]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_log_recover.c
Merge tag 'pci-v4.9-changes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helga...
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 #include "xfs_rmap_item.h"
47 #include "xfs_buf_item.h"
48
49 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
50
51 STATIC int
52 xlog_find_zeroed(
53 struct xlog *,
54 xfs_daddr_t *);
55 STATIC int
56 xlog_clear_stale_blocks(
57 struct xlog *,
58 xfs_lsn_t);
59 #if defined(DEBUG)
60 STATIC void
61 xlog_recover_check_summary(
62 struct xlog *);
63 #else
64 #define xlog_recover_check_summary(log)
65 #endif
66 STATIC int
67 xlog_do_recovery_pass(
68 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
69
70 /*
71 * This structure is used during recovery to record the buf log items which
72 * have been canceled and should not be replayed.
73 */
74 struct xfs_buf_cancel {
75 xfs_daddr_t bc_blkno;
76 uint bc_len;
77 int bc_refcount;
78 struct list_head bc_list;
79 };
80
81 /*
82 * Sector aligned buffer routines for buffer create/read/write/access
83 */
84
85 /*
86 * Verify the given count of basic blocks is valid number of blocks
87 * to specify for an operation involving the given XFS log buffer.
88 * Returns nonzero if the count is valid, 0 otherwise.
89 */
90
91 static inline int
92 xlog_buf_bbcount_valid(
93 struct xlog *log,
94 int bbcount)
95 {
96 return bbcount > 0 && bbcount <= log->l_logBBsize;
97 }
98
99 /*
100 * Allocate a buffer to hold log data. The buffer needs to be able
101 * to map to a range of nbblks basic blocks at any valid (basic
102 * block) offset within the log.
103 */
104 STATIC xfs_buf_t *
105 xlog_get_bp(
106 struct xlog *log,
107 int nbblks)
108 {
109 struct xfs_buf *bp;
110
111 if (!xlog_buf_bbcount_valid(log, nbblks)) {
112 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
113 nbblks);
114 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
115 return NULL;
116 }
117
118 /*
119 * We do log I/O in units of log sectors (a power-of-2
120 * multiple of the basic block size), so we round up the
121 * requested size to accommodate the basic blocks required
122 * for complete log sectors.
123 *
124 * In addition, the buffer may be used for a non-sector-
125 * aligned block offset, in which case an I/O of the
126 * requested size could extend beyond the end of the
127 * buffer. If the requested size is only 1 basic block it
128 * will never straddle a sector boundary, so this won't be
129 * an issue. Nor will this be a problem if the log I/O is
130 * done in basic blocks (sector size 1). But otherwise we
131 * extend the buffer by one extra log sector to ensure
132 * there's space to accommodate this possibility.
133 */
134 if (nbblks > 1 && log->l_sectBBsize > 1)
135 nbblks += log->l_sectBBsize;
136 nbblks = round_up(nbblks, log->l_sectBBsize);
137
138 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
139 if (bp)
140 xfs_buf_unlock(bp);
141 return bp;
142 }
143
144 STATIC void
145 xlog_put_bp(
146 xfs_buf_t *bp)
147 {
148 xfs_buf_free(bp);
149 }
150
151 /*
152 * Return the address of the start of the given block number's data
153 * in a log buffer. The buffer covers a log sector-aligned region.
154 */
155 STATIC char *
156 xlog_align(
157 struct xlog *log,
158 xfs_daddr_t blk_no,
159 int nbblks,
160 struct xfs_buf *bp)
161 {
162 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
163
164 ASSERT(offset + nbblks <= bp->b_length);
165 return bp->b_addr + BBTOB(offset);
166 }
167
168
169 /*
170 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
171 */
172 STATIC int
173 xlog_bread_noalign(
174 struct xlog *log,
175 xfs_daddr_t blk_no,
176 int nbblks,
177 struct xfs_buf *bp)
178 {
179 int error;
180
181 if (!xlog_buf_bbcount_valid(log, nbblks)) {
182 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
183 nbblks);
184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
185 return -EFSCORRUPTED;
186 }
187
188 blk_no = round_down(blk_no, log->l_sectBBsize);
189 nbblks = round_up(nbblks, log->l_sectBBsize);
190
191 ASSERT(nbblks > 0);
192 ASSERT(nbblks <= bp->b_length);
193
194 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
195 bp->b_flags |= XBF_READ;
196 bp->b_io_length = nbblks;
197 bp->b_error = 0;
198
199 error = xfs_buf_submit_wait(bp);
200 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
201 xfs_buf_ioerror_alert(bp, __func__);
202 return error;
203 }
204
205 STATIC int
206 xlog_bread(
207 struct xlog *log,
208 xfs_daddr_t blk_no,
209 int nbblks,
210 struct xfs_buf *bp,
211 char **offset)
212 {
213 int error;
214
215 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
216 if (error)
217 return error;
218
219 *offset = xlog_align(log, blk_no, nbblks, bp);
220 return 0;
221 }
222
223 /*
224 * Read at an offset into the buffer. Returns with the buffer in it's original
225 * state regardless of the result of the read.
226 */
227 STATIC int
228 xlog_bread_offset(
229 struct xlog *log,
230 xfs_daddr_t blk_no, /* block to read from */
231 int nbblks, /* blocks to read */
232 struct xfs_buf *bp,
233 char *offset)
234 {
235 char *orig_offset = bp->b_addr;
236 int orig_len = BBTOB(bp->b_length);
237 int error, error2;
238
239 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
240 if (error)
241 return error;
242
243 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
244
245 /* must reset buffer pointer even on error */
246 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
247 if (error)
248 return error;
249 return error2;
250 }
251
252 /*
253 * Write out the buffer at the given block for the given number of blocks.
254 * The buffer is kept locked across the write and is returned locked.
255 * This can only be used for synchronous log writes.
256 */
257 STATIC int
258 xlog_bwrite(
259 struct xlog *log,
260 xfs_daddr_t blk_no,
261 int nbblks,
262 struct xfs_buf *bp)
263 {
264 int error;
265
266 if (!xlog_buf_bbcount_valid(log, nbblks)) {
267 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
268 nbblks);
269 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
270 return -EFSCORRUPTED;
271 }
272
273 blk_no = round_down(blk_no, log->l_sectBBsize);
274 nbblks = round_up(nbblks, log->l_sectBBsize);
275
276 ASSERT(nbblks > 0);
277 ASSERT(nbblks <= bp->b_length);
278
279 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
280 xfs_buf_hold(bp);
281 xfs_buf_lock(bp);
282 bp->b_io_length = nbblks;
283 bp->b_error = 0;
284
285 error = xfs_bwrite(bp);
286 if (error)
287 xfs_buf_ioerror_alert(bp, __func__);
288 xfs_buf_relse(bp);
289 return error;
290 }
291
292 #ifdef DEBUG
293 /*
294 * dump debug superblock and log record information
295 */
296 STATIC void
297 xlog_header_check_dump(
298 xfs_mount_t *mp,
299 xlog_rec_header_t *head)
300 {
301 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
302 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
303 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
304 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
305 }
306 #else
307 #define xlog_header_check_dump(mp, head)
308 #endif
309
310 /*
311 * check log record header for recovery
312 */
313 STATIC int
314 xlog_header_check_recover(
315 xfs_mount_t *mp,
316 xlog_rec_header_t *head)
317 {
318 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
319
320 /*
321 * IRIX doesn't write the h_fmt field and leaves it zeroed
322 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
323 * a dirty log created in IRIX.
324 */
325 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
326 xfs_warn(mp,
327 "dirty log written in incompatible format - can't recover");
328 xlog_header_check_dump(mp, head);
329 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
330 XFS_ERRLEVEL_HIGH, mp);
331 return -EFSCORRUPTED;
332 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
333 xfs_warn(mp,
334 "dirty log entry has mismatched uuid - can't recover");
335 xlog_header_check_dump(mp, head);
336 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
337 XFS_ERRLEVEL_HIGH, mp);
338 return -EFSCORRUPTED;
339 }
340 return 0;
341 }
342
343 /*
344 * read the head block of the log and check the header
345 */
346 STATIC int
347 xlog_header_check_mount(
348 xfs_mount_t *mp,
349 xlog_rec_header_t *head)
350 {
351 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
352
353 if (uuid_is_nil(&head->h_fs_uuid)) {
354 /*
355 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
356 * h_fs_uuid is nil, we assume this log was last mounted
357 * by IRIX and continue.
358 */
359 xfs_warn(mp, "nil uuid in log - IRIX style log");
360 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
361 xfs_warn(mp, "log has mismatched uuid - can't recover");
362 xlog_header_check_dump(mp, head);
363 XFS_ERROR_REPORT("xlog_header_check_mount",
364 XFS_ERRLEVEL_HIGH, mp);
365 return -EFSCORRUPTED;
366 }
367 return 0;
368 }
369
370 STATIC void
371 xlog_recover_iodone(
372 struct xfs_buf *bp)
373 {
374 if (bp->b_error) {
375 /*
376 * We're not going to bother about retrying
377 * this during recovery. One strike!
378 */
379 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
380 xfs_buf_ioerror_alert(bp, __func__);
381 xfs_force_shutdown(bp->b_target->bt_mount,
382 SHUTDOWN_META_IO_ERROR);
383 }
384 }
385
386 /*
387 * On v5 supers, a bli could be attached to update the metadata LSN.
388 * Clean it up.
389 */
390 if (bp->b_fspriv)
391 xfs_buf_item_relse(bp);
392 ASSERT(bp->b_fspriv == NULL);
393
394 bp->b_iodone = NULL;
395 xfs_buf_ioend(bp);
396 }
397
398 /*
399 * This routine finds (to an approximation) the first block in the physical
400 * log which contains the given cycle. It uses a binary search algorithm.
401 * Note that the algorithm can not be perfect because the disk will not
402 * necessarily be perfect.
403 */
404 STATIC int
405 xlog_find_cycle_start(
406 struct xlog *log,
407 struct xfs_buf *bp,
408 xfs_daddr_t first_blk,
409 xfs_daddr_t *last_blk,
410 uint cycle)
411 {
412 char *offset;
413 xfs_daddr_t mid_blk;
414 xfs_daddr_t end_blk;
415 uint mid_cycle;
416 int error;
417
418 end_blk = *last_blk;
419 mid_blk = BLK_AVG(first_blk, end_blk);
420 while (mid_blk != first_blk && mid_blk != end_blk) {
421 error = xlog_bread(log, mid_blk, 1, bp, &offset);
422 if (error)
423 return error;
424 mid_cycle = xlog_get_cycle(offset);
425 if (mid_cycle == cycle)
426 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
427 else
428 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
429 mid_blk = BLK_AVG(first_blk, end_blk);
430 }
431 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
432 (mid_blk == end_blk && mid_blk-1 == first_blk));
433
434 *last_blk = end_blk;
435
436 return 0;
437 }
438
439 /*
440 * Check that a range of blocks does not contain stop_on_cycle_no.
441 * Fill in *new_blk with the block offset where such a block is
442 * found, or with -1 (an invalid block number) if there is no such
443 * block in the range. The scan needs to occur from front to back
444 * and the pointer into the region must be updated since a later
445 * routine will need to perform another test.
446 */
447 STATIC int
448 xlog_find_verify_cycle(
449 struct xlog *log,
450 xfs_daddr_t start_blk,
451 int nbblks,
452 uint stop_on_cycle_no,
453 xfs_daddr_t *new_blk)
454 {
455 xfs_daddr_t i, j;
456 uint cycle;
457 xfs_buf_t *bp;
458 xfs_daddr_t bufblks;
459 char *buf = NULL;
460 int error = 0;
461
462 /*
463 * Greedily allocate a buffer big enough to handle the full
464 * range of basic blocks we'll be examining. If that fails,
465 * try a smaller size. We need to be able to read at least
466 * a log sector, or we're out of luck.
467 */
468 bufblks = 1 << ffs(nbblks);
469 while (bufblks > log->l_logBBsize)
470 bufblks >>= 1;
471 while (!(bp = xlog_get_bp(log, bufblks))) {
472 bufblks >>= 1;
473 if (bufblks < log->l_sectBBsize)
474 return -ENOMEM;
475 }
476
477 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
478 int bcount;
479
480 bcount = min(bufblks, (start_blk + nbblks - i));
481
482 error = xlog_bread(log, i, bcount, bp, &buf);
483 if (error)
484 goto out;
485
486 for (j = 0; j < bcount; j++) {
487 cycle = xlog_get_cycle(buf);
488 if (cycle == stop_on_cycle_no) {
489 *new_blk = i+j;
490 goto out;
491 }
492
493 buf += BBSIZE;
494 }
495 }
496
497 *new_blk = -1;
498
499 out:
500 xlog_put_bp(bp);
501 return error;
502 }
503
504 /*
505 * Potentially backup over partial log record write.
506 *
507 * In the typical case, last_blk is the number of the block directly after
508 * a good log record. Therefore, we subtract one to get the block number
509 * of the last block in the given buffer. extra_bblks contains the number
510 * of blocks we would have read on a previous read. This happens when the
511 * last log record is split over the end of the physical log.
512 *
513 * extra_bblks is the number of blocks potentially verified on a previous
514 * call to this routine.
515 */
516 STATIC int
517 xlog_find_verify_log_record(
518 struct xlog *log,
519 xfs_daddr_t start_blk,
520 xfs_daddr_t *last_blk,
521 int extra_bblks)
522 {
523 xfs_daddr_t i;
524 xfs_buf_t *bp;
525 char *offset = NULL;
526 xlog_rec_header_t *head = NULL;
527 int error = 0;
528 int smallmem = 0;
529 int num_blks = *last_blk - start_blk;
530 int xhdrs;
531
532 ASSERT(start_blk != 0 || *last_blk != start_blk);
533
534 if (!(bp = xlog_get_bp(log, num_blks))) {
535 if (!(bp = xlog_get_bp(log, 1)))
536 return -ENOMEM;
537 smallmem = 1;
538 } else {
539 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
540 if (error)
541 goto out;
542 offset += ((num_blks - 1) << BBSHIFT);
543 }
544
545 for (i = (*last_blk) - 1; i >= 0; i--) {
546 if (i < start_blk) {
547 /* valid log record not found */
548 xfs_warn(log->l_mp,
549 "Log inconsistent (didn't find previous header)");
550 ASSERT(0);
551 error = -EIO;
552 goto out;
553 }
554
555 if (smallmem) {
556 error = xlog_bread(log, i, 1, bp, &offset);
557 if (error)
558 goto out;
559 }
560
561 head = (xlog_rec_header_t *)offset;
562
563 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
564 break;
565
566 if (!smallmem)
567 offset -= BBSIZE;
568 }
569
570 /*
571 * We hit the beginning of the physical log & still no header. Return
572 * to caller. If caller can handle a return of -1, then this routine
573 * will be called again for the end of the physical log.
574 */
575 if (i == -1) {
576 error = 1;
577 goto out;
578 }
579
580 /*
581 * We have the final block of the good log (the first block
582 * of the log record _before_ the head. So we check the uuid.
583 */
584 if ((error = xlog_header_check_mount(log->l_mp, head)))
585 goto out;
586
587 /*
588 * We may have found a log record header before we expected one.
589 * last_blk will be the 1st block # with a given cycle #. We may end
590 * up reading an entire log record. In this case, we don't want to
591 * reset last_blk. Only when last_blk points in the middle of a log
592 * record do we update last_blk.
593 */
594 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
595 uint h_size = be32_to_cpu(head->h_size);
596
597 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
598 if (h_size % XLOG_HEADER_CYCLE_SIZE)
599 xhdrs++;
600 } else {
601 xhdrs = 1;
602 }
603
604 if (*last_blk - i + extra_bblks !=
605 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
606 *last_blk = i;
607
608 out:
609 xlog_put_bp(bp);
610 return error;
611 }
612
613 /*
614 * Head is defined to be the point of the log where the next log write
615 * could go. This means that incomplete LR writes at the end are
616 * eliminated when calculating the head. We aren't guaranteed that previous
617 * LR have complete transactions. We only know that a cycle number of
618 * current cycle number -1 won't be present in the log if we start writing
619 * from our current block number.
620 *
621 * last_blk contains the block number of the first block with a given
622 * cycle number.
623 *
624 * Return: zero if normal, non-zero if error.
625 */
626 STATIC int
627 xlog_find_head(
628 struct xlog *log,
629 xfs_daddr_t *return_head_blk)
630 {
631 xfs_buf_t *bp;
632 char *offset;
633 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
634 int num_scan_bblks;
635 uint first_half_cycle, last_half_cycle;
636 uint stop_on_cycle;
637 int error, log_bbnum = log->l_logBBsize;
638
639 /* Is the end of the log device zeroed? */
640 error = xlog_find_zeroed(log, &first_blk);
641 if (error < 0) {
642 xfs_warn(log->l_mp, "empty log check failed");
643 return error;
644 }
645 if (error == 1) {
646 *return_head_blk = first_blk;
647
648 /* Is the whole lot zeroed? */
649 if (!first_blk) {
650 /* Linux XFS shouldn't generate totally zeroed logs -
651 * mkfs etc write a dummy unmount record to a fresh
652 * log so we can store the uuid in there
653 */
654 xfs_warn(log->l_mp, "totally zeroed log");
655 }
656
657 return 0;
658 }
659
660 first_blk = 0; /* get cycle # of 1st block */
661 bp = xlog_get_bp(log, 1);
662 if (!bp)
663 return -ENOMEM;
664
665 error = xlog_bread(log, 0, 1, bp, &offset);
666 if (error)
667 goto bp_err;
668
669 first_half_cycle = xlog_get_cycle(offset);
670
671 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
672 error = xlog_bread(log, last_blk, 1, bp, &offset);
673 if (error)
674 goto bp_err;
675
676 last_half_cycle = xlog_get_cycle(offset);
677 ASSERT(last_half_cycle != 0);
678
679 /*
680 * If the 1st half cycle number is equal to the last half cycle number,
681 * then the entire log is stamped with the same cycle number. In this
682 * case, head_blk can't be set to zero (which makes sense). The below
683 * math doesn't work out properly with head_blk equal to zero. Instead,
684 * we set it to log_bbnum which is an invalid block number, but this
685 * value makes the math correct. If head_blk doesn't changed through
686 * all the tests below, *head_blk is set to zero at the very end rather
687 * than log_bbnum. In a sense, log_bbnum and zero are the same block
688 * in a circular file.
689 */
690 if (first_half_cycle == last_half_cycle) {
691 /*
692 * In this case we believe that the entire log should have
693 * cycle number last_half_cycle. We need to scan backwards
694 * from the end verifying that there are no holes still
695 * containing last_half_cycle - 1. If we find such a hole,
696 * then the start of that hole will be the new head. The
697 * simple case looks like
698 * x | x ... | x - 1 | x
699 * Another case that fits this picture would be
700 * x | x + 1 | x ... | x
701 * In this case the head really is somewhere at the end of the
702 * log, as one of the latest writes at the beginning was
703 * incomplete.
704 * One more case is
705 * x | x + 1 | x ... | x - 1 | x
706 * This is really the combination of the above two cases, and
707 * the head has to end up at the start of the x-1 hole at the
708 * end of the log.
709 *
710 * In the 256k log case, we will read from the beginning to the
711 * end of the log and search for cycle numbers equal to x-1.
712 * We don't worry about the x+1 blocks that we encounter,
713 * because we know that they cannot be the head since the log
714 * started with x.
715 */
716 head_blk = log_bbnum;
717 stop_on_cycle = last_half_cycle - 1;
718 } else {
719 /*
720 * In this case we want to find the first block with cycle
721 * number matching last_half_cycle. We expect the log to be
722 * some variation on
723 * x + 1 ... | x ... | x
724 * The first block with cycle number x (last_half_cycle) will
725 * be where the new head belongs. First we do a binary search
726 * for the first occurrence of last_half_cycle. The binary
727 * search may not be totally accurate, so then we scan back
728 * from there looking for occurrences of last_half_cycle before
729 * us. If that backwards scan wraps around the beginning of
730 * the log, then we look for occurrences of last_half_cycle - 1
731 * at the end of the log. The cases we're looking for look
732 * like
733 * v binary search stopped here
734 * x + 1 ... | x | x + 1 | x ... | x
735 * ^ but we want to locate this spot
736 * or
737 * <---------> less than scan distance
738 * x + 1 ... | x ... | x - 1 | x
739 * ^ we want to locate this spot
740 */
741 stop_on_cycle = last_half_cycle;
742 if ((error = xlog_find_cycle_start(log, bp, first_blk,
743 &head_blk, last_half_cycle)))
744 goto bp_err;
745 }
746
747 /*
748 * Now validate the answer. Scan back some number of maximum possible
749 * blocks and make sure each one has the expected cycle number. The
750 * maximum is determined by the total possible amount of buffering
751 * in the in-core log. The following number can be made tighter if
752 * we actually look at the block size of the filesystem.
753 */
754 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
755 if (head_blk >= num_scan_bblks) {
756 /*
757 * We are guaranteed that the entire check can be performed
758 * in one buffer.
759 */
760 start_blk = head_blk - num_scan_bblks;
761 if ((error = xlog_find_verify_cycle(log,
762 start_blk, num_scan_bblks,
763 stop_on_cycle, &new_blk)))
764 goto bp_err;
765 if (new_blk != -1)
766 head_blk = new_blk;
767 } else { /* need to read 2 parts of log */
768 /*
769 * We are going to scan backwards in the log in two parts.
770 * First we scan the physical end of the log. In this part
771 * of the log, we are looking for blocks with cycle number
772 * last_half_cycle - 1.
773 * If we find one, then we know that the log starts there, as
774 * we've found a hole that didn't get written in going around
775 * the end of the physical log. The simple case for this is
776 * x + 1 ... | x ... | x - 1 | x
777 * <---------> less than scan distance
778 * If all of the blocks at the end of the log have cycle number
779 * last_half_cycle, then we check the blocks at the start of
780 * the log looking for occurrences of last_half_cycle. If we
781 * find one, then our current estimate for the location of the
782 * first occurrence of last_half_cycle is wrong and we move
783 * back to the hole we've found. This case looks like
784 * x + 1 ... | x | x + 1 | x ...
785 * ^ binary search stopped here
786 * Another case we need to handle that only occurs in 256k
787 * logs is
788 * x + 1 ... | x ... | x+1 | x ...
789 * ^ binary search stops here
790 * In a 256k log, the scan at the end of the log will see the
791 * x + 1 blocks. We need to skip past those since that is
792 * certainly not the head of the log. By searching for
793 * last_half_cycle-1 we accomplish that.
794 */
795 ASSERT(head_blk <= INT_MAX &&
796 (xfs_daddr_t) num_scan_bblks >= head_blk);
797 start_blk = log_bbnum - (num_scan_bblks - head_blk);
798 if ((error = xlog_find_verify_cycle(log, start_blk,
799 num_scan_bblks - (int)head_blk,
800 (stop_on_cycle - 1), &new_blk)))
801 goto bp_err;
802 if (new_blk != -1) {
803 head_blk = new_blk;
804 goto validate_head;
805 }
806
807 /*
808 * Scan beginning of log now. The last part of the physical
809 * log is good. This scan needs to verify that it doesn't find
810 * the last_half_cycle.
811 */
812 start_blk = 0;
813 ASSERT(head_blk <= INT_MAX);
814 if ((error = xlog_find_verify_cycle(log,
815 start_blk, (int)head_blk,
816 stop_on_cycle, &new_blk)))
817 goto bp_err;
818 if (new_blk != -1)
819 head_blk = new_blk;
820 }
821
822 validate_head:
823 /*
824 * Now we need to make sure head_blk is not pointing to a block in
825 * the middle of a log record.
826 */
827 num_scan_bblks = XLOG_REC_SHIFT(log);
828 if (head_blk >= num_scan_bblks) {
829 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
830
831 /* start ptr at last block ptr before head_blk */
832 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
833 if (error == 1)
834 error = -EIO;
835 if (error)
836 goto bp_err;
837 } else {
838 start_blk = 0;
839 ASSERT(head_blk <= INT_MAX);
840 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
841 if (error < 0)
842 goto bp_err;
843 if (error == 1) {
844 /* We hit the beginning of the log during our search */
845 start_blk = log_bbnum - (num_scan_bblks - head_blk);
846 new_blk = log_bbnum;
847 ASSERT(start_blk <= INT_MAX &&
848 (xfs_daddr_t) log_bbnum-start_blk >= 0);
849 ASSERT(head_blk <= INT_MAX);
850 error = xlog_find_verify_log_record(log, start_blk,
851 &new_blk, (int)head_blk);
852 if (error == 1)
853 error = -EIO;
854 if (error)
855 goto bp_err;
856 if (new_blk != log_bbnum)
857 head_blk = new_blk;
858 } else if (error)
859 goto bp_err;
860 }
861
862 xlog_put_bp(bp);
863 if (head_blk == log_bbnum)
864 *return_head_blk = 0;
865 else
866 *return_head_blk = head_blk;
867 /*
868 * When returning here, we have a good block number. Bad block
869 * means that during a previous crash, we didn't have a clean break
870 * from cycle number N to cycle number N-1. In this case, we need
871 * to find the first block with cycle number N-1.
872 */
873 return 0;
874
875 bp_err:
876 xlog_put_bp(bp);
877
878 if (error)
879 xfs_warn(log->l_mp, "failed to find log head");
880 return error;
881 }
882
883 /*
884 * Seek backwards in the log for log record headers.
885 *
886 * Given a starting log block, walk backwards until we find the provided number
887 * of records or hit the provided tail block. The return value is the number of
888 * records encountered or a negative error code. The log block and buffer
889 * pointer of the last record seen are returned in rblk and rhead respectively.
890 */
891 STATIC int
892 xlog_rseek_logrec_hdr(
893 struct xlog *log,
894 xfs_daddr_t head_blk,
895 xfs_daddr_t tail_blk,
896 int count,
897 struct xfs_buf *bp,
898 xfs_daddr_t *rblk,
899 struct xlog_rec_header **rhead,
900 bool *wrapped)
901 {
902 int i;
903 int error;
904 int found = 0;
905 char *offset = NULL;
906 xfs_daddr_t end_blk;
907
908 *wrapped = false;
909
910 /*
911 * Walk backwards from the head block until we hit the tail or the first
912 * block in the log.
913 */
914 end_blk = head_blk > tail_blk ? tail_blk : 0;
915 for (i = (int) head_blk - 1; i >= end_blk; i--) {
916 error = xlog_bread(log, i, 1, bp, &offset);
917 if (error)
918 goto out_error;
919
920 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
921 *rblk = i;
922 *rhead = (struct xlog_rec_header *) offset;
923 if (++found == count)
924 break;
925 }
926 }
927
928 /*
929 * If we haven't hit the tail block or the log record header count,
930 * start looking again from the end of the physical log. Note that
931 * callers can pass head == tail if the tail is not yet known.
932 */
933 if (tail_blk >= head_blk && found != count) {
934 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
935 error = xlog_bread(log, i, 1, bp, &offset);
936 if (error)
937 goto out_error;
938
939 if (*(__be32 *)offset ==
940 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
941 *wrapped = true;
942 *rblk = i;
943 *rhead = (struct xlog_rec_header *) offset;
944 if (++found == count)
945 break;
946 }
947 }
948 }
949
950 return found;
951
952 out_error:
953 return error;
954 }
955
956 /*
957 * Seek forward in the log for log record headers.
958 *
959 * Given head and tail blocks, walk forward from the tail block until we find
960 * the provided number of records or hit the head block. The return value is the
961 * number of records encountered or a negative error code. The log block and
962 * buffer pointer of the last record seen are returned in rblk and rhead
963 * respectively.
964 */
965 STATIC int
966 xlog_seek_logrec_hdr(
967 struct xlog *log,
968 xfs_daddr_t head_blk,
969 xfs_daddr_t tail_blk,
970 int count,
971 struct xfs_buf *bp,
972 xfs_daddr_t *rblk,
973 struct xlog_rec_header **rhead,
974 bool *wrapped)
975 {
976 int i;
977 int error;
978 int found = 0;
979 char *offset = NULL;
980 xfs_daddr_t end_blk;
981
982 *wrapped = false;
983
984 /*
985 * Walk forward from the tail block until we hit the head or the last
986 * block in the log.
987 */
988 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
989 for (i = (int) tail_blk; i <= end_blk; i++) {
990 error = xlog_bread(log, i, 1, bp, &offset);
991 if (error)
992 goto out_error;
993
994 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
995 *rblk = i;
996 *rhead = (struct xlog_rec_header *) offset;
997 if (++found == count)
998 break;
999 }
1000 }
1001
1002 /*
1003 * If we haven't hit the head block or the log record header count,
1004 * start looking again from the start of the physical log.
1005 */
1006 if (tail_blk > head_blk && found != count) {
1007 for (i = 0; i < (int) head_blk; i++) {
1008 error = xlog_bread(log, i, 1, bp, &offset);
1009 if (error)
1010 goto out_error;
1011
1012 if (*(__be32 *)offset ==
1013 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1014 *wrapped = true;
1015 *rblk = i;
1016 *rhead = (struct xlog_rec_header *) offset;
1017 if (++found == count)
1018 break;
1019 }
1020 }
1021 }
1022
1023 return found;
1024
1025 out_error:
1026 return error;
1027 }
1028
1029 /*
1030 * Check the log tail for torn writes. This is required when torn writes are
1031 * detected at the head and the head had to be walked back to a previous record.
1032 * The tail of the previous record must now be verified to ensure the torn
1033 * writes didn't corrupt the previous tail.
1034 *
1035 * Return an error if CRC verification fails as recovery cannot proceed.
1036 */
1037 STATIC int
1038 xlog_verify_tail(
1039 struct xlog *log,
1040 xfs_daddr_t head_blk,
1041 xfs_daddr_t tail_blk)
1042 {
1043 struct xlog_rec_header *thead;
1044 struct xfs_buf *bp;
1045 xfs_daddr_t first_bad;
1046 int count;
1047 int error = 0;
1048 bool wrapped;
1049 xfs_daddr_t tmp_head;
1050
1051 bp = xlog_get_bp(log, 1);
1052 if (!bp)
1053 return -ENOMEM;
1054
1055 /*
1056 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1057 * a temporary head block that points after the last possible
1058 * concurrently written record of the tail.
1059 */
1060 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1061 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1062 &wrapped);
1063 if (count < 0) {
1064 error = count;
1065 goto out;
1066 }
1067
1068 /*
1069 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1070 * into the actual log head. tmp_head points to the start of the record
1071 * so update it to the actual head block.
1072 */
1073 if (count < XLOG_MAX_ICLOGS + 1)
1074 tmp_head = head_blk;
1075
1076 /*
1077 * We now have a tail and temporary head block that covers at least
1078 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1079 * records were completely written. Run a CRC verification pass from
1080 * tail to head and return the result.
1081 */
1082 error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1083 XLOG_RECOVER_CRCPASS, &first_bad);
1084
1085 out:
1086 xlog_put_bp(bp);
1087 return error;
1088 }
1089
1090 /*
1091 * Detect and trim torn writes from the head of the log.
1092 *
1093 * Storage without sector atomicity guarantees can result in torn writes in the
1094 * log in the event of a crash. Our only means to detect this scenario is via
1095 * CRC verification. While we can't always be certain that CRC verification
1096 * failure is due to a torn write vs. an unrelated corruption, we do know that
1097 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1098 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1099 * the log and treat failures in this range as torn writes as a matter of
1100 * policy. In the event of CRC failure, the head is walked back to the last good
1101 * record in the log and the tail is updated from that record and verified.
1102 */
1103 STATIC int
1104 xlog_verify_head(
1105 struct xlog *log,
1106 xfs_daddr_t *head_blk, /* in/out: unverified head */
1107 xfs_daddr_t *tail_blk, /* out: tail block */
1108 struct xfs_buf *bp,
1109 xfs_daddr_t *rhead_blk, /* start blk of last record */
1110 struct xlog_rec_header **rhead, /* ptr to last record */
1111 bool *wrapped) /* last rec. wraps phys. log */
1112 {
1113 struct xlog_rec_header *tmp_rhead;
1114 struct xfs_buf *tmp_bp;
1115 xfs_daddr_t first_bad;
1116 xfs_daddr_t tmp_rhead_blk;
1117 int found;
1118 int error;
1119 bool tmp_wrapped;
1120
1121 /*
1122 * Check the head of the log for torn writes. Search backwards from the
1123 * head until we hit the tail or the maximum number of log record I/Os
1124 * that could have been in flight at one time. Use a temporary buffer so
1125 * we don't trash the rhead/bp pointers from the caller.
1126 */
1127 tmp_bp = xlog_get_bp(log, 1);
1128 if (!tmp_bp)
1129 return -ENOMEM;
1130 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1131 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1132 &tmp_rhead, &tmp_wrapped);
1133 xlog_put_bp(tmp_bp);
1134 if (error < 0)
1135 return error;
1136
1137 /*
1138 * Now run a CRC verification pass over the records starting at the
1139 * block found above to the current head. If a CRC failure occurs, the
1140 * log block of the first bad record is saved in first_bad.
1141 */
1142 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1143 XLOG_RECOVER_CRCPASS, &first_bad);
1144 if (error == -EFSBADCRC) {
1145 /*
1146 * We've hit a potential torn write. Reset the error and warn
1147 * about it.
1148 */
1149 error = 0;
1150 xfs_warn(log->l_mp,
1151 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1152 first_bad, *head_blk);
1153
1154 /*
1155 * Get the header block and buffer pointer for the last good
1156 * record before the bad record.
1157 *
1158 * Note that xlog_find_tail() clears the blocks at the new head
1159 * (i.e., the records with invalid CRC) if the cycle number
1160 * matches the the current cycle.
1161 */
1162 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1163 rhead_blk, rhead, wrapped);
1164 if (found < 0)
1165 return found;
1166 if (found == 0) /* XXX: right thing to do here? */
1167 return -EIO;
1168
1169 /*
1170 * Reset the head block to the starting block of the first bad
1171 * log record and set the tail block based on the last good
1172 * record.
1173 *
1174 * Bail out if the updated head/tail match as this indicates
1175 * possible corruption outside of the acceptable
1176 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1177 */
1178 *head_blk = first_bad;
1179 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1180 if (*head_blk == *tail_blk) {
1181 ASSERT(0);
1182 return 0;
1183 }
1184
1185 /*
1186 * Now verify the tail based on the updated head. This is
1187 * required because the torn writes trimmed from the head could
1188 * have been written over the tail of a previous record. Return
1189 * any errors since recovery cannot proceed if the tail is
1190 * corrupt.
1191 *
1192 * XXX: This leaves a gap in truly robust protection from torn
1193 * writes in the log. If the head is behind the tail, the tail
1194 * pushes forward to create some space and then a crash occurs
1195 * causing the writes into the previous record's tail region to
1196 * tear, log recovery isn't able to recover.
1197 *
1198 * How likely is this to occur? If possible, can we do something
1199 * more intelligent here? Is it safe to push the tail forward if
1200 * we can determine that the tail is within the range of the
1201 * torn write (e.g., the kernel can only overwrite the tail if
1202 * it has actually been pushed forward)? Alternatively, could we
1203 * somehow prevent this condition at runtime?
1204 */
1205 error = xlog_verify_tail(log, *head_blk, *tail_blk);
1206 }
1207
1208 return error;
1209 }
1210
1211 /*
1212 * Check whether the head of the log points to an unmount record. In other
1213 * words, determine whether the log is clean. If so, update the in-core state
1214 * appropriately.
1215 */
1216 static int
1217 xlog_check_unmount_rec(
1218 struct xlog *log,
1219 xfs_daddr_t *head_blk,
1220 xfs_daddr_t *tail_blk,
1221 struct xlog_rec_header *rhead,
1222 xfs_daddr_t rhead_blk,
1223 struct xfs_buf *bp,
1224 bool *clean)
1225 {
1226 struct xlog_op_header *op_head;
1227 xfs_daddr_t umount_data_blk;
1228 xfs_daddr_t after_umount_blk;
1229 int hblks;
1230 int error;
1231 char *offset;
1232
1233 *clean = false;
1234
1235 /*
1236 * Look for unmount record. If we find it, then we know there was a
1237 * clean unmount. Since 'i' could be the last block in the physical
1238 * log, we convert to a log block before comparing to the head_blk.
1239 *
1240 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1241 * below. We won't want to clear the unmount record if there is one, so
1242 * we pass the lsn of the unmount record rather than the block after it.
1243 */
1244 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1245 int h_size = be32_to_cpu(rhead->h_size);
1246 int h_version = be32_to_cpu(rhead->h_version);
1247
1248 if ((h_version & XLOG_VERSION_2) &&
1249 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1250 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1251 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1252 hblks++;
1253 } else {
1254 hblks = 1;
1255 }
1256 } else {
1257 hblks = 1;
1258 }
1259 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1260 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1261 if (*head_blk == after_umount_blk &&
1262 be32_to_cpu(rhead->h_num_logops) == 1) {
1263 umount_data_blk = rhead_blk + hblks;
1264 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1265 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1266 if (error)
1267 return error;
1268
1269 op_head = (struct xlog_op_header *)offset;
1270 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1271 /*
1272 * Set tail and last sync so that newly written log
1273 * records will point recovery to after the current
1274 * unmount record.
1275 */
1276 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1277 log->l_curr_cycle, after_umount_blk);
1278 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1279 log->l_curr_cycle, after_umount_blk);
1280 *tail_blk = after_umount_blk;
1281
1282 *clean = true;
1283 }
1284 }
1285
1286 return 0;
1287 }
1288
1289 static void
1290 xlog_set_state(
1291 struct xlog *log,
1292 xfs_daddr_t head_blk,
1293 struct xlog_rec_header *rhead,
1294 xfs_daddr_t rhead_blk,
1295 bool bump_cycle)
1296 {
1297 /*
1298 * Reset log values according to the state of the log when we
1299 * crashed. In the case where head_blk == 0, we bump curr_cycle
1300 * one because the next write starts a new cycle rather than
1301 * continuing the cycle of the last good log record. At this
1302 * point we have guaranteed that all partial log records have been
1303 * accounted for. Therefore, we know that the last good log record
1304 * written was complete and ended exactly on the end boundary
1305 * of the physical log.
1306 */
1307 log->l_prev_block = rhead_blk;
1308 log->l_curr_block = (int)head_blk;
1309 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1310 if (bump_cycle)
1311 log->l_curr_cycle++;
1312 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1313 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1314 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1315 BBTOB(log->l_curr_block));
1316 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1317 BBTOB(log->l_curr_block));
1318 }
1319
1320 /*
1321 * Find the sync block number or the tail of the log.
1322 *
1323 * This will be the block number of the last record to have its
1324 * associated buffers synced to disk. Every log record header has
1325 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1326 * to get a sync block number. The only concern is to figure out which
1327 * log record header to believe.
1328 *
1329 * The following algorithm uses the log record header with the largest
1330 * lsn. The entire log record does not need to be valid. We only care
1331 * that the header is valid.
1332 *
1333 * We could speed up search by using current head_blk buffer, but it is not
1334 * available.
1335 */
1336 STATIC int
1337 xlog_find_tail(
1338 struct xlog *log,
1339 xfs_daddr_t *head_blk,
1340 xfs_daddr_t *tail_blk)
1341 {
1342 xlog_rec_header_t *rhead;
1343 char *offset = NULL;
1344 xfs_buf_t *bp;
1345 int error;
1346 xfs_daddr_t rhead_blk;
1347 xfs_lsn_t tail_lsn;
1348 bool wrapped = false;
1349 bool clean = false;
1350
1351 /*
1352 * Find previous log record
1353 */
1354 if ((error = xlog_find_head(log, head_blk)))
1355 return error;
1356 ASSERT(*head_blk < INT_MAX);
1357
1358 bp = xlog_get_bp(log, 1);
1359 if (!bp)
1360 return -ENOMEM;
1361 if (*head_blk == 0) { /* special case */
1362 error = xlog_bread(log, 0, 1, bp, &offset);
1363 if (error)
1364 goto done;
1365
1366 if (xlog_get_cycle(offset) == 0) {
1367 *tail_blk = 0;
1368 /* leave all other log inited values alone */
1369 goto done;
1370 }
1371 }
1372
1373 /*
1374 * Search backwards through the log looking for the log record header
1375 * block. This wraps all the way back around to the head so something is
1376 * seriously wrong if we can't find it.
1377 */
1378 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1379 &rhead_blk, &rhead, &wrapped);
1380 if (error < 0)
1381 return error;
1382 if (!error) {
1383 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1384 return -EIO;
1385 }
1386 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1387
1388 /*
1389 * Set the log state based on the current head record.
1390 */
1391 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1392 tail_lsn = atomic64_read(&log->l_tail_lsn);
1393
1394 /*
1395 * Look for an unmount record at the head of the log. This sets the log
1396 * state to determine whether recovery is necessary.
1397 */
1398 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1399 rhead_blk, bp, &clean);
1400 if (error)
1401 goto done;
1402
1403 /*
1404 * Verify the log head if the log is not clean (e.g., we have anything
1405 * but an unmount record at the head). This uses CRC verification to
1406 * detect and trim torn writes. If discovered, CRC failures are
1407 * considered torn writes and the log head is trimmed accordingly.
1408 *
1409 * Note that we can only run CRC verification when the log is dirty
1410 * because there's no guarantee that the log data behind an unmount
1411 * record is compatible with the current architecture.
1412 */
1413 if (!clean) {
1414 xfs_daddr_t orig_head = *head_blk;
1415
1416 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1417 &rhead_blk, &rhead, &wrapped);
1418 if (error)
1419 goto done;
1420
1421 /* update in-core state again if the head changed */
1422 if (*head_blk != orig_head) {
1423 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1424 wrapped);
1425 tail_lsn = atomic64_read(&log->l_tail_lsn);
1426 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1427 rhead, rhead_blk, bp,
1428 &clean);
1429 if (error)
1430 goto done;
1431 }
1432 }
1433
1434 /*
1435 * Note that the unmount was clean. If the unmount was not clean, we
1436 * need to know this to rebuild the superblock counters from the perag
1437 * headers if we have a filesystem using non-persistent counters.
1438 */
1439 if (clean)
1440 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1441
1442 /*
1443 * Make sure that there are no blocks in front of the head
1444 * with the same cycle number as the head. This can happen
1445 * because we allow multiple outstanding log writes concurrently,
1446 * and the later writes might make it out before earlier ones.
1447 *
1448 * We use the lsn from before modifying it so that we'll never
1449 * overwrite the unmount record after a clean unmount.
1450 *
1451 * Do this only if we are going to recover the filesystem
1452 *
1453 * NOTE: This used to say "if (!readonly)"
1454 * However on Linux, we can & do recover a read-only filesystem.
1455 * We only skip recovery if NORECOVERY is specified on mount,
1456 * in which case we would not be here.
1457 *
1458 * But... if the -device- itself is readonly, just skip this.
1459 * We can't recover this device anyway, so it won't matter.
1460 */
1461 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1462 error = xlog_clear_stale_blocks(log, tail_lsn);
1463
1464 done:
1465 xlog_put_bp(bp);
1466
1467 if (error)
1468 xfs_warn(log->l_mp, "failed to locate log tail");
1469 return error;
1470 }
1471
1472 /*
1473 * Is the log zeroed at all?
1474 *
1475 * The last binary search should be changed to perform an X block read
1476 * once X becomes small enough. You can then search linearly through
1477 * the X blocks. This will cut down on the number of reads we need to do.
1478 *
1479 * If the log is partially zeroed, this routine will pass back the blkno
1480 * of the first block with cycle number 0. It won't have a complete LR
1481 * preceding it.
1482 *
1483 * Return:
1484 * 0 => the log is completely written to
1485 * 1 => use *blk_no as the first block of the log
1486 * <0 => error has occurred
1487 */
1488 STATIC int
1489 xlog_find_zeroed(
1490 struct xlog *log,
1491 xfs_daddr_t *blk_no)
1492 {
1493 xfs_buf_t *bp;
1494 char *offset;
1495 uint first_cycle, last_cycle;
1496 xfs_daddr_t new_blk, last_blk, start_blk;
1497 xfs_daddr_t num_scan_bblks;
1498 int error, log_bbnum = log->l_logBBsize;
1499
1500 *blk_no = 0;
1501
1502 /* check totally zeroed log */
1503 bp = xlog_get_bp(log, 1);
1504 if (!bp)
1505 return -ENOMEM;
1506 error = xlog_bread(log, 0, 1, bp, &offset);
1507 if (error)
1508 goto bp_err;
1509
1510 first_cycle = xlog_get_cycle(offset);
1511 if (first_cycle == 0) { /* completely zeroed log */
1512 *blk_no = 0;
1513 xlog_put_bp(bp);
1514 return 1;
1515 }
1516
1517 /* check partially zeroed log */
1518 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1519 if (error)
1520 goto bp_err;
1521
1522 last_cycle = xlog_get_cycle(offset);
1523 if (last_cycle != 0) { /* log completely written to */
1524 xlog_put_bp(bp);
1525 return 0;
1526 } else if (first_cycle != 1) {
1527 /*
1528 * If the cycle of the last block is zero, the cycle of
1529 * the first block must be 1. If it's not, maybe we're
1530 * not looking at a log... Bail out.
1531 */
1532 xfs_warn(log->l_mp,
1533 "Log inconsistent or not a log (last==0, first!=1)");
1534 error = -EINVAL;
1535 goto bp_err;
1536 }
1537
1538 /* we have a partially zeroed log */
1539 last_blk = log_bbnum-1;
1540 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1541 goto bp_err;
1542
1543 /*
1544 * Validate the answer. Because there is no way to guarantee that
1545 * the entire log is made up of log records which are the same size,
1546 * we scan over the defined maximum blocks. At this point, the maximum
1547 * is not chosen to mean anything special. XXXmiken
1548 */
1549 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1550 ASSERT(num_scan_bblks <= INT_MAX);
1551
1552 if (last_blk < num_scan_bblks)
1553 num_scan_bblks = last_blk;
1554 start_blk = last_blk - num_scan_bblks;
1555
1556 /*
1557 * We search for any instances of cycle number 0 that occur before
1558 * our current estimate of the head. What we're trying to detect is
1559 * 1 ... | 0 | 1 | 0...
1560 * ^ binary search ends here
1561 */
1562 if ((error = xlog_find_verify_cycle(log, start_blk,
1563 (int)num_scan_bblks, 0, &new_blk)))
1564 goto bp_err;
1565 if (new_blk != -1)
1566 last_blk = new_blk;
1567
1568 /*
1569 * Potentially backup over partial log record write. We don't need
1570 * to search the end of the log because we know it is zero.
1571 */
1572 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1573 if (error == 1)
1574 error = -EIO;
1575 if (error)
1576 goto bp_err;
1577
1578 *blk_no = last_blk;
1579 bp_err:
1580 xlog_put_bp(bp);
1581 if (error)
1582 return error;
1583 return 1;
1584 }
1585
1586 /*
1587 * These are simple subroutines used by xlog_clear_stale_blocks() below
1588 * to initialize a buffer full of empty log record headers and write
1589 * them into the log.
1590 */
1591 STATIC void
1592 xlog_add_record(
1593 struct xlog *log,
1594 char *buf,
1595 int cycle,
1596 int block,
1597 int tail_cycle,
1598 int tail_block)
1599 {
1600 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1601
1602 memset(buf, 0, BBSIZE);
1603 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1604 recp->h_cycle = cpu_to_be32(cycle);
1605 recp->h_version = cpu_to_be32(
1606 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1607 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1608 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1609 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1610 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1611 }
1612
1613 STATIC int
1614 xlog_write_log_records(
1615 struct xlog *log,
1616 int cycle,
1617 int start_block,
1618 int blocks,
1619 int tail_cycle,
1620 int tail_block)
1621 {
1622 char *offset;
1623 xfs_buf_t *bp;
1624 int balign, ealign;
1625 int sectbb = log->l_sectBBsize;
1626 int end_block = start_block + blocks;
1627 int bufblks;
1628 int error = 0;
1629 int i, j = 0;
1630
1631 /*
1632 * Greedily allocate a buffer big enough to handle the full
1633 * range of basic blocks to be written. If that fails, try
1634 * a smaller size. We need to be able to write at least a
1635 * log sector, or we're out of luck.
1636 */
1637 bufblks = 1 << ffs(blocks);
1638 while (bufblks > log->l_logBBsize)
1639 bufblks >>= 1;
1640 while (!(bp = xlog_get_bp(log, bufblks))) {
1641 bufblks >>= 1;
1642 if (bufblks < sectbb)
1643 return -ENOMEM;
1644 }
1645
1646 /* We may need to do a read at the start to fill in part of
1647 * the buffer in the starting sector not covered by the first
1648 * write below.
1649 */
1650 balign = round_down(start_block, sectbb);
1651 if (balign != start_block) {
1652 error = xlog_bread_noalign(log, start_block, 1, bp);
1653 if (error)
1654 goto out_put_bp;
1655
1656 j = start_block - balign;
1657 }
1658
1659 for (i = start_block; i < end_block; i += bufblks) {
1660 int bcount, endcount;
1661
1662 bcount = min(bufblks, end_block - start_block);
1663 endcount = bcount - j;
1664
1665 /* We may need to do a read at the end to fill in part of
1666 * the buffer in the final sector not covered by the write.
1667 * If this is the same sector as the above read, skip it.
1668 */
1669 ealign = round_down(end_block, sectbb);
1670 if (j == 0 && (start_block + endcount > ealign)) {
1671 offset = bp->b_addr + BBTOB(ealign - start_block);
1672 error = xlog_bread_offset(log, ealign, sectbb,
1673 bp, offset);
1674 if (error)
1675 break;
1676
1677 }
1678
1679 offset = xlog_align(log, start_block, endcount, bp);
1680 for (; j < endcount; j++) {
1681 xlog_add_record(log, offset, cycle, i+j,
1682 tail_cycle, tail_block);
1683 offset += BBSIZE;
1684 }
1685 error = xlog_bwrite(log, start_block, endcount, bp);
1686 if (error)
1687 break;
1688 start_block += endcount;
1689 j = 0;
1690 }
1691
1692 out_put_bp:
1693 xlog_put_bp(bp);
1694 return error;
1695 }
1696
1697 /*
1698 * This routine is called to blow away any incomplete log writes out
1699 * in front of the log head. We do this so that we won't become confused
1700 * if we come up, write only a little bit more, and then crash again.
1701 * If we leave the partial log records out there, this situation could
1702 * cause us to think those partial writes are valid blocks since they
1703 * have the current cycle number. We get rid of them by overwriting them
1704 * with empty log records with the old cycle number rather than the
1705 * current one.
1706 *
1707 * The tail lsn is passed in rather than taken from
1708 * the log so that we will not write over the unmount record after a
1709 * clean unmount in a 512 block log. Doing so would leave the log without
1710 * any valid log records in it until a new one was written. If we crashed
1711 * during that time we would not be able to recover.
1712 */
1713 STATIC int
1714 xlog_clear_stale_blocks(
1715 struct xlog *log,
1716 xfs_lsn_t tail_lsn)
1717 {
1718 int tail_cycle, head_cycle;
1719 int tail_block, head_block;
1720 int tail_distance, max_distance;
1721 int distance;
1722 int error;
1723
1724 tail_cycle = CYCLE_LSN(tail_lsn);
1725 tail_block = BLOCK_LSN(tail_lsn);
1726 head_cycle = log->l_curr_cycle;
1727 head_block = log->l_curr_block;
1728
1729 /*
1730 * Figure out the distance between the new head of the log
1731 * and the tail. We want to write over any blocks beyond the
1732 * head that we may have written just before the crash, but
1733 * we don't want to overwrite the tail of the log.
1734 */
1735 if (head_cycle == tail_cycle) {
1736 /*
1737 * The tail is behind the head in the physical log,
1738 * so the distance from the head to the tail is the
1739 * distance from the head to the end of the log plus
1740 * the distance from the beginning of the log to the
1741 * tail.
1742 */
1743 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1744 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1745 XFS_ERRLEVEL_LOW, log->l_mp);
1746 return -EFSCORRUPTED;
1747 }
1748 tail_distance = tail_block + (log->l_logBBsize - head_block);
1749 } else {
1750 /*
1751 * The head is behind the tail in the physical log,
1752 * so the distance from the head to the tail is just
1753 * the tail block minus the head block.
1754 */
1755 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1756 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1757 XFS_ERRLEVEL_LOW, log->l_mp);
1758 return -EFSCORRUPTED;
1759 }
1760 tail_distance = tail_block - head_block;
1761 }
1762
1763 /*
1764 * If the head is right up against the tail, we can't clear
1765 * anything.
1766 */
1767 if (tail_distance <= 0) {
1768 ASSERT(tail_distance == 0);
1769 return 0;
1770 }
1771
1772 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1773 /*
1774 * Take the smaller of the maximum amount of outstanding I/O
1775 * we could have and the distance to the tail to clear out.
1776 * We take the smaller so that we don't overwrite the tail and
1777 * we don't waste all day writing from the head to the tail
1778 * for no reason.
1779 */
1780 max_distance = MIN(max_distance, tail_distance);
1781
1782 if ((head_block + max_distance) <= log->l_logBBsize) {
1783 /*
1784 * We can stomp all the blocks we need to without
1785 * wrapping around the end of the log. Just do it
1786 * in a single write. Use the cycle number of the
1787 * current cycle minus one so that the log will look like:
1788 * n ... | n - 1 ...
1789 */
1790 error = xlog_write_log_records(log, (head_cycle - 1),
1791 head_block, max_distance, tail_cycle,
1792 tail_block);
1793 if (error)
1794 return error;
1795 } else {
1796 /*
1797 * We need to wrap around the end of the physical log in
1798 * order to clear all the blocks. Do it in two separate
1799 * I/Os. The first write should be from the head to the
1800 * end of the physical log, and it should use the current
1801 * cycle number minus one just like above.
1802 */
1803 distance = log->l_logBBsize - head_block;
1804 error = xlog_write_log_records(log, (head_cycle - 1),
1805 head_block, distance, tail_cycle,
1806 tail_block);
1807
1808 if (error)
1809 return error;
1810
1811 /*
1812 * Now write the blocks at the start of the physical log.
1813 * This writes the remainder of the blocks we want to clear.
1814 * It uses the current cycle number since we're now on the
1815 * same cycle as the head so that we get:
1816 * n ... n ... | n - 1 ...
1817 * ^^^^^ blocks we're writing
1818 */
1819 distance = max_distance - (log->l_logBBsize - head_block);
1820 error = xlog_write_log_records(log, head_cycle, 0, distance,
1821 tail_cycle, tail_block);
1822 if (error)
1823 return error;
1824 }
1825
1826 return 0;
1827 }
1828
1829 /******************************************************************************
1830 *
1831 * Log recover routines
1832 *
1833 ******************************************************************************
1834 */
1835
1836 /*
1837 * Sort the log items in the transaction.
1838 *
1839 * The ordering constraints are defined by the inode allocation and unlink
1840 * behaviour. The rules are:
1841 *
1842 * 1. Every item is only logged once in a given transaction. Hence it
1843 * represents the last logged state of the item. Hence ordering is
1844 * dependent on the order in which operations need to be performed so
1845 * required initial conditions are always met.
1846 *
1847 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1848 * there's nothing to replay from them so we can simply cull them
1849 * from the transaction. However, we can't do that until after we've
1850 * replayed all the other items because they may be dependent on the
1851 * cancelled buffer and replaying the cancelled buffer can remove it
1852 * form the cancelled buffer table. Hence they have tobe done last.
1853 *
1854 * 3. Inode allocation buffers must be replayed before inode items that
1855 * read the buffer and replay changes into it. For filesystems using the
1856 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1857 * treated the same as inode allocation buffers as they create and
1858 * initialise the buffers directly.
1859 *
1860 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1861 * This ensures that inodes are completely flushed to the inode buffer
1862 * in a "free" state before we remove the unlinked inode list pointer.
1863 *
1864 * Hence the ordering needs to be inode allocation buffers first, inode items
1865 * second, inode unlink buffers third and cancelled buffers last.
1866 *
1867 * But there's a problem with that - we can't tell an inode allocation buffer
1868 * apart from a regular buffer, so we can't separate them. We can, however,
1869 * tell an inode unlink buffer from the others, and so we can separate them out
1870 * from all the other buffers and move them to last.
1871 *
1872 * Hence, 4 lists, in order from head to tail:
1873 * - buffer_list for all buffers except cancelled/inode unlink buffers
1874 * - item_list for all non-buffer items
1875 * - inode_buffer_list for inode unlink buffers
1876 * - cancel_list for the cancelled buffers
1877 *
1878 * Note that we add objects to the tail of the lists so that first-to-last
1879 * ordering is preserved within the lists. Adding objects to the head of the
1880 * list means when we traverse from the head we walk them in last-to-first
1881 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1882 * but for all other items there may be specific ordering that we need to
1883 * preserve.
1884 */
1885 STATIC int
1886 xlog_recover_reorder_trans(
1887 struct xlog *log,
1888 struct xlog_recover *trans,
1889 int pass)
1890 {
1891 xlog_recover_item_t *item, *n;
1892 int error = 0;
1893 LIST_HEAD(sort_list);
1894 LIST_HEAD(cancel_list);
1895 LIST_HEAD(buffer_list);
1896 LIST_HEAD(inode_buffer_list);
1897 LIST_HEAD(inode_list);
1898
1899 list_splice_init(&trans->r_itemq, &sort_list);
1900 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1901 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1902
1903 switch (ITEM_TYPE(item)) {
1904 case XFS_LI_ICREATE:
1905 list_move_tail(&item->ri_list, &buffer_list);
1906 break;
1907 case XFS_LI_BUF:
1908 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1909 trace_xfs_log_recover_item_reorder_head(log,
1910 trans, item, pass);
1911 list_move(&item->ri_list, &cancel_list);
1912 break;
1913 }
1914 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1915 list_move(&item->ri_list, &inode_buffer_list);
1916 break;
1917 }
1918 list_move_tail(&item->ri_list, &buffer_list);
1919 break;
1920 case XFS_LI_INODE:
1921 case XFS_LI_DQUOT:
1922 case XFS_LI_QUOTAOFF:
1923 case XFS_LI_EFD:
1924 case XFS_LI_EFI:
1925 case XFS_LI_RUI:
1926 case XFS_LI_RUD:
1927 trace_xfs_log_recover_item_reorder_tail(log,
1928 trans, item, pass);
1929 list_move_tail(&item->ri_list, &inode_list);
1930 break;
1931 default:
1932 xfs_warn(log->l_mp,
1933 "%s: unrecognized type of log operation",
1934 __func__);
1935 ASSERT(0);
1936 /*
1937 * return the remaining items back to the transaction
1938 * item list so they can be freed in caller.
1939 */
1940 if (!list_empty(&sort_list))
1941 list_splice_init(&sort_list, &trans->r_itemq);
1942 error = -EIO;
1943 goto out;
1944 }
1945 }
1946 out:
1947 ASSERT(list_empty(&sort_list));
1948 if (!list_empty(&buffer_list))
1949 list_splice(&buffer_list, &trans->r_itemq);
1950 if (!list_empty(&inode_list))
1951 list_splice_tail(&inode_list, &trans->r_itemq);
1952 if (!list_empty(&inode_buffer_list))
1953 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1954 if (!list_empty(&cancel_list))
1955 list_splice_tail(&cancel_list, &trans->r_itemq);
1956 return error;
1957 }
1958
1959 /*
1960 * Build up the table of buf cancel records so that we don't replay
1961 * cancelled data in the second pass. For buffer records that are
1962 * not cancel records, there is nothing to do here so we just return.
1963 *
1964 * If we get a cancel record which is already in the table, this indicates
1965 * that the buffer was cancelled multiple times. In order to ensure
1966 * that during pass 2 we keep the record in the table until we reach its
1967 * last occurrence in the log, we keep a reference count in the cancel
1968 * record in the table to tell us how many times we expect to see this
1969 * record during the second pass.
1970 */
1971 STATIC int
1972 xlog_recover_buffer_pass1(
1973 struct xlog *log,
1974 struct xlog_recover_item *item)
1975 {
1976 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1977 struct list_head *bucket;
1978 struct xfs_buf_cancel *bcp;
1979
1980 /*
1981 * If this isn't a cancel buffer item, then just return.
1982 */
1983 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1984 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1985 return 0;
1986 }
1987
1988 /*
1989 * Insert an xfs_buf_cancel record into the hash table of them.
1990 * If there is already an identical record, bump its reference count.
1991 */
1992 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1993 list_for_each_entry(bcp, bucket, bc_list) {
1994 if (bcp->bc_blkno == buf_f->blf_blkno &&
1995 bcp->bc_len == buf_f->blf_len) {
1996 bcp->bc_refcount++;
1997 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1998 return 0;
1999 }
2000 }
2001
2002 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2003 bcp->bc_blkno = buf_f->blf_blkno;
2004 bcp->bc_len = buf_f->blf_len;
2005 bcp->bc_refcount = 1;
2006 list_add_tail(&bcp->bc_list, bucket);
2007
2008 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2009 return 0;
2010 }
2011
2012 /*
2013 * Check to see whether the buffer being recovered has a corresponding
2014 * entry in the buffer cancel record table. If it is, return the cancel
2015 * buffer structure to the caller.
2016 */
2017 STATIC struct xfs_buf_cancel *
2018 xlog_peek_buffer_cancelled(
2019 struct xlog *log,
2020 xfs_daddr_t blkno,
2021 uint len,
2022 ushort flags)
2023 {
2024 struct list_head *bucket;
2025 struct xfs_buf_cancel *bcp;
2026
2027 if (!log->l_buf_cancel_table) {
2028 /* empty table means no cancelled buffers in the log */
2029 ASSERT(!(flags & XFS_BLF_CANCEL));
2030 return NULL;
2031 }
2032
2033 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2034 list_for_each_entry(bcp, bucket, bc_list) {
2035 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2036 return bcp;
2037 }
2038
2039 /*
2040 * We didn't find a corresponding entry in the table, so return 0 so
2041 * that the buffer is NOT cancelled.
2042 */
2043 ASSERT(!(flags & XFS_BLF_CANCEL));
2044 return NULL;
2045 }
2046
2047 /*
2048 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2049 * otherwise return 0. If the buffer is actually a buffer cancel item
2050 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2051 * table and remove it from the table if this is the last reference.
2052 *
2053 * We remove the cancel record from the table when we encounter its last
2054 * occurrence in the log so that if the same buffer is re-used again after its
2055 * last cancellation we actually replay the changes made at that point.
2056 */
2057 STATIC int
2058 xlog_check_buffer_cancelled(
2059 struct xlog *log,
2060 xfs_daddr_t blkno,
2061 uint len,
2062 ushort flags)
2063 {
2064 struct xfs_buf_cancel *bcp;
2065
2066 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2067 if (!bcp)
2068 return 0;
2069
2070 /*
2071 * We've go a match, so return 1 so that the recovery of this buffer
2072 * is cancelled. If this buffer is actually a buffer cancel log
2073 * item, then decrement the refcount on the one in the table and
2074 * remove it if this is the last reference.
2075 */
2076 if (flags & XFS_BLF_CANCEL) {
2077 if (--bcp->bc_refcount == 0) {
2078 list_del(&bcp->bc_list);
2079 kmem_free(bcp);
2080 }
2081 }
2082 return 1;
2083 }
2084
2085 /*
2086 * Perform recovery for a buffer full of inodes. In these buffers, the only
2087 * data which should be recovered is that which corresponds to the
2088 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2089 * data for the inodes is always logged through the inodes themselves rather
2090 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2091 *
2092 * The only time when buffers full of inodes are fully recovered is when the
2093 * buffer is full of newly allocated inodes. In this case the buffer will
2094 * not be marked as an inode buffer and so will be sent to
2095 * xlog_recover_do_reg_buffer() below during recovery.
2096 */
2097 STATIC int
2098 xlog_recover_do_inode_buffer(
2099 struct xfs_mount *mp,
2100 xlog_recover_item_t *item,
2101 struct xfs_buf *bp,
2102 xfs_buf_log_format_t *buf_f)
2103 {
2104 int i;
2105 int item_index = 0;
2106 int bit = 0;
2107 int nbits = 0;
2108 int reg_buf_offset = 0;
2109 int reg_buf_bytes = 0;
2110 int next_unlinked_offset;
2111 int inodes_per_buf;
2112 xfs_agino_t *logged_nextp;
2113 xfs_agino_t *buffer_nextp;
2114
2115 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2116
2117 /*
2118 * Post recovery validation only works properly on CRC enabled
2119 * filesystems.
2120 */
2121 if (xfs_sb_version_hascrc(&mp->m_sb))
2122 bp->b_ops = &xfs_inode_buf_ops;
2123
2124 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2125 for (i = 0; i < inodes_per_buf; i++) {
2126 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2127 offsetof(xfs_dinode_t, di_next_unlinked);
2128
2129 while (next_unlinked_offset >=
2130 (reg_buf_offset + reg_buf_bytes)) {
2131 /*
2132 * The next di_next_unlinked field is beyond
2133 * the current logged region. Find the next
2134 * logged region that contains or is beyond
2135 * the current di_next_unlinked field.
2136 */
2137 bit += nbits;
2138 bit = xfs_next_bit(buf_f->blf_data_map,
2139 buf_f->blf_map_size, bit);
2140
2141 /*
2142 * If there are no more logged regions in the
2143 * buffer, then we're done.
2144 */
2145 if (bit == -1)
2146 return 0;
2147
2148 nbits = xfs_contig_bits(buf_f->blf_data_map,
2149 buf_f->blf_map_size, bit);
2150 ASSERT(nbits > 0);
2151 reg_buf_offset = bit << XFS_BLF_SHIFT;
2152 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2153 item_index++;
2154 }
2155
2156 /*
2157 * If the current logged region starts after the current
2158 * di_next_unlinked field, then move on to the next
2159 * di_next_unlinked field.
2160 */
2161 if (next_unlinked_offset < reg_buf_offset)
2162 continue;
2163
2164 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2165 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2166 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2167 BBTOB(bp->b_io_length));
2168
2169 /*
2170 * The current logged region contains a copy of the
2171 * current di_next_unlinked field. Extract its value
2172 * and copy it to the buffer copy.
2173 */
2174 logged_nextp = item->ri_buf[item_index].i_addr +
2175 next_unlinked_offset - reg_buf_offset;
2176 if (unlikely(*logged_nextp == 0)) {
2177 xfs_alert(mp,
2178 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2179 "Trying to replay bad (0) inode di_next_unlinked field.",
2180 item, bp);
2181 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2182 XFS_ERRLEVEL_LOW, mp);
2183 return -EFSCORRUPTED;
2184 }
2185
2186 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2187 *buffer_nextp = *logged_nextp;
2188
2189 /*
2190 * If necessary, recalculate the CRC in the on-disk inode. We
2191 * have to leave the inode in a consistent state for whoever
2192 * reads it next....
2193 */
2194 xfs_dinode_calc_crc(mp,
2195 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2196
2197 }
2198
2199 return 0;
2200 }
2201
2202 /*
2203 * V5 filesystems know the age of the buffer on disk being recovered. We can
2204 * have newer objects on disk than we are replaying, and so for these cases we
2205 * don't want to replay the current change as that will make the buffer contents
2206 * temporarily invalid on disk.
2207 *
2208 * The magic number might not match the buffer type we are going to recover
2209 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2210 * extract the LSN of the existing object in the buffer based on it's current
2211 * magic number. If we don't recognise the magic number in the buffer, then
2212 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2213 * so can recover the buffer.
2214 *
2215 * Note: we cannot rely solely on magic number matches to determine that the
2216 * buffer has a valid LSN - we also need to verify that it belongs to this
2217 * filesystem, so we need to extract the object's LSN and compare it to that
2218 * which we read from the superblock. If the UUIDs don't match, then we've got a
2219 * stale metadata block from an old filesystem instance that we need to recover
2220 * over the top of.
2221 */
2222 static xfs_lsn_t
2223 xlog_recover_get_buf_lsn(
2224 struct xfs_mount *mp,
2225 struct xfs_buf *bp)
2226 {
2227 __uint32_t magic32;
2228 __uint16_t magic16;
2229 __uint16_t magicda;
2230 void *blk = bp->b_addr;
2231 uuid_t *uuid;
2232 xfs_lsn_t lsn = -1;
2233
2234 /* v4 filesystems always recover immediately */
2235 if (!xfs_sb_version_hascrc(&mp->m_sb))
2236 goto recover_immediately;
2237
2238 magic32 = be32_to_cpu(*(__be32 *)blk);
2239 switch (magic32) {
2240 case XFS_ABTB_CRC_MAGIC:
2241 case XFS_ABTC_CRC_MAGIC:
2242 case XFS_ABTB_MAGIC:
2243 case XFS_ABTC_MAGIC:
2244 case XFS_RMAP_CRC_MAGIC:
2245 case XFS_IBT_CRC_MAGIC:
2246 case XFS_IBT_MAGIC: {
2247 struct xfs_btree_block *btb = blk;
2248
2249 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2250 uuid = &btb->bb_u.s.bb_uuid;
2251 break;
2252 }
2253 case XFS_BMAP_CRC_MAGIC:
2254 case XFS_BMAP_MAGIC: {
2255 struct xfs_btree_block *btb = blk;
2256
2257 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2258 uuid = &btb->bb_u.l.bb_uuid;
2259 break;
2260 }
2261 case XFS_AGF_MAGIC:
2262 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2263 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2264 break;
2265 case XFS_AGFL_MAGIC:
2266 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2267 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2268 break;
2269 case XFS_AGI_MAGIC:
2270 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2271 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2272 break;
2273 case XFS_SYMLINK_MAGIC:
2274 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2275 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2276 break;
2277 case XFS_DIR3_BLOCK_MAGIC:
2278 case XFS_DIR3_DATA_MAGIC:
2279 case XFS_DIR3_FREE_MAGIC:
2280 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2281 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2282 break;
2283 case XFS_ATTR3_RMT_MAGIC:
2284 /*
2285 * Remote attr blocks are written synchronously, rather than
2286 * being logged. That means they do not contain a valid LSN
2287 * (i.e. transactionally ordered) in them, and hence any time we
2288 * see a buffer to replay over the top of a remote attribute
2289 * block we should simply do so.
2290 */
2291 goto recover_immediately;
2292 case XFS_SB_MAGIC:
2293 /*
2294 * superblock uuids are magic. We may or may not have a
2295 * sb_meta_uuid on disk, but it will be set in the in-core
2296 * superblock. We set the uuid pointer for verification
2297 * according to the superblock feature mask to ensure we check
2298 * the relevant UUID in the superblock.
2299 */
2300 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2301 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2302 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2303 else
2304 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2305 break;
2306 default:
2307 break;
2308 }
2309
2310 if (lsn != (xfs_lsn_t)-1) {
2311 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2312 goto recover_immediately;
2313 return lsn;
2314 }
2315
2316 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2317 switch (magicda) {
2318 case XFS_DIR3_LEAF1_MAGIC:
2319 case XFS_DIR3_LEAFN_MAGIC:
2320 case XFS_DA3_NODE_MAGIC:
2321 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2322 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2323 break;
2324 default:
2325 break;
2326 }
2327
2328 if (lsn != (xfs_lsn_t)-1) {
2329 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2330 goto recover_immediately;
2331 return lsn;
2332 }
2333
2334 /*
2335 * We do individual object checks on dquot and inode buffers as they
2336 * have their own individual LSN records. Also, we could have a stale
2337 * buffer here, so we have to at least recognise these buffer types.
2338 *
2339 * A notd complexity here is inode unlinked list processing - it logs
2340 * the inode directly in the buffer, but we don't know which inodes have
2341 * been modified, and there is no global buffer LSN. Hence we need to
2342 * recover all inode buffer types immediately. This problem will be
2343 * fixed by logical logging of the unlinked list modifications.
2344 */
2345 magic16 = be16_to_cpu(*(__be16 *)blk);
2346 switch (magic16) {
2347 case XFS_DQUOT_MAGIC:
2348 case XFS_DINODE_MAGIC:
2349 goto recover_immediately;
2350 default:
2351 break;
2352 }
2353
2354 /* unknown buffer contents, recover immediately */
2355
2356 recover_immediately:
2357 return (xfs_lsn_t)-1;
2358
2359 }
2360
2361 /*
2362 * Validate the recovered buffer is of the correct type and attach the
2363 * appropriate buffer operations to them for writeback. Magic numbers are in a
2364 * few places:
2365 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2366 * the first 32 bits of the buffer (most blocks),
2367 * inside a struct xfs_da_blkinfo at the start of the buffer.
2368 */
2369 static void
2370 xlog_recover_validate_buf_type(
2371 struct xfs_mount *mp,
2372 struct xfs_buf *bp,
2373 xfs_buf_log_format_t *buf_f,
2374 xfs_lsn_t current_lsn)
2375 {
2376 struct xfs_da_blkinfo *info = bp->b_addr;
2377 __uint32_t magic32;
2378 __uint16_t magic16;
2379 __uint16_t magicda;
2380 char *warnmsg = NULL;
2381
2382 /*
2383 * We can only do post recovery validation on items on CRC enabled
2384 * fielsystems as we need to know when the buffer was written to be able
2385 * to determine if we should have replayed the item. If we replay old
2386 * metadata over a newer buffer, then it will enter a temporarily
2387 * inconsistent state resulting in verification failures. Hence for now
2388 * just avoid the verification stage for non-crc filesystems
2389 */
2390 if (!xfs_sb_version_hascrc(&mp->m_sb))
2391 return;
2392
2393 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2394 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2395 magicda = be16_to_cpu(info->magic);
2396 switch (xfs_blft_from_flags(buf_f)) {
2397 case XFS_BLFT_BTREE_BUF:
2398 switch (magic32) {
2399 case XFS_ABTB_CRC_MAGIC:
2400 case XFS_ABTC_CRC_MAGIC:
2401 case XFS_ABTB_MAGIC:
2402 case XFS_ABTC_MAGIC:
2403 bp->b_ops = &xfs_allocbt_buf_ops;
2404 break;
2405 case XFS_IBT_CRC_MAGIC:
2406 case XFS_FIBT_CRC_MAGIC:
2407 case XFS_IBT_MAGIC:
2408 case XFS_FIBT_MAGIC:
2409 bp->b_ops = &xfs_inobt_buf_ops;
2410 break;
2411 case XFS_BMAP_CRC_MAGIC:
2412 case XFS_BMAP_MAGIC:
2413 bp->b_ops = &xfs_bmbt_buf_ops;
2414 break;
2415 case XFS_RMAP_CRC_MAGIC:
2416 bp->b_ops = &xfs_rmapbt_buf_ops;
2417 break;
2418 default:
2419 warnmsg = "Bad btree block magic!";
2420 break;
2421 }
2422 break;
2423 case XFS_BLFT_AGF_BUF:
2424 if (magic32 != XFS_AGF_MAGIC) {
2425 warnmsg = "Bad AGF block magic!";
2426 break;
2427 }
2428 bp->b_ops = &xfs_agf_buf_ops;
2429 break;
2430 case XFS_BLFT_AGFL_BUF:
2431 if (magic32 != XFS_AGFL_MAGIC) {
2432 warnmsg = "Bad AGFL block magic!";
2433 break;
2434 }
2435 bp->b_ops = &xfs_agfl_buf_ops;
2436 break;
2437 case XFS_BLFT_AGI_BUF:
2438 if (magic32 != XFS_AGI_MAGIC) {
2439 warnmsg = "Bad AGI block magic!";
2440 break;
2441 }
2442 bp->b_ops = &xfs_agi_buf_ops;
2443 break;
2444 case XFS_BLFT_UDQUOT_BUF:
2445 case XFS_BLFT_PDQUOT_BUF:
2446 case XFS_BLFT_GDQUOT_BUF:
2447 #ifdef CONFIG_XFS_QUOTA
2448 if (magic16 != XFS_DQUOT_MAGIC) {
2449 warnmsg = "Bad DQUOT block magic!";
2450 break;
2451 }
2452 bp->b_ops = &xfs_dquot_buf_ops;
2453 #else
2454 xfs_alert(mp,
2455 "Trying to recover dquots without QUOTA support built in!");
2456 ASSERT(0);
2457 #endif
2458 break;
2459 case XFS_BLFT_DINO_BUF:
2460 if (magic16 != XFS_DINODE_MAGIC) {
2461 warnmsg = "Bad INODE block magic!";
2462 break;
2463 }
2464 bp->b_ops = &xfs_inode_buf_ops;
2465 break;
2466 case XFS_BLFT_SYMLINK_BUF:
2467 if (magic32 != XFS_SYMLINK_MAGIC) {
2468 warnmsg = "Bad symlink block magic!";
2469 break;
2470 }
2471 bp->b_ops = &xfs_symlink_buf_ops;
2472 break;
2473 case XFS_BLFT_DIR_BLOCK_BUF:
2474 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2475 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2476 warnmsg = "Bad dir block magic!";
2477 break;
2478 }
2479 bp->b_ops = &xfs_dir3_block_buf_ops;
2480 break;
2481 case XFS_BLFT_DIR_DATA_BUF:
2482 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2483 magic32 != XFS_DIR3_DATA_MAGIC) {
2484 warnmsg = "Bad dir data magic!";
2485 break;
2486 }
2487 bp->b_ops = &xfs_dir3_data_buf_ops;
2488 break;
2489 case XFS_BLFT_DIR_FREE_BUF:
2490 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2491 magic32 != XFS_DIR3_FREE_MAGIC) {
2492 warnmsg = "Bad dir3 free magic!";
2493 break;
2494 }
2495 bp->b_ops = &xfs_dir3_free_buf_ops;
2496 break;
2497 case XFS_BLFT_DIR_LEAF1_BUF:
2498 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2499 magicda != XFS_DIR3_LEAF1_MAGIC) {
2500 warnmsg = "Bad dir leaf1 magic!";
2501 break;
2502 }
2503 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2504 break;
2505 case XFS_BLFT_DIR_LEAFN_BUF:
2506 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2507 magicda != XFS_DIR3_LEAFN_MAGIC) {
2508 warnmsg = "Bad dir leafn magic!";
2509 break;
2510 }
2511 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2512 break;
2513 case XFS_BLFT_DA_NODE_BUF:
2514 if (magicda != XFS_DA_NODE_MAGIC &&
2515 magicda != XFS_DA3_NODE_MAGIC) {
2516 warnmsg = "Bad da node magic!";
2517 break;
2518 }
2519 bp->b_ops = &xfs_da3_node_buf_ops;
2520 break;
2521 case XFS_BLFT_ATTR_LEAF_BUF:
2522 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2523 magicda != XFS_ATTR3_LEAF_MAGIC) {
2524 warnmsg = "Bad attr leaf magic!";
2525 break;
2526 }
2527 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2528 break;
2529 case XFS_BLFT_ATTR_RMT_BUF:
2530 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2531 warnmsg = "Bad attr remote magic!";
2532 break;
2533 }
2534 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2535 break;
2536 case XFS_BLFT_SB_BUF:
2537 if (magic32 != XFS_SB_MAGIC) {
2538 warnmsg = "Bad SB block magic!";
2539 break;
2540 }
2541 bp->b_ops = &xfs_sb_buf_ops;
2542 break;
2543 #ifdef CONFIG_XFS_RT
2544 case XFS_BLFT_RTBITMAP_BUF:
2545 case XFS_BLFT_RTSUMMARY_BUF:
2546 /* no magic numbers for verification of RT buffers */
2547 bp->b_ops = &xfs_rtbuf_ops;
2548 break;
2549 #endif /* CONFIG_XFS_RT */
2550 default:
2551 xfs_warn(mp, "Unknown buffer type %d!",
2552 xfs_blft_from_flags(buf_f));
2553 break;
2554 }
2555
2556 /*
2557 * Nothing else to do in the case of a NULL current LSN as this means
2558 * the buffer is more recent than the change in the log and will be
2559 * skipped.
2560 */
2561 if (current_lsn == NULLCOMMITLSN)
2562 return;
2563
2564 if (warnmsg) {
2565 xfs_warn(mp, warnmsg);
2566 ASSERT(0);
2567 }
2568
2569 /*
2570 * We must update the metadata LSN of the buffer as it is written out to
2571 * ensure that older transactions never replay over this one and corrupt
2572 * the buffer. This can occur if log recovery is interrupted at some
2573 * point after the current transaction completes, at which point a
2574 * subsequent mount starts recovery from the beginning.
2575 *
2576 * Write verifiers update the metadata LSN from log items attached to
2577 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2578 * the verifier. We'll clean it up in our ->iodone() callback.
2579 */
2580 if (bp->b_ops) {
2581 struct xfs_buf_log_item *bip;
2582
2583 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2584 bp->b_iodone = xlog_recover_iodone;
2585 xfs_buf_item_init(bp, mp);
2586 bip = bp->b_fspriv;
2587 bip->bli_item.li_lsn = current_lsn;
2588 }
2589 }
2590
2591 /*
2592 * Perform a 'normal' buffer recovery. Each logged region of the
2593 * buffer should be copied over the corresponding region in the
2594 * given buffer. The bitmap in the buf log format structure indicates
2595 * where to place the logged data.
2596 */
2597 STATIC void
2598 xlog_recover_do_reg_buffer(
2599 struct xfs_mount *mp,
2600 xlog_recover_item_t *item,
2601 struct xfs_buf *bp,
2602 xfs_buf_log_format_t *buf_f,
2603 xfs_lsn_t current_lsn)
2604 {
2605 int i;
2606 int bit;
2607 int nbits;
2608 int error;
2609
2610 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2611
2612 bit = 0;
2613 i = 1; /* 0 is the buf format structure */
2614 while (1) {
2615 bit = xfs_next_bit(buf_f->blf_data_map,
2616 buf_f->blf_map_size, bit);
2617 if (bit == -1)
2618 break;
2619 nbits = xfs_contig_bits(buf_f->blf_data_map,
2620 buf_f->blf_map_size, bit);
2621 ASSERT(nbits > 0);
2622 ASSERT(item->ri_buf[i].i_addr != NULL);
2623 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2624 ASSERT(BBTOB(bp->b_io_length) >=
2625 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2626
2627 /*
2628 * The dirty regions logged in the buffer, even though
2629 * contiguous, may span multiple chunks. This is because the
2630 * dirty region may span a physical page boundary in a buffer
2631 * and hence be split into two separate vectors for writing into
2632 * the log. Hence we need to trim nbits back to the length of
2633 * the current region being copied out of the log.
2634 */
2635 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2636 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2637
2638 /*
2639 * Do a sanity check if this is a dquot buffer. Just checking
2640 * the first dquot in the buffer should do. XXXThis is
2641 * probably a good thing to do for other buf types also.
2642 */
2643 error = 0;
2644 if (buf_f->blf_flags &
2645 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2646 if (item->ri_buf[i].i_addr == NULL) {
2647 xfs_alert(mp,
2648 "XFS: NULL dquot in %s.", __func__);
2649 goto next;
2650 }
2651 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2652 xfs_alert(mp,
2653 "XFS: dquot too small (%d) in %s.",
2654 item->ri_buf[i].i_len, __func__);
2655 goto next;
2656 }
2657 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2658 -1, 0, XFS_QMOPT_DOWARN,
2659 "dquot_buf_recover");
2660 if (error)
2661 goto next;
2662 }
2663
2664 memcpy(xfs_buf_offset(bp,
2665 (uint)bit << XFS_BLF_SHIFT), /* dest */
2666 item->ri_buf[i].i_addr, /* source */
2667 nbits<<XFS_BLF_SHIFT); /* length */
2668 next:
2669 i++;
2670 bit += nbits;
2671 }
2672
2673 /* Shouldn't be any more regions */
2674 ASSERT(i == item->ri_total);
2675
2676 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2677 }
2678
2679 /*
2680 * Perform a dquot buffer recovery.
2681 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2682 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2683 * Else, treat it as a regular buffer and do recovery.
2684 *
2685 * Return false if the buffer was tossed and true if we recovered the buffer to
2686 * indicate to the caller if the buffer needs writing.
2687 */
2688 STATIC bool
2689 xlog_recover_do_dquot_buffer(
2690 struct xfs_mount *mp,
2691 struct xlog *log,
2692 struct xlog_recover_item *item,
2693 struct xfs_buf *bp,
2694 struct xfs_buf_log_format *buf_f)
2695 {
2696 uint type;
2697
2698 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2699
2700 /*
2701 * Filesystems are required to send in quota flags at mount time.
2702 */
2703 if (!mp->m_qflags)
2704 return false;
2705
2706 type = 0;
2707 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2708 type |= XFS_DQ_USER;
2709 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2710 type |= XFS_DQ_PROJ;
2711 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2712 type |= XFS_DQ_GROUP;
2713 /*
2714 * This type of quotas was turned off, so ignore this buffer
2715 */
2716 if (log->l_quotaoffs_flag & type)
2717 return false;
2718
2719 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2720 return true;
2721 }
2722
2723 /*
2724 * This routine replays a modification made to a buffer at runtime.
2725 * There are actually two types of buffer, regular and inode, which
2726 * are handled differently. Inode buffers are handled differently
2727 * in that we only recover a specific set of data from them, namely
2728 * the inode di_next_unlinked fields. This is because all other inode
2729 * data is actually logged via inode records and any data we replay
2730 * here which overlaps that may be stale.
2731 *
2732 * When meta-data buffers are freed at run time we log a buffer item
2733 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2734 * of the buffer in the log should not be replayed at recovery time.
2735 * This is so that if the blocks covered by the buffer are reused for
2736 * file data before we crash we don't end up replaying old, freed
2737 * meta-data into a user's file.
2738 *
2739 * To handle the cancellation of buffer log items, we make two passes
2740 * over the log during recovery. During the first we build a table of
2741 * those buffers which have been cancelled, and during the second we
2742 * only replay those buffers which do not have corresponding cancel
2743 * records in the table. See xlog_recover_buffer_pass[1,2] above
2744 * for more details on the implementation of the table of cancel records.
2745 */
2746 STATIC int
2747 xlog_recover_buffer_pass2(
2748 struct xlog *log,
2749 struct list_head *buffer_list,
2750 struct xlog_recover_item *item,
2751 xfs_lsn_t current_lsn)
2752 {
2753 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2754 xfs_mount_t *mp = log->l_mp;
2755 xfs_buf_t *bp;
2756 int error;
2757 uint buf_flags;
2758 xfs_lsn_t lsn;
2759
2760 /*
2761 * In this pass we only want to recover all the buffers which have
2762 * not been cancelled and are not cancellation buffers themselves.
2763 */
2764 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2765 buf_f->blf_len, buf_f->blf_flags)) {
2766 trace_xfs_log_recover_buf_cancel(log, buf_f);
2767 return 0;
2768 }
2769
2770 trace_xfs_log_recover_buf_recover(log, buf_f);
2771
2772 buf_flags = 0;
2773 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2774 buf_flags |= XBF_UNMAPPED;
2775
2776 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2777 buf_flags, NULL);
2778 if (!bp)
2779 return -ENOMEM;
2780 error = bp->b_error;
2781 if (error) {
2782 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2783 goto out_release;
2784 }
2785
2786 /*
2787 * Recover the buffer only if we get an LSN from it and it's less than
2788 * the lsn of the transaction we are replaying.
2789 *
2790 * Note that we have to be extremely careful of readahead here.
2791 * Readahead does not attach verfiers to the buffers so if we don't
2792 * actually do any replay after readahead because of the LSN we found
2793 * in the buffer if more recent than that current transaction then we
2794 * need to attach the verifier directly. Failure to do so can lead to
2795 * future recovery actions (e.g. EFI and unlinked list recovery) can
2796 * operate on the buffers and they won't get the verifier attached. This
2797 * can lead to blocks on disk having the correct content but a stale
2798 * CRC.
2799 *
2800 * It is safe to assume these clean buffers are currently up to date.
2801 * If the buffer is dirtied by a later transaction being replayed, then
2802 * the verifier will be reset to match whatever recover turns that
2803 * buffer into.
2804 */
2805 lsn = xlog_recover_get_buf_lsn(mp, bp);
2806 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2807 trace_xfs_log_recover_buf_skip(log, buf_f);
2808 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2809 goto out_release;
2810 }
2811
2812 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2813 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2814 if (error)
2815 goto out_release;
2816 } else if (buf_f->blf_flags &
2817 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2818 bool dirty;
2819
2820 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2821 if (!dirty)
2822 goto out_release;
2823 } else {
2824 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2825 }
2826
2827 /*
2828 * Perform delayed write on the buffer. Asynchronous writes will be
2829 * slower when taking into account all the buffers to be flushed.
2830 *
2831 * Also make sure that only inode buffers with good sizes stay in
2832 * the buffer cache. The kernel moves inodes in buffers of 1 block
2833 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2834 * buffers in the log can be a different size if the log was generated
2835 * by an older kernel using unclustered inode buffers or a newer kernel
2836 * running with a different inode cluster size. Regardless, if the
2837 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2838 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2839 * the buffer out of the buffer cache so that the buffer won't
2840 * overlap with future reads of those inodes.
2841 */
2842 if (XFS_DINODE_MAGIC ==
2843 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2844 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2845 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2846 xfs_buf_stale(bp);
2847 error = xfs_bwrite(bp);
2848 } else {
2849 ASSERT(bp->b_target->bt_mount == mp);
2850 bp->b_iodone = xlog_recover_iodone;
2851 xfs_buf_delwri_queue(bp, buffer_list);
2852 }
2853
2854 out_release:
2855 xfs_buf_relse(bp);
2856 return error;
2857 }
2858
2859 /*
2860 * Inode fork owner changes
2861 *
2862 * If we have been told that we have to reparent the inode fork, it's because an
2863 * extent swap operation on a CRC enabled filesystem has been done and we are
2864 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2865 * owners of it.
2866 *
2867 * The complexity here is that we don't have an inode context to work with, so
2868 * after we've replayed the inode we need to instantiate one. This is where the
2869 * fun begins.
2870 *
2871 * We are in the middle of log recovery, so we can't run transactions. That
2872 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2873 * that will result in the corresponding iput() running the inode through
2874 * xfs_inactive(). If we've just replayed an inode core that changes the link
2875 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2876 * transactions (bad!).
2877 *
2878 * So, to avoid this, we instantiate an inode directly from the inode core we've
2879 * just recovered. We have the buffer still locked, and all we really need to
2880 * instantiate is the inode core and the forks being modified. We can do this
2881 * manually, then run the inode btree owner change, and then tear down the
2882 * xfs_inode without having to run any transactions at all.
2883 *
2884 * Also, because we don't have a transaction context available here but need to
2885 * gather all the buffers we modify for writeback so we pass the buffer_list
2886 * instead for the operation to use.
2887 */
2888
2889 STATIC int
2890 xfs_recover_inode_owner_change(
2891 struct xfs_mount *mp,
2892 struct xfs_dinode *dip,
2893 struct xfs_inode_log_format *in_f,
2894 struct list_head *buffer_list)
2895 {
2896 struct xfs_inode *ip;
2897 int error;
2898
2899 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2900
2901 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2902 if (!ip)
2903 return -ENOMEM;
2904
2905 /* instantiate the inode */
2906 xfs_inode_from_disk(ip, dip);
2907 ASSERT(ip->i_d.di_version >= 3);
2908
2909 error = xfs_iformat_fork(ip, dip);
2910 if (error)
2911 goto out_free_ip;
2912
2913
2914 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2915 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2916 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2917 ip->i_ino, buffer_list);
2918 if (error)
2919 goto out_free_ip;
2920 }
2921
2922 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2923 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2924 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2925 ip->i_ino, buffer_list);
2926 if (error)
2927 goto out_free_ip;
2928 }
2929
2930 out_free_ip:
2931 xfs_inode_free(ip);
2932 return error;
2933 }
2934
2935 STATIC int
2936 xlog_recover_inode_pass2(
2937 struct xlog *log,
2938 struct list_head *buffer_list,
2939 struct xlog_recover_item *item,
2940 xfs_lsn_t current_lsn)
2941 {
2942 xfs_inode_log_format_t *in_f;
2943 xfs_mount_t *mp = log->l_mp;
2944 xfs_buf_t *bp;
2945 xfs_dinode_t *dip;
2946 int len;
2947 char *src;
2948 char *dest;
2949 int error;
2950 int attr_index;
2951 uint fields;
2952 struct xfs_log_dinode *ldip;
2953 uint isize;
2954 int need_free = 0;
2955
2956 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2957 in_f = item->ri_buf[0].i_addr;
2958 } else {
2959 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2960 need_free = 1;
2961 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2962 if (error)
2963 goto error;
2964 }
2965
2966 /*
2967 * Inode buffers can be freed, look out for it,
2968 * and do not replay the inode.
2969 */
2970 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2971 in_f->ilf_len, 0)) {
2972 error = 0;
2973 trace_xfs_log_recover_inode_cancel(log, in_f);
2974 goto error;
2975 }
2976 trace_xfs_log_recover_inode_recover(log, in_f);
2977
2978 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2979 &xfs_inode_buf_ops);
2980 if (!bp) {
2981 error = -ENOMEM;
2982 goto error;
2983 }
2984 error = bp->b_error;
2985 if (error) {
2986 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2987 goto out_release;
2988 }
2989 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2990 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2991
2992 /*
2993 * Make sure the place we're flushing out to really looks
2994 * like an inode!
2995 */
2996 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2997 xfs_alert(mp,
2998 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2999 __func__, dip, bp, in_f->ilf_ino);
3000 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3001 XFS_ERRLEVEL_LOW, mp);
3002 error = -EFSCORRUPTED;
3003 goto out_release;
3004 }
3005 ldip = item->ri_buf[1].i_addr;
3006 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3007 xfs_alert(mp,
3008 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3009 __func__, item, in_f->ilf_ino);
3010 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3011 XFS_ERRLEVEL_LOW, mp);
3012 error = -EFSCORRUPTED;
3013 goto out_release;
3014 }
3015
3016 /*
3017 * If the inode has an LSN in it, recover the inode only if it's less
3018 * than the lsn of the transaction we are replaying. Note: we still
3019 * need to replay an owner change even though the inode is more recent
3020 * than the transaction as there is no guarantee that all the btree
3021 * blocks are more recent than this transaction, too.
3022 */
3023 if (dip->di_version >= 3) {
3024 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3025
3026 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3027 trace_xfs_log_recover_inode_skip(log, in_f);
3028 error = 0;
3029 goto out_owner_change;
3030 }
3031 }
3032
3033 /*
3034 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3035 * are transactional and if ordering is necessary we can determine that
3036 * more accurately by the LSN field in the V3 inode core. Don't trust
3037 * the inode versions we might be changing them here - use the
3038 * superblock flag to determine whether we need to look at di_flushiter
3039 * to skip replay when the on disk inode is newer than the log one
3040 */
3041 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3042 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3043 /*
3044 * Deal with the wrap case, DI_MAX_FLUSH is less
3045 * than smaller numbers
3046 */
3047 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3048 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3049 /* do nothing */
3050 } else {
3051 trace_xfs_log_recover_inode_skip(log, in_f);
3052 error = 0;
3053 goto out_release;
3054 }
3055 }
3056
3057 /* Take the opportunity to reset the flush iteration count */
3058 ldip->di_flushiter = 0;
3059
3060 if (unlikely(S_ISREG(ldip->di_mode))) {
3061 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3062 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3063 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3064 XFS_ERRLEVEL_LOW, mp, ldip);
3065 xfs_alert(mp,
3066 "%s: Bad regular inode log record, rec ptr 0x%p, "
3067 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3068 __func__, item, dip, bp, in_f->ilf_ino);
3069 error = -EFSCORRUPTED;
3070 goto out_release;
3071 }
3072 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3073 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3074 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3075 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3076 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3077 XFS_ERRLEVEL_LOW, mp, ldip);
3078 xfs_alert(mp,
3079 "%s: Bad dir inode log record, rec ptr 0x%p, "
3080 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3081 __func__, item, dip, bp, in_f->ilf_ino);
3082 error = -EFSCORRUPTED;
3083 goto out_release;
3084 }
3085 }
3086 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3087 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3088 XFS_ERRLEVEL_LOW, mp, ldip);
3089 xfs_alert(mp,
3090 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3091 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3092 __func__, item, dip, bp, in_f->ilf_ino,
3093 ldip->di_nextents + ldip->di_anextents,
3094 ldip->di_nblocks);
3095 error = -EFSCORRUPTED;
3096 goto out_release;
3097 }
3098 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3099 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3100 XFS_ERRLEVEL_LOW, mp, ldip);
3101 xfs_alert(mp,
3102 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3103 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3104 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3105 error = -EFSCORRUPTED;
3106 goto out_release;
3107 }
3108 isize = xfs_log_dinode_size(ldip->di_version);
3109 if (unlikely(item->ri_buf[1].i_len > isize)) {
3110 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3111 XFS_ERRLEVEL_LOW, mp, ldip);
3112 xfs_alert(mp,
3113 "%s: Bad inode log record length %d, rec ptr 0x%p",
3114 __func__, item->ri_buf[1].i_len, item);
3115 error = -EFSCORRUPTED;
3116 goto out_release;
3117 }
3118
3119 /* recover the log dinode inode into the on disk inode */
3120 xfs_log_dinode_to_disk(ldip, dip);
3121
3122 /* the rest is in on-disk format */
3123 if (item->ri_buf[1].i_len > isize) {
3124 memcpy((char *)dip + isize,
3125 item->ri_buf[1].i_addr + isize,
3126 item->ri_buf[1].i_len - isize);
3127 }
3128
3129 fields = in_f->ilf_fields;
3130 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3131 case XFS_ILOG_DEV:
3132 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3133 break;
3134 case XFS_ILOG_UUID:
3135 memcpy(XFS_DFORK_DPTR(dip),
3136 &in_f->ilf_u.ilfu_uuid,
3137 sizeof(uuid_t));
3138 break;
3139 }
3140
3141 if (in_f->ilf_size == 2)
3142 goto out_owner_change;
3143 len = item->ri_buf[2].i_len;
3144 src = item->ri_buf[2].i_addr;
3145 ASSERT(in_f->ilf_size <= 4);
3146 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3147 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3148 (len == in_f->ilf_dsize));
3149
3150 switch (fields & XFS_ILOG_DFORK) {
3151 case XFS_ILOG_DDATA:
3152 case XFS_ILOG_DEXT:
3153 memcpy(XFS_DFORK_DPTR(dip), src, len);
3154 break;
3155
3156 case XFS_ILOG_DBROOT:
3157 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3158 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3159 XFS_DFORK_DSIZE(dip, mp));
3160 break;
3161
3162 default:
3163 /*
3164 * There are no data fork flags set.
3165 */
3166 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3167 break;
3168 }
3169
3170 /*
3171 * If we logged any attribute data, recover it. There may or
3172 * may not have been any other non-core data logged in this
3173 * transaction.
3174 */
3175 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3176 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3177 attr_index = 3;
3178 } else {
3179 attr_index = 2;
3180 }
3181 len = item->ri_buf[attr_index].i_len;
3182 src = item->ri_buf[attr_index].i_addr;
3183 ASSERT(len == in_f->ilf_asize);
3184
3185 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3186 case XFS_ILOG_ADATA:
3187 case XFS_ILOG_AEXT:
3188 dest = XFS_DFORK_APTR(dip);
3189 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3190 memcpy(dest, src, len);
3191 break;
3192
3193 case XFS_ILOG_ABROOT:
3194 dest = XFS_DFORK_APTR(dip);
3195 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3196 len, (xfs_bmdr_block_t*)dest,
3197 XFS_DFORK_ASIZE(dip, mp));
3198 break;
3199
3200 default:
3201 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3202 ASSERT(0);
3203 error = -EIO;
3204 goto out_release;
3205 }
3206 }
3207
3208 out_owner_change:
3209 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3210 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3211 buffer_list);
3212 /* re-generate the checksum. */
3213 xfs_dinode_calc_crc(log->l_mp, dip);
3214
3215 ASSERT(bp->b_target->bt_mount == mp);
3216 bp->b_iodone = xlog_recover_iodone;
3217 xfs_buf_delwri_queue(bp, buffer_list);
3218
3219 out_release:
3220 xfs_buf_relse(bp);
3221 error:
3222 if (need_free)
3223 kmem_free(in_f);
3224 return error;
3225 }
3226
3227 /*
3228 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3229 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3230 * of that type.
3231 */
3232 STATIC int
3233 xlog_recover_quotaoff_pass1(
3234 struct xlog *log,
3235 struct xlog_recover_item *item)
3236 {
3237 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3238 ASSERT(qoff_f);
3239
3240 /*
3241 * The logitem format's flag tells us if this was user quotaoff,
3242 * group/project quotaoff or both.
3243 */
3244 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3245 log->l_quotaoffs_flag |= XFS_DQ_USER;
3246 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3247 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3248 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3249 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3250
3251 return 0;
3252 }
3253
3254 /*
3255 * Recover a dquot record
3256 */
3257 STATIC int
3258 xlog_recover_dquot_pass2(
3259 struct xlog *log,
3260 struct list_head *buffer_list,
3261 struct xlog_recover_item *item,
3262 xfs_lsn_t current_lsn)
3263 {
3264 xfs_mount_t *mp = log->l_mp;
3265 xfs_buf_t *bp;
3266 struct xfs_disk_dquot *ddq, *recddq;
3267 int error;
3268 xfs_dq_logformat_t *dq_f;
3269 uint type;
3270
3271
3272 /*
3273 * Filesystems are required to send in quota flags at mount time.
3274 */
3275 if (mp->m_qflags == 0)
3276 return 0;
3277
3278 recddq = item->ri_buf[1].i_addr;
3279 if (recddq == NULL) {
3280 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3281 return -EIO;
3282 }
3283 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3284 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3285 item->ri_buf[1].i_len, __func__);
3286 return -EIO;
3287 }
3288
3289 /*
3290 * This type of quotas was turned off, so ignore this record.
3291 */
3292 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3293 ASSERT(type);
3294 if (log->l_quotaoffs_flag & type)
3295 return 0;
3296
3297 /*
3298 * At this point we know that quota was _not_ turned off.
3299 * Since the mount flags are not indicating to us otherwise, this
3300 * must mean that quota is on, and the dquot needs to be replayed.
3301 * Remember that we may not have fully recovered the superblock yet,
3302 * so we can't do the usual trick of looking at the SB quota bits.
3303 *
3304 * The other possibility, of course, is that the quota subsystem was
3305 * removed since the last mount - ENOSYS.
3306 */
3307 dq_f = item->ri_buf[0].i_addr;
3308 ASSERT(dq_f);
3309 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3310 "xlog_recover_dquot_pass2 (log copy)");
3311 if (error)
3312 return -EIO;
3313 ASSERT(dq_f->qlf_len == 1);
3314
3315 /*
3316 * At this point we are assuming that the dquots have been allocated
3317 * and hence the buffer has valid dquots stamped in it. It should,
3318 * therefore, pass verifier validation. If the dquot is bad, then the
3319 * we'll return an error here, so we don't need to specifically check
3320 * the dquot in the buffer after the verifier has run.
3321 */
3322 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3323 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3324 &xfs_dquot_buf_ops);
3325 if (error)
3326 return error;
3327
3328 ASSERT(bp);
3329 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3330
3331 /*
3332 * If the dquot has an LSN in it, recover the dquot only if it's less
3333 * than the lsn of the transaction we are replaying.
3334 */
3335 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3336 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3337 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3338
3339 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3340 goto out_release;
3341 }
3342 }
3343
3344 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3345 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3346 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3347 XFS_DQUOT_CRC_OFF);
3348 }
3349
3350 ASSERT(dq_f->qlf_size == 2);
3351 ASSERT(bp->b_target->bt_mount == mp);
3352 bp->b_iodone = xlog_recover_iodone;
3353 xfs_buf_delwri_queue(bp, buffer_list);
3354
3355 out_release:
3356 xfs_buf_relse(bp);
3357 return 0;
3358 }
3359
3360 /*
3361 * This routine is called to create an in-core extent free intent
3362 * item from the efi format structure which was logged on disk.
3363 * It allocates an in-core efi, copies the extents from the format
3364 * structure into it, and adds the efi to the AIL with the given
3365 * LSN.
3366 */
3367 STATIC int
3368 xlog_recover_efi_pass2(
3369 struct xlog *log,
3370 struct xlog_recover_item *item,
3371 xfs_lsn_t lsn)
3372 {
3373 int error;
3374 struct xfs_mount *mp = log->l_mp;
3375 struct xfs_efi_log_item *efip;
3376 struct xfs_efi_log_format *efi_formatp;
3377
3378 efi_formatp = item->ri_buf[0].i_addr;
3379
3380 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3381 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3382 if (error) {
3383 xfs_efi_item_free(efip);
3384 return error;
3385 }
3386 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3387
3388 spin_lock(&log->l_ailp->xa_lock);
3389 /*
3390 * The EFI has two references. One for the EFD and one for EFI to ensure
3391 * it makes it into the AIL. Insert the EFI into the AIL directly and
3392 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3393 * AIL lock.
3394 */
3395 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3396 xfs_efi_release(efip);
3397 return 0;
3398 }
3399
3400
3401 /*
3402 * This routine is called when an EFD format structure is found in a committed
3403 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3404 * was still in the log. To do this it searches the AIL for the EFI with an id
3405 * equal to that in the EFD format structure. If we find it we drop the EFD
3406 * reference, which removes the EFI from the AIL and frees it.
3407 */
3408 STATIC int
3409 xlog_recover_efd_pass2(
3410 struct xlog *log,
3411 struct xlog_recover_item *item)
3412 {
3413 xfs_efd_log_format_t *efd_formatp;
3414 xfs_efi_log_item_t *efip = NULL;
3415 xfs_log_item_t *lip;
3416 __uint64_t efi_id;
3417 struct xfs_ail_cursor cur;
3418 struct xfs_ail *ailp = log->l_ailp;
3419
3420 efd_formatp = item->ri_buf[0].i_addr;
3421 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3422 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3423 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3424 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3425 efi_id = efd_formatp->efd_efi_id;
3426
3427 /*
3428 * Search for the EFI with the id in the EFD format structure in the
3429 * AIL.
3430 */
3431 spin_lock(&ailp->xa_lock);
3432 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3433 while (lip != NULL) {
3434 if (lip->li_type == XFS_LI_EFI) {
3435 efip = (xfs_efi_log_item_t *)lip;
3436 if (efip->efi_format.efi_id == efi_id) {
3437 /*
3438 * Drop the EFD reference to the EFI. This
3439 * removes the EFI from the AIL and frees it.
3440 */
3441 spin_unlock(&ailp->xa_lock);
3442 xfs_efi_release(efip);
3443 spin_lock(&ailp->xa_lock);
3444 break;
3445 }
3446 }
3447 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3448 }
3449
3450 xfs_trans_ail_cursor_done(&cur);
3451 spin_unlock(&ailp->xa_lock);
3452
3453 return 0;
3454 }
3455
3456 /*
3457 * This routine is called to create an in-core extent rmap update
3458 * item from the rui format structure which was logged on disk.
3459 * It allocates an in-core rui, copies the extents from the format
3460 * structure into it, and adds the rui to the AIL with the given
3461 * LSN.
3462 */
3463 STATIC int
3464 xlog_recover_rui_pass2(
3465 struct xlog *log,
3466 struct xlog_recover_item *item,
3467 xfs_lsn_t lsn)
3468 {
3469 int error;
3470 struct xfs_mount *mp = log->l_mp;
3471 struct xfs_rui_log_item *ruip;
3472 struct xfs_rui_log_format *rui_formatp;
3473
3474 rui_formatp = item->ri_buf[0].i_addr;
3475
3476 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3477 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3478 if (error) {
3479 xfs_rui_item_free(ruip);
3480 return error;
3481 }
3482 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3483
3484 spin_lock(&log->l_ailp->xa_lock);
3485 /*
3486 * The RUI has two references. One for the RUD and one for RUI to ensure
3487 * it makes it into the AIL. Insert the RUI into the AIL directly and
3488 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3489 * AIL lock.
3490 */
3491 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3492 xfs_rui_release(ruip);
3493 return 0;
3494 }
3495
3496
3497 /*
3498 * This routine is called when an RUD format structure is found in a committed
3499 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3500 * was still in the log. To do this it searches the AIL for the RUI with an id
3501 * equal to that in the RUD format structure. If we find it we drop the RUD
3502 * reference, which removes the RUI from the AIL and frees it.
3503 */
3504 STATIC int
3505 xlog_recover_rud_pass2(
3506 struct xlog *log,
3507 struct xlog_recover_item *item)
3508 {
3509 struct xfs_rud_log_format *rud_formatp;
3510 struct xfs_rui_log_item *ruip = NULL;
3511 struct xfs_log_item *lip;
3512 __uint64_t rui_id;
3513 struct xfs_ail_cursor cur;
3514 struct xfs_ail *ailp = log->l_ailp;
3515
3516 rud_formatp = item->ri_buf[0].i_addr;
3517 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3518 rui_id = rud_formatp->rud_rui_id;
3519
3520 /*
3521 * Search for the RUI with the id in the RUD format structure in the
3522 * AIL.
3523 */
3524 spin_lock(&ailp->xa_lock);
3525 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3526 while (lip != NULL) {
3527 if (lip->li_type == XFS_LI_RUI) {
3528 ruip = (struct xfs_rui_log_item *)lip;
3529 if (ruip->rui_format.rui_id == rui_id) {
3530 /*
3531 * Drop the RUD reference to the RUI. This
3532 * removes the RUI from the AIL and frees it.
3533 */
3534 spin_unlock(&ailp->xa_lock);
3535 xfs_rui_release(ruip);
3536 spin_lock(&ailp->xa_lock);
3537 break;
3538 }
3539 }
3540 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3541 }
3542
3543 xfs_trans_ail_cursor_done(&cur);
3544 spin_unlock(&ailp->xa_lock);
3545
3546 return 0;
3547 }
3548
3549 /*
3550 * This routine is called when an inode create format structure is found in a
3551 * committed transaction in the log. It's purpose is to initialise the inodes
3552 * being allocated on disk. This requires us to get inode cluster buffers that
3553 * match the range to be intialised, stamped with inode templates and written
3554 * by delayed write so that subsequent modifications will hit the cached buffer
3555 * and only need writing out at the end of recovery.
3556 */
3557 STATIC int
3558 xlog_recover_do_icreate_pass2(
3559 struct xlog *log,
3560 struct list_head *buffer_list,
3561 xlog_recover_item_t *item)
3562 {
3563 struct xfs_mount *mp = log->l_mp;
3564 struct xfs_icreate_log *icl;
3565 xfs_agnumber_t agno;
3566 xfs_agblock_t agbno;
3567 unsigned int count;
3568 unsigned int isize;
3569 xfs_agblock_t length;
3570 int blks_per_cluster;
3571 int bb_per_cluster;
3572 int cancel_count;
3573 int nbufs;
3574 int i;
3575
3576 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3577 if (icl->icl_type != XFS_LI_ICREATE) {
3578 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3579 return -EINVAL;
3580 }
3581
3582 if (icl->icl_size != 1) {
3583 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3584 return -EINVAL;
3585 }
3586
3587 agno = be32_to_cpu(icl->icl_ag);
3588 if (agno >= mp->m_sb.sb_agcount) {
3589 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3590 return -EINVAL;
3591 }
3592 agbno = be32_to_cpu(icl->icl_agbno);
3593 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3594 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3595 return -EINVAL;
3596 }
3597 isize = be32_to_cpu(icl->icl_isize);
3598 if (isize != mp->m_sb.sb_inodesize) {
3599 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3600 return -EINVAL;
3601 }
3602 count = be32_to_cpu(icl->icl_count);
3603 if (!count) {
3604 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3605 return -EINVAL;
3606 }
3607 length = be32_to_cpu(icl->icl_length);
3608 if (!length || length >= mp->m_sb.sb_agblocks) {
3609 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3610 return -EINVAL;
3611 }
3612
3613 /*
3614 * The inode chunk is either full or sparse and we only support
3615 * m_ialloc_min_blks sized sparse allocations at this time.
3616 */
3617 if (length != mp->m_ialloc_blks &&
3618 length != mp->m_ialloc_min_blks) {
3619 xfs_warn(log->l_mp,
3620 "%s: unsupported chunk length", __FUNCTION__);
3621 return -EINVAL;
3622 }
3623
3624 /* verify inode count is consistent with extent length */
3625 if ((count >> mp->m_sb.sb_inopblog) != length) {
3626 xfs_warn(log->l_mp,
3627 "%s: inconsistent inode count and chunk length",
3628 __FUNCTION__);
3629 return -EINVAL;
3630 }
3631
3632 /*
3633 * The icreate transaction can cover multiple cluster buffers and these
3634 * buffers could have been freed and reused. Check the individual
3635 * buffers for cancellation so we don't overwrite anything written after
3636 * a cancellation.
3637 */
3638 blks_per_cluster = xfs_icluster_size_fsb(mp);
3639 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3640 nbufs = length / blks_per_cluster;
3641 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3642 xfs_daddr_t daddr;
3643
3644 daddr = XFS_AGB_TO_DADDR(mp, agno,
3645 agbno + i * blks_per_cluster);
3646 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3647 cancel_count++;
3648 }
3649
3650 /*
3651 * We currently only use icreate for a single allocation at a time. This
3652 * means we should expect either all or none of the buffers to be
3653 * cancelled. Be conservative and skip replay if at least one buffer is
3654 * cancelled, but warn the user that something is awry if the buffers
3655 * are not consistent.
3656 *
3657 * XXX: This must be refined to only skip cancelled clusters once we use
3658 * icreate for multiple chunk allocations.
3659 */
3660 ASSERT(!cancel_count || cancel_count == nbufs);
3661 if (cancel_count) {
3662 if (cancel_count != nbufs)
3663 xfs_warn(mp,
3664 "WARNING: partial inode chunk cancellation, skipped icreate.");
3665 trace_xfs_log_recover_icreate_cancel(log, icl);
3666 return 0;
3667 }
3668
3669 trace_xfs_log_recover_icreate_recover(log, icl);
3670 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3671 length, be32_to_cpu(icl->icl_gen));
3672 }
3673
3674 STATIC void
3675 xlog_recover_buffer_ra_pass2(
3676 struct xlog *log,
3677 struct xlog_recover_item *item)
3678 {
3679 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3680 struct xfs_mount *mp = log->l_mp;
3681
3682 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3683 buf_f->blf_len, buf_f->blf_flags)) {
3684 return;
3685 }
3686
3687 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3688 buf_f->blf_len, NULL);
3689 }
3690
3691 STATIC void
3692 xlog_recover_inode_ra_pass2(
3693 struct xlog *log,
3694 struct xlog_recover_item *item)
3695 {
3696 struct xfs_inode_log_format ilf_buf;
3697 struct xfs_inode_log_format *ilfp;
3698 struct xfs_mount *mp = log->l_mp;
3699 int error;
3700
3701 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3702 ilfp = item->ri_buf[0].i_addr;
3703 } else {
3704 ilfp = &ilf_buf;
3705 memset(ilfp, 0, sizeof(*ilfp));
3706 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3707 if (error)
3708 return;
3709 }
3710
3711 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3712 return;
3713
3714 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3715 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3716 }
3717
3718 STATIC void
3719 xlog_recover_dquot_ra_pass2(
3720 struct xlog *log,
3721 struct xlog_recover_item *item)
3722 {
3723 struct xfs_mount *mp = log->l_mp;
3724 struct xfs_disk_dquot *recddq;
3725 struct xfs_dq_logformat *dq_f;
3726 uint type;
3727 int len;
3728
3729
3730 if (mp->m_qflags == 0)
3731 return;
3732
3733 recddq = item->ri_buf[1].i_addr;
3734 if (recddq == NULL)
3735 return;
3736 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3737 return;
3738
3739 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3740 ASSERT(type);
3741 if (log->l_quotaoffs_flag & type)
3742 return;
3743
3744 dq_f = item->ri_buf[0].i_addr;
3745 ASSERT(dq_f);
3746 ASSERT(dq_f->qlf_len == 1);
3747
3748 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3749 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3750 return;
3751
3752 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3753 &xfs_dquot_buf_ra_ops);
3754 }
3755
3756 STATIC void
3757 xlog_recover_ra_pass2(
3758 struct xlog *log,
3759 struct xlog_recover_item *item)
3760 {
3761 switch (ITEM_TYPE(item)) {
3762 case XFS_LI_BUF:
3763 xlog_recover_buffer_ra_pass2(log, item);
3764 break;
3765 case XFS_LI_INODE:
3766 xlog_recover_inode_ra_pass2(log, item);
3767 break;
3768 case XFS_LI_DQUOT:
3769 xlog_recover_dquot_ra_pass2(log, item);
3770 break;
3771 case XFS_LI_EFI:
3772 case XFS_LI_EFD:
3773 case XFS_LI_QUOTAOFF:
3774 case XFS_LI_RUI:
3775 case XFS_LI_RUD:
3776 default:
3777 break;
3778 }
3779 }
3780
3781 STATIC int
3782 xlog_recover_commit_pass1(
3783 struct xlog *log,
3784 struct xlog_recover *trans,
3785 struct xlog_recover_item *item)
3786 {
3787 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3788
3789 switch (ITEM_TYPE(item)) {
3790 case XFS_LI_BUF:
3791 return xlog_recover_buffer_pass1(log, item);
3792 case XFS_LI_QUOTAOFF:
3793 return xlog_recover_quotaoff_pass1(log, item);
3794 case XFS_LI_INODE:
3795 case XFS_LI_EFI:
3796 case XFS_LI_EFD:
3797 case XFS_LI_DQUOT:
3798 case XFS_LI_ICREATE:
3799 case XFS_LI_RUI:
3800 case XFS_LI_RUD:
3801 /* nothing to do in pass 1 */
3802 return 0;
3803 default:
3804 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3805 __func__, ITEM_TYPE(item));
3806 ASSERT(0);
3807 return -EIO;
3808 }
3809 }
3810
3811 STATIC int
3812 xlog_recover_commit_pass2(
3813 struct xlog *log,
3814 struct xlog_recover *trans,
3815 struct list_head *buffer_list,
3816 struct xlog_recover_item *item)
3817 {
3818 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3819
3820 switch (ITEM_TYPE(item)) {
3821 case XFS_LI_BUF:
3822 return xlog_recover_buffer_pass2(log, buffer_list, item,
3823 trans->r_lsn);
3824 case XFS_LI_INODE:
3825 return xlog_recover_inode_pass2(log, buffer_list, item,
3826 trans->r_lsn);
3827 case XFS_LI_EFI:
3828 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3829 case XFS_LI_EFD:
3830 return xlog_recover_efd_pass2(log, item);
3831 case XFS_LI_RUI:
3832 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
3833 case XFS_LI_RUD:
3834 return xlog_recover_rud_pass2(log, item);
3835 case XFS_LI_DQUOT:
3836 return xlog_recover_dquot_pass2(log, buffer_list, item,
3837 trans->r_lsn);
3838 case XFS_LI_ICREATE:
3839 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3840 case XFS_LI_QUOTAOFF:
3841 /* nothing to do in pass2 */
3842 return 0;
3843 default:
3844 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3845 __func__, ITEM_TYPE(item));
3846 ASSERT(0);
3847 return -EIO;
3848 }
3849 }
3850
3851 STATIC int
3852 xlog_recover_items_pass2(
3853 struct xlog *log,
3854 struct xlog_recover *trans,
3855 struct list_head *buffer_list,
3856 struct list_head *item_list)
3857 {
3858 struct xlog_recover_item *item;
3859 int error = 0;
3860
3861 list_for_each_entry(item, item_list, ri_list) {
3862 error = xlog_recover_commit_pass2(log, trans,
3863 buffer_list, item);
3864 if (error)
3865 return error;
3866 }
3867
3868 return error;
3869 }
3870
3871 /*
3872 * Perform the transaction.
3873 *
3874 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3875 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3876 */
3877 STATIC int
3878 xlog_recover_commit_trans(
3879 struct xlog *log,
3880 struct xlog_recover *trans,
3881 int pass,
3882 struct list_head *buffer_list)
3883 {
3884 int error = 0;
3885 int items_queued = 0;
3886 struct xlog_recover_item *item;
3887 struct xlog_recover_item *next;
3888 LIST_HEAD (ra_list);
3889 LIST_HEAD (done_list);
3890
3891 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3892
3893 hlist_del(&trans->r_list);
3894
3895 error = xlog_recover_reorder_trans(log, trans, pass);
3896 if (error)
3897 return error;
3898
3899 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3900 switch (pass) {
3901 case XLOG_RECOVER_PASS1:
3902 error = xlog_recover_commit_pass1(log, trans, item);
3903 break;
3904 case XLOG_RECOVER_PASS2:
3905 xlog_recover_ra_pass2(log, item);
3906 list_move_tail(&item->ri_list, &ra_list);
3907 items_queued++;
3908 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3909 error = xlog_recover_items_pass2(log, trans,
3910 buffer_list, &ra_list);
3911 list_splice_tail_init(&ra_list, &done_list);
3912 items_queued = 0;
3913 }
3914
3915 break;
3916 default:
3917 ASSERT(0);
3918 }
3919
3920 if (error)
3921 goto out;
3922 }
3923
3924 out:
3925 if (!list_empty(&ra_list)) {
3926 if (!error)
3927 error = xlog_recover_items_pass2(log, trans,
3928 buffer_list, &ra_list);
3929 list_splice_tail_init(&ra_list, &done_list);
3930 }
3931
3932 if (!list_empty(&done_list))
3933 list_splice_init(&done_list, &trans->r_itemq);
3934
3935 return error;
3936 }
3937
3938 STATIC void
3939 xlog_recover_add_item(
3940 struct list_head *head)
3941 {
3942 xlog_recover_item_t *item;
3943
3944 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3945 INIT_LIST_HEAD(&item->ri_list);
3946 list_add_tail(&item->ri_list, head);
3947 }
3948
3949 STATIC int
3950 xlog_recover_add_to_cont_trans(
3951 struct xlog *log,
3952 struct xlog_recover *trans,
3953 char *dp,
3954 int len)
3955 {
3956 xlog_recover_item_t *item;
3957 char *ptr, *old_ptr;
3958 int old_len;
3959
3960 /*
3961 * If the transaction is empty, the header was split across this and the
3962 * previous record. Copy the rest of the header.
3963 */
3964 if (list_empty(&trans->r_itemq)) {
3965 ASSERT(len <= sizeof(struct xfs_trans_header));
3966 if (len > sizeof(struct xfs_trans_header)) {
3967 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3968 return -EIO;
3969 }
3970
3971 xlog_recover_add_item(&trans->r_itemq);
3972 ptr = (char *)&trans->r_theader +
3973 sizeof(struct xfs_trans_header) - len;
3974 memcpy(ptr, dp, len);
3975 return 0;
3976 }
3977
3978 /* take the tail entry */
3979 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3980
3981 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3982 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3983
3984 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
3985 memcpy(&ptr[old_len], dp, len);
3986 item->ri_buf[item->ri_cnt-1].i_len += len;
3987 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3988 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3989 return 0;
3990 }
3991
3992 /*
3993 * The next region to add is the start of a new region. It could be
3994 * a whole region or it could be the first part of a new region. Because
3995 * of this, the assumption here is that the type and size fields of all
3996 * format structures fit into the first 32 bits of the structure.
3997 *
3998 * This works because all regions must be 32 bit aligned. Therefore, we
3999 * either have both fields or we have neither field. In the case we have
4000 * neither field, the data part of the region is zero length. We only have
4001 * a log_op_header and can throw away the header since a new one will appear
4002 * later. If we have at least 4 bytes, then we can determine how many regions
4003 * will appear in the current log item.
4004 */
4005 STATIC int
4006 xlog_recover_add_to_trans(
4007 struct xlog *log,
4008 struct xlog_recover *trans,
4009 char *dp,
4010 int len)
4011 {
4012 xfs_inode_log_format_t *in_f; /* any will do */
4013 xlog_recover_item_t *item;
4014 char *ptr;
4015
4016 if (!len)
4017 return 0;
4018 if (list_empty(&trans->r_itemq)) {
4019 /* we need to catch log corruptions here */
4020 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4021 xfs_warn(log->l_mp, "%s: bad header magic number",
4022 __func__);
4023 ASSERT(0);
4024 return -EIO;
4025 }
4026
4027 if (len > sizeof(struct xfs_trans_header)) {
4028 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4029 ASSERT(0);
4030 return -EIO;
4031 }
4032
4033 /*
4034 * The transaction header can be arbitrarily split across op
4035 * records. If we don't have the whole thing here, copy what we
4036 * do have and handle the rest in the next record.
4037 */
4038 if (len == sizeof(struct xfs_trans_header))
4039 xlog_recover_add_item(&trans->r_itemq);
4040 memcpy(&trans->r_theader, dp, len);
4041 return 0;
4042 }
4043
4044 ptr = kmem_alloc(len, KM_SLEEP);
4045 memcpy(ptr, dp, len);
4046 in_f = (xfs_inode_log_format_t *)ptr;
4047
4048 /* take the tail entry */
4049 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4050 if (item->ri_total != 0 &&
4051 item->ri_total == item->ri_cnt) {
4052 /* tail item is in use, get a new one */
4053 xlog_recover_add_item(&trans->r_itemq);
4054 item = list_entry(trans->r_itemq.prev,
4055 xlog_recover_item_t, ri_list);
4056 }
4057
4058 if (item->ri_total == 0) { /* first region to be added */
4059 if (in_f->ilf_size == 0 ||
4060 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4061 xfs_warn(log->l_mp,
4062 "bad number of regions (%d) in inode log format",
4063 in_f->ilf_size);
4064 ASSERT(0);
4065 kmem_free(ptr);
4066 return -EIO;
4067 }
4068
4069 item->ri_total = in_f->ilf_size;
4070 item->ri_buf =
4071 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4072 KM_SLEEP);
4073 }
4074 ASSERT(item->ri_total > item->ri_cnt);
4075 /* Description region is ri_buf[0] */
4076 item->ri_buf[item->ri_cnt].i_addr = ptr;
4077 item->ri_buf[item->ri_cnt].i_len = len;
4078 item->ri_cnt++;
4079 trace_xfs_log_recover_item_add(log, trans, item, 0);
4080 return 0;
4081 }
4082
4083 /*
4084 * Free up any resources allocated by the transaction
4085 *
4086 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4087 */
4088 STATIC void
4089 xlog_recover_free_trans(
4090 struct xlog_recover *trans)
4091 {
4092 xlog_recover_item_t *item, *n;
4093 int i;
4094
4095 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4096 /* Free the regions in the item. */
4097 list_del(&item->ri_list);
4098 for (i = 0; i < item->ri_cnt; i++)
4099 kmem_free(item->ri_buf[i].i_addr);
4100 /* Free the item itself */
4101 kmem_free(item->ri_buf);
4102 kmem_free(item);
4103 }
4104 /* Free the transaction recover structure */
4105 kmem_free(trans);
4106 }
4107
4108 /*
4109 * On error or completion, trans is freed.
4110 */
4111 STATIC int
4112 xlog_recovery_process_trans(
4113 struct xlog *log,
4114 struct xlog_recover *trans,
4115 char *dp,
4116 unsigned int len,
4117 unsigned int flags,
4118 int pass,
4119 struct list_head *buffer_list)
4120 {
4121 int error = 0;
4122 bool freeit = false;
4123
4124 /* mask off ophdr transaction container flags */
4125 flags &= ~XLOG_END_TRANS;
4126 if (flags & XLOG_WAS_CONT_TRANS)
4127 flags &= ~XLOG_CONTINUE_TRANS;
4128
4129 /*
4130 * Callees must not free the trans structure. We'll decide if we need to
4131 * free it or not based on the operation being done and it's result.
4132 */
4133 switch (flags) {
4134 /* expected flag values */
4135 case 0:
4136 case XLOG_CONTINUE_TRANS:
4137 error = xlog_recover_add_to_trans(log, trans, dp, len);
4138 break;
4139 case XLOG_WAS_CONT_TRANS:
4140 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4141 break;
4142 case XLOG_COMMIT_TRANS:
4143 error = xlog_recover_commit_trans(log, trans, pass,
4144 buffer_list);
4145 /* success or fail, we are now done with this transaction. */
4146 freeit = true;
4147 break;
4148
4149 /* unexpected flag values */
4150 case XLOG_UNMOUNT_TRANS:
4151 /* just skip trans */
4152 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4153 freeit = true;
4154 break;
4155 case XLOG_START_TRANS:
4156 default:
4157 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4158 ASSERT(0);
4159 error = -EIO;
4160 break;
4161 }
4162 if (error || freeit)
4163 xlog_recover_free_trans(trans);
4164 return error;
4165 }
4166
4167 /*
4168 * Lookup the transaction recovery structure associated with the ID in the
4169 * current ophdr. If the transaction doesn't exist and the start flag is set in
4170 * the ophdr, then allocate a new transaction for future ID matches to find.
4171 * Either way, return what we found during the lookup - an existing transaction
4172 * or nothing.
4173 */
4174 STATIC struct xlog_recover *
4175 xlog_recover_ophdr_to_trans(
4176 struct hlist_head rhash[],
4177 struct xlog_rec_header *rhead,
4178 struct xlog_op_header *ohead)
4179 {
4180 struct xlog_recover *trans;
4181 xlog_tid_t tid;
4182 struct hlist_head *rhp;
4183
4184 tid = be32_to_cpu(ohead->oh_tid);
4185 rhp = &rhash[XLOG_RHASH(tid)];
4186 hlist_for_each_entry(trans, rhp, r_list) {
4187 if (trans->r_log_tid == tid)
4188 return trans;
4189 }
4190
4191 /*
4192 * skip over non-start transaction headers - we could be
4193 * processing slack space before the next transaction starts
4194 */
4195 if (!(ohead->oh_flags & XLOG_START_TRANS))
4196 return NULL;
4197
4198 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4199
4200 /*
4201 * This is a new transaction so allocate a new recovery container to
4202 * hold the recovery ops that will follow.
4203 */
4204 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4205 trans->r_log_tid = tid;
4206 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4207 INIT_LIST_HEAD(&trans->r_itemq);
4208 INIT_HLIST_NODE(&trans->r_list);
4209 hlist_add_head(&trans->r_list, rhp);
4210
4211 /*
4212 * Nothing more to do for this ophdr. Items to be added to this new
4213 * transaction will be in subsequent ophdr containers.
4214 */
4215 return NULL;
4216 }
4217
4218 STATIC int
4219 xlog_recover_process_ophdr(
4220 struct xlog *log,
4221 struct hlist_head rhash[],
4222 struct xlog_rec_header *rhead,
4223 struct xlog_op_header *ohead,
4224 char *dp,
4225 char *end,
4226 int pass,
4227 struct list_head *buffer_list)
4228 {
4229 struct xlog_recover *trans;
4230 unsigned int len;
4231 int error;
4232
4233 /* Do we understand who wrote this op? */
4234 if (ohead->oh_clientid != XFS_TRANSACTION &&
4235 ohead->oh_clientid != XFS_LOG) {
4236 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4237 __func__, ohead->oh_clientid);
4238 ASSERT(0);
4239 return -EIO;
4240 }
4241
4242 /*
4243 * Check the ophdr contains all the data it is supposed to contain.
4244 */
4245 len = be32_to_cpu(ohead->oh_len);
4246 if (dp + len > end) {
4247 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4248 WARN_ON(1);
4249 return -EIO;
4250 }
4251
4252 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4253 if (!trans) {
4254 /* nothing to do, so skip over this ophdr */
4255 return 0;
4256 }
4257
4258 /*
4259 * The recovered buffer queue is drained only once we know that all
4260 * recovery items for the current LSN have been processed. This is
4261 * required because:
4262 *
4263 * - Buffer write submission updates the metadata LSN of the buffer.
4264 * - Log recovery skips items with a metadata LSN >= the current LSN of
4265 * the recovery item.
4266 * - Separate recovery items against the same metadata buffer can share
4267 * a current LSN. I.e., consider that the LSN of a recovery item is
4268 * defined as the starting LSN of the first record in which its
4269 * transaction appears, that a record can hold multiple transactions,
4270 * and/or that a transaction can span multiple records.
4271 *
4272 * In other words, we are allowed to submit a buffer from log recovery
4273 * once per current LSN. Otherwise, we may incorrectly skip recovery
4274 * items and cause corruption.
4275 *
4276 * We don't know up front whether buffers are updated multiple times per
4277 * LSN. Therefore, track the current LSN of each commit log record as it
4278 * is processed and drain the queue when it changes. Use commit records
4279 * because they are ordered correctly by the logging code.
4280 */
4281 if (log->l_recovery_lsn != trans->r_lsn &&
4282 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4283 error = xfs_buf_delwri_submit(buffer_list);
4284 if (error)
4285 return error;
4286 log->l_recovery_lsn = trans->r_lsn;
4287 }
4288
4289 return xlog_recovery_process_trans(log, trans, dp, len,
4290 ohead->oh_flags, pass, buffer_list);
4291 }
4292
4293 /*
4294 * There are two valid states of the r_state field. 0 indicates that the
4295 * transaction structure is in a normal state. We have either seen the
4296 * start of the transaction or the last operation we added was not a partial
4297 * operation. If the last operation we added to the transaction was a
4298 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4299 *
4300 * NOTE: skip LRs with 0 data length.
4301 */
4302 STATIC int
4303 xlog_recover_process_data(
4304 struct xlog *log,
4305 struct hlist_head rhash[],
4306 struct xlog_rec_header *rhead,
4307 char *dp,
4308 int pass,
4309 struct list_head *buffer_list)
4310 {
4311 struct xlog_op_header *ohead;
4312 char *end;
4313 int num_logops;
4314 int error;
4315
4316 end = dp + be32_to_cpu(rhead->h_len);
4317 num_logops = be32_to_cpu(rhead->h_num_logops);
4318
4319 /* check the log format matches our own - else we can't recover */
4320 if (xlog_header_check_recover(log->l_mp, rhead))
4321 return -EIO;
4322
4323 trace_xfs_log_recover_record(log, rhead, pass);
4324 while ((dp < end) && num_logops) {
4325
4326 ohead = (struct xlog_op_header *)dp;
4327 dp += sizeof(*ohead);
4328 ASSERT(dp <= end);
4329
4330 /* errors will abort recovery */
4331 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4332 dp, end, pass, buffer_list);
4333 if (error)
4334 return error;
4335
4336 dp += be32_to_cpu(ohead->oh_len);
4337 num_logops--;
4338 }
4339 return 0;
4340 }
4341
4342 /* Recover the EFI if necessary. */
4343 STATIC int
4344 xlog_recover_process_efi(
4345 struct xfs_mount *mp,
4346 struct xfs_ail *ailp,
4347 struct xfs_log_item *lip)
4348 {
4349 struct xfs_efi_log_item *efip;
4350 int error;
4351
4352 /*
4353 * Skip EFIs that we've already processed.
4354 */
4355 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4356 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4357 return 0;
4358
4359 spin_unlock(&ailp->xa_lock);
4360 error = xfs_efi_recover(mp, efip);
4361 spin_lock(&ailp->xa_lock);
4362
4363 return error;
4364 }
4365
4366 /* Release the EFI since we're cancelling everything. */
4367 STATIC void
4368 xlog_recover_cancel_efi(
4369 struct xfs_mount *mp,
4370 struct xfs_ail *ailp,
4371 struct xfs_log_item *lip)
4372 {
4373 struct xfs_efi_log_item *efip;
4374
4375 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4376
4377 spin_unlock(&ailp->xa_lock);
4378 xfs_efi_release(efip);
4379 spin_lock(&ailp->xa_lock);
4380 }
4381
4382 /* Recover the RUI if necessary. */
4383 STATIC int
4384 xlog_recover_process_rui(
4385 struct xfs_mount *mp,
4386 struct xfs_ail *ailp,
4387 struct xfs_log_item *lip)
4388 {
4389 struct xfs_rui_log_item *ruip;
4390 int error;
4391
4392 /*
4393 * Skip RUIs that we've already processed.
4394 */
4395 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4396 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4397 return 0;
4398
4399 spin_unlock(&ailp->xa_lock);
4400 error = xfs_rui_recover(mp, ruip);
4401 spin_lock(&ailp->xa_lock);
4402
4403 return error;
4404 }
4405
4406 /* Release the RUI since we're cancelling everything. */
4407 STATIC void
4408 xlog_recover_cancel_rui(
4409 struct xfs_mount *mp,
4410 struct xfs_ail *ailp,
4411 struct xfs_log_item *lip)
4412 {
4413 struct xfs_rui_log_item *ruip;
4414
4415 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4416
4417 spin_unlock(&ailp->xa_lock);
4418 xfs_rui_release(ruip);
4419 spin_lock(&ailp->xa_lock);
4420 }
4421
4422 /* Is this log item a deferred action intent? */
4423 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4424 {
4425 switch (lip->li_type) {
4426 case XFS_LI_EFI:
4427 case XFS_LI_RUI:
4428 return true;
4429 default:
4430 return false;
4431 }
4432 }
4433
4434 /*
4435 * When this is called, all of the log intent items which did not have
4436 * corresponding log done items should be in the AIL. What we do now
4437 * is update the data structures associated with each one.
4438 *
4439 * Since we process the log intent items in normal transactions, they
4440 * will be removed at some point after the commit. This prevents us
4441 * from just walking down the list processing each one. We'll use a
4442 * flag in the intent item to skip those that we've already processed
4443 * and use the AIL iteration mechanism's generation count to try to
4444 * speed this up at least a bit.
4445 *
4446 * When we start, we know that the intents are the only things in the
4447 * AIL. As we process them, however, other items are added to the
4448 * AIL.
4449 */
4450 STATIC int
4451 xlog_recover_process_intents(
4452 struct xlog *log)
4453 {
4454 struct xfs_log_item *lip;
4455 int error = 0;
4456 struct xfs_ail_cursor cur;
4457 struct xfs_ail *ailp;
4458 xfs_lsn_t last_lsn;
4459
4460 ailp = log->l_ailp;
4461 spin_lock(&ailp->xa_lock);
4462 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4463 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4464 while (lip != NULL) {
4465 /*
4466 * We're done when we see something other than an intent.
4467 * There should be no intents left in the AIL now.
4468 */
4469 if (!xlog_item_is_intent(lip)) {
4470 #ifdef DEBUG
4471 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4472 ASSERT(!xlog_item_is_intent(lip));
4473 #endif
4474 break;
4475 }
4476
4477 /*
4478 * We should never see a redo item with a LSN higher than
4479 * the last transaction we found in the log at the start
4480 * of recovery.
4481 */
4482 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4483
4484 switch (lip->li_type) {
4485 case XFS_LI_EFI:
4486 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4487 break;
4488 case XFS_LI_RUI:
4489 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4490 break;
4491 }
4492 if (error)
4493 goto out;
4494 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4495 }
4496 out:
4497 xfs_trans_ail_cursor_done(&cur);
4498 spin_unlock(&ailp->xa_lock);
4499 return error;
4500 }
4501
4502 /*
4503 * A cancel occurs when the mount has failed and we're bailing out.
4504 * Release all pending log intent items so they don't pin the AIL.
4505 */
4506 STATIC int
4507 xlog_recover_cancel_intents(
4508 struct xlog *log)
4509 {
4510 struct xfs_log_item *lip;
4511 int error = 0;
4512 struct xfs_ail_cursor cur;
4513 struct xfs_ail *ailp;
4514
4515 ailp = log->l_ailp;
4516 spin_lock(&ailp->xa_lock);
4517 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4518 while (lip != NULL) {
4519 /*
4520 * We're done when we see something other than an intent.
4521 * There should be no intents left in the AIL now.
4522 */
4523 if (!xlog_item_is_intent(lip)) {
4524 #ifdef DEBUG
4525 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4526 ASSERT(!xlog_item_is_intent(lip));
4527 #endif
4528 break;
4529 }
4530
4531 switch (lip->li_type) {
4532 case XFS_LI_EFI:
4533 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4534 break;
4535 case XFS_LI_RUI:
4536 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4537 break;
4538 }
4539
4540 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4541 }
4542
4543 xfs_trans_ail_cursor_done(&cur);
4544 spin_unlock(&ailp->xa_lock);
4545 return error;
4546 }
4547
4548 /*
4549 * This routine performs a transaction to null out a bad inode pointer
4550 * in an agi unlinked inode hash bucket.
4551 */
4552 STATIC void
4553 xlog_recover_clear_agi_bucket(
4554 xfs_mount_t *mp,
4555 xfs_agnumber_t agno,
4556 int bucket)
4557 {
4558 xfs_trans_t *tp;
4559 xfs_agi_t *agi;
4560 xfs_buf_t *agibp;
4561 int offset;
4562 int error;
4563
4564 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4565 if (error)
4566 goto out_error;
4567
4568 error = xfs_read_agi(mp, tp, agno, &agibp);
4569 if (error)
4570 goto out_abort;
4571
4572 agi = XFS_BUF_TO_AGI(agibp);
4573 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4574 offset = offsetof(xfs_agi_t, agi_unlinked) +
4575 (sizeof(xfs_agino_t) * bucket);
4576 xfs_trans_log_buf(tp, agibp, offset,
4577 (offset + sizeof(xfs_agino_t) - 1));
4578
4579 error = xfs_trans_commit(tp);
4580 if (error)
4581 goto out_error;
4582 return;
4583
4584 out_abort:
4585 xfs_trans_cancel(tp);
4586 out_error:
4587 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4588 return;
4589 }
4590
4591 STATIC xfs_agino_t
4592 xlog_recover_process_one_iunlink(
4593 struct xfs_mount *mp,
4594 xfs_agnumber_t agno,
4595 xfs_agino_t agino,
4596 int bucket)
4597 {
4598 struct xfs_buf *ibp;
4599 struct xfs_dinode *dip;
4600 struct xfs_inode *ip;
4601 xfs_ino_t ino;
4602 int error;
4603
4604 ino = XFS_AGINO_TO_INO(mp, agno, agino);
4605 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4606 if (error)
4607 goto fail;
4608
4609 /*
4610 * Get the on disk inode to find the next inode in the bucket.
4611 */
4612 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4613 if (error)
4614 goto fail_iput;
4615
4616 ASSERT(VFS_I(ip)->i_nlink == 0);
4617 ASSERT(VFS_I(ip)->i_mode != 0);
4618
4619 /* setup for the next pass */
4620 agino = be32_to_cpu(dip->di_next_unlinked);
4621 xfs_buf_relse(ibp);
4622
4623 /*
4624 * Prevent any DMAPI event from being sent when the reference on
4625 * the inode is dropped.
4626 */
4627 ip->i_d.di_dmevmask = 0;
4628
4629 IRELE(ip);
4630 return agino;
4631
4632 fail_iput:
4633 IRELE(ip);
4634 fail:
4635 /*
4636 * We can't read in the inode this bucket points to, or this inode
4637 * is messed up. Just ditch this bucket of inodes. We will lose
4638 * some inodes and space, but at least we won't hang.
4639 *
4640 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4641 * clear the inode pointer in the bucket.
4642 */
4643 xlog_recover_clear_agi_bucket(mp, agno, bucket);
4644 return NULLAGINO;
4645 }
4646
4647 /*
4648 * xlog_iunlink_recover
4649 *
4650 * This is called during recovery to process any inodes which
4651 * we unlinked but not freed when the system crashed. These
4652 * inodes will be on the lists in the AGI blocks. What we do
4653 * here is scan all the AGIs and fully truncate and free any
4654 * inodes found on the lists. Each inode is removed from the
4655 * lists when it has been fully truncated and is freed. The
4656 * freeing of the inode and its removal from the list must be
4657 * atomic.
4658 */
4659 STATIC void
4660 xlog_recover_process_iunlinks(
4661 struct xlog *log)
4662 {
4663 xfs_mount_t *mp;
4664 xfs_agnumber_t agno;
4665 xfs_agi_t *agi;
4666 xfs_buf_t *agibp;
4667 xfs_agino_t agino;
4668 int bucket;
4669 int error;
4670 uint mp_dmevmask;
4671
4672 mp = log->l_mp;
4673
4674 /*
4675 * Prevent any DMAPI event from being sent while in this function.
4676 */
4677 mp_dmevmask = mp->m_dmevmask;
4678 mp->m_dmevmask = 0;
4679
4680 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4681 /*
4682 * Find the agi for this ag.
4683 */
4684 error = xfs_read_agi(mp, NULL, agno, &agibp);
4685 if (error) {
4686 /*
4687 * AGI is b0rked. Don't process it.
4688 *
4689 * We should probably mark the filesystem as corrupt
4690 * after we've recovered all the ag's we can....
4691 */
4692 continue;
4693 }
4694 /*
4695 * Unlock the buffer so that it can be acquired in the normal
4696 * course of the transaction to truncate and free each inode.
4697 * Because we are not racing with anyone else here for the AGI
4698 * buffer, we don't even need to hold it locked to read the
4699 * initial unlinked bucket entries out of the buffer. We keep
4700 * buffer reference though, so that it stays pinned in memory
4701 * while we need the buffer.
4702 */
4703 agi = XFS_BUF_TO_AGI(agibp);
4704 xfs_buf_unlock(agibp);
4705
4706 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4707 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4708 while (agino != NULLAGINO) {
4709 agino = xlog_recover_process_one_iunlink(mp,
4710 agno, agino, bucket);
4711 }
4712 }
4713 xfs_buf_rele(agibp);
4714 }
4715
4716 mp->m_dmevmask = mp_dmevmask;
4717 }
4718
4719 STATIC int
4720 xlog_unpack_data(
4721 struct xlog_rec_header *rhead,
4722 char *dp,
4723 struct xlog *log)
4724 {
4725 int i, j, k;
4726
4727 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4728 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4729 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4730 dp += BBSIZE;
4731 }
4732
4733 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4734 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4735 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4736 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4737 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4738 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4739 dp += BBSIZE;
4740 }
4741 }
4742
4743 return 0;
4744 }
4745
4746 /*
4747 * CRC check, unpack and process a log record.
4748 */
4749 STATIC int
4750 xlog_recover_process(
4751 struct xlog *log,
4752 struct hlist_head rhash[],
4753 struct xlog_rec_header *rhead,
4754 char *dp,
4755 int pass,
4756 struct list_head *buffer_list)
4757 {
4758 int error;
4759 __le32 crc;
4760
4761 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4762
4763 /*
4764 * Nothing else to do if this is a CRC verification pass. Just return
4765 * if this a record with a non-zero crc. Unfortunately, mkfs always
4766 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4767 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4768 * know precisely what failed.
4769 */
4770 if (pass == XLOG_RECOVER_CRCPASS) {
4771 if (rhead->h_crc && crc != rhead->h_crc)
4772 return -EFSBADCRC;
4773 return 0;
4774 }
4775
4776 /*
4777 * We're in the normal recovery path. Issue a warning if and only if the
4778 * CRC in the header is non-zero. This is an advisory warning and the
4779 * zero CRC check prevents warnings from being emitted when upgrading
4780 * the kernel from one that does not add CRCs by default.
4781 */
4782 if (crc != rhead->h_crc) {
4783 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4784 xfs_alert(log->l_mp,
4785 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4786 le32_to_cpu(rhead->h_crc),
4787 le32_to_cpu(crc));
4788 xfs_hex_dump(dp, 32);
4789 }
4790
4791 /*
4792 * If the filesystem is CRC enabled, this mismatch becomes a
4793 * fatal log corruption failure.
4794 */
4795 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4796 return -EFSCORRUPTED;
4797 }
4798
4799 error = xlog_unpack_data(rhead, dp, log);
4800 if (error)
4801 return error;
4802
4803 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
4804 buffer_list);
4805 }
4806
4807 STATIC int
4808 xlog_valid_rec_header(
4809 struct xlog *log,
4810 struct xlog_rec_header *rhead,
4811 xfs_daddr_t blkno)
4812 {
4813 int hlen;
4814
4815 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4816 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4817 XFS_ERRLEVEL_LOW, log->l_mp);
4818 return -EFSCORRUPTED;
4819 }
4820 if (unlikely(
4821 (!rhead->h_version ||
4822 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4823 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4824 __func__, be32_to_cpu(rhead->h_version));
4825 return -EIO;
4826 }
4827
4828 /* LR body must have data or it wouldn't have been written */
4829 hlen = be32_to_cpu(rhead->h_len);
4830 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4831 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4832 XFS_ERRLEVEL_LOW, log->l_mp);
4833 return -EFSCORRUPTED;
4834 }
4835 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4836 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4837 XFS_ERRLEVEL_LOW, log->l_mp);
4838 return -EFSCORRUPTED;
4839 }
4840 return 0;
4841 }
4842
4843 /*
4844 * Read the log from tail to head and process the log records found.
4845 * Handle the two cases where the tail and head are in the same cycle
4846 * and where the active portion of the log wraps around the end of
4847 * the physical log separately. The pass parameter is passed through
4848 * to the routines called to process the data and is not looked at
4849 * here.
4850 */
4851 STATIC int
4852 xlog_do_recovery_pass(
4853 struct xlog *log,
4854 xfs_daddr_t head_blk,
4855 xfs_daddr_t tail_blk,
4856 int pass,
4857 xfs_daddr_t *first_bad) /* out: first bad log rec */
4858 {
4859 xlog_rec_header_t *rhead;
4860 xfs_daddr_t blk_no;
4861 xfs_daddr_t rhead_blk;
4862 char *offset;
4863 xfs_buf_t *hbp, *dbp;
4864 int error = 0, h_size, h_len;
4865 int error2 = 0;
4866 int bblks, split_bblks;
4867 int hblks, split_hblks, wrapped_hblks;
4868 struct hlist_head rhash[XLOG_RHASH_SIZE];
4869 LIST_HEAD (buffer_list);
4870
4871 ASSERT(head_blk != tail_blk);
4872 rhead_blk = 0;
4873
4874 /*
4875 * Read the header of the tail block and get the iclog buffer size from
4876 * h_size. Use this to tell how many sectors make up the log header.
4877 */
4878 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4879 /*
4880 * When using variable length iclogs, read first sector of
4881 * iclog header and extract the header size from it. Get a
4882 * new hbp that is the correct size.
4883 */
4884 hbp = xlog_get_bp(log, 1);
4885 if (!hbp)
4886 return -ENOMEM;
4887
4888 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4889 if (error)
4890 goto bread_err1;
4891
4892 rhead = (xlog_rec_header_t *)offset;
4893 error = xlog_valid_rec_header(log, rhead, tail_blk);
4894 if (error)
4895 goto bread_err1;
4896
4897 /*
4898 * xfsprogs has a bug where record length is based on lsunit but
4899 * h_size (iclog size) is hardcoded to 32k. Now that we
4900 * unconditionally CRC verify the unmount record, this means the
4901 * log buffer can be too small for the record and cause an
4902 * overrun.
4903 *
4904 * Detect this condition here. Use lsunit for the buffer size as
4905 * long as this looks like the mkfs case. Otherwise, return an
4906 * error to avoid a buffer overrun.
4907 */
4908 h_size = be32_to_cpu(rhead->h_size);
4909 h_len = be32_to_cpu(rhead->h_len);
4910 if (h_len > h_size) {
4911 if (h_len <= log->l_mp->m_logbsize &&
4912 be32_to_cpu(rhead->h_num_logops) == 1) {
4913 xfs_warn(log->l_mp,
4914 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4915 h_size, log->l_mp->m_logbsize);
4916 h_size = log->l_mp->m_logbsize;
4917 } else
4918 return -EFSCORRUPTED;
4919 }
4920
4921 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4922 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4923 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4924 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4925 hblks++;
4926 xlog_put_bp(hbp);
4927 hbp = xlog_get_bp(log, hblks);
4928 } else {
4929 hblks = 1;
4930 }
4931 } else {
4932 ASSERT(log->l_sectBBsize == 1);
4933 hblks = 1;
4934 hbp = xlog_get_bp(log, 1);
4935 h_size = XLOG_BIG_RECORD_BSIZE;
4936 }
4937
4938 if (!hbp)
4939 return -ENOMEM;
4940 dbp = xlog_get_bp(log, BTOBB(h_size));
4941 if (!dbp) {
4942 xlog_put_bp(hbp);
4943 return -ENOMEM;
4944 }
4945
4946 memset(rhash, 0, sizeof(rhash));
4947 blk_no = rhead_blk = tail_blk;
4948 if (tail_blk > head_blk) {
4949 /*
4950 * Perform recovery around the end of the physical log.
4951 * When the head is not on the same cycle number as the tail,
4952 * we can't do a sequential recovery.
4953 */
4954 while (blk_no < log->l_logBBsize) {
4955 /*
4956 * Check for header wrapping around physical end-of-log
4957 */
4958 offset = hbp->b_addr;
4959 split_hblks = 0;
4960 wrapped_hblks = 0;
4961 if (blk_no + hblks <= log->l_logBBsize) {
4962 /* Read header in one read */
4963 error = xlog_bread(log, blk_no, hblks, hbp,
4964 &offset);
4965 if (error)
4966 goto bread_err2;
4967 } else {
4968 /* This LR is split across physical log end */
4969 if (blk_no != log->l_logBBsize) {
4970 /* some data before physical log end */
4971 ASSERT(blk_no <= INT_MAX);
4972 split_hblks = log->l_logBBsize - (int)blk_no;
4973 ASSERT(split_hblks > 0);
4974 error = xlog_bread(log, blk_no,
4975 split_hblks, hbp,
4976 &offset);
4977 if (error)
4978 goto bread_err2;
4979 }
4980
4981 /*
4982 * Note: this black magic still works with
4983 * large sector sizes (non-512) only because:
4984 * - we increased the buffer size originally
4985 * by 1 sector giving us enough extra space
4986 * for the second read;
4987 * - the log start is guaranteed to be sector
4988 * aligned;
4989 * - we read the log end (LR header start)
4990 * _first_, then the log start (LR header end)
4991 * - order is important.
4992 */
4993 wrapped_hblks = hblks - split_hblks;
4994 error = xlog_bread_offset(log, 0,
4995 wrapped_hblks, hbp,
4996 offset + BBTOB(split_hblks));
4997 if (error)
4998 goto bread_err2;
4999 }
5000 rhead = (xlog_rec_header_t *)offset;
5001 error = xlog_valid_rec_header(log, rhead,
5002 split_hblks ? blk_no : 0);
5003 if (error)
5004 goto bread_err2;
5005
5006 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5007 blk_no += hblks;
5008
5009 /* Read in data for log record */
5010 if (blk_no + bblks <= log->l_logBBsize) {
5011 error = xlog_bread(log, blk_no, bblks, dbp,
5012 &offset);
5013 if (error)
5014 goto bread_err2;
5015 } else {
5016 /* This log record is split across the
5017 * physical end of log */
5018 offset = dbp->b_addr;
5019 split_bblks = 0;
5020 if (blk_no != log->l_logBBsize) {
5021 /* some data is before the physical
5022 * end of log */
5023 ASSERT(!wrapped_hblks);
5024 ASSERT(blk_no <= INT_MAX);
5025 split_bblks =
5026 log->l_logBBsize - (int)blk_no;
5027 ASSERT(split_bblks > 0);
5028 error = xlog_bread(log, blk_no,
5029 split_bblks, dbp,
5030 &offset);
5031 if (error)
5032 goto bread_err2;
5033 }
5034
5035 /*
5036 * Note: this black magic still works with
5037 * large sector sizes (non-512) only because:
5038 * - we increased the buffer size originally
5039 * by 1 sector giving us enough extra space
5040 * for the second read;
5041 * - the log start is guaranteed to be sector
5042 * aligned;
5043 * - we read the log end (LR header start)
5044 * _first_, then the log start (LR header end)
5045 * - order is important.
5046 */
5047 error = xlog_bread_offset(log, 0,
5048 bblks - split_bblks, dbp,
5049 offset + BBTOB(split_bblks));
5050 if (error)
5051 goto bread_err2;
5052 }
5053
5054 error = xlog_recover_process(log, rhash, rhead, offset,
5055 pass, &buffer_list);
5056 if (error)
5057 goto bread_err2;
5058
5059 blk_no += bblks;
5060 rhead_blk = blk_no;
5061 }
5062
5063 ASSERT(blk_no >= log->l_logBBsize);
5064 blk_no -= log->l_logBBsize;
5065 rhead_blk = blk_no;
5066 }
5067
5068 /* read first part of physical log */
5069 while (blk_no < head_blk) {
5070 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5071 if (error)
5072 goto bread_err2;
5073
5074 rhead = (xlog_rec_header_t *)offset;
5075 error = xlog_valid_rec_header(log, rhead, blk_no);
5076 if (error)
5077 goto bread_err2;
5078
5079 /* blocks in data section */
5080 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5081 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5082 &offset);
5083 if (error)
5084 goto bread_err2;
5085
5086 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5087 &buffer_list);
5088 if (error)
5089 goto bread_err2;
5090
5091 blk_no += bblks + hblks;
5092 rhead_blk = blk_no;
5093 }
5094
5095 bread_err2:
5096 xlog_put_bp(dbp);
5097 bread_err1:
5098 xlog_put_bp(hbp);
5099
5100 /*
5101 * Submit buffers that have been added from the last record processed,
5102 * regardless of error status.
5103 */
5104 if (!list_empty(&buffer_list))
5105 error2 = xfs_buf_delwri_submit(&buffer_list);
5106
5107 if (error && first_bad)
5108 *first_bad = rhead_blk;
5109
5110 return error ? error : error2;
5111 }
5112
5113 /*
5114 * Do the recovery of the log. We actually do this in two phases.
5115 * The two passes are necessary in order to implement the function
5116 * of cancelling a record written into the log. The first pass
5117 * determines those things which have been cancelled, and the
5118 * second pass replays log items normally except for those which
5119 * have been cancelled. The handling of the replay and cancellations
5120 * takes place in the log item type specific routines.
5121 *
5122 * The table of items which have cancel records in the log is allocated
5123 * and freed at this level, since only here do we know when all of
5124 * the log recovery has been completed.
5125 */
5126 STATIC int
5127 xlog_do_log_recovery(
5128 struct xlog *log,
5129 xfs_daddr_t head_blk,
5130 xfs_daddr_t tail_blk)
5131 {
5132 int error, i;
5133
5134 ASSERT(head_blk != tail_blk);
5135
5136 /*
5137 * First do a pass to find all of the cancelled buf log items.
5138 * Store them in the buf_cancel_table for use in the second pass.
5139 */
5140 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5141 sizeof(struct list_head),
5142 KM_SLEEP);
5143 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5144 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5145
5146 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5147 XLOG_RECOVER_PASS1, NULL);
5148 if (error != 0) {
5149 kmem_free(log->l_buf_cancel_table);
5150 log->l_buf_cancel_table = NULL;
5151 return error;
5152 }
5153 /*
5154 * Then do a second pass to actually recover the items in the log.
5155 * When it is complete free the table of buf cancel items.
5156 */
5157 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5158 XLOG_RECOVER_PASS2, NULL);
5159 #ifdef DEBUG
5160 if (!error) {
5161 int i;
5162
5163 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5164 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5165 }
5166 #endif /* DEBUG */
5167
5168 kmem_free(log->l_buf_cancel_table);
5169 log->l_buf_cancel_table = NULL;
5170
5171 return error;
5172 }
5173
5174 /*
5175 * Do the actual recovery
5176 */
5177 STATIC int
5178 xlog_do_recover(
5179 struct xlog *log,
5180 xfs_daddr_t head_blk,
5181 xfs_daddr_t tail_blk)
5182 {
5183 struct xfs_mount *mp = log->l_mp;
5184 int error;
5185 xfs_buf_t *bp;
5186 xfs_sb_t *sbp;
5187
5188 /*
5189 * First replay the images in the log.
5190 */
5191 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5192 if (error)
5193 return error;
5194
5195 /*
5196 * If IO errors happened during recovery, bail out.
5197 */
5198 if (XFS_FORCED_SHUTDOWN(mp)) {
5199 return -EIO;
5200 }
5201
5202 /*
5203 * We now update the tail_lsn since much of the recovery has completed
5204 * and there may be space available to use. If there were no extent
5205 * or iunlinks, we can free up the entire log and set the tail_lsn to
5206 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5207 * lsn of the last known good LR on disk. If there are extent frees
5208 * or iunlinks they will have some entries in the AIL; so we look at
5209 * the AIL to determine how to set the tail_lsn.
5210 */
5211 xlog_assign_tail_lsn(mp);
5212
5213 /*
5214 * Now that we've finished replaying all buffer and inode
5215 * updates, re-read in the superblock and reverify it.
5216 */
5217 bp = xfs_getsb(mp, 0);
5218 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5219 ASSERT(!(bp->b_flags & XBF_WRITE));
5220 bp->b_flags |= XBF_READ;
5221 bp->b_ops = &xfs_sb_buf_ops;
5222
5223 error = xfs_buf_submit_wait(bp);
5224 if (error) {
5225 if (!XFS_FORCED_SHUTDOWN(mp)) {
5226 xfs_buf_ioerror_alert(bp, __func__);
5227 ASSERT(0);
5228 }
5229 xfs_buf_relse(bp);
5230 return error;
5231 }
5232
5233 /* Convert superblock from on-disk format */
5234 sbp = &mp->m_sb;
5235 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5236 xfs_buf_relse(bp);
5237
5238 /* re-initialise in-core superblock and geometry structures */
5239 xfs_reinit_percpu_counters(mp);
5240 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5241 if (error) {
5242 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5243 return error;
5244 }
5245 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5246
5247 xlog_recover_check_summary(log);
5248
5249 /* Normal transactions can now occur */
5250 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5251 return 0;
5252 }
5253
5254 /*
5255 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5256 *
5257 * Return error or zero.
5258 */
5259 int
5260 xlog_recover(
5261 struct xlog *log)
5262 {
5263 xfs_daddr_t head_blk, tail_blk;
5264 int error;
5265
5266 /* find the tail of the log */
5267 error = xlog_find_tail(log, &head_blk, &tail_blk);
5268 if (error)
5269 return error;
5270
5271 /*
5272 * The superblock was read before the log was available and thus the LSN
5273 * could not be verified. Check the superblock LSN against the current
5274 * LSN now that it's known.
5275 */
5276 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5277 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5278 return -EINVAL;
5279
5280 if (tail_blk != head_blk) {
5281 /* There used to be a comment here:
5282 *
5283 * disallow recovery on read-only mounts. note -- mount
5284 * checks for ENOSPC and turns it into an intelligent
5285 * error message.
5286 * ...but this is no longer true. Now, unless you specify
5287 * NORECOVERY (in which case this function would never be
5288 * called), we just go ahead and recover. We do this all
5289 * under the vfs layer, so we can get away with it unless
5290 * the device itself is read-only, in which case we fail.
5291 */
5292 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5293 return error;
5294 }
5295
5296 /*
5297 * Version 5 superblock log feature mask validation. We know the
5298 * log is dirty so check if there are any unknown log features
5299 * in what we need to recover. If there are unknown features
5300 * (e.g. unsupported transactions, then simply reject the
5301 * attempt at recovery before touching anything.
5302 */
5303 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5304 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5305 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5306 xfs_warn(log->l_mp,
5307 "Superblock has unknown incompatible log features (0x%x) enabled.",
5308 (log->l_mp->m_sb.sb_features_log_incompat &
5309 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5310 xfs_warn(log->l_mp,
5311 "The log can not be fully and/or safely recovered by this kernel.");
5312 xfs_warn(log->l_mp,
5313 "Please recover the log on a kernel that supports the unknown features.");
5314 return -EINVAL;
5315 }
5316
5317 /*
5318 * Delay log recovery if the debug hook is set. This is debug
5319 * instrumention to coordinate simulation of I/O failures with
5320 * log recovery.
5321 */
5322 if (xfs_globals.log_recovery_delay) {
5323 xfs_notice(log->l_mp,
5324 "Delaying log recovery for %d seconds.",
5325 xfs_globals.log_recovery_delay);
5326 msleep(xfs_globals.log_recovery_delay * 1000);
5327 }
5328
5329 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5330 log->l_mp->m_logname ? log->l_mp->m_logname
5331 : "internal");
5332
5333 error = xlog_do_recover(log, head_blk, tail_blk);
5334 log->l_flags |= XLOG_RECOVERY_NEEDED;
5335 }
5336 return error;
5337 }
5338
5339 /*
5340 * In the first part of recovery we replay inodes and buffers and build
5341 * up the list of extent free items which need to be processed. Here
5342 * we process the extent free items and clean up the on disk unlinked
5343 * inode lists. This is separated from the first part of recovery so
5344 * that the root and real-time bitmap inodes can be read in from disk in
5345 * between the two stages. This is necessary so that we can free space
5346 * in the real-time portion of the file system.
5347 */
5348 int
5349 xlog_recover_finish(
5350 struct xlog *log)
5351 {
5352 /*
5353 * Now we're ready to do the transactions needed for the
5354 * rest of recovery. Start with completing all the extent
5355 * free intent records and then process the unlinked inode
5356 * lists. At this point, we essentially run in normal mode
5357 * except that we're still performing recovery actions
5358 * rather than accepting new requests.
5359 */
5360 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5361 int error;
5362 error = xlog_recover_process_intents(log);
5363 if (error) {
5364 xfs_alert(log->l_mp, "Failed to recover intents");
5365 return error;
5366 }
5367
5368 /*
5369 * Sync the log to get all the intents out of the AIL.
5370 * This isn't absolutely necessary, but it helps in
5371 * case the unlink transactions would have problems
5372 * pushing the intents out of the way.
5373 */
5374 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5375
5376 xlog_recover_process_iunlinks(log);
5377
5378 xlog_recover_check_summary(log);
5379
5380 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5381 log->l_mp->m_logname ? log->l_mp->m_logname
5382 : "internal");
5383 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5384 } else {
5385 xfs_info(log->l_mp, "Ending clean mount");
5386 }
5387 return 0;
5388 }
5389
5390 int
5391 xlog_recover_cancel(
5392 struct xlog *log)
5393 {
5394 int error = 0;
5395
5396 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5397 error = xlog_recover_cancel_intents(log);
5398
5399 return error;
5400 }
5401
5402 #if defined(DEBUG)
5403 /*
5404 * Read all of the agf and agi counters and check that they
5405 * are consistent with the superblock counters.
5406 */
5407 void
5408 xlog_recover_check_summary(
5409 struct xlog *log)
5410 {
5411 xfs_mount_t *mp;
5412 xfs_agf_t *agfp;
5413 xfs_buf_t *agfbp;
5414 xfs_buf_t *agibp;
5415 xfs_agnumber_t agno;
5416 __uint64_t freeblks;
5417 __uint64_t itotal;
5418 __uint64_t ifree;
5419 int error;
5420
5421 mp = log->l_mp;
5422
5423 freeblks = 0LL;
5424 itotal = 0LL;
5425 ifree = 0LL;
5426 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5427 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5428 if (error) {
5429 xfs_alert(mp, "%s agf read failed agno %d error %d",
5430 __func__, agno, error);
5431 } else {
5432 agfp = XFS_BUF_TO_AGF(agfbp);
5433 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5434 be32_to_cpu(agfp->agf_flcount);
5435 xfs_buf_relse(agfbp);
5436 }
5437
5438 error = xfs_read_agi(mp, NULL, agno, &agibp);
5439 if (error) {
5440 xfs_alert(mp, "%s agi read failed agno %d error %d",
5441 __func__, agno, error);
5442 } else {
5443 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5444
5445 itotal += be32_to_cpu(agi->agi_count);
5446 ifree += be32_to_cpu(agi->agi_freecount);
5447 xfs_buf_relse(agibp);
5448 }
5449 }
5450 }
5451 #endif /* DEBUG */