]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_log_recover.c
xfs: log recovery should replay deferred ops in order
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_error.h"
46 #include "xfs_dir2.h"
47 #include "xfs_rmap_item.h"
48 #include "xfs_buf_item.h"
49 #include "xfs_refcount_item.h"
50 #include "xfs_bmap_item.h"
51
52 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
53
54 STATIC int
55 xlog_find_zeroed(
56 struct xlog *,
57 xfs_daddr_t *);
58 STATIC int
59 xlog_clear_stale_blocks(
60 struct xlog *,
61 xfs_lsn_t);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_recover_check_summary(
65 struct xlog *);
66 #else
67 #define xlog_recover_check_summary(log)
68 #endif
69 STATIC int
70 xlog_do_recovery_pass(
71 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
72
73 /*
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
76 */
77 struct xfs_buf_cancel {
78 xfs_daddr_t bc_blkno;
79 uint bc_len;
80 int bc_refcount;
81 struct list_head bc_list;
82 };
83
84 /*
85 * Sector aligned buffer routines for buffer create/read/write/access
86 */
87
88 /*
89 * Verify the log-relative block number and length in basic blocks are valid for
90 * an operation involving the given XFS log buffer. Returns true if the fields
91 * are valid, false otherwise.
92 */
93 static inline bool
94 xlog_verify_bp(
95 struct xlog *log,
96 xfs_daddr_t blk_no,
97 int bbcount)
98 {
99 if (blk_no < 0 || blk_no >= log->l_logBBsize)
100 return false;
101 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
102 return false;
103 return true;
104 }
105
106 /*
107 * Allocate a buffer to hold log data. The buffer needs to be able
108 * to map to a range of nbblks basic blocks at any valid (basic
109 * block) offset within the log.
110 */
111 STATIC xfs_buf_t *
112 xlog_get_bp(
113 struct xlog *log,
114 int nbblks)
115 {
116 struct xfs_buf *bp;
117
118 /*
119 * Pass log block 0 since we don't have an addr yet, buffer will be
120 * verified on read.
121 */
122 if (!xlog_verify_bp(log, 0, nbblks)) {
123 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
124 nbblks);
125 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
126 return NULL;
127 }
128
129 /*
130 * We do log I/O in units of log sectors (a power-of-2
131 * multiple of the basic block size), so we round up the
132 * requested size to accommodate the basic blocks required
133 * for complete log sectors.
134 *
135 * In addition, the buffer may be used for a non-sector-
136 * aligned block offset, in which case an I/O of the
137 * requested size could extend beyond the end of the
138 * buffer. If the requested size is only 1 basic block it
139 * will never straddle a sector boundary, so this won't be
140 * an issue. Nor will this be a problem if the log I/O is
141 * done in basic blocks (sector size 1). But otherwise we
142 * extend the buffer by one extra log sector to ensure
143 * there's space to accommodate this possibility.
144 */
145 if (nbblks > 1 && log->l_sectBBsize > 1)
146 nbblks += log->l_sectBBsize;
147 nbblks = round_up(nbblks, log->l_sectBBsize);
148
149 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
150 if (bp)
151 xfs_buf_unlock(bp);
152 return bp;
153 }
154
155 STATIC void
156 xlog_put_bp(
157 xfs_buf_t *bp)
158 {
159 xfs_buf_free(bp);
160 }
161
162 /*
163 * Return the address of the start of the given block number's data
164 * in a log buffer. The buffer covers a log sector-aligned region.
165 */
166 STATIC char *
167 xlog_align(
168 struct xlog *log,
169 xfs_daddr_t blk_no,
170 int nbblks,
171 struct xfs_buf *bp)
172 {
173 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
174
175 ASSERT(offset + nbblks <= bp->b_length);
176 return bp->b_addr + BBTOB(offset);
177 }
178
179
180 /*
181 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
182 */
183 STATIC int
184 xlog_bread_noalign(
185 struct xlog *log,
186 xfs_daddr_t blk_no,
187 int nbblks,
188 struct xfs_buf *bp)
189 {
190 int error;
191
192 if (!xlog_verify_bp(log, blk_no, nbblks)) {
193 xfs_warn(log->l_mp,
194 "Invalid log block/length (0x%llx, 0x%x) for buffer",
195 blk_no, nbblks);
196 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
197 return -EFSCORRUPTED;
198 }
199
200 blk_no = round_down(blk_no, log->l_sectBBsize);
201 nbblks = round_up(nbblks, log->l_sectBBsize);
202
203 ASSERT(nbblks > 0);
204 ASSERT(nbblks <= bp->b_length);
205
206 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
207 bp->b_flags |= XBF_READ;
208 bp->b_io_length = nbblks;
209 bp->b_error = 0;
210
211 error = xfs_buf_submit_wait(bp);
212 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
213 xfs_buf_ioerror_alert(bp, __func__);
214 return error;
215 }
216
217 STATIC int
218 xlog_bread(
219 struct xlog *log,
220 xfs_daddr_t blk_no,
221 int nbblks,
222 struct xfs_buf *bp,
223 char **offset)
224 {
225 int error;
226
227 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
228 if (error)
229 return error;
230
231 *offset = xlog_align(log, blk_no, nbblks, bp);
232 return 0;
233 }
234
235 /*
236 * Read at an offset into the buffer. Returns with the buffer in it's original
237 * state regardless of the result of the read.
238 */
239 STATIC int
240 xlog_bread_offset(
241 struct xlog *log,
242 xfs_daddr_t blk_no, /* block to read from */
243 int nbblks, /* blocks to read */
244 struct xfs_buf *bp,
245 char *offset)
246 {
247 char *orig_offset = bp->b_addr;
248 int orig_len = BBTOB(bp->b_length);
249 int error, error2;
250
251 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
252 if (error)
253 return error;
254
255 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
256
257 /* must reset buffer pointer even on error */
258 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
259 if (error)
260 return error;
261 return error2;
262 }
263
264 /*
265 * Write out the buffer at the given block for the given number of blocks.
266 * The buffer is kept locked across the write and is returned locked.
267 * This can only be used for synchronous log writes.
268 */
269 STATIC int
270 xlog_bwrite(
271 struct xlog *log,
272 xfs_daddr_t blk_no,
273 int nbblks,
274 struct xfs_buf *bp)
275 {
276 int error;
277
278 if (!xlog_verify_bp(log, blk_no, nbblks)) {
279 xfs_warn(log->l_mp,
280 "Invalid log block/length (0x%llx, 0x%x) for buffer",
281 blk_no, nbblks);
282 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
283 return -EFSCORRUPTED;
284 }
285
286 blk_no = round_down(blk_no, log->l_sectBBsize);
287 nbblks = round_up(nbblks, log->l_sectBBsize);
288
289 ASSERT(nbblks > 0);
290 ASSERT(nbblks <= bp->b_length);
291
292 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
293 xfs_buf_hold(bp);
294 xfs_buf_lock(bp);
295 bp->b_io_length = nbblks;
296 bp->b_error = 0;
297
298 error = xfs_bwrite(bp);
299 if (error)
300 xfs_buf_ioerror_alert(bp, __func__);
301 xfs_buf_relse(bp);
302 return error;
303 }
304
305 #ifdef DEBUG
306 /*
307 * dump debug superblock and log record information
308 */
309 STATIC void
310 xlog_header_check_dump(
311 xfs_mount_t *mp,
312 xlog_rec_header_t *head)
313 {
314 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
315 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
316 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
317 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
318 }
319 #else
320 #define xlog_header_check_dump(mp, head)
321 #endif
322
323 /*
324 * check log record header for recovery
325 */
326 STATIC int
327 xlog_header_check_recover(
328 xfs_mount_t *mp,
329 xlog_rec_header_t *head)
330 {
331 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
332
333 /*
334 * IRIX doesn't write the h_fmt field and leaves it zeroed
335 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
336 * a dirty log created in IRIX.
337 */
338 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
339 xfs_warn(mp,
340 "dirty log written in incompatible format - can't recover");
341 xlog_header_check_dump(mp, head);
342 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
343 XFS_ERRLEVEL_HIGH, mp);
344 return -EFSCORRUPTED;
345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
346 xfs_warn(mp,
347 "dirty log entry has mismatched uuid - can't recover");
348 xlog_header_check_dump(mp, head);
349 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
350 XFS_ERRLEVEL_HIGH, mp);
351 return -EFSCORRUPTED;
352 }
353 return 0;
354 }
355
356 /*
357 * read the head block of the log and check the header
358 */
359 STATIC int
360 xlog_header_check_mount(
361 xfs_mount_t *mp,
362 xlog_rec_header_t *head)
363 {
364 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
365
366 if (uuid_is_null(&head->h_fs_uuid)) {
367 /*
368 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
369 * h_fs_uuid is null, we assume this log was last mounted
370 * by IRIX and continue.
371 */
372 xfs_warn(mp, "null uuid in log - IRIX style log");
373 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
374 xfs_warn(mp, "log has mismatched uuid - can't recover");
375 xlog_header_check_dump(mp, head);
376 XFS_ERROR_REPORT("xlog_header_check_mount",
377 XFS_ERRLEVEL_HIGH, mp);
378 return -EFSCORRUPTED;
379 }
380 return 0;
381 }
382
383 STATIC void
384 xlog_recover_iodone(
385 struct xfs_buf *bp)
386 {
387 if (bp->b_error) {
388 /*
389 * We're not going to bother about retrying
390 * this during recovery. One strike!
391 */
392 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
393 xfs_buf_ioerror_alert(bp, __func__);
394 xfs_force_shutdown(bp->b_target->bt_mount,
395 SHUTDOWN_META_IO_ERROR);
396 }
397 }
398
399 /*
400 * On v5 supers, a bli could be attached to update the metadata LSN.
401 * Clean it up.
402 */
403 if (bp->b_fspriv)
404 xfs_buf_item_relse(bp);
405 ASSERT(bp->b_fspriv == NULL);
406
407 bp->b_iodone = NULL;
408 xfs_buf_ioend(bp);
409 }
410
411 /*
412 * This routine finds (to an approximation) the first block in the physical
413 * log which contains the given cycle. It uses a binary search algorithm.
414 * Note that the algorithm can not be perfect because the disk will not
415 * necessarily be perfect.
416 */
417 STATIC int
418 xlog_find_cycle_start(
419 struct xlog *log,
420 struct xfs_buf *bp,
421 xfs_daddr_t first_blk,
422 xfs_daddr_t *last_blk,
423 uint cycle)
424 {
425 char *offset;
426 xfs_daddr_t mid_blk;
427 xfs_daddr_t end_blk;
428 uint mid_cycle;
429 int error;
430
431 end_blk = *last_blk;
432 mid_blk = BLK_AVG(first_blk, end_blk);
433 while (mid_blk != first_blk && mid_blk != end_blk) {
434 error = xlog_bread(log, mid_blk, 1, bp, &offset);
435 if (error)
436 return error;
437 mid_cycle = xlog_get_cycle(offset);
438 if (mid_cycle == cycle)
439 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
440 else
441 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
442 mid_blk = BLK_AVG(first_blk, end_blk);
443 }
444 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
445 (mid_blk == end_blk && mid_blk-1 == first_blk));
446
447 *last_blk = end_blk;
448
449 return 0;
450 }
451
452 /*
453 * Check that a range of blocks does not contain stop_on_cycle_no.
454 * Fill in *new_blk with the block offset where such a block is
455 * found, or with -1 (an invalid block number) if there is no such
456 * block in the range. The scan needs to occur from front to back
457 * and the pointer into the region must be updated since a later
458 * routine will need to perform another test.
459 */
460 STATIC int
461 xlog_find_verify_cycle(
462 struct xlog *log,
463 xfs_daddr_t start_blk,
464 int nbblks,
465 uint stop_on_cycle_no,
466 xfs_daddr_t *new_blk)
467 {
468 xfs_daddr_t i, j;
469 uint cycle;
470 xfs_buf_t *bp;
471 xfs_daddr_t bufblks;
472 char *buf = NULL;
473 int error = 0;
474
475 /*
476 * Greedily allocate a buffer big enough to handle the full
477 * range of basic blocks we'll be examining. If that fails,
478 * try a smaller size. We need to be able to read at least
479 * a log sector, or we're out of luck.
480 */
481 bufblks = 1 << ffs(nbblks);
482 while (bufblks > log->l_logBBsize)
483 bufblks >>= 1;
484 while (!(bp = xlog_get_bp(log, bufblks))) {
485 bufblks >>= 1;
486 if (bufblks < log->l_sectBBsize)
487 return -ENOMEM;
488 }
489
490 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
491 int bcount;
492
493 bcount = min(bufblks, (start_blk + nbblks - i));
494
495 error = xlog_bread(log, i, bcount, bp, &buf);
496 if (error)
497 goto out;
498
499 for (j = 0; j < bcount; j++) {
500 cycle = xlog_get_cycle(buf);
501 if (cycle == stop_on_cycle_no) {
502 *new_blk = i+j;
503 goto out;
504 }
505
506 buf += BBSIZE;
507 }
508 }
509
510 *new_blk = -1;
511
512 out:
513 xlog_put_bp(bp);
514 return error;
515 }
516
517 /*
518 * Potentially backup over partial log record write.
519 *
520 * In the typical case, last_blk is the number of the block directly after
521 * a good log record. Therefore, we subtract one to get the block number
522 * of the last block in the given buffer. extra_bblks contains the number
523 * of blocks we would have read on a previous read. This happens when the
524 * last log record is split over the end of the physical log.
525 *
526 * extra_bblks is the number of blocks potentially verified on a previous
527 * call to this routine.
528 */
529 STATIC int
530 xlog_find_verify_log_record(
531 struct xlog *log,
532 xfs_daddr_t start_blk,
533 xfs_daddr_t *last_blk,
534 int extra_bblks)
535 {
536 xfs_daddr_t i;
537 xfs_buf_t *bp;
538 char *offset = NULL;
539 xlog_rec_header_t *head = NULL;
540 int error = 0;
541 int smallmem = 0;
542 int num_blks = *last_blk - start_blk;
543 int xhdrs;
544
545 ASSERT(start_blk != 0 || *last_blk != start_blk);
546
547 if (!(bp = xlog_get_bp(log, num_blks))) {
548 if (!(bp = xlog_get_bp(log, 1)))
549 return -ENOMEM;
550 smallmem = 1;
551 } else {
552 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
553 if (error)
554 goto out;
555 offset += ((num_blks - 1) << BBSHIFT);
556 }
557
558 for (i = (*last_blk) - 1; i >= 0; i--) {
559 if (i < start_blk) {
560 /* valid log record not found */
561 xfs_warn(log->l_mp,
562 "Log inconsistent (didn't find previous header)");
563 ASSERT(0);
564 error = -EIO;
565 goto out;
566 }
567
568 if (smallmem) {
569 error = xlog_bread(log, i, 1, bp, &offset);
570 if (error)
571 goto out;
572 }
573
574 head = (xlog_rec_header_t *)offset;
575
576 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
577 break;
578
579 if (!smallmem)
580 offset -= BBSIZE;
581 }
582
583 /*
584 * We hit the beginning of the physical log & still no header. Return
585 * to caller. If caller can handle a return of -1, then this routine
586 * will be called again for the end of the physical log.
587 */
588 if (i == -1) {
589 error = 1;
590 goto out;
591 }
592
593 /*
594 * We have the final block of the good log (the first block
595 * of the log record _before_ the head. So we check the uuid.
596 */
597 if ((error = xlog_header_check_mount(log->l_mp, head)))
598 goto out;
599
600 /*
601 * We may have found a log record header before we expected one.
602 * last_blk will be the 1st block # with a given cycle #. We may end
603 * up reading an entire log record. In this case, we don't want to
604 * reset last_blk. Only when last_blk points in the middle of a log
605 * record do we update last_blk.
