag's we can....
4480 */
4481 continue;
4482 }
4483 /*
4484 * Unlock the buffer so that it can be acquired in the normal
4485 * course of the transaction to truncate and free each inode.
4486 * Because we are not racing with anyone else here for the AGI
4487 * buffer, we don't even need to hold it locked to read the
4488 * initial unlinked bucket entries out of the buffer. We keep
4489 * buffer reference though, so that it stays pinned in memory
4490 * while we need the buffer.
4491 */
4492 agi = XFS_BUF_TO_AGI(agibp);
4493 xfs_buf_unlock(agibp);
4494
4495 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4496 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4497 while (agino != NULLAGINO) {
4498 agino = xlog_recover_process_one_iunlink(mp,
4499 agno, agino, bucket);
4500 }
4501 }
4502 xfs_buf_rele(agibp);
4503 }
4504
4505 mp->m_dmevmask = mp_dmevmask;
4506 }
4507
4508 STATIC int
4509 xlog_unpack_data(
4510 struct xlog_rec_header *rhead,
4511 char *dp,
4512 struct xlog *log)
4513 {
4514 int i, j, k;
4515
4516 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4517 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4518 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4519 dp += BBSIZE;
4520 }
4521
4522 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4523 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4524 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4525 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4526 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4527 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4528 dp += BBSIZE;
4529 }
4530 }
4531
4532 return 0;
4533 }
4534
4535 /*
4536 * CRC check, unpack and process a log record.
4537 */
4538 STATIC int
4539 xlog_recover_process(
4540 struct xlog *log,
4541 struct hlist_head rhash[],
4542 struct xlog_rec_header *rhead,
4543 char *dp,
4544 int pass)
4545 {
4546 int error;
4547 __le32 crc;
4548
4549 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4550
4551 /*
4552 * Nothing else to do if this is a CRC verification pass. Just return
4553 * if this a record with a non-zero crc. Unfortunately, mkfs always
4554 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4555 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4556 * know precisely what failed.
4557 */
4558 if (pass == XLOG_RECOVER_CRCPASS) {
4559 if (rhead->h_crc && crc != rhead->h_crc)
4560 return -EFSBADCRC;
4561 return 0;
4562 }
4563
4564 /*
4565 * We're in the normal recovery path. Issue a warning if and only if the
4566 * CRC in the header is non-zero. This is an advisory warning and the
4567 * zero CRC check prevents warnings from being emitted when upgrading
4568 * the kernel from one that does not add CRCs by default.
4569 */
4570 if (crc != rhead->h_crc) {
4571 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4572 xfs_alert(log->l_mp,
4573 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4574 le32_to_cpu(rhead->h_crc),
4575 le32_to_cpu(crc));
4576 xfs_hex_dump(dp, 32);
4577 }
4578
4579 /*
4580 * If the filesystem is CRC enabled, this mismatch becomes a
4581 * fatal log corruption failure.
4582 */
4583 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4584 return -EFSCORRUPTED;
4585 }
4586
4587 error = xlog_unpack_data(rhead, dp, log);
4588 if (error)
4589 return error;
4590
4591 return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4592 }
4593
4594 STATIC int
4595 xlog_valid_rec_header(
4596 struct xlog *log,
4597 struct xlog_rec_header *rhead,
4598 xfs_daddr_t blkno)
4599 {
4600 int hlen;
4601
4602 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4603 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4604 XFS_ERRLEVEL_LOW, log->l_mp);
4605 return -EFSCORRUPTED;
4606 }
4607 if (unlikely(
4608 (!rhead->h_version ||
4609 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4610 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4611 __func__, be32_to_cpu(rhead->h_version));
4612 return -EIO;
4613 }
4614
4615 /* LR body must have data or it wouldn't have been written */
4616 hlen = be32_to_cpu(rhead->h_len);
4617 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4618 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4619 XFS_ERRLEVEL_LOW, log->l_mp);
4620 return -EFSCORRUPTED;
4621 }
4622 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4623 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4624 XFS_ERRLEVEL_LOW, log->l_mp);
4625 return -EFSCORRUPTED;
4626 }
4627 return 0;
4628 }
4629
4630 /*
4631 * Read the log from tail to head and process the log records found.
4632 * Handle the two cases where the tail and head are in the same cycle
4633 * and where the active portion of the log wraps around the end of
4634 * the physical log separately. The pass parameter is passed through
4635 * to the routines called to process the data and is not looked at
4636 * here.
4637 */
4638 STATIC int
4639 xlog_do_recovery_pass(
4640 struct xlog *log,
4641 xfs_daddr_t head_blk,
4642 xfs_daddr_t tail_blk,
4643 int pass,
4644 xfs_daddr_t *first_bad) /* out: first bad log rec */
4645 {
4646 xlog_rec_header_t *rhead;
4647 xfs_daddr_t blk_no;
4648 xfs_daddr_t rhead_blk;
4649 char *offset;
4650 xfs_buf_t *hbp, *dbp;
4651 int error = 0, h_size, h_len;
4652 int bblks, split_bblks;
4653 int hblks, split_hblks, wrapped_hblks;
4654 struct hlist_head rhash[XLOG_RHASH_SIZE];
4655
4656 ASSERT(head_blk != tail_blk);
4657 rhead_blk = 0;
4658
4659 /*
4660 * Read the header of the tail block and get the iclog buffer size from
4661 * h_size. Use this to tell how many sectors make up the log header.
4662 */
4663 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4664 /*
4665 * When using variable length iclogs, read first sector of
4666 * iclog header and extract the header size from it. Get a
4667 * new hbp that is the correct size.
4668 */
4669 hbp = xlog_get_bp(log, 1);
4670 if (!hbp)
4671 return -ENOMEM;
4672
4673 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4674 if (error)
4675 goto bread_err1;
4676
4677 rhead = (xlog_rec_header_t *)offset;
4678 error = xlog_valid_rec_header(log, rhead, tail_blk);
4679 if (error)
4680 goto bread_err1;
4681
4682 /*
4683 * xfsprogs has a bug where record length is based on lsunit but
4684 * h_size (iclog size) is hardcoded to 32k. Now that we
4685 * unconditionally CRC verify the unmount record, this means the
4686 * log buffer can be too small for the record and cause an
4687 * overrun.
4688 *
4689 * Detect this condition here. Use lsunit for the buffer size as
4690 * long as this looks like the mkfs case. Otherwise, return an
4691 * error to avoid a buffer overrun.
4692 */
4693 h_size = be32_to_cpu(rhead->h_size);
4694 h_len = be32_to_cpu(rhead->h_len);
4695 if (h_len > h_size) {
4696 if (h_len <= log->l_mp->m_logbsize &&
4697 be32_to_cpu(rhead->h_num_logops) == 1) {
4698 xfs_warn(log->l_mp,
4699 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4700 h_size, log->l_mp->m_logbsize);
4701 h_size = log->l_mp->m_logbsize;
4702 } else
4703 return -EFSCORRUPTED;
4704 }
4705
4706 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4707 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4708 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4709 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4710 hblks++;
4711 xlog_put_bp(hbp);
4712 hbp = xlog_get_bp(log, hblks);
4713 } else {
4714 hblks = 1;
4715 }
4716 } else {
4717 ASSERT(log->l_sectBBsize == 1);
4718 hblks = 1;
4719 hbp = xlog_get_bp(log, 1);
4720 h_size = XLOG_BIG_RECORD_BSIZE;
4721 }
4722
4723 if (!hbp)
4724 return -ENOMEM;
4725 dbp = xlog_get_bp(log, BTOBB(h_size));
4726 if (!dbp) {
4727 xlog_put_bp(hbp);
4728 return -ENOMEM;
4729 }
4730
4731 memset(rhash, 0, sizeof(rhash));
4732 blk_no = rhead_blk = tail_blk;
4733 if (tail_blk > head_blk) {
4734 /*
4735 * Perform recovery around the end of the physical log.
4736 * When the head is not on the same cycle number as the tail,
4737 * we can't do a sequential recovery.
4738 */
4739 while (blk_no < log->l_logBBsize) {
4740 /*
4741 * Check for header wrapping around physical end-of-log
4742 */
4743 offset = hbp->b_addr;
4744 split_hblks = 0;
4745 wrapped_hblks = 0;
4746 if (blk_no + hblks <= log->l_logBBsize) {
4747 /* Read header in one read */
4748 error = xlog_bread(log, blk_no, hblks, hbp,
4749 &offset);
4750 if (error)
4751 goto bread_err2;
4752 } else {
4753 /* This LR is split across physical log end */
4754 if (blk_no != log->l_logBBsize) {
4755 /* some data before physical log end */
4756 ASSERT(blk_no <= INT_MAX);
4757 split_hblks = log->l_logBBsize - (int)blk_no;
4758 ASSERT(split_hblks > 0);
4759 error = xlog_bread(log, blk_no,
4760 split_hblks, hbp,
4761 &offset);
4762 if (error)
4763 goto bread_err2;
4764 }
4765
4766 /*
4767 * Note: this black magic still works with
4768 * large sector sizes (non-512) only because:
4769 * - we increased the buffer size originally
4770 * by 1 sector giving us enough extra space
4771 * for the second read;
4772 * - the log start is guaranteed to be sector
4773 * aligned;
4774 * - we read the log end (LR header start)
4775 * _first_, then the log start (LR header end)
4776 * - order is important.
4777 */
4778 wrapped_hblks = hblks - split_hblks;
4779 error = xlog_bread_offset(log, 0,
4780 wrapped_hblks, hbp,
4781 offset + BBTOB(split_hblks));
4782 if (error)
4783 goto bread_err2;
4784 }
4785 rhead = (xlog_rec_header_t *)offset;
4786 error = xlog_valid_rec_header(log, rhead,
4787 split_hblks ? blk_no : 0);
4788 if (error)
4789 goto bread_err2;
4790
4791 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4792 blk_no += hblks;
4793
4794 /* Read in data for log record */
4795 if (blk_no + bblks <= log->l_logBBsize) {
4796 error = xlog_bread(log, blk_no, bblks, dbp,
4797 &offset);
4798 if (error)
4799 goto bread_err2;
4800 } else {
4801 /* This log record is split across the
4802 * physical end of log */
4803 offset = dbp->b_addr;
4804 split_bblks = 0;
4805 if (blk_no != log->l_logBBsize) {
4806 /* some data is before the physical
4807 * end of log */
4808 ASSERT(!wrapped_hblks);
4809 ASSERT(blk_no <= INT_MAX);
4810 split_bblks =
4811 log->l_logBBsize - (int)blk_no;
4812 ASSERT(split_bblks > 0);
4813 error = xlog_bread(log, blk_no,
4814 split_bblks, dbp,
4815 &offset);
4816 if (error)
4817 goto bread_err2;
4818 }
4819
4820 /*
4821 * Note: this black magic still works with
4822 * large sector sizes (non-512) only because:
4823 * - we increased the buffer size originally
4824 * by 1 sector giving us enough extra space
4825 * for the second read;
4826 * - the log start is guaranteed to be sector
4827 * aligned;
4828 * - we read the log end (LR header start)
4829 * _first_, then the log start (LR header end)
4830 * - order is important.
4831 */
4832 error = xlog_bread_offset(log, 0,
4833 bblks - split_bblks, dbp,
4834 offset + BBTOB(split_bblks));
4835 if (error)
4836 goto bread_err2;
4837 }
4838
4839 error = xlog_recover_process(log, rhash, rhead, offset,
4840 pass);
4841 if (error)
4842 goto bread_err2;
4843
4844 blk_no += bblks;
4845 rhead_blk = blk_no;
4846 }
4847
4848 ASSERT(blk_no >= log->l_logBBsize);
4849 blk_no -= log->l_logBBsize;
4850 rhead_blk = blk_no;
4851 }
4852
4853 /* read first part of physical log */
4854 while (blk_no < head_blk) {
4855 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4856 if (error)
4857 goto bread_err2;
4858
4859 rhead = (xlog_rec_header_t *)offset;
4860 error = xlog_valid_rec_header(log, rhead, blk_no);
4861 if (error)
4862 goto bread_err2;
4863
4864 /* blocks in data section */
4865 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4866 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4867 &offset);
4868 if (error)
4869 goto bread_err2;
4870
4871 error = xlog_recover_process(log, rhash, rhead, offset, pass);
4872 if (error)
4873 goto bread_err2;
4874
4875 blk_no += bblks + hblks;
4876 rhead_blk = blk_no;
4877 }
4878
4879 bread_err2:
4880 xlog_put_bp(dbp);
4881 bread_err1:
4882 xlog_put_bp(hbp);
4883
4884 if (error && first_bad)
4885 *first_bad = rhead_blk;
4886
4887 return error;
4888 }
4889
4890 /*
4891 * Do the recovery of the log. We actually do this in two phases.
4892 * The two passes are necessary in order to implement the function
4893 * of cancelling a record written into the log. The first pass
4894 * determines those things which have been cancelled, and the
4895 * second pass replays log items normally except for those which
4896 * have been cancelled. The handling of the replay and cancellations
4897 * takes place in the log item type specific routines.
4898 *
4899 * The table of items which have cancel records in the log is allocated
4900 * and freed at this level, since only here do we know when all of
4901 * the log recovery has been completed.
4902 */
4903 STATIC int
4904 xlog_do_log_recovery(
4905 struct xlog *log,
4906 xfs_daddr_t head_blk,
4907 xfs_daddr_t tail_blk)
4908 {
4909 int error, i;
4910
4911 ASSERT(head_blk != tail_blk);
4912
4913 /*
4914 * First do a pass to find all of the cancelled buf log items.
4915 * Store them in the buf_cancel_table for use in the second pass.
4916 */
4917 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4918 sizeof(struct list_head),
4919 KM_SLEEP);
4920 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4921 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4922
4923 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4924 XLOG_RECOVER_PASS1, NULL);
4925 if (error != 0) {
4926 kmem_free(log->l_buf_cancel_table);
4927 log->l_buf_cancel_table = NULL;
4928 return error;
4929 }
4930 /*
4931 * Then do a second pass to actually recover the items in the log.
4932 * When it is complete free the table of buf cancel items.
4933 */
4934 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4935 XLOG_RECOVER_PASS2, NULL);
4936 #ifdef DEBUG
4937 if (!error) {
4938 int i;
4939
4940 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4941 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4942 }
4943 #endif /* DEBUG */
4944
4945 kmem_free(log->l_buf_cancel_table);
4946 log->l_buf_cancel_table = NULL;
4947
4948 return error;
4949 }
4950
4951 /*
4952 * Do the actual recovery
4953 */
4954 STATIC int
4955 xlog_do_recover(
4956 struct xlog *log,
4957 xfs_daddr_t head_blk,
4958 xfs_daddr_t tail_blk)
4959 {
4960 int error;
4961 xfs_buf_t *bp;
4962 xfs_sb_t *sbp;
4963
4964 /*
4965 * First replay the images in the log.
4966 */
4967 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4968 if (error)
4969 return error;
4970
4971 /*
4972 * If IO errors happened during recovery, bail out.
4973 */
4974 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4975 return -EIO;
4976 }
4977
4978 /*
4979 * We now update the tail_lsn since much of the recovery has completed
4980 * and there may be space available to use. If there were no extent
4981 * or iunlinks, we can free up the entire log and set the tail_lsn to
4982 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4983 * lsn of the last known good LR on disk. If there are extent frees
4984 * or iunlinks they will have some entries in the AIL; so we look at
4985 * the AIL to determine how to set the tail_lsn.
4986 */
4987 xlog_assign_tail_lsn(log->l_mp);
4988
4989 /*
4990 * Now that we've finished replaying all buffer and inode
4991 * updates, re-read in the superblock and reverify it.
4992 */
4993 bp = xfs_getsb(log->l_mp, 0);
4994 XFS_BUF_UNDONE(bp);
4995 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4996 XFS_BUF_READ(bp);
4997 XFS_BUF_UNASYNC(bp);
4998 bp->b_ops = &xfs_sb_buf_ops;
4999
5000 error = xfs_buf_submit_wait(bp);
5001 if (error) {
5002 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
5003 xfs_buf_ioerror_alert(bp, __func__);
5004 ASSERT(0);
5005 }
5006 xfs_buf_relse(bp);
5007 return error;
5008 }
5009
5010 /* Convert superblock from on-disk format */
5011 sbp = &log->l_mp->m_sb;
5012 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5013 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
5014 ASSERT(xfs_sb_good_version(sbp));
5015 xfs_reinit_percpu_counters(log->l_mp);
5016
5017 xfs_buf_relse(bp);
5018
5019
5020 xlog_recover_check_summary(log);
5021
5022 /* Normal transactions can now occur */
5023 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5024 return 0;
5025 }
5026
5027 /*
5028 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5029 *
5030 * Return error or zero.
5031 */
5032 int
5033 xlog_recover(
5034 struct xlog *log)
5035 {
5036 xfs_daddr_t head_blk, tail_blk;
5037 int error;
5038
5039 /* find the tail of the log */
5040 error = xlog_find_tail(log, &head_blk, &tail_blk);
5041 if (error)
5042 return error;
5043
5044 /*
5045 * The superblock was read before the log was available and thus the LSN
5046 * could not be verified. Check the superblock LSN against the current
5047 * LSN now that it's known.
5048 */
5049 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5050 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5051 return -EINVAL;
5052
5053 if (tail_blk != head_blk) {
5054 /* There used to be a comment here:
5055 *
5056 * disallow recovery on read-only mounts. note -- mount
5057 * checks for ENOSPC and turns it into an intelligent
5058 * error message.
5059 * ...but this is no longer true. Now, unless you specify
5060 * NORECOVERY (in which case this function would never be
5061 * called), we just go ahead and recover. We do this all
5062 * under the vfs layer, so we can get away with it unless
5063 * the device itself is read-only, in which case we fail.
5064 */
5065 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5066 return error;
5067 }
5068
5069 /*
5070 * Version 5 superblock log feature mask validation. We know the
5071 * log is dirty so check if there are any unknown log features
5072 * in what we need to recover. If there are unknown features
5073 * (e.g. unsupported transactions, then simply reject the
5074 * attempt at recovery before touching anything.
5075 */
5076 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5077 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5078 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5079 xfs_warn(log->l_mp,
5080 "Superblock has unknown incompatible log features (0x%x) enabled.",
5081 (log->l_mp->m_sb.sb_features_log_incompat &
5082 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5083 xfs_warn(log->l_mp,
5084 "The log can not be fully and/or safely recovered by this kernel.");
5085 xfs_warn(log->l_mp,
5086 "Please recover the log on a kernel that supports the unknown features.");
5087 return -EINVAL;
5088 }
5089
5090 /*
5091 * Delay log recovery if the debug hook is set. This is debug
5092 * instrumention to coordinate simulation of I/O failures with
5093 * log recovery.
5094 */
5095 if (xfs_globals.log_recovery_delay) {
5096 xfs_notice(log->l_mp,
5097 "Delaying log recovery for %d seconds.",
5098 xfs_globals.log_recovery_delay);
5099 msleep(xfs_globals.log_recovery_delay * 1000);
5100 }
5101
5102 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5103 log->l_mp->m_logname ? log->l_mp->m_logname
5104 : "internal");
5105
5106 error = xlog_do_recover(log, head_blk, tail_blk);
5107 log->l_flags |= XLOG_RECOVERY_NEEDED;
5108 }
5109 return error;
5110 }
5111
5112 /*
5113 * In the first part of recovery we replay inodes and buffers and build
5114 * up the list of extent free items which need to be processed. Here
5115 * we process the extent free items and clean up the on disk unlinked
5116 * inode lists. This is separated from the first part of recovery so
5117 * that the root and real-time bitmap inodes can be read in from disk in
5118 * between the two stages. This is necessary so that we can free space
5119 * in the real-time portion of the file system.
5120 */
5121 int
5122 xlog_recover_finish(
5123 struct xlog *log)
5124 {
5125 /*
5126 * Now we're ready to do the transactions needed for the
5127 * rest of recovery. Start with completing all the extent
5128 * free intent records and then process the unlinked inode
5129 * lists. At this point, we essentially run in normal mode
5130 * except that we're still performing recovery actions
5131 * rather than accepting new requests.
5132 */
5133 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5134 int error;
5135 error = xlog_recover_process_efis(log);
5136 if (error) {
5137 xfs_alert(log->l_mp, "Failed to recover EFIs");
5138 return error;
5139 }
5140 /*
5141 * Sync the log to get all the EFIs out of the AIL.
5142 * This isn't absolutely necessary, but it helps in
5143 * case the unlink transactions would have problems
5144 * pushing the EFIs out of the way.
5145 */
5146 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5147
5148 xlog_recover_process_iunlinks(log);
5149
5150 xlog_recover_check_summary(log);
5151
5152 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5153 log->l_mp->m_logname ? log->l_mp->m_logname
5154 : "internal");
5155 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5156 } else {
5157 xfs_info(log->l_mp, "Ending clean mount");
5158 }
5159 return 0;
5160 }
5161
5162 int
5163 xlog_recover_cancel(
5164 struct xlog *log)
5165 {
5166 int error = 0;
5167
5168 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5169 error = xlog_recover_cancel_efis(log);
5170
5171 return error;
5172 }
5173
5174 #if defined(DEBUG)
5175 /*
5176 * Read all of the agf and agi counters and check that they
5177 * are consistent with the superblock counters.
5178 */
5179 void
5180 xlog_recover_check_summary(
5181 struct xlog *log)
5182 {
5183 xfs_mount_t *mp;
5184 xfs_agf_t *agfp;
5185 xfs_buf_t *agfbp;
5186 xfs_buf_t *agibp;
5187 xfs_agnumber_t agno;
5188 __uint64_t freeblks;
5189 __uint64_t itotal;
5190 __uint64_t ifree;
5191 int error;
5192
5193 mp = log->l_mp;
5194
5195 freeblks = 0LL;
5196 itotal = 0LL;
5197 ifree = 0LL;
5198 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5199 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5200 if (error) {
5201 xfs_alert(mp, "%s agf read failed agno %d error %d",
5202 __func__, agno, error);
5203 } else {
5204 agfp = XFS_BUF_TO_AGF(agfbp);
5205 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5206 be32_to_cpu(agfp->agf_flcount);
5207 xfs_buf_relse(agfbp);
5208 }
5209
5210 error = xfs_read_agi(mp, NULL, agno, &agibp);
5211 if (error) {
5212 xfs_alert(mp, "%s agi read failed agno %d error %d",
5213 __func__, agno, error);
5214 } else {
5215 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5216
5217 itotal += be32_to_cpu(agi->agi_count);
5218 ifree += be32_to_cpu(agi->agi_freecount);
5219 xfs_buf_relse(agibp);
5220 }
5221 }
5222 }
5223 #endif /* DEBUG */