606 */
607 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
608 uint h_size = be32_to_cpu(head->h_size);
609
610 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
611 if (h_size % XLOG_HEADER_CYCLE_SIZE)
612 xhdrs++;
613 } else {
614 xhdrs = 1;
615 }
616
617 if (*last_blk - i + extra_bblks !=
618 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
619 *last_blk = i;
620
621 out:
622 xlog_put_bp(bp);
623 return error;
624 }
625
626 /*
627 * Head is defined to be the point of the log where the next log write
628 * could go. This means that incomplete LR writes at the end are
629 * eliminated when calculating the head. We aren't guaranteed that previous
630 * LR have complete transactions. We only know that a cycle number of
631 * current cycle number -1 won't be present in the log if we start writing
632 * from our current block number.
633 *
634 * last_blk contains the block number of the first block with a given
635 * cycle number.
636 *
637 * Return: zero if normal, non-zero if error.
638 */
639 STATIC int
640 xlog_find_head(
641 struct xlog *log,
642 xfs_daddr_t *return_head_blk)
643 {
644 xfs_buf_t *bp;
645 char *offset;
646 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
647 int num_scan_bblks;
648 uint first_half_cycle, last_half_cycle;
649 uint stop_on_cycle;
650 int error, log_bbnum = log->l_logBBsize;
651
652 /* Is the end of the log device zeroed? */
653 error = xlog_find_zeroed(log, &first_blk);
654 if (error < 0) {
655 xfs_warn(log->l_mp, "empty log check failed");
656 return error;
657 }
658 if (error == 1) {
659 *return_head_blk = first_blk;
660
661 /* Is the whole lot zeroed? */
662 if (!first_blk) {
663 /* Linux XFS shouldn't generate totally zeroed logs -
664 * mkfs etc write a dummy unmount record to a fresh
665 * log so we can store the uuid in there
666 */
667 xfs_warn(log->l_mp, "totally zeroed log");
668 }
669
670 return 0;
671 }
672
673 first_blk = 0; /* get cycle # of 1st block */
674 bp = xlog_get_bp(log, 1);
675 if (!bp)
676 return -ENOMEM;
677
678 error = xlog_bread(log, 0, 1, bp, &offset);
679 if (error)
680 goto bp_err;
681
682 first_half_cycle = xlog_get_cycle(offset);
683
684 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
685 error = xlog_bread(log, last_blk, 1, bp, &offset);
686 if (error)
687 goto bp_err;
688
689 last_half_cycle = xlog_get_cycle(offset);
690 ASSERT(last_half_cycle != 0);
691
692 /*
693 * If the 1st half cycle number is equal to the last half cycle number,
694 * then the entire log is stamped with the same cycle number. In this
695 * case, head_blk can't be set to zero (which makes sense). The below
696 * math doesn't work out properly with head_blk equal to zero. Instead,
697 * we set it to log_bbnum which is an invalid block number, but this
698 * value makes the math correct. If head_blk doesn't changed through
699 * all the tests below, *head_blk is set to zero at the very end rather
700 * than log_bbnum. In a sense, log_bbnum and zero are the same block
701 * in a circular file.
702 */
703 if (first_half_cycle == last_half_cycle) {
704 /*
705 * In this case we believe that the entire log should have
706 * cycle number last_half_cycle. We need to scan backwards
707 * from the end verifying that there are no holes still
708 * containing last_half_cycle - 1. If we find such a hole,
709 * then the start of that hole will be the new head. The
710 * simple case looks like
711 * x | x ... | x - 1 | x
712 * Another case that fits this picture would be
713 * x | x + 1 | x ... | x
714 * In this case the head really is somewhere at the end of the
715 * log, as one of the latest writes at the beginning was
716 * incomplete.
717 * One more case is
718 * x | x + 1 | x ... | x - 1 | x
719 * This is really the combination of the above two cases, and
720 * the head has to end up at the start of the x-1 hole at the
721 * end of the log.
722 *
723 * In the 256k log case, we will read from the beginning to the
724 * end of the log and search for cycle numbers equal to x-1.
725 * We don't worry about the x+1 blocks that we encounter,
726 * because we know that they cannot be the head since the log
727 * started with x.
728 */
729 head_blk = log_bbnum;
730 stop_on_cycle = last_half_cycle - 1;
731 } else {
732 /*
733 * In this case we want to find the first block with cycle
734 * number matching last_half_cycle. We expect the log to be
735 * some variation on
736 * x + 1 ... | x ... | x
737 * The first block with cycle number x (last_half_cycle) will
738 * be where the new head belongs. First we do a binary search
739 * for the first occurrence of last_half_cycle. The binary
740 * search may not be totally accurate, so then we scan back
741 * from there looking for occurrences of last_half_cycle before
742 * us. If that backwards scan wraps around the beginning of
743 * the log, then we look for occurrences of last_half_cycle - 1
744 * at the end of the log. The cases we're looking for look
745 * like
746 * v binary search stopped here
747 * x + 1 ... | x | x + 1 | x ... | x
748 * ^ but we want to locate this spot
749 * or
750 * <---------> less than scan distance
751 * x + 1 ... | x ... | x - 1 | x
752 * ^ we want to locate this spot
753 */
754 stop_on_cycle = last_half_cycle;
755 if ((error = xlog_find_cycle_start(log, bp, first_blk,
756 &head_blk, last_half_cycle)))
757 goto bp_err;
758 }
759
760 /*
761 * Now validate the answer. Scan back some number of maximum possible
762 * blocks and make sure each one has the expected cycle number. The
763 * maximum is determined by the total possible amount of buffering
764 * in the in-core log. The following number can be made tighter if
765 * we actually look at the block size of the filesystem.
766 */
767 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
768 if (head_blk >= num_scan_bblks) {
769 /*
770 * We are guaranteed that the entire check can be performed
771 * in one buffer.
772 */
773 start_blk = head_blk - num_scan_bblks;
774 if ((error = xlog_find_verify_cycle(log,
775 start_blk, num_scan_bblks,
776 stop_on_cycle, &new_blk)))
777 goto bp_err;
778 if (new_blk != -1)
779 head_blk = new_blk;
780 } else { /* need to read 2 parts of log */
781 /*
782 * We are going to scan backwards in the log in two parts.
783 * First we scan the physical end of the log. In this part
784 * of the log, we are looking for blocks with cycle number
785 * last_half_cycle - 1.
786 * If we find one, then we know that the log starts there, as
787 * we've found a hole that didn't get written in going around
788 * the end of the physical log. The simple case for this is
789 * x + 1 ... | x ... | x - 1 | x
790 * <---------> less than scan distance
791 * If all of the blocks at the end of the log have cycle number
792 * last_half_cycle, then we check the blocks at the start of
793 * the log looking for occurrences of last_half_cycle. If we
794 * find one, then our current estimate for the location of the
795 * first occurrence of last_half_cycle is wrong and we move
796 * back to the hole we've found. This case looks like
797 * x + 1 ... | x | x + 1 | x ...
798 * ^ binary search stopped here
799 * Another case we need to handle that only occurs in 256k
800 * logs is
801 * x + 1 ... | x ... | x+1 | x ...
802 * ^ binary search stops here
803 * In a 256k log, the scan at the end of the log will see the
804 * x + 1 blocks. We need to skip past those since that is
805 * certainly not the head of the log. By searching for
806 * last_half_cycle-1 we accomplish that.
807 */
808 ASSERT(head_blk <= INT_MAX &&
809 (xfs_daddr_t) num_scan_bblks >= head_blk);
810 start_blk = log_bbnum - (num_scan_bblks - head_blk);
811 if ((error = xlog_find_verify_cycle(log, start_blk,
812 num_scan_bblks - (int)head_blk,
813 (stop_on_cycle - 1), &new_blk)))
814 goto bp_err;
815 if (new_blk != -1) {
816 head_blk = new_blk;
817 goto validate_head;
818 }
819
820 /*
821 * Scan beginning of log now. The last part of the physical
822 * log is good. This scan needs to verify that it doesn't find
823 * the last_half_cycle.
824 */
825 start_blk = 0;
826 ASSERT(head_blk <= INT_MAX);
827 if ((error = xlog_find_verify_cycle(log,
828 start_blk, (int)head_blk,
829 stop_on_cycle, &new_blk)))
830 goto bp_err;
831 if (new_blk != -1)
832 head_blk = new_blk;
833 }
834
835 validate_head:
836 /*
837 * Now we need to make sure head_blk is not pointing to a block in
838 * the middle of a log record.
839 */
840 num_scan_bblks = XLOG_REC_SHIFT(log);
841 if (head_blk >= num_scan_bblks) {
842 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
843
844 /* start ptr at last block ptr before head_blk */
845 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
846 if (error == 1)
847 error = -EIO;
848 if (error)
849 goto bp_err;
850 } else {
851 start_blk = 0;
852 ASSERT(head_blk <= INT_MAX);
853 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
854 if (error < 0)
855 goto bp_err;
856 if (error == 1) {
857 /* We hit the beginning of the log during our search */
858 start_blk = log_bbnum - (num_scan_bblks - head_blk);
859 new_blk = log_bbnum;
860 ASSERT(start_blk <= INT_MAX &&
861 (xfs_daddr_t) log_bbnum-start_blk >= 0);
862 ASSERT(head_blk <= INT_MAX);
863 error = xlog_find_verify_log_record(log, start_blk,
864 &new_blk, (int)head_blk);
865 if (error == 1)
866 error = -EIO;
867 if (error)
868 goto bp_err;
869 if (new_blk != log_bbnum)
870 head_blk = new_blk;
871 } else if (error)
872 goto bp_err;
873 }
874
875 xlog_put_bp(bp);
876 if (head_blk == log_bbnum)
877 *return_head_blk = 0;
878 else
879 *return_head_blk = head_blk;
880 /*
881 * When returning here, we have a good block number. Bad block
882 * means that during a previous crash, we didn't have a clean break
883 * from cycle number N to cycle number N-1. In this case, we need
884 * to find the first block with cycle number N-1.
885 */
886 return 0;
887
888 bp_err:
889 xlog_put_bp(bp);
890
891 if (error)
892 xfs_warn(log->l_mp, "failed to find log head");
893 return error;
894 }
895
896 /*
897 * Seek backwards in the log for log record headers.
898 *
899 * Given a starting log block, walk backwards until we find the provided number
900 * of records or hit the provided tail block. The return value is the number of
901 * records encountered or a negative error code. The log block and buffer
902 * pointer of the last record seen are returned in rblk and rhead respectively.
903 */
904 STATIC int
905 xlog_rseek_logrec_hdr(
906 struct xlog *log,
907 xfs_daddr_t head_blk,
908 xfs_daddr_t tail_blk,
909 int count,
910 struct xfs_buf *bp,
911 xfs_daddr_t *rblk,
912 struct xlog_rec_header **rhead,
913 bool *wrapped)
914 {
915 int i;
916 int error;
917 int found = 0;
918 char *offset = NULL;
919 xfs_daddr_t end_blk;
920
921 *wrapped = false;
922
923 /*
924 * Walk backwards from the head block until we hit the tail or the first
925 * block in the log.
926 */
927 end_blk = head_blk > tail_blk ? tail_blk : 0;
928 for (i = (int) head_blk - 1; i >= end_blk; i--) {
929 error = xlog_bread(log, i, 1, bp, &offset);
930 if (error)
931 goto out_error;
932
933 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
934 *rblk = i;
935 *rhead = (struct xlog_rec_header *) offset;
936 if (++found == count)
937 break;
938 }
939 }
940
941 /*
942 * If we haven't hit the tail block or the log record header count,
943 * start looking again from the end of the physical log. Note that
944 * callers can pass head == tail if the tail is not yet known.
945 */
946 if (tail_blk >= head_blk && found != count) {
947 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
948 error = xlog_bread(log, i, 1, bp, &offset);
949 if (error)
950 goto out_error;
951
952 if (*(__be32 *)offset ==
953 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
954 *wrapped = true;
955 *rblk = i;
956 *rhead = (struct xlog_rec_header *) offset;
957 if (++found == count)
958 break;
959 }
960 }
961 }
962
963 return found;
964
965 out_error:
966 return error;
967 }
968
969 /*
970 * Seek forward in the log for log record headers.
971 *
972 * Given head and tail blocks, walk forward from the tail block until we find
973 * the provided number of records or hit the head block. The return value is the
974 * number of records encountered or a negative error code. The log block and
975 * buffer pointer of the last record seen are returned in rblk and rhead
976 * respectively.
977 */
978 STATIC int
979 xlog_seek_logrec_hdr(
980 struct xlog *log,
981 xfs_daddr_t head_blk,
982 xfs_daddr_t tail_blk,
983 int count,
984 struct xfs_buf *bp,
985 xfs_daddr_t *rblk,
986 struct xlog_rec_header **rhead,
987 bool *wrapped)
988 {
989 int i;
990 int error;
991 int found = 0;
992 char *offset = NULL;
993 xfs_daddr_t end_blk;
994
995 *wrapped = false;
996
997 /*
998 * Walk forward from the tail block until we hit the head or the last
999 * block in the log.
1000 */
1001 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
1002 for (i = (int) tail_blk; i <= end_blk; i++) {
1003 error = xlog_bread(log, i, 1, bp, &offset);
1004 if (error)
1005 goto out_error;
1006
1007 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1008 *rblk = i;
1009 *rhead = (struct xlog_rec_header *) offset;
1010 if (++found == count)
1011 break;
1012 }
1013 }
1014
1015 /*
1016 * If we haven't hit the head block or the log record header count,
1017 * start looking again from the start of the physical log.
1018 */
1019 if (tail_blk > head_blk && found != count) {
1020 for (i = 0; i < (int) head_blk; i++) {
1021 error = xlog_bread(log, i, 1, bp, &offset);
1022 if (error)
1023 goto out_error;
1024
1025 if (*(__be32 *)offset ==
1026 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1027 *wrapped = true;
1028 *rblk = i;
1029 *rhead = (struct xlog_rec_header *) offset;
1030 if (++found == count)
1031 break;
1032 }
1033 }
1034 }
1035
1036 return found;
1037
1038 out_error:
1039 return error;
1040 }
1041
1042 /*
1043 * Calculate distance from head to tail (i.e., unused space in the log).
1044 */
1045 static inline int
1046 xlog_tail_distance(
1047 struct xlog *log,
1048 xfs_daddr_t head_blk,
1049 xfs_daddr_t tail_blk)
1050 {
1051 if (head_blk < tail_blk)
1052 return tail_blk - head_blk;
1053
1054 return tail_blk + (log->l_logBBsize - head_blk);
1055 }
1056
1057 /*
1058 * Verify the log tail. This is particularly important when torn or incomplete
1059 * writes have been detected near the front of the log and the head has been
1060 * walked back accordingly.
1061 *
1062 * We also have to handle the case where the tail was pinned and the head
1063 * blocked behind the tail right before a crash. If the tail had been pushed
1064 * immediately prior to the crash and the subsequent checkpoint was only
1065 * partially written, it's possible it overwrote the last referenced tail in the
1066 * log with garbage. This is not a coherency problem because the tail must have
1067 * been pushed before it can be overwritten, but appears as log corruption to
1068 * recovery because we have no way to know the tail was updated if the
1069 * subsequent checkpoint didn't write successfully.
1070 *
1071 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1072 * offending record is within max iclog bufs from the head, walk the tail
1073 * forward and retry until a valid tail is found or corruption is detected out
1074 * of the range of a possible overwrite.
1075 */
1076 STATIC int
1077 xlog_verify_tail(
1078 struct xlog *log,
1079 xfs_daddr_t head_blk,
1080 xfs_daddr_t *tail_blk,
1081 int hsize)
1082 {
1083 struct xlog_rec_header *thead;
1084 struct xfs_buf *bp;
1085 xfs_daddr_t first_bad;
1086 int error = 0;
1087 bool wrapped;
1088 xfs_daddr_t tmp_tail;
1089 xfs_daddr_t orig_tail = *tail_blk;
1090
1091 bp = xlog_get_bp(log, 1);
1092 if (!bp)
1093 return -ENOMEM;
1094
1095 /*
1096 * Make sure the tail points to a record (returns positive count on
1097 * success).
1098 */
1099 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1100 &tmp_tail, &thead, &wrapped);
1101 if (error < 0)
1102 goto out;
1103 if (*tail_blk != tmp_tail)
1104 *tail_blk = tmp_tail;
1105
1106 /*
1107 * Run a CRC check from the tail to the head. We can't just check
1108 * MAX_ICLOGS records past the tail because the tail may point to stale
1109 * blocks cleared during the search for the head/tail. These blocks are
1110 * overwritten with zero-length records and thus record count is not a
1111 * reliable indicator of the iclog state before a crash.
1112 */
1113 first_bad = 0;
1114 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1115 XLOG_RECOVER_CRCPASS, &first_bad);
1116 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1117 int tail_distance;
1118
1119 /*
1120 * Is corruption within range of the head? If so, retry from
1121 * the next record. Otherwise return an error.
1122 */
1123 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1124 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1125 break;
1126
1127 /* skip to the next record; returns positive count on success */
1128 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1129 &tmp_tail, &thead, &wrapped);
1130 if (error < 0)
1131 goto out;
1132
1133 *tail_blk = tmp_tail;
1134 first_bad = 0;
1135 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1136 XLOG_RECOVER_CRCPASS, &first_bad);
1137 }
1138
1139 if (!error && *tail_blk != orig_tail)
1140 xfs_warn(log->l_mp,
1141 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1142 orig_tail, *tail_blk);
1143 out:
1144 xlog_put_bp(bp);
1145 return error;
1146 }
1147
1148 /*
1149 * Detect and trim torn writes from the head of the log.
1150 *
1151 * Storage without sector atomicity guarantees can result in torn writes in the
1152 * log in the event of a crash. Our only means to detect this scenario is via
1153 * CRC verification. While we can't always be certain that CRC verification
1154 * failure is due to a torn write vs. an unrelated corruption, we do know that
1155 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1156 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1157 * the log and treat failures in this range as torn writes as a matter of
1158 * policy. In the event of CRC failure, the head is walked back to the last good
1159 * record in the log and the tail is updated from that record and verified.
1160 */
1161 STATIC int
1162 xlog_verify_head(
1163 struct xlog *log,
1164 xfs_daddr_t *head_blk, /* in/out: unverified head */
1165 xfs_daddr_t *tail_blk, /* out: tail block */
1166 struct xfs_buf *bp,
1167 xfs_daddr_t *rhead_blk, /* start blk of last record */
1168 struct xlog_rec_header **rhead, /* ptr to last record */
1169 bool *wrapped) /* last rec. wraps phys. log */
1170 {
1171 struct xlog_rec_header *tmp_rhead;
1172 struct xfs_buf *tmp_bp;
1173 xfs_daddr_t first_bad;
1174 xfs_daddr_t tmp_rhead_blk;
1175 int found;
1176 int error;
1177 bool tmp_wrapped;
1178
1179 /*
1180 * Check the head of the log for torn writes. Search backwards from the
1181 * head until we hit the tail or the maximum number of log record I/Os
1182 * that could have been in flight at one time. Use a temporary buffer so
1183 * we don't trash the rhead/bp pointers from the caller.
1184 */
1185 tmp_bp = xlog_get_bp(log, 1);
1186 if (!tmp_bp)
1187 return -ENOMEM;
1188 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1189 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1190 &tmp_rhead, &tmp_wrapped);
1191 xlog_put_bp(tmp_bp);
1192 if (error < 0)
1193 return error;
1194
1195 /*
1196 * Now run a CRC verification pass over the records starting at the
1197 * block found above to the current head. If a CRC failure occurs, the
1198 * log block of the first bad record is saved in first_bad.
1199 */
1200 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1201 XLOG_RECOVER_CRCPASS, &first_bad);
1202 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1203 /*
1204 * We've hit a potential torn write. Reset the error and warn
1205 * about it.
1206 */
1207 error = 0;
1208 xfs_warn(log->l_mp,
1209 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1210 first_bad, *head_blk);
1211
1212 /*
1213 * Get the header block and buffer pointer for the last good
1214 * record before the bad record.
1215 *
1216 * Note that xlog_find_tail() clears the blocks at the new head
1217 * (i.e., the records with invalid CRC) if the cycle number
1218 * matches the the current cycle.
1219 */
1220 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1221 rhead_blk, rhead, wrapped);
1222 if (found < 0)
1223 return found;
1224 if (found == 0) /* XXX: right thing to do here? */
1225 return -EIO;
1226
1227 /*
1228 * Reset the head block to the starting block of the first bad
1229 * log record and set the tail block based on the last good
1230 * record.
1231 *
1232 * Bail out if the updated head/tail match as this indicates
1233 * possible corruption outside of the acceptable
1234 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1235 */
1236 *head_blk = first_bad;
1237 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1238 if (*head_blk == *tail_blk) {
1239 ASSERT(0);
1240 return 0;
1241 }
1242 }
1243 if (error)
1244 return error;
1245
1246 return xlog_verify_tail(log, *head_blk, tail_blk,
1247 be32_to_cpu((*rhead)->h_size));
1248 }
1249
1250 /*
1251 * Check whether the head of the log points to an unmount record. In other
1252 * words, determine whether the log is clean. If so, update the in-core state
1253 * appropriately.
1254 */
1255 static int
1256 xlog_check_unmount_rec(
1257 struct xlog *log,
1258 xfs_daddr_t *head_blk,
1259 xfs_daddr_t *tail_blk,
1260 struct xlog_rec_header *rhead,
1261 xfs_daddr_t rhead_blk,
1262 struct xfs_buf *bp,
1263 bool *clean)
1264 {
1265 struct xlog_op_header *op_head;
1266 xfs_daddr_t umount_data_blk;
1267 xfs_daddr_t after_umount_blk;
1268 int hblks;
1269 int error;
1270 char *offset;
1271
1272 *clean = false;
1273
1274 /*
1275 * Look for unmount record. If we find it, then we know there was a
1276 * clean unmount. Since 'i' could be the last block in the physical
1277 * log, we convert to a log block before comparing to the head_blk.
1278 *
1279 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1280 * below. We won't want to clear the unmount record if there is one, so
1281 * we pass the lsn of the unmount record rather than the block after it.
1282 */
1283 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1284 int h_size = be32_to_cpu(rhead->h_size);
1285 int h_version = be32_to_cpu(rhead->h_version);
1286
1287 if ((h_version & XLOG_VERSION_2) &&
1288 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1289 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1290 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1291 hblks++;
1292 } else {
1293 hblks = 1;
1294 }
1295 } else {
1296 hblks = 1;
1297 }
1298 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1299 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1300 if (*head_blk == after_umount_blk &&
1301 be32_to_cpu(rhead->h_num_logops) == 1) {
1302 umount_data_blk = rhead_blk + hblks;
1303 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1304 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1305 if (error)
1306 return error;
1307
1308 op_head = (struct xlog_op_header *)offset;
1309 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1310 /*
1311 * Set tail and last sync so that newly written log
1312 * records will point recovery to after the current
1313 * unmount record.
1314 */
1315 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1316 log->l_curr_cycle, after_umount_blk);
1317 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1318 log->l_curr_cycle, after_umount_blk);
1319 *tail_blk = after_umount_blk;
1320
1321 *clean = true;
1322 }
1323 }
1324
1325 return 0;
1326 }
1327
1328 static void
1329 xlog_set_state(
1330 struct xlog *log,
1331 xfs_daddr_t head_blk,
1332 struct xlog_rec_header *rhead,
1333 xfs_daddr_t rhead_blk,
1334 bool bump_cycle)
1335 {
1336 /*
1337 * Reset log values according to the state of the log when we
1338 * crashed. In the case where head_blk == 0, we bump curr_cycle
1339 * one because the next write starts a new cycle rather than
1340 * continuing the cycle of the last good log record. At this
1341 * point we have guaranteed that all partial log records have been
1342 * accounted for. Therefore, we know that the last good log record
1343 * written was complete and ended exactly on the end boundary
1344 * of the physical log.
1345 */
1346 log->l_prev_block = rhead_blk;
1347 log->l_curr_block = (int)head_blk;
1348 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1349 if (bump_cycle)
1350 log->l_curr_cycle++;
1351 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1352 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1353 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1354 BBTOB(log->l_curr_block));
1355 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1356 BBTOB(log->l_curr_block));
1357 }
1358
1359 /*
1360 * Find the sync block number or the tail of the log.
1361 *
1362 * This will be the block number of the last record to have its
1363 * associated buffers synced to disk. Every log record header has
1364 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1365 * to get a sync block number. The only concern is to figure out which
1366 * log record header to believe.
1367 *
1368 * The following algorithm uses the log record header with the largest
1369 * lsn. The entire log record does not need to be valid. We only care
1370 * that the header is valid.
1371 *
1372 * We could speed up search by using current head_blk buffer, but it is not
1373 * available.
1374 */
1375 STATIC int
1376 xlog_find_tail(
1377 struct xlog *log,
1378 xfs_daddr_t *head_blk,
1379 xfs_daddr_t *tail_blk)
1380 {
1381 xlog_rec_header_t *rhead;
1382 char *offset = NULL;
1383 xfs_buf_t *bp;
1384 int error;
1385 xfs_daddr_t rhead_blk;
1386 xfs_lsn_t tail_lsn;
1387 bool wrapped = false;
1388 bool clean = false;
1389
1390 /*
1391 * Find previous log record
1392 */
1393 if ((error = xlog_find_head(log, head_blk)))
1394 return error;
1395 ASSERT(*head_blk < INT_MAX);
1396
1397 bp = xlog_get_bp(log, 1);
1398 if (!bp)
1399 return -ENOMEM;
1400 if (*head_blk == 0) { /* special case */
1401 error = xlog_bread(log, 0, 1, bp, &offset);
1402 if (error)
1403 goto done;
1404
1405 if (xlog_get_cycle(offset) == 0) {
1406 *tail_blk = 0;
1407 /* leave all other log inited values alone */
1408 goto done;
1409 }
1410 }
1411
1412 /*
1413 * Search backwards through the log looking for the log record header
1414 * block. This wraps all the way back around to the head so something is
1415 * seriously wrong if we can't find it.
1416 */
1417 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1418 &rhead_blk, &rhead, &wrapped);
1419 if (error < 0)
1420 return error;
1421 if (!error) {
1422 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1423 return -EIO;
1424 }
1425 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1426
1427 /*
1428 * Set the log state based on the current head record.
1429 */
1430 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1431 tail_lsn = atomic64_read(&log->l_tail_lsn);
1432
1433 /*
1434 * Look for an unmount record at the head of the log. This sets the log
1435 * state to determine whether recovery is necessary.
1436 */
1437 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1438 rhead_blk, bp, &clean);
1439 if (error)
1440 goto done;
1441
1442 /*
1443 * Verify the log head if the log is not clean (e.g., we have anything
1444 * but an unmount record at the head). This uses CRC verification to
1445 * detect and trim torn writes. If discovered, CRC failures are
1446 * considered torn writes and the log head is trimmed accordingly.
1447 *
1448 * Note that we can only run CRC verification when the log is dirty
1449 * because there's no guarantee that the log data behind an unmount
1450 * record is compatible with the current architecture.
1451 */
1452 if (!clean) {
1453 xfs_daddr_t orig_head = *head_blk;
1454
1455 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1456 &rhead_blk, &rhead, &wrapped);
1457 if (error)
1458 goto done;
1459
1460 /* update in-core state again if the head changed */
1461 if (*head_blk != orig_head) {
1462 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1463 wrapped);
1464 tail_lsn = atomic64_read(&log->l_tail_lsn);
1465 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1466 rhead, rhead_blk, bp,
1467 &clean);
1468 if (error)
1469 goto done;
1470 }
1471 }
1472
1473 /*
1474 * Note that the unmount was clean. If the unmount was not clean, we
1475 * need to know this to rebuild the superblock counters from the perag
1476 * headers if we have a filesystem using non-persistent counters.
1477 */
1478 if (clean)
1479 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1480
1481 /*
1482 * Make sure that there are no blocks in front of the head
1483 * with the same cycle number as the head. This can happen
1484 * because we allow multiple outstanding log writes concurrently,
1485 * and the later writes might make it out before earlier ones.
1486 *
1487 * We use the lsn from before modifying it so that we'll never
1488 * overwrite the unmount record after a clean unmount.
1489 *
1490 * Do this only if we are going to recover the filesystem
1491 *
1492 * NOTE: This used to say "if (!readonly)"
1493 * However on Linux, we can & do recover a read-only filesystem.
1494 * We only skip recovery if NORECOVERY is specified on mount,
1495 * in which case we would not be here.
1496 *
1497 * But... if the -device- itself is readonly, just skip this.
1498 * We can't recover this device anyway, so it won't matter.
1499 */
1500 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1501 error = xlog_clear_stale_blocks(log, tail_lsn);
1502
1503 done:
1504 xlog_put_bp(bp);
1505
1506 if (error)
1507 xfs_warn(log->l_mp, "failed to locate log tail");
1508 return error;
1509 }
1510
1511 /*
1512 * Is the log zeroed at all?
1513 *
1514 * The last binary search should be changed to perform an X block read
1515 * once X becomes small enough. You can then search linearly through
1516 * the X blocks. This will cut down on the number of reads we need to do.
1517 *
1518 * If the log is partially zeroed, this routine will pass back the blkno
1519 * of the first block with cycle number 0. It won't have a complete LR
1520 * preceding it.
1521 *
1522 * Return:
1523 * 0 => the log is completely written to
1524 * 1 => use *blk_no as the first block of the log
1525 * <0 => error has occurred
1526 */
1527 STATIC int
1528 xlog_find_zeroed(
1529 struct xlog *log,
1530 xfs_daddr_t *blk_no)
1531 {
1532 xfs_buf_t *bp;
1533 char *offset;
1534 uint first_cycle, last_cycle;
1535 xfs_daddr_t new_blk, last_blk, start_blk;
1536 xfs_daddr_t num_scan_bblks;
1537 int error, log_bbnum = log->l_logBBsize;
1538
1539 *blk_no = 0;
1540
1541 /* check totally zeroed log */
1542 bp = xlog_get_bp(log, 1);
1543 if (!bp)
1544 return -ENOMEM;
1545 error = xlog_bread(log, 0, 1, bp, &offset);
1546 if (error)
1547 goto bp_err;
1548
1549 first_cycle = xlog_get_cycle(offset);
1550 if (first_cycle == 0) { /* completely zeroed log */
1551 *blk_no = 0;
1552 xlog_put_bp(bp);
1553 return 1;
1554 }
1555
1556 /* check partially zeroed log */
1557 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1558 if (error)
1559 goto bp_err;
1560
1561 last_cycle = xlog_get_cycle(offset);
1562 if (last_cycle != 0) { /* log completely written to */
1563 xlog_put_bp(bp);
1564 return 0;
1565 } else if (first_cycle != 1) {
1566 /*
1567 * If the cycle of the last block is zero, the cycle of
1568 * the first block must be 1. If it's not, maybe we're
1569 * not looking at a log... Bail out.
1570 */
1571 xfs_warn(log->l_mp,
1572 "Log inconsistent or not a log (last==0, first!=1)");
1573 error = -EINVAL;
1574 goto bp_err;
1575 }
1576
1577 /* we have a partially zeroed log */
1578 last_blk = log_bbnum-1;
1579 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1580 goto bp_err;
1581
1582 /*
1583 * Validate the answer. Because there is no way to guarantee that
1584 * the entire log is made up of log records which are the same size,
1585 * we scan over the defined maximum blocks. At this point, the maximum
1586 * is not chosen to mean anything special. XXXmiken
1587 */
1588 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1589 ASSERT(num_scan_bblks <= INT_MAX);
1590
1591 if (last_blk < num_scan_bblks)
1592 num_scan_bblks = last_blk;
1593 start_blk = last_blk - num_scan_bblks;
1594
1595 /*
1596 * We search for any instances of cycle number 0 that occur before
1597 * our current estimate of the head. What we're trying to detect is
1598 * 1 ... | 0 | 1 | 0...
1599 * ^ binary search ends here
1600 */
1601 if ((error = xlog_find_verify_cycle(log, start_blk,
1602 (int)num_scan_bblks, 0, &new_blk)))
1603 goto bp_err;
1604 if (new_blk != -1)
1605 last_blk = new_blk;
1606
1607 /*
1608 * Potentially backup over partial log record write. We don't need
1609 * to search the end of the log because we know it is zero.
1610 */
1611 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1612 if (error == 1)
1613 error = -EIO;
1614 if (error)
1615 goto bp_err;
1616
1617 *blk_no = last_blk;
1618 bp_err:
1619 xlog_put_bp(bp);
1620 if (error)
1621 return error;
1622 return 1;
1623 }
1624
1625 /*
1626 * These are simple subroutines used by xlog_clear_stale_blocks() below
1627 * to initialize a buffer full of empty log record headers and write
1628 * them into the log.
1629 */
1630 STATIC void
1631 xlog_add_record(
1632 struct xlog *log,
1633 char *buf,
1634 int cycle,
1635 int block,
1636 int tail_cycle,
1637 int tail_block)
1638 {
1639 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1640
1641 memset(buf, 0, BBSIZE);
1642 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1643 recp->h_cycle = cpu_to_be32(cycle);
1644 recp->h_version = cpu_to_be32(
1645 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1646 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1647 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1648 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1649 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1650 }
1651
1652 STATIC int
1653 xlog_write_log_records(
1654 struct xlog *log,
1655 int cycle,
1656 int start_block,
1657 int blocks,
1658 int tail_cycle,
1659 int tail_block)
1660 {
1661 char *offset;
1662 xfs_buf_t *bp;
1663 int balign, ealign;
1664 int sectbb = log->l_sectBBsize;
1665 int end_block = start_block + blocks;
1666 int bufblks;
1667 int error = 0;
1668 int i, j = 0;
1669
1670 /*
1671 * Greedily allocate a buffer big enough to handle the full
1672 * range of basic blocks to be written. If that fails, try
1673 * a smaller size. We need to be able to write at least a
1674 * log sector, or we're out of luck.
1675 */
1676 bufblks = 1 << ffs(blocks);
1677 while (bufblks > log->l_logBBsize)
1678 bufblks >>= 1;
1679 while (!(bp = xlog_get_bp(log, bufblks))) {
1680 bufblks >>= 1;
1681 if (bufblks < sectbb)
1682 return -ENOMEM;
1683 }
1684
1685 /* We may need to do a read at the start to fill in part of
1686 * the buffer in the starting sector not covered by the first
1687 * write below.
1688 */
1689 balign = round_down(start_block, sectbb);
1690 if (balign != start_block) {
1691 error = xlog_bread_noalign(log, start_block, 1, bp);
1692 if (error)
1693 goto out_put_bp;
1694
1695 j = start_block - balign;
1696 }
1697
1698 for (i = start_block; i < end_block; i += bufblks) {
1699 int bcount, endcount;
1700
1701 bcount = min(bufblks, end_block - start_block);
1702 endcount = bcount - j;
1703
1704 /* We may need to do a read at the end to fill in part of
1705 * the buffer in the final sector not covered by the write.
1706 * If this is the same sector as the above read, skip it.
1707 */
1708 ealign = round_down(end_block, sectbb);
1709 if (j == 0 && (start_block + endcount > ealign)) {
1710 offset = bp->b_addr + BBTOB(ealign - start_block);
1711 error = xlog_bread_offset(log, ealign, sectbb,
1712 bp, offset);
1713 if (error)
1714 break;
1715
1716 }
1717
1718 offset = xlog_align(log, start_block, endcount, bp);
1719 for (; j < endcount; j++) {
1720 xlog_add_record(log, offset, cycle, i+j,
1721 tail_cycle, tail_block);
1722 offset += BBSIZE;
1723 }
1724 error = xlog_bwrite(log, start_block, endcount, bp);
1725 if (error)
1726 break;
1727 start_block += endcount;
1728 j = 0;
1729 }
1730
1731 out_put_bp:
1732 xlog_put_bp(bp);
1733 return error;
1734 }
1735
1736 /*
1737 * This routine is called to blow away any incomplete log writes out
1738 * in front of the log head. We do this so that we won't become confused
1739 * if we come up, write only a little bit more, and then crash again.
1740 * If we leave the partial log records out there, this situation could
1741 * cause us to think those partial writes are valid blocks since they
1742 * have the current cycle number. We get rid of them by overwriting them
1743 * with empty log records with the old cycle number rather than the
1744 * current one.
1745 *
1746 * The tail lsn is passed in rather than taken from
1747 * the log so that we will not write over the unmount record after a
1748 * clean unmount in a 512 block log. Doing so would leave the log without
1749 * any valid log records in it until a new one was written. If we crashed
1750 * during that time we would not be able to recover.
1751 */
1752 STATIC int
1753 xlog_clear_stale_blocks(
1754 struct xlog *log,
1755 xfs_lsn_t tail_lsn)
1756 {
1757 int tail_cycle, head_cycle;
1758 int tail_block, head_block;
1759 int tail_distance, max_distance;
1760 int distance;
1761 int error;
1762
1763 tail_cycle = CYCLE_LSN(tail_lsn);
1764 tail_block = BLOCK_LSN(tail_lsn);
1765 head_cycle = log->l_curr_cycle;
1766 head_block = log->l_curr_block;
1767
1768 /*
1769 * Figure out the distance between the new head of the log
1770 * and the tail. We want to write over any blocks beyond the
1771 * head that we may have written just before the crash, but
1772 * we don't want to overwrite the tail of the log.
1773 */
1774 if (head_cycle == tail_cycle) {
1775 /*
1776 * The tail is behind the head in the physical log,
1777 * so the distance from the head to the tail is the
1778 * distance from the head to the end of the log plus
1779 * the distance from the beginning of the log to the
1780 * tail.
1781 */
1782 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1783 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1784 XFS_ERRLEVEL_LOW, log->l_mp);
1785 return -EFSCORRUPTED;
1786 }
1787 tail_distance = tail_block + (log->l_logBBsize - head_block);
1788 } else {
1789 /*
1790 * The head is behind the tail in the physical log,
1791 * so the distance from the head to the tail is just
1792 * the tail block minus the head block.
1793 */
1794 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1795 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1796 XFS_ERRLEVEL_LOW, log->l_mp);
1797 return -EFSCORRUPTED;
1798 }
1799 tail_distance = tail_block - head_block;
1800 }
1801
1802 /*
1803 * If the head is right up against the tail, we can't clear
1804 * anything.
1805 */
1806 if (tail_distance <= 0) {
1807 ASSERT(tail_distance == 0);
1808 return 0;
1809 }
1810
1811 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1812 /*
1813 * Take the smaller of the maximum amount of outstanding I/O
1814 * we could have and the distance to the tail to clear out.
1815 * We take the smaller so that we don't overwrite the tail and
1816 * we don't waste all day writing from the head to the tail
1817 * for no reason.
1818 */
1819 max_distance = MIN(max_distance, tail_distance);
1820
1821 if ((head_block + max_distance) <= log->l_logBBsize) {
1822 /*
1823 * We can stomp all the blocks we need to without
1824 * wrapping around the end of the log. Just do it
1825 * in a single write. Use the cycle number of the
1826 * current cycle minus one so that the log will look like:
1827 * n ... | n - 1 ...
1828 */
1829 error = xlog_write_log_records(log, (head_cycle - 1),
1830 head_block, max_distance, tail_cycle,
1831 tail_block);
1832 if (error)
1833 return error;
1834 } else {
1835 /*
1836 * We need to wrap around the end of the physical log in
1837 * order to clear all the blocks. Do it in two separate
1838 * I/Os. The first write should be from the head to the
1839 * end of the physical log, and it should use the current
1840 * cycle number minus one just like above.
1841 */
1842 distance = log->l_logBBsize - head_block;
1843 error = xlog_write_log_records(log, (head_cycle - 1),
1844 head_block, distance, tail_cycle,
1845 tail_block);
1846
1847 if (error)
1848 return error;
1849
1850 /*
1851 * Now write the blocks at the start of the physical log.
1852 * This writes the remainder of the blocks we want to clear.
1853 * It uses the current cycle number since we're now on the
1854 * same cycle as the head so that we get:
1855 * n ... n ... | n - 1 ...
1856 * ^^^^^ blocks we're writing
1857 */
1858 distance = max_distance - (log->l_logBBsize - head_block);
1859 error = xlog_write_log_records(log, head_cycle, 0, distance,
1860 tail_cycle, tail_block);
1861 if (error)
1862 return error;
1863 }
1864
1865 return 0;
1866 }
1867
1868 /******************************************************************************
1869 *
1870 * Log recover routines
1871 *
1872 ******************************************************************************
1873 */
1874
1875 /*
1876 * Sort the log items in the transaction.
1877 *
1878 * The ordering constraints are defined by the inode allocation and unlink
1879 * behaviour. The rules are:
1880 *
1881 * 1. Every item is only logged once in a given transaction. Hence it
1882 * represents the last logged state of the item. Hence ordering is
1883 * dependent on the order in which operations need to be performed so
1884 * required initial conditions are always met.
1885 *
1886 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1887 * there's nothing to replay from them so we can simply cull them
1888 * from the transaction. However, we can't do that until after we've
1889 * replayed all the other items because they may be dependent on the
1890 * cancelled buffer and replaying the cancelled buffer can remove it
1891 * form the cancelled buffer table. Hence they have tobe done last.
1892 *
1893 * 3. Inode allocation buffers must be replayed before inode items that
1894 * read the buffer and replay changes into it. For filesystems using the
1895 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1896 * treated the same as inode allocation buffers as they create and
1897 * initialise the buffers directly.
1898 *
1899 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1900 * This ensures that inodes are completely flushed to the inode buffer
1901 * in a "free" state before we remove the unlinked inode list pointer.
1902 *
1903 * Hence the ordering needs to be inode allocation buffers first, inode items
1904 * second, inode unlink buffers third and cancelled buffers last.
1905 *
1906 * But there's a problem with that - we can't tell an inode allocation buffer
1907 * apart from a regular buffer, so we can't separate them. We can, however,
1908 * tell an inode unlink buffer from the others, and so we can separate them out
1909 * from all the other buffers and move them to last.
1910 *
1911 * Hence, 4 lists, in order from head to tail:
1912 * - buffer_list for all buffers except cancelled/inode unlink buffers
1913 * - item_list for all non-buffer items
1914 * - inode_buffer_list for inode unlink buffers
1915 * - cancel_list for the cancelled buffers
1916 *
1917 * Note that we add objects to the tail of the lists so that first-to-last
1918 * ordering is preserved within the lists. Adding objects to the head of the
1919 * list means when we traverse from the head we walk them in last-to-first
1920 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1921 * but for all other items there may be specific ordering that we need to
1922 * preserve.
1923 */
1924 STATIC int
1925 xlog_recover_reorder_trans(
1926 struct xlog *log,
1927 struct xlog_recover *trans,
1928 int pass)
1929 {
1930 xlog_recover_item_t *item, *n;
1931 int error = 0;
1932 LIST_HEAD(sort_list);
1933 LIST_HEAD(cancel_list);
1934 LIST_HEAD(buffer_list);
1935 LIST_HEAD(inode_buffer_list);
1936 LIST_HEAD(inode_list);
1937
1938 list_splice_init(&trans->r_itemq, &sort_list);
1939 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1940 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1941
1942 switch (ITEM_TYPE(item)) {
1943 case XFS_LI_ICREATE:
1944 list_move_tail(&item->ri_list, &buffer_list);
1945 break;
1946 case XFS_LI_BUF:
1947 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1948 trace_xfs_log_recover_item_reorder_head(log,
1949 trans, item, pass);
1950 list_move(&item->ri_list, &cancel_list);
1951 break;
1952 }
1953 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1954 list_move(&item->ri_list, &inode_buffer_list);
1955 break;
1956 }
1957 list_move_tail(&item->ri_list, &buffer_list);
1958 break;
1959 case XFS_LI_INODE:
1960 case XFS_LI_DQUOT:
1961 case XFS_LI_QUOTAOFF:
1962 case XFS_LI_EFD:
1963 case XFS_LI_EFI:
1964 case XFS_LI_RUI:
1965 case XFS_LI_RUD:
1966 case XFS_LI_CUI:
1967 case XFS_LI_CUD:
1968 case XFS_LI_BUI:
1969 case XFS_LI_BUD:
1970 trace_xfs_log_recover_item_reorder_tail(log,
1971 trans, item, pass);
1972 list_move_tail(&item->ri_list, &inode_list);
1973 break;
1974 default:
1975 xfs_warn(log->l_mp,
1976 "%s: unrecognized type of log operation",
1977 __func__);
1978 ASSERT(0);
1979 /*
1980 * return the remaining items back to the transaction
1981 * item list so they can be freed in caller.
1982 */
1983 if (!list_empty(&sort_list))
1984 list_splice_init(&sort_list, &trans->r_itemq);
1985 error = -EIO;
1986 goto out;
1987 }
1988 }
1989 out:
1990 ASSERT(list_empty(&sort_list));
1991 if (!list_empty(&buffer_list))
1992 list_splice(&buffer_list, &trans->r_itemq);
1993 if (!list_empty(&inode_list))
1994 list_splice_tail(&inode_list, &trans->r_itemq);
1995 if (!list_empty(&inode_buffer_list))
1996 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1997 if (!list_empty(&cancel_list))
1998 list_splice_tail(&cancel_list, &trans->r_itemq);
1999 return error;
2000 }
2001
2002 /*
2003 * Build up the table of buf cancel records so that we don't replay
2004 * cancelled data in the second pass. For buffer records that are
2005 * not cancel records, there is nothing to do here so we just return.
2006 *
2007 * If we get a cancel record which is already in the table, this indicates
2008 * that the buffer was cancelled multiple times. In order to ensure
2009 * that during pass 2 we keep the record in the table until we reach its
2010 * last occurrence in the log, we keep a reference count in the cancel
2011 * record in the table to tell us how many times we expect to see this
2012 * record during the second pass.
2013 */
2014 STATIC int
2015 xlog_recover_buffer_pass1(
2016 struct xlog *log,
2017 struct xlog_recover_item *item)
2018 {
2019 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2020 struct list_head *bucket;
2021 struct xfs_buf_cancel *bcp;
2022
2023 /*
2024 * If this isn't a cancel buffer item, then just return.
2025 */
2026 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2027 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2028 return 0;
2029 }
2030
2031 /*
2032 * Insert an xfs_buf_cancel record into the hash table of them.
2033 * If there is already an identical record, bump its reference count.
2034 */
2035 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2036 list_for_each_entry(bcp, bucket, bc_list) {
2037 if (bcp->bc_blkno == buf_f->blf_blkno &&
2038 bcp->bc_len == buf_f->blf_len) {
2039 bcp->bc_refcount++;
2040 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2041 return 0;
2042 }
2043 }
2044
2045 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2046 bcp->bc_blkno = buf_f->blf_blkno;
2047 bcp->bc_len = buf_f->blf_len;
2048 bcp->bc_refcount = 1;
2049 list_add_tail(&bcp->bc_list, bucket);
2050
2051 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2052 return 0;
2053 }
2054
2055 /*
2056 * Check to see whether the buffer being recovered has a corresponding
2057 * entry in the buffer cancel record table. If it is, return the cancel
2058 * buffer structure to the caller.
2059 */
2060 STATIC struct xfs_buf_cancel *
2061 xlog_peek_buffer_cancelled(
2062 struct xlog *log,
2063 xfs_daddr_t blkno,
2064 uint len,
2065 unsigned short flags)
2066 {
2067 struct list_head *bucket;
2068 struct xfs_buf_cancel *bcp;
2069
2070 if (!log->l_buf_cancel_table) {
2071 /* empty table means no cancelled buffers in the log */
2072 ASSERT(!(flags & XFS_BLF_CANCEL));
2073 return NULL;
2074 }
2075
2076 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2077 list_for_each_entry(bcp, bucket, bc_list) {
2078 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2079 return bcp;
2080 }
2081
2082 /*
2083 * We didn't find a corresponding entry in the table, so return 0 so
2084 * that the buffer is NOT cancelled.
2085 */
2086 ASSERT(!(flags & XFS_BLF_CANCEL));
2087 return NULL;
2088 }
2089
2090 /*
2091 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2092 * otherwise return 0. If the buffer is actually a buffer cancel item
2093 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2094 * table and remove it from the table if this is the last reference.
2095 *
2096 * We remove the cancel record from the table when we encounter its last
2097 * occurrence in the log so that if the same buffer is re-used again after its
2098 * last cancellation we actually replay the changes made at that point.
2099 */
2100 STATIC int
2101 xlog_check_buffer_cancelled(
2102 struct xlog *log,
2103 xfs_daddr_t blkno,
2104 uint len,
2105 unsigned short flags)
2106 {
2107 struct xfs_buf_cancel *bcp;
2108
2109 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2110 if (!bcp)
2111 return 0;
2112
2113 /*
2114 * We've go a match, so return 1 so that the recovery of this buffer
2115 * is cancelled. If this buffer is actually a buffer cancel log
2116 * item, then decrement the refcount on the one in the table and
2117 * remove it if this is the last reference.
2118 */
2119 if (flags & XFS_BLF_CANCEL) {
2120 if (--bcp->bc_refcount == 0) {
2121 list_del(&bcp->bc_list);
2122 kmem_free(bcp);
2123 }
2124 }
2125 return 1;
2126 }
2127
2128 /*
2129 * Perform recovery for a buffer full of inodes. In these buffers, the only
2130 * data which should be recovered is that which corresponds to the
2131 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2132 * data for the inodes is always logged through the inodes themselves rather
2133 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2134 *
2135 * The only time when buffers full of inodes are fully recovered is when the
2136 * buffer is full of newly allocated inodes. In this case the buffer will
2137 * not be marked as an inode buffer and so will be sent to
2138 * xlog_recover_do_reg_buffer() below during recovery.
2139 */
2140 STATIC int
2141 xlog_recover_do_inode_buffer(
2142 struct xfs_mount *mp,
2143 xlog_recover_item_t *item,
2144 struct xfs_buf *bp,
2145 xfs_buf_log_format_t *buf_f)
2146 {
2147 int i;
2148 int item_index = 0;
2149 int bit = 0;
2150 int nbits = 0;
2151 int reg_buf_offset = 0;
2152 int reg_buf_bytes = 0;
2153 int next_unlinked_offset;
2154 int inodes_per_buf;
2155 xfs_agino_t *logged_nextp;
2156 xfs_agino_t *buffer_nextp;
2157
2158 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2159
2160 /*
2161 * Post recovery validation only works properly on CRC enabled
2162 * filesystems.
2163 */
2164 if (xfs_sb_version_hascrc(&mp->m_sb))
2165 bp->b_ops = &xfs_inode_buf_ops;
2166
2167 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2168 for (i = 0; i < inodes_per_buf; i++) {
2169 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2170 offsetof(xfs_dinode_t, di_next_unlinked);
2171
2172 while (next_unlinked_offset >=
2173 (reg_buf_offset + reg_buf_bytes)) {
2174 /*
2175 * The next di_next_unlinked field is beyond
2176 * the current logged region. Find the next
2177 * logged region that contains or is beyond
2178 * the current di_next_unlinked field.
2179 */
2180 bit += nbits;
2181 bit = xfs_next_bit(buf_f->blf_data_map,
2182 buf_f->blf_map_size, bit);
2183
2184 /*
2185 * If there are no more logged regions in the
2186 * buffer, then we're done.
2187 */
2188 if (bit == -1)
2189 return 0;
2190
2191 nbits = xfs_contig_bits(buf_f->blf_data_map,
2192 buf_f->blf_map_size, bit);
2193 ASSERT(nbits > 0);
2194 reg_buf_offset = bit << XFS_BLF_SHIFT;
2195 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2196 item_index++;
2197 }
2198
2199 /*
2200 * If the current logged region starts after the current
2201 * di_next_unlinked field, then move on to the next
2202 * di_next_unlinked field.
2203 */
2204 if (next_unlinked_offset < reg_buf_offset)
2205 continue;
2206
2207 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2208 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2209 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2210 BBTOB(bp->b_io_length));
2211
2212 /*
2213 * The current logged region contains a copy of the
2214 * current di_next_unlinked field. Extract its value
2215 * and copy it to the buffer copy.
2216 */
2217 logged_nextp = item->ri_buf[item_index].i_addr +
2218 next_unlinked_offset - reg_buf_offset;
2219 if (unlikely(*logged_nextp == 0)) {
2220 xfs_alert(mp,
2221 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2222 "Trying to replay bad (0) inode di_next_unlinked field.",
2223 item, bp);
2224 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2225 XFS_ERRLEVEL_LOW, mp);
2226 return -EFSCORRUPTED;
2227 }
2228
2229 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2230 *buffer_nextp = *logged_nextp;
2231
2232 /*
2233 * If necessary, recalculate the CRC in the on-disk inode. We
2234 * have to leave the inode in a consistent state for whoever
2235 * reads it next....
2236 */
2237 xfs_dinode_calc_crc(mp,
2238 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2239
2240 }
2241
2242 return 0;
2243 }
2244
2245 /*
2246 * V5 filesystems know the age of the buffer on disk being recovered. We can
2247 * have newer objects on disk than we are replaying, and so for these cases we
2248 * don't want to replay the current change as that will make the buffer contents
2249 * temporarily invalid on disk.
2250 *
2251 * The magic number might not match the buffer type we are going to recover
2252 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2253 * extract the LSN of the existing object in the buffer based on it's current
2254 * magic number. If we don't recognise the magic number in the buffer, then
2255 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2256 * so can recover the buffer.
2257 *
2258 * Note: we cannot rely solely on magic number matches to determine that the
2259 * buffer has a valid LSN - we also need to verify that it belongs to this
2260 * filesystem, so we need to extract the object's LSN and compare it to that
2261 * which we read from the superblock. If the UUIDs don't match, then we've got a
2262 * stale metadata block from an old filesystem instance that we need to recover
2263 * over the top of.
2264 */
2265 static xfs_lsn_t
2266 xlog_recover_get_buf_lsn(
2267 struct xfs_mount *mp,
2268 struct xfs_buf *bp)
2269 {
2270 uint32_t magic32;
2271 uint16_t magic16;
2272 uint16_t magicda;
2273 void *blk = bp->b_addr;
2274 uuid_t *uuid;
2275 xfs_lsn_t lsn = -1;
2276
2277 /* v4 filesystems always recover immediately */
2278 if (!xfs_sb_version_hascrc(&mp->m_sb))
2279 goto recover_immediately;
2280
2281 magic32 = be32_to_cpu(*(__be32 *)blk);
2282 switch (magic32) {
2283 case XFS_ABTB_CRC_MAGIC:
2284 case XFS_ABTC_CRC_MAGIC:
2285 case XFS_ABTB_MAGIC:
2286 case XFS_ABTC_MAGIC:
2287 case XFS_RMAP_CRC_MAGIC:
2288 case XFS_REFC_CRC_MAGIC:
2289 case XFS_IBT_CRC_MAGIC:
2290 case XFS_IBT_MAGIC: {
2291 struct xfs_btree_block *btb = blk;
2292
2293 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2294 uuid = &btb->bb_u.s.bb_uuid;
2295 break;
2296 }
2297 case XFS_BMAP_CRC_MAGIC:
2298 case XFS_BMAP_MAGIC: {
2299 struct xfs_btree_block *btb = blk;
2300
2301 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2302 uuid = &btb->bb_u.l.bb_uuid;
2303 break;
2304 }
2305 case XFS_AGF_MAGIC:
2306 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2307 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2308 break;
2309 case XFS_AGFL_MAGIC:
2310 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2311 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2312 break;
2313 case XFS_AGI_MAGIC:
2314 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2315 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2316 break;
2317 case XFS_SYMLINK_MAGIC:
2318 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2319 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2320 break;
2321 case XFS_DIR3_BLOCK_MAGIC:
2322 case XFS_DIR3_DATA_MAGIC:
2323 case XFS_DIR3_FREE_MAGIC:
2324 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2325 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2326 break;
2327 case XFS_ATTR3_RMT_MAGIC:
2328 /*
2329 * Remote attr blocks are written synchronously, rather than
2330 * being logged. That means they do not contain a valid LSN
2331 * (i.e. transactionally ordered) in them, and hence any time we
2332 * see a buffer to replay over the top of a remote attribute
2333 * block we should simply do so.
2334 */
2335 goto recover_immediately;
2336 case XFS_SB_MAGIC:
2337 /*
2338 * superblock uuids are magic. We may or may not have a
2339 * sb_meta_uuid on disk, but it will be set in the in-core
2340 * superblock. We set the uuid pointer for verification
2341 * according to the superblock feature mask to ensure we check
2342 * the relevant UUID in the superblock.
2343 */
2344 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2345 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2346 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2347 else
2348 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2349 break;
2350 default:
2351 break;
2352 }
2353
2354 if (lsn != (xfs_lsn_t)-1) {
2355 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2356 goto recover_immediately;
2357 return lsn;
2358 }
2359
2360 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2361 switch (magicda) {
2362 case XFS_DIR3_LEAF1_MAGIC:
2363 case XFS_DIR3_LEAFN_MAGIC:
2364 case XFS_DA3_NODE_MAGIC:
2365 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2366 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2367 break;
2368 default:
2369 break;
2370 }
2371
2372 if (lsn != (xfs_lsn_t)-1) {
2373 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2374 goto recover_immediately;
2375 return lsn;
2376 }
2377
2378 /*
2379 * We do individual object checks on dquot and inode buffers as they
2380 * have their own individual LSN records. Also, we could have a stale
2381 * buffer here, so we have to at least recognise these buffer types.
2382 *
2383 * A notd complexity here is inode unlinked list processing - it logs
2384 * the inode directly in the buffer, but we don't know which inodes have
2385 * been modified, and there is no global buffer LSN. Hence we need to
2386 * recover all inode buffer types immediately. This problem will be
2387 * fixed by logical logging of the unlinked list modifications.
2388 */
2389 magic16 = be16_to_cpu(*(__be16 *)blk);
2390 switch (magic16) {
2391 case XFS_DQUOT_MAGIC:
2392 case XFS_DINODE_MAGIC:
2393 goto recover_immediately;
2394 default:
2395 break;
2396 }
2397
2398 /* unknown buffer contents, recover immediately */
2399
2400 recover_immediately:
2401 return (xfs_lsn_t)-1;
2402
2403 }
2404
2405 /*
2406 * Validate the recovered buffer is of the correct type and attach the
2407 * appropriate buffer operations to them for writeback. Magic numbers are in a
2408 * few places:
2409 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2410 * the first 32 bits of the buffer (most blocks),
2411 * inside a struct xfs_da_blkinfo at the start of the buffer.
2412 */
2413 static void
2414 xlog_recover_validate_buf_type(
2415 struct xfs_mount *mp,
2416 struct xfs_buf *bp,
2417 xfs_buf_log_format_t *buf_f,
2418 xfs_lsn_t current_lsn)
2419 {
2420 struct xfs_da_blkinfo *info = bp->b_addr;
2421 uint32_t magic32;
2422 uint16_t magic16;
2423 uint16_t magicda;
2424 char *warnmsg = NULL;
2425
2426 /*
2427 * We can only do post recovery validation on items on CRC enabled
2428 * fielsystems as we need to know when the buffer was written to be able
2429 * to determine if we should have replayed the item. If we replay old
2430 * metadata over a newer buffer, then it will enter a temporarily
2431 * inconsistent state resulting in verification failures. Hence for now
2432 * just avoid the verification stage for non-crc filesystems
2433 */
2434 if (!xfs_sb_version_hascrc(&mp->m_sb))
2435 return;
2436
2437 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2438 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2439 magicda = be16_to_cpu(info->magic);
2440 switch (xfs_blft_from_flags(buf_f)) {
2441 case XFS_BLFT_BTREE_BUF:
2442 switch (magic32) {
2443 case XFS_ABTB_CRC_MAGIC:
2444 case XFS_ABTC_CRC_MAGIC:
2445 case XFS_ABTB_MAGIC:
2446 case XFS_ABTC_MAGIC:
2447 bp->b_ops = &xfs_allocbt_buf_ops;
2448 break;
2449 case XFS_IBT_CRC_MAGIC:
2450 case XFS_FIBT_CRC_MAGIC:
2451 case XFS_IBT_MAGIC:
2452 case XFS_FIBT_MAGIC:
2453 bp->b_ops = &xfs_inobt_buf_ops;
2454 break;
2455 case XFS_BMAP_CRC_MAGIC:
2456 case XFS_BMAP_MAGIC:
2457 bp->b_ops = &xfs_bmbt_buf_ops;
2458 break;
2459 case XFS_RMAP_CRC_MAGIC:
2460 bp->b_ops = &xfs_rmapbt_buf_ops;
2461 break;
2462 case XFS_REFC_CRC_MAGIC:
2463 bp->b_ops = &xfs_refcountbt_buf_ops;
2464 break;
2465 default:
2466 warnmsg = "Bad btree block magic!";
2467 break;
2468 }
2469 break;
2470 case XFS_BLFT_AGF_BUF:
2471 if (magic32 != XFS_AGF_MAGIC) {
2472 warnmsg = "Bad AGF block magic!";
2473 break;
2474 }
2475 bp->b_ops = &xfs_agf_buf_ops;
2476 break;
2477 case XFS_BLFT_AGFL_BUF:
2478 if (magic32 != XFS_AGFL_MAGIC) {
2479 warnmsg = "Bad AGFL block magic!";
2480 break;
2481 }
2482 bp->b_ops = &xfs_agfl_buf_ops;
2483 break;
2484 case XFS_BLFT_AGI_BUF:
2485 if (magic32 != XFS_AGI_MAGIC) {
2486 warnmsg = "Bad AGI block magic!";
2487 break;
2488 }
2489 bp->b_ops = &xfs_agi_buf_ops;
2490 break;
2491 case XFS_BLFT_UDQUOT_BUF:
2492 case XFS_BLFT_PDQUOT_BUF:
2493 case XFS_BLFT_GDQUOT_BUF:
2494 #ifdef CONFIG_XFS_QUOTA
2495 if (magic16 != XFS_DQUOT_MAGIC) {
2496 warnmsg = "Bad DQUOT block magic!";
2497 break;
2498 }
2499 bp->b_ops = &xfs_dquot_buf_ops;
2500 #else
2501 xfs_alert(mp,
2502 "Trying to recover dquots without QUOTA support built in!");
2503 ASSERT(0);
2504 #endif
2505 break;
2506 case XFS_BLFT_DINO_BUF:
2507 if (magic16 != XFS_DINODE_MAGIC) {
2508 warnmsg = "Bad INODE block magic!";
2509 break;
2510 }
2511 bp->b_ops = &xfs_inode_buf_ops;
2512 break;
2513 case XFS_BLFT_SYMLINK_BUF:
2514 if (magic32 != XFS_SYMLINK_MAGIC) {
2515 warnmsg = "Bad symlink block magic!";
2516 break;
2517 }
2518 bp->b_ops = &xfs_symlink_buf_ops;
2519 break;
2520 case XFS_BLFT_DIR_BLOCK_BUF:
2521 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2522 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2523 warnmsg = "Bad dir block magic!";
2524 break;
2525 }
2526 bp->b_ops = &xfs_dir3_block_buf_ops;
2527 break;
2528 case XFS_BLFT_DIR_DATA_BUF:
2529 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2530 magic32 != XFS_DIR3_DATA_MAGIC) {
2531 warnmsg = "Bad dir data magic!";
2532 break;
2533 }
2534 bp->b_ops = &xfs_dir3_data_buf_ops;
2535 break;
2536 case XFS_BLFT_DIR_FREE_BUF:
2537 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2538 magic32 != XFS_DIR3_FREE_MAGIC) {
2539 warnmsg = "Bad dir3 free magic!";
2540 break;
2541 }
2542 bp->b_ops = &xfs_dir3_free_buf_ops;
2543 break;
2544 case XFS_BLFT_DIR_LEAF1_BUF:
2545 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2546 magicda != XFS_DIR3_LEAF1_MAGIC) {
2547 warnmsg = "Bad dir leaf1 magic!";
2548 break;
2549 }
2550 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2551 break;
2552 case XFS_BLFT_DIR_LEAFN_BUF:
2553 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2554 magicda != XFS_DIR3_LEAFN_MAGIC) {
2555 warnmsg = "Bad dir leafn magic!";
2556 break;
2557 }
2558 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2559 break;
2560 case XFS_BLFT_DA_NODE_BUF:
2561 if (magicda != XFS_DA_NODE_MAGIC &&
2562 magicda != XFS_DA3_NODE_MAGIC) {
2563 warnmsg = "Bad da node magic!";
2564 break;
2565 }
2566 bp->b_ops = &xfs_da3_node_buf_ops;
2567 break;
2568 case XFS_BLFT_ATTR_LEAF_BUF:
2569 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2570 magicda != XFS_ATTR3_LEAF_MAGIC) {
2571 warnmsg = "Bad attr leaf magic!";
2572 break;
2573 }
2574 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2575 break;
2576 case XFS_BLFT_ATTR_RMT_BUF:
2577 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2578 warnmsg = "Bad attr remote magic!";
2579 break;
2580 }
2581 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2582 break;
2583 case XFS_BLFT_SB_BUF:
2584 if (magic32 != XFS_SB_MAGIC) {
2585 warnmsg = "Bad SB block magic!";
2586 break;
2587 }
2588 bp->b_ops = &xfs_sb_buf_ops;
2589 break;
2590 #ifdef CONFIG_XFS_RT
2591 case XFS_BLFT_RTBITMAP_BUF:
2592 case XFS_BLFT_RTSUMMARY_BUF:
2593 /* no magic numbers for verification of RT buffers */
2594 bp->b_ops = &xfs_rtbuf_ops;
2595 break;
2596 #endif /* CONFIG_XFS_RT */
2597 default:
2598 xfs_warn(mp, "Unknown buffer type %d!",
2599 xfs_blft_from_flags(buf_f));
2600 break;
2601 }
2602
2603 /*
2604 * Nothing else to do in the case of a NULL current LSN as this means
2605 * the buffer is more recent than the change in the log and will be
2606 * skipped.
2607 */
2608 if (current_lsn == NULLCOMMITLSN)
2609 return;
2610
2611 if (warnmsg) {
2612 xfs_warn(mp, warnmsg);
2613 ASSERT(0);
2614 }
2615
2616 /*
2617 * We must update the metadata LSN of the buffer as it is written out to
2618 * ensure that older transactions never replay over this one and corrupt
2619 * the buffer. This can occur if log recovery is interrupted at some
2620 * point after the current transaction completes, at which point a
2621 * subsequent mount starts recovery from the beginning.
2622 *
2623 * Write verifiers update the metadata LSN from log items attached to
2624 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2625 * the verifier. We'll clean it up in our ->iodone() callback.
2626 */
2627 if (bp->b_ops) {
2628 struct xfs_buf_log_item *bip;
2629
2630 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2631 bp->b_iodone = xlog_recover_iodone;
2632 xfs_buf_item_init(bp, mp);
2633 bip = bp->b_fspriv;
2634 bip->bli_item.li_lsn = current_lsn;
2635 }
2636 }
2637
2638 /*
2639 * Perform a 'normal' buffer recovery. Each logged region of the
2640 * buffer should be copied over the corresponding region in the
2641 * given buffer. The bitmap in the buf log format structure indicates
2642 * where to place the logged data.
2643 */
2644 STATIC void
2645 xlog_recover_do_reg_buffer(
2646 struct xfs_mount *mp,
2647 xlog_recover_item_t *item,
2648 struct xfs_buf *bp,
2649 xfs_buf_log_format_t *buf_f,
2650 xfs_lsn_t current_lsn)
2651 {
2652 int i;
2653 int bit;
2654 int nbits;
2655 int error;
2656
2657 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2658
2659 bit = 0;
2660 i = 1; /* 0 is the buf format structure */
2661 while (1) {
2662 bit = xfs_next_bit(buf_f->blf_data_map,
2663 buf_f->blf_map_size, bit);
2664 if (bit == -1)
2665 break;
2666 nbits = xfs_contig_bits(buf_f->blf_data_map,
2667 buf_f->blf_map_size, bit);
2668 ASSERT(nbits > 0);
2669 ASSERT(item->ri_buf[i].i_addr != NULL);
2670 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2671 ASSERT(BBTOB(bp->b_io_length) >=
2672 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2673
2674 /*
2675 * The dirty regions logged in the buffer, even though
2676 * contiguous, may span multiple chunks. This is because the
2677 * dirty region may span a physical page boundary in a buffer
2678 * and hence be split into two separate vectors for writing into
2679 * the log. Hence we need to trim nbits back to the length of
2680 * the current region being copied out of the log.
2681 */
2682 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2683 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2684
2685 /*
2686 * Do a sanity check if this is a dquot buffer. Just checking
2687 * the first dquot in the buffer should do. XXXThis is
2688 * probably a good thing to do for other buf types also.
2689 */
2690 error = 0;
2691 if (buf_f->blf_flags &
2692 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2693 if (item->ri_buf[i].i_addr == NULL) {
2694 xfs_alert(mp,
2695 "XFS: NULL dquot in %s.", __func__);
2696 goto next;
2697 }
2698 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2699 xfs_alert(mp,
2700 "XFS: dquot too small (%d) in %s.",
2701 item->ri_buf[i].i_len, __func__);
2702 goto next;
2703 }
2704 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2705 -1, 0, XFS_QMOPT_DOWARN,
2706 "dquot_buf_recover");
2707 if (error)
2708 goto next;
2709 }
2710
2711 memcpy(xfs_buf_offset(bp,
2712 (uint)bit << XFS_BLF_SHIFT), /* dest */
2713 item->ri_buf[i].i_addr, /* source */
2714 nbits<<XFS_BLF_SHIFT); /* length */
2715 next:
2716 i++;
2717 bit += nbits;
2718 }
2719
2720 /* Shouldn't be any more regions */
2721 ASSERT(i == item->ri_total);
2722
2723 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2724 }
2725
2726 /*
2727 * Perform a dquot buffer recovery.
2728 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2729 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2730 * Else, treat it as a regular buffer and do recovery.
2731 *
2732 * Return false if the buffer was tossed and true if we recovered the buffer to
2733 * indicate to the caller if the buffer needs writing.
2734 */
2735 STATIC bool
2736 xlog_recover_do_dquot_buffer(
2737 struct xfs_mount *mp,
2738 struct xlog *log,
2739 struct xlog_recover_item *item,
2740 struct xfs_buf *bp,
2741 struct xfs_buf_log_format *buf_f)
2742 {
2743 uint type;
2744
2745 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2746
2747 /*
2748 * Filesystems are required to send in quota flags at mount time.
2749 */
2750 if (!mp->m_qflags)
2751 return false;
2752
2753 type = 0;
2754 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2755 type |= XFS_DQ_USER;
2756 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2757 type |= XFS_DQ_PROJ;
2758 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2759 type |= XFS_DQ_GROUP;
2760 /*
2761 * This type of quotas was turned off, so ignore this buffer
2762 */
2763 if (log->l_quotaoffs_flag & type)
2764 return false;
2765
2766 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2767 return true;
2768 }
2769
2770 /*
2771 * This routine replays a modification made to a buffer at runtime.
2772 * There are actually two types of buffer, regular and inode, which
2773 * are handled differently. Inode buffers are handled differently
2774 * in that we only recover a specific set of data from them, namely
2775 * the inode di_next_unlinked fields. This is because all other inode
2776 * data is actually logged via inode records and any data we replay
2777 * here which overlaps that may be stale.
2778 *
2779 * When meta-data buffers are freed at run time we log a buffer item
2780 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2781 * of the buffer in the log should not be replayed at recovery time.
2782 * This is so that if the blocks covered by the buffer are reused for
2783 * file data before we crash we don't end up replaying old, freed
2784 * meta-data into a user's file.
2785 *
2786 * To handle the cancellation of buffer log items, we make two passes
2787 * over the log during recovery. During the first we build a table of
2788 * those buffers which have been cancelled, and during the second we
2789 * only replay those buffers which do not have corresponding cancel
2790 * records in the table. See xlog_recover_buffer_pass[1,2] above
2791 * for more details on the implementation of the table of cancel records.
2792 */
2793 STATIC int
2794 xlog_recover_buffer_pass2(
2795 struct xlog *log,
2796 struct list_head *buffer_list,
2797 struct xlog_recover_item *item,
2798 xfs_lsn_t current_lsn)
2799 {
2800 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2801 xfs_mount_t *mp = log->l_mp;
2802 xfs_buf_t *bp;
2803 int error;
2804 uint buf_flags;
2805 xfs_lsn_t lsn;
2806
2807 /*
2808 * In this pass we only want to recover all the buffers which have
2809 * not been cancelled and are not cancellation buffers themselves.
2810 */
2811 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2812 buf_f->blf_len, buf_f->blf_flags)) {
2813 trace_xfs_log_recover_buf_cancel(log, buf_f);
2814 return 0;
2815 }
2816
2817 trace_xfs_log_recover_buf_recover(log, buf_f);
2818
2819 buf_flags = 0;
2820 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2821 buf_flags |= XBF_UNMAPPED;
2822
2823 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2824 buf_flags, NULL);
2825 if (!bp)
2826 return -ENOMEM;
2827 error = bp->b_error;
2828 if (error) {
2829 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2830 goto out_release;
2831 }
2832
2833 /*
2834 * Recover the buffer only if we get an LSN from it and it's less than
2835 * the lsn of the transaction we are replaying.
2836 *
2837 * Note that we have to be extremely careful of readahead here.
2838 * Readahead does not attach verfiers to the buffers so if we don't
2839 * actually do any replay after readahead because of the LSN we found
2840 * in the buffer if more recent than that current transaction then we
2841 * need to attach the verifier directly. Failure to do so can lead to
2842 * future recovery actions (e.g. EFI and unlinked list recovery) can
2843 * operate on the buffers and they won't get the verifier attached. This
2844 * can lead to blocks on disk having the correct content but a stale
2845 * CRC.
2846 *
2847 * It is safe to assume these clean buffers are currently up to date.
2848 * If the buffer is dirtied by a later transaction being replayed, then
2849 * the verifier will be reset to match whatever recover turns that
2850 * buffer into.
2851 */
2852 lsn = xlog_recover_get_buf_lsn(mp, bp);
2853 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2854 trace_xfs_log_recover_buf_skip(log, buf_f);
2855 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2856 goto out_release;
2857 }
2858
2859 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2860 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2861 if (error)
2862 goto out_release;
2863 } else if (buf_f->blf_flags &
2864 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2865 bool dirty;
2866
2867 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2868 if (!dirty)
2869 goto out_release;
2870 } else {
2871 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2872 }
2873
2874 /*
2875 * Perform delayed write on the buffer. Asynchronous writes will be
2876 * slower when taking into account all the buffers to be flushed.
2877 *
2878 * Also make sure that only inode buffers with good sizes stay in
2879 * the buffer cache. The kernel moves inodes in buffers of 1 block
2880 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2881 * buffers in the log can be a different size if the log was generated
2882 * by an older kernel using unclustered inode buffers or a newer kernel
2883 * running with a different inode cluster size. Regardless, if the
2884 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2885 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2886 * the buffer out of the buffer cache so that the buffer won't
2887 * overlap with future reads of those inodes.
2888 */
2889 if (XFS_DINODE_MAGIC ==
2890 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2891 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2892 (uint32_t)log->l_mp->m_inode_cluster_size))) {
2893 xfs_buf_stale(bp);
2894 error = xfs_bwrite(bp);
2895 } else {
2896 ASSERT(bp->b_target->bt_mount == mp);
2897 bp->b_iodone = xlog_recover_iodone;
2898 xfs_buf_delwri_queue(bp, buffer_list);
2899 }
2900
2901 out_release:
2902 xfs_buf_relse(bp);
2903 return error;
2904 }
2905
2906 /*
2907 * Inode fork owner changes
2908 *
2909 * If we have been told that we have to reparent the inode fork, it's because an
2910 * extent swap operation on a CRC enabled filesystem has been done and we are
2911 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2912 * owners of it.
2913 *
2914 * The complexity here is that we don't have an inode context to work with, so
2915 * after we've replayed the inode we need to instantiate one. This is where the
2916 * fun begins.
2917 *
2918 * We are in the middle of log recovery, so we can't run transactions. That
2919 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2920 * that will result in the corresponding iput() running the inode through
2921 * xfs_inactive(). If we've just replayed an inode core that changes the link
2922 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2923 * transactions (bad!).
2924 *
2925 * So, to avoid this, we instantiate an inode directly from the inode core we've
2926 * just recovered. We have the buffer still locked, and all we really need to
2927 * instantiate is the inode core and the forks being modified. We can do this
2928 * manually, then run the inode btree owner change, and then tear down the
2929 * xfs_inode without having to run any transactions at all.
2930 *
2931 * Also, because we don't have a transaction context available here but need to
2932 * gather all the buffers we modify for writeback so we pass the buffer_list
2933 * instead for the operation to use.
2934 */
2935
2936 STATIC int
2937 xfs_recover_inode_owner_change(
2938 struct xfs_mount *mp,
2939 struct xfs_dinode *dip,
2940 struct xfs_inode_log_format *in_f,
2941 struct list_head *buffer_list)
2942 {
2943 struct xfs_inode *ip;
2944 int error;
2945
2946 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2947
2948 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2949 if (!ip)
2950 return -ENOMEM;
2951
2952 /* instantiate the inode */
2953 xfs_inode_from_disk(ip, dip);
2954 ASSERT(ip->i_d.di_version >= 3);
2955
2956 error = xfs_iformat_fork(ip, dip);
2957 if (error)
2958 goto out_free_ip;
2959
2960
2961 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2962 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2963 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2964 ip->i_ino, buffer_list);
2965 if (error)
2966 goto out_free_ip;
2967 }
2968
2969 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2970 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2971 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2972 ip->i_ino, buffer_list);
2973 if (error)
2974 goto out_free_ip;
2975 }
2976
2977 out_free_ip:
2978 xfs_inode_free(ip);
2979 return error;
2980 }
2981
2982 STATIC int
2983 xlog_recover_inode_pass2(
2984 struct xlog *log,
2985 struct list_head *buffer_list,
2986 struct xlog_recover_item *item,
2987 xfs_lsn_t current_lsn)
2988 {
2989 struct xfs_inode_log_format *in_f;
2990 xfs_mount_t *mp = log->l_mp;
2991 xfs_buf_t *bp;
2992 xfs_dinode_t *dip;
2993 int len;
2994 char *src;
2995 char *dest;
2996 int error;
2997 int attr_index;
2998 uint fields;
2999 struct xfs_log_dinode *ldip;
3000 uint isize;
3001 int need_free = 0;
3002
3003 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3004 in_f = item->ri_buf[0].i_addr;
3005 } else {
3006 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3007 need_free = 1;
3008 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3009 if (error)
3010 goto error;
3011 }
3012
3013 /*
3014 * Inode buffers can be freed, look out for it,
3015 * and do not replay the inode.
3016 */
3017 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3018 in_f->ilf_len, 0)) {
3019 error = 0;
3020 trace_xfs_log_recover_inode_cancel(log, in_f);
3021 goto error;
3022 }
3023 trace_xfs_log_recover_inode_recover(log, in_f);
3024
3025 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3026 &xfs_inode_buf_ops);
3027 if (!bp) {
3028 error = -ENOMEM;
3029 goto error;
3030 }
3031 error = bp->b_error;
3032 if (error) {
3033 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3034 goto out_release;
3035 }
3036 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3037 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3038
3039 /*
3040 * Make sure the place we're flushing out to really looks
3041 * like an inode!
3042 */
3043 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3044 xfs_alert(mp,
3045 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3046 __func__, dip, bp, in_f->ilf_ino);
3047 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3048 XFS_ERRLEVEL_LOW, mp);
3049 error = -EFSCORRUPTED;
3050 goto out_release;
3051 }
3052 ldip = item->ri_buf[1].i_addr;
3053 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3054 xfs_alert(mp,
3055 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3056 __func__, item, in_f->ilf_ino);
3057 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3058 XFS_ERRLEVEL_LOW, mp);
3059 error = -EFSCORRUPTED;
3060 goto out_release;
3061 }
3062
3063 /*
3064 * If the inode has an LSN in it, recover the inode only if it's less
3065 * than the lsn of the transaction we are replaying. Note: we still
3066 * need to replay an owner change even though the inode is more recent
3067 * than the transaction as there is no guarantee that all the btree
3068 * blocks are more recent than this transaction, too.
3069 */
3070 if (dip->di_version >= 3) {
3071 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3072
3073 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3074 trace_xfs_log_recover_inode_skip(log, in_f);
3075 error = 0;
3076 goto out_owner_change;
3077 }
3078 }
3079
3080 /*
3081 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3082 * are transactional and if ordering is necessary we can determine that
3083 * more accurately by the LSN field in the V3 inode core. Don't trust
3084 * the inode versions we might be changing them here - use the
3085 * superblock flag to determine whether we need to look at di_flushiter
3086 * to skip replay when the on disk inode is newer than the log one
3087 */
3088 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3089 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3090 /*
3091 * Deal with the wrap case, DI_MAX_FLUSH is less
3092 * than smaller numbers
3093 */
3094 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3095 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3096 /* do nothing */
3097 } else {
3098 trace_xfs_log_recover_inode_skip(log, in_f);
3099 error = 0;
3100 goto out_release;
3101 }
3102 }
3103
3104 /* Take the opportunity to reset the flush iteration count */
3105 ldip->di_flushiter = 0;
3106
3107 if (unlikely(S_ISREG(ldip->di_mode))) {
3108 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3109 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3110 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3111 XFS_ERRLEVEL_LOW, mp, ldip);
3112 xfs_alert(mp,
3113 "%s: Bad regular inode log record, rec ptr 0x%p, "
3114 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3115 __func__, item, dip, bp, in_f->ilf_ino);
3116 error = -EFSCORRUPTED;
3117 goto out_release;
3118 }
3119 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3120 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3121 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3122 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3123 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3124 XFS_ERRLEVEL_LOW, mp, ldip);
3125 xfs_alert(mp,
3126 "%s: Bad dir inode log record, rec ptr 0x%p, "
3127 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3128 __func__, item, dip, bp, in_f->ilf_ino);
3129 error = -EFSCORRUPTED;
3130 goto out_release;
3131 }
3132 }
3133 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3134 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3135 XFS_ERRLEVEL_LOW, mp, ldip);
3136 xfs_alert(mp,
3137 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3138 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3139 __func__, item, dip, bp, in_f->ilf_ino,
3140 ldip->di_nextents + ldip->di_anextents,
3141 ldip->di_nblocks);
3142 error = -EFSCORRUPTED;
3143 goto out_release;
3144 }
3145 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3146 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3147 XFS_ERRLEVEL_LOW, mp, ldip);
3148 xfs_alert(mp,
3149 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3150 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3151 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3152 error = -EFSCORRUPTED;
3153 goto out_release;
3154 }
3155 isize = xfs_log_dinode_size(ldip->di_version);
3156 if (unlikely(item->ri_buf[1].i_len > isize)) {
3157 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3158 XFS_ERRLEVEL_LOW, mp, ldip);
3159 xfs_alert(mp,
3160 "%s: Bad inode log record length %d, rec ptr 0x%p",
3161 __func__, item->ri_buf[1].i_len, item);
3162 error = -EFSCORRUPTED;
3163 goto out_release;
3164 }
3165
3166 /* recover the log dinode inode into the on disk inode */
3167 xfs_log_dinode_to_disk(ldip, dip);
3168
3169 /* the rest is in on-disk format */
3170 if (item->ri_buf[1].i_len > isize) {
3171 memcpy((char *)dip + isize,
3172 item->ri_buf[1].i_addr + isize,
3173 item->ri_buf[1].i_len - isize);
3174 }
3175
3176 fields = in_f->ilf_fields;
3177 if (fields & XFS_ILOG_DEV)
3178 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3179
3180 if (in_f->ilf_size == 2)
3181 goto out_owner_change;
3182 len = item->ri_buf[2].i_len;
3183 src = item->ri_buf[2].i_addr;
3184 ASSERT(in_f->ilf_size <= 4);
3185 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3186 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3187 (len == in_f->ilf_dsize));
3188
3189 switch (fields & XFS_ILOG_DFORK) {
3190 case XFS_ILOG_DDATA:
3191 case XFS_ILOG_DEXT:
3192 memcpy(XFS_DFORK_DPTR(dip), src, len);
3193 break;
3194
3195 case XFS_ILOG_DBROOT:
3196 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3197 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3198 XFS_DFORK_DSIZE(dip, mp));
3199 break;
3200
3201 default:
3202 /*
3203 * There are no data fork flags set.
3204 */
3205 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3206 break;
3207 }
3208
3209 /*
3210 * If we logged any attribute data, recover it. There may or
3211 * may not have been any other non-core data logged in this
3212 * transaction.
3213 */
3214 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3215 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3216 attr_index = 3;
3217 } else {
3218 attr_index = 2;
3219 }
3220 len = item->ri_buf[attr_index].i_len;
3221 src = item->ri_buf[attr_index].i_addr;
3222 ASSERT(len == in_f->ilf_asize);
3223
3224 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3225 case XFS_ILOG_ADATA:
3226 case XFS_ILOG_AEXT:
3227 dest = XFS_DFORK_APTR(dip);
3228 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3229 memcpy(dest, src, len);
3230 break;
3231
3232 case XFS_ILOG_ABROOT:
3233 dest = XFS_DFORK_APTR(dip);
3234 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3235 len, (xfs_bmdr_block_t*)dest,
3236 XFS_DFORK_ASIZE(dip, mp));
3237 break;
3238
3239 default:
3240 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3241 ASSERT(0);
3242 error = -EIO;
3243 goto out_release;
3244 }
3245 }
3246
3247 out_owner_change:
3248 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3249 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3250 buffer_list);
3251 /* re-generate the checksum. */
3252 xfs_dinode_calc_crc(log->l_mp, dip);
3253
3254 ASSERT(bp->b_target->bt_mount == mp);
3255 bp->b_iodone = xlog_recover_iodone;
3256 xfs_buf_delwri_queue(bp, buffer_list);
3257
3258 out_release:
3259 xfs_buf_relse(bp);
3260 error:
3261 if (need_free)
3262 kmem_free(in_f);
3263 return error;
3264 }
3265
3266 /*
3267 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3268 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3269 * of that type.
3270 */
3271 STATIC int
3272 xlog_recover_quotaoff_pass1(
3273 struct xlog *log,
3274 struct xlog_recover_item *item)
3275 {
3276 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3277 ASSERT(qoff_f);
3278
3279 /*
3280 * The logitem format's flag tells us if this was user quotaoff,
3281 * group/project quotaoff or both.
3282 */
3283 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3284 log->l_quotaoffs_flag |= XFS_DQ_USER;
3285 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3286 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3287 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3288 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3289
3290 return 0;
3291 }
3292
3293 /*
3294 * Recover a dquot record
3295 */
3296 STATIC int
3297 xlog_recover_dquot_pass2(
3298 struct xlog *log,
3299 struct list_head *buffer_list,
3300 struct xlog_recover_item *item,
3301 xfs_lsn_t current_lsn)
3302 {
3303 xfs_mount_t *mp = log->l_mp;
3304 xfs_buf_t *bp;
3305 struct xfs_disk_dquot *ddq, *recddq;
3306 int error;
3307 xfs_dq_logformat_t *dq_f;
3308 uint type;
3309
3310
3311 /*
3312 * Filesystems are required to send in quota flags at mount time.
3313 */
3314 if (mp->m_qflags == 0)
3315 return 0;
3316
3317 recddq = item->ri_buf[1].i_addr;
3318 if (recddq == NULL) {
3319 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3320 return -EIO;
3321 }
3322 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3323 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3324 item->ri_buf[1].i_len, __func__);
3325 return -EIO;
3326 }
3327
3328 /*
3329 * This type of quotas was turned off, so ignore this record.
3330 */
3331 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3332 ASSERT(type);
3333 if (log->l_quotaoffs_flag & type)
3334 return 0;
3335
3336 /*
3337 * At this point we know that quota was _not_ turned off.
3338 * Since the mount flags are not indicating to us otherwise, this
3339 * must mean that quota is on, and the dquot needs to be replayed.
3340 * Remember that we may not have fully recovered the superblock yet,
3341 * so we can't do the usual trick of looking at the SB quota bits.
3342 *
3343 * The other possibility, of course, is that the quota subsystem was
3344 * removed since the last mount - ENOSYS.
3345 */
3346 dq_f = item->ri_buf[0].i_addr;
3347 ASSERT(dq_f);
3348 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3349 "xlog_recover_dquot_pass2 (log copy)");
3350 if (error)
3351 return -EIO;
3352 ASSERT(dq_f->qlf_len == 1);
3353
3354 /*
3355 * At this point we are assuming that the dquots have been allocated
3356 * and hence the buffer has valid dquots stamped in it. It should,
3357 * therefore, pass verifier validation. If the dquot is bad, then the
3358 * we'll return an error here, so we don't need to specifically check
3359 * the dquot in the buffer after the verifier has run.
3360 */
3361 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3362 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3363 &xfs_dquot_buf_ops);
3364 if (error)
3365 return error;
3366
3367 ASSERT(bp);
3368 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3369
3370 /*
3371 * If the dquot has an LSN in it, recover the dquot only if it's less
3372 * than the lsn of the transaction we are replaying.
3373 */
3374 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3375 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3376 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3377
3378 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3379 goto out_release;
3380 }
3381 }
3382
3383 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3384 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3385 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3386 XFS_DQUOT_CRC_OFF);
3387 }
3388
3389 ASSERT(dq_f->qlf_size == 2);
3390 ASSERT(bp->b_target->bt_mount == mp);
3391 bp->b_iodone = xlog_recover_iodone;
3392 xfs_buf_delwri_queue(bp, buffer_list);
3393
3394 out_release:
3395 xfs_buf_relse(bp);
3396 return 0;
3397 }
3398
3399 /*
3400 * This routine is called to create an in-core extent free intent
3401 * item from the efi format structure which was logged on disk.
3402 * It allocates an in-core efi, copies the extents from the format
3403 * structure into it, and adds the efi to the AIL with the given
3404 * LSN.
3405 */
3406 STATIC int
3407 xlog_recover_efi_pass2(
3408 struct xlog *log,
3409 struct xlog_recover_item *item,
3410 xfs_lsn_t lsn)
3411 {
3412 int error;
3413 struct xfs_mount *mp = log->l_mp;
3414 struct xfs_efi_log_item *efip;
3415 struct xfs_efi_log_format *efi_formatp;
3416
3417 efi_formatp = item->ri_buf[0].i_addr;
3418
3419 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3420 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3421 if (error) {
3422 xfs_efi_item_free(efip);
3423 return error;
3424 }
3425 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3426
3427 spin_lock(&log->l_ailp->xa_lock);
3428 /*
3429 * The EFI has two references. One for the EFD and one for EFI to ensure
3430 * it makes it into the AIL. Insert the EFI into the AIL directly and
3431 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3432 * AIL lock.
3433 */
3434 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3435 xfs_efi_release(efip);
3436 return 0;
3437 }
3438
3439
3440 /*
3441 * This routine is called when an EFD format structure is found in a committed
3442 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3443 * was still in the log. To do this it searches the AIL for the EFI with an id
3444 * equal to that in the EFD format structure. If we find it we drop the EFD
3445 * reference, which removes the EFI from the AIL and frees it.
3446 */
3447 STATIC int
3448 xlog_recover_efd_pass2(
3449 struct xlog *log,
3450 struct xlog_recover_item *item)
3451 {
3452 xfs_efd_log_format_t *efd_formatp;
3453 xfs_efi_log_item_t *efip = NULL;
3454 xfs_log_item_t *lip;
3455 uint64_t efi_id;
3456 struct xfs_ail_cursor cur;
3457 struct xfs_ail *ailp = log->l_ailp;
3458
3459 efd_formatp = item->ri_buf[0].i_addr;
3460 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3461 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3462 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3463 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3464 efi_id = efd_formatp->efd_efi_id;
3465
3466 /*
3467 * Search for the EFI with the id in the EFD format structure in the
3468 * AIL.
3469 */
3470 spin_lock(&ailp->xa_lock);
3471 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3472 while (lip != NULL) {
3473 if (lip->li_type == XFS_LI_EFI) {
3474 efip = (xfs_efi_log_item_t *)lip;
3475 if (efip->efi_format.efi_id == efi_id) {
3476 /*
3477 * Drop the EFD reference to the EFI. This
3478 * removes the EFI from the AIL and frees it.
3479 */
3480 spin_unlock(&ailp->xa_lock);
3481 xfs_efi_release(efip);
3482 spin_lock(&ailp->xa_lock);
3483 break;
3484 }
3485 }
3486 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3487 }
3488
3489 xfs_trans_ail_cursor_done(&cur);
3490 spin_unlock(&ailp->xa_lock);
3491
3492 return 0;
3493 }
3494
3495 /*
3496 * This routine is called to create an in-core extent rmap update
3497 * item from the rui format structure which was logged on disk.
3498 * It allocates an in-core rui, copies the extents from the format
3499 * structure into it, and adds the rui to the AIL with the given
3500 * LSN.
3501 */
3502 STATIC int
3503 xlog_recover_rui_pass2(
3504 struct xlog *log,
3505 struct xlog_recover_item *item,
3506 xfs_lsn_t lsn)
3507 {
3508 int error;
3509 struct xfs_mount *mp = log->l_mp;
3510 struct xfs_rui_log_item *ruip;
3511 struct xfs_rui_log_format *rui_formatp;
3512
3513 rui_formatp = item->ri_buf[0].i_addr;
3514
3515 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3516 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3517 if (error) {
3518 xfs_rui_item_free(ruip);
3519 return error;
3520 }
3521 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3522
3523 spin_lock(&log->l_ailp->xa_lock);
3524 /*
3525 * The RUI has two references. One for the RUD and one for RUI to ensure
3526 * it makes it into the AIL. Insert the RUI into the AIL directly and
3527 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3528 * AIL lock.
3529 */
3530 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3531 xfs_rui_release(ruip);
3532 return 0;
3533 }
3534
3535
3536 /*
3537 * This routine is called when an RUD format structure is found in a committed
3538 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3539 * was still in the log. To do this it searches the AIL for the RUI with an id
3540 * equal to that in the RUD format structure. If we find it we drop the RUD
3541 * reference, which removes the RUI from the AIL and frees it.
3542 */
3543 STATIC int
3544 xlog_recover_rud_pass2(
3545 struct xlog *log,
3546 struct xlog_recover_item *item)
3547 {
3548 struct xfs_rud_log_format *rud_formatp;
3549 struct xfs_rui_log_item *ruip = NULL;
3550 struct xfs_log_item *lip;
3551 uint64_t rui_id;
3552 struct xfs_ail_cursor cur;
3553 struct xfs_ail *ailp = log->l_ailp;
3554
3555 rud_formatp = item->ri_buf[0].i_addr;
3556 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3557 rui_id = rud_formatp->rud_rui_id;
3558
3559 /*
3560 * Search for the RUI with the id in the RUD format structure in the
3561 * AIL.
3562 */
3563 spin_lock(&ailp->xa_lock);
3564 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3565 while (lip != NULL) {
3566 if (lip->li_type == XFS_LI_RUI) {
3567 ruip = (struct xfs_rui_log_item *)lip;
3568 if (ruip->rui_format.rui_id == rui_id) {
3569 /*
3570 * Drop the RUD reference to the RUI. This
3571 * removes the RUI from the AIL and frees it.
3572 */
3573 spin_unlock(&ailp->xa_lock);
3574 xfs_rui_release(ruip);
3575 spin_lock(&ailp->xa_lock);
3576 break;
3577 }
3578 }
3579 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3580 }
3581
3582 xfs_trans_ail_cursor_done(&cur);
3583 spin_unlock(&ailp->xa_lock);
3584
3585 return 0;
3586 }
3587
3588 /*
3589 * Copy an CUI format buffer from the given buf, and into the destination
3590 * CUI format structure. The CUI/CUD items were designed not to need any
3591 * special alignment handling.
3592 */
3593 static int
3594 xfs_cui_copy_format(
3595 struct xfs_log_iovec *buf,
3596 struct xfs_cui_log_format *dst_cui_fmt)
3597 {
3598 struct xfs_cui_log_format *src_cui_fmt;
3599 uint len;
3600
3601 src_cui_fmt = buf->i_addr;
3602 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3603
3604 if (buf->i_len == len) {
3605 memcpy(dst_cui_fmt, src_cui_fmt, len);
3606 return 0;
3607 }
3608 return -EFSCORRUPTED;
3609 }
3610
3611 /*
3612 * This routine is called to create an in-core extent refcount update
3613 * item from the cui format structure which was logged on disk.
3614 * It allocates an in-core cui, copies the extents from the format
3615 * structure into it, and adds the cui to the AIL with the given
3616 * LSN.
3617 */
3618 STATIC int
3619 xlog_recover_cui_pass2(
3620 struct xlog *log,
3621 struct xlog_recover_item *item,
3622 xfs_lsn_t lsn)
3623 {
3624 int error;
3625 struct xfs_mount *mp = log->l_mp;
3626 struct xfs_cui_log_item *cuip;
3627 struct xfs_cui_log_format *cui_formatp;
3628
3629 cui_formatp = item->ri_buf[0].i_addr;
3630
3631 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3632 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3633 if (error) {
3634 xfs_cui_item_free(cuip);
3635 return error;
3636 }
3637 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3638
3639 spin_lock(&log->l_ailp->xa_lock);
3640 /*
3641 * The CUI has two references. One for the CUD and one for CUI to ensure
3642 * it makes it into the AIL. Insert the CUI into the AIL directly and
3643 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3644 * AIL lock.
3645 */
3646 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3647 xfs_cui_release(cuip);
3648 return 0;
3649 }
3650
3651
3652 /*
3653 * This routine is called when an CUD format structure is found in a committed
3654 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3655 * was still in the log. To do this it searches the AIL for the CUI with an id
3656 * equal to that in the CUD format structure. If we find it we drop the CUD
3657 * reference, which removes the CUI from the AIL and frees it.
3658 */
3659 STATIC int
3660 xlog_recover_cud_pass2(
3661 struct xlog *log,
3662 struct xlog_recover_item *item)
3663 {
3664 struct xfs_cud_log_format *cud_formatp;
3665 struct xfs_cui_log_item *cuip = NULL;
3666 struct xfs_log_item *lip;
3667 uint64_t cui_id;
3668 struct xfs_ail_cursor cur;
3669 struct xfs_ail *ailp = log->l_ailp;
3670
3671 cud_formatp = item->ri_buf[0].i_addr;
3672 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3673 return -EFSCORRUPTED;
3674 cui_id = cud_formatp->cud_cui_id;
3675
3676 /*
3677 * Search for the CUI with the id in the CUD format structure in the
3678 * AIL.
3679 */
3680 spin_lock(&ailp->xa_lock);
3681 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3682 while (lip != NULL) {
3683 if (lip->li_type == XFS_LI_CUI) {
3684 cuip = (struct xfs_cui_log_item *)lip;
3685 if (cuip->cui_format.cui_id == cui_id) {
3686 /*
3687 * Drop the CUD reference to the CUI. This
3688 * removes the CUI from the AIL and frees it.
3689 */
3690 spin_unlock(&ailp->xa_lock);
3691 xfs_cui_release(cuip);
3692 spin_lock(&ailp->xa_lock);
3693 break;
3694 }
3695 }
3696 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3697 }
3698
3699 xfs_trans_ail_cursor_done(&cur);
3700 spin_unlock(&ailp->xa_lock);
3701
3702 return 0;
3703 }
3704
3705 /*
3706 * Copy an BUI format buffer from the given buf, and into the destination
3707 * BUI format structure. The BUI/BUD items were designed not to need any
3708 * special alignment handling.
3709 */
3710 static int
3711 xfs_bui_copy_format(
3712 struct xfs_log_iovec *buf,
3713 struct xfs_bui_log_format *dst_bui_fmt)
3714 {
3715 struct xfs_bui_log_format *src_bui_fmt;
3716 uint len;
3717
3718 src_bui_fmt = buf->i_addr;
3719 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3720
3721 if (buf->i_len == len) {
3722 memcpy(dst_bui_fmt, src_bui_fmt, len);
3723 return 0;
3724 }
3725 return -EFSCORRUPTED;
3726 }
3727
3728 /*
3729 * This routine is called to create an in-core extent bmap update
3730 * item from the bui format structure which was logged on disk.
3731 * It allocates an in-core bui, copies the extents from the format
3732 * structure into it, and adds the bui to the AIL with the given
3733 * LSN.
3734 */
3735 STATIC int
3736 xlog_recover_bui_pass2(
3737 struct xlog *log,
3738 struct xlog_recover_item *item,
3739 xfs_lsn_t lsn)
3740 {
3741 int error;
3742 struct xfs_mount *mp = log->l_mp;
3743 struct xfs_bui_log_item *buip;
3744 struct xfs_bui_log_format *bui_formatp;
3745
3746 bui_formatp = item->ri_buf[0].i_addr;
3747
3748 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3749 return -EFSCORRUPTED;
3750 buip = xfs_bui_init(mp);
3751 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3752 if (error) {
3753 xfs_bui_item_free(buip);
3754 return error;
3755 }
3756 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3757
3758 spin_lock(&log->l_ailp->xa_lock);
3759 /*
3760 * The RUI has two references. One for the RUD and one for RUI to ensure
3761 * it makes it into the AIL. Insert the RUI into the AIL directly and
3762 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3763 * AIL lock.
3764 */
3765 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3766 xfs_bui_release(buip);
3767 return 0;
3768 }
3769
3770
3771 /*
3772 * This routine is called when an BUD format structure is found in a committed
3773 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3774 * was still in the log. To do this it searches the AIL for the BUI with an id
3775 * equal to that in the BUD format structure. If we find it we drop the BUD
3776 * reference, which removes the BUI from the AIL and frees it.
3777 */
3778 STATIC int
3779 xlog_recover_bud_pass2(
3780 struct xlog *log,
3781 struct xlog_recover_item *item)
3782 {
3783 struct xfs_bud_log_format *bud_formatp;
3784 struct xfs_bui_log_item *buip = NULL;
3785 struct xfs_log_item *lip;
3786 uint64_t bui_id;
3787 struct xfs_ail_cursor cur;
3788 struct xfs_ail *ailp = log->l_ailp;
3789
3790 bud_formatp = item->ri_buf[0].i_addr;
3791 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3792 return -EFSCORRUPTED;
3793 bui_id = bud_formatp->bud_bui_id;
3794
3795 /*
3796 * Search for the BUI with the id in the BUD format structure in the
3797 * AIL.
3798 */
3799 spin_lock(&ailp->xa_lock);
3800 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3801 while (lip != NULL) {
3802 if (lip->li_type == XFS_LI_BUI) {
3803 buip = (struct xfs_bui_log_item *)lip;
3804 if (buip->bui_format.bui_id == bui_id) {
3805 /*
3806 * Drop the BUD reference to the BUI. This
3807 * removes the BUI from the AIL and frees it.
3808 */
3809 spin_unlock(&ailp->xa_lock);
3810 xfs_bui_release(buip);
3811 spin_lock(&ailp->xa_lock);
3812 break;
3813 }
3814 }
3815 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3816 }
3817
3818 xfs_trans_ail_cursor_done(&cur);
3819 spin_unlock(&ailp->xa_lock);
3820
3821 return 0;
3822 }
3823
3824 /*
3825 * This routine is called when an inode create format structure is found in a
3826 * committed transaction in the log. It's purpose is to initialise the inodes
3827 * being allocated on disk. This requires us to get inode cluster buffers that
3828 * match the range to be initialised, stamped with inode templates and written
3829 * by delayed write so that subsequent modifications will hit the cached buffer
3830 * and only need writing out at the end of recovery.
3831 */
3832 STATIC int
3833 xlog_recover_do_icreate_pass2(
3834 struct xlog *log,
3835 struct list_head *buffer_list,
3836 xlog_recover_item_t *item)
3837 {
3838 struct xfs_mount *mp = log->l_mp;
3839 struct xfs_icreate_log *icl;
3840 xfs_agnumber_t agno;
3841 xfs_agblock_t agbno;
3842 unsigned int count;
3843 unsigned int isize;
3844 xfs_agblock_t length;
3845 int blks_per_cluster;
3846 int bb_per_cluster;
3847 int cancel_count;
3848 int nbufs;
3849 int i;
3850
3851 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3852 if (icl->icl_type != XFS_LI_ICREATE) {
3853 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3854 return -EINVAL;
3855 }
3856
3857 if (icl->icl_size != 1) {
3858 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3859 return -EINVAL;
3860 }
3861
3862 agno = be32_to_cpu(icl->icl_ag);
3863 if (agno >= mp->m_sb.sb_agcount) {
3864 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3865 return -EINVAL;
3866 }
3867 agbno = be32_to_cpu(icl->icl_agbno);
3868 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3869 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3870 return -EINVAL;
3871 }
3872 isize = be32_to_cpu(icl->icl_isize);
3873 if (isize != mp->m_sb.sb_inodesize) {
3874 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3875 return -EINVAL;
3876 }
3877 count = be32_to_cpu(icl->icl_count);
3878 if (!count) {
3879 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3880 return -EINVAL;
3881 }
3882 length = be32_to_cpu(icl->icl_length);
3883 if (!length || length >= mp->m_sb.sb_agblocks) {
3884 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3885 return -EINVAL;
3886 }
3887
3888 /*
3889 * The inode chunk is either full or sparse and we only support
3890 * m_ialloc_min_blks sized sparse allocations at this time.
3891 */
3892 if (length != mp->m_ialloc_blks &&
3893 length != mp->m_ialloc_min_blks) {
3894 xfs_warn(log->l_mp,
3895 "%s: unsupported chunk length", __FUNCTION__);
3896 return -EINVAL;
3897 }
3898
3899 /* verify inode count is consistent with extent length */
3900 if ((count >> mp->m_sb.sb_inopblog) != length) {
3901 xfs_warn(log->l_mp,
3902 "%s: inconsistent inode count and chunk length",
3903 __FUNCTION__);
3904 return -EINVAL;
3905 }
3906
3907 /*
3908 * The icreate transaction can cover multiple cluster buffers and these
3909 * buffers could have been freed and reused. Check the individual
3910 * buffers for cancellation so we don't overwrite anything written after
3911 * a cancellation.
3912 */
3913 blks_per_cluster = xfs_icluster_size_fsb(mp);
3914 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3915 nbufs = length / blks_per_cluster;
3916 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3917 xfs_daddr_t daddr;
3918
3919 daddr = XFS_AGB_TO_DADDR(mp, agno,
3920 agbno + i * blks_per_cluster);
3921 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3922 cancel_count++;
3923 }
3924
3925 /*
3926 * We currently only use icreate for a single allocation at a time. This
3927 * means we should expect either all or none of the buffers to be
3928 * cancelled. Be conservative and skip replay if at least one buffer is
3929 * cancelled, but warn the user that something is awry if the buffers
3930 * are not consistent.
3931 *
3932 * XXX: This must be refined to only skip cancelled clusters once we use
3933 * icreate for multiple chunk allocations.
3934 */
3935 ASSERT(!cancel_count || cancel_count == nbufs);
3936 if (cancel_count) {
3937 if (cancel_count != nbufs)
3938 xfs_warn(mp,
3939 "WARNING: partial inode chunk cancellation, skipped icreate.");
3940 trace_xfs_log_recover_icreate_cancel(log, icl);
3941 return 0;
3942 }
3943
3944 trace_xfs_log_recover_icreate_recover(log, icl);
3945 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3946 length, be32_to_cpu(icl->icl_gen));
3947 }
3948
3949 STATIC void
3950 xlog_recover_buffer_ra_pass2(
3951 struct xlog *log,
3952 struct xlog_recover_item *item)
3953 {
3954 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3955 struct xfs_mount *mp = log->l_mp;
3956
3957 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3958 buf_f->blf_len, buf_f->blf_flags)) {
3959 return;
3960 }
3961
3962 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3963 buf_f->blf_len, NULL);
3964 }
3965
3966 STATIC void
3967 xlog_recover_inode_ra_pass2(
3968 struct xlog *log,
3969 struct xlog_recover_item *item)
3970 {
3971 struct xfs_inode_log_format ilf_buf;
3972 struct xfs_inode_log_format *ilfp;
3973 struct xfs_mount *mp = log->l_mp;
3974 int error;
3975
3976 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3977 ilfp = item->ri_buf[0].i_addr;
3978 } else {
3979 ilfp = &ilf_buf;
3980 memset(ilfp, 0, sizeof(*ilfp));
3981 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3982 if (error)
3983 return;
3984 }
3985
3986 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3987 return;
3988
3989 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3990 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3991 }
3992
3993 STATIC void
3994 xlog_recover_dquot_ra_pass2(
3995 struct xlog *log,
3996 struct xlog_recover_item *item)
3997 {
3998 struct xfs_mount *mp = log->l_mp;
3999 struct xfs_disk_dquot *recddq;
4000 struct xfs_dq_logformat *dq_f;
4001 uint type;
4002 int len;
4003
4004
4005 if (mp->m_qflags == 0)
4006 return;
4007
4008 recddq = item->ri_buf[1].i_addr;
4009 if (recddq == NULL)
4010 return;
4011 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4012 return;
4013
4014 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4015 ASSERT(type);
4016 if (log->l_quotaoffs_flag & type)
4017 return;
4018
4019 dq_f = item->ri_buf[0].i_addr;
4020 ASSERT(dq_f);
4021 ASSERT(dq_f->qlf_len == 1);
4022
4023 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4024 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4025 return;
4026
4027 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4028 &xfs_dquot_buf_ra_ops);
4029 }
4030
4031 STATIC void
4032 xlog_recover_ra_pass2(
4033 struct xlog *log,
4034 struct xlog_recover_item *item)
4035 {
4036 switch (ITEM_TYPE(item)) {
4037 case XFS_LI_BUF:
4038 xlog_recover_buffer_ra_pass2(log, item);
4039 break;
4040 case XFS_LI_INODE:
4041 xlog_recover_inode_ra_pass2(log, item);
4042 break;
4043 case XFS_LI_DQUOT:
4044 xlog_recover_dquot_ra_pass2(log, item);
4045 break;
4046 case XFS_LI_EFI:
4047 case XFS_LI_EFD:
4048 case XFS_LI_QUOTAOFF:
4049 case XFS_LI_RUI:
4050 case XFS_LI_RUD:
4051 case XFS_LI_CUI:
4052 case XFS_LI_CUD:
4053 case XFS_LI_BUI:
4054 case XFS_LI_BUD:
4055 default:
4056 break;
4057 }
4058 }
4059
4060 STATIC int
4061 xlog_recover_commit_pass1(
4062 struct xlog *log,
4063 struct xlog_recover *trans,
4064 struct xlog_recover_item *item)
4065 {
4066 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4067
4068 switch (ITEM_TYPE(item)) {
4069 case XFS_LI_BUF:
4070 return xlog_recover_buffer_pass1(log, item);
4071 case XFS_LI_QUOTAOFF:
4072 return xlog_recover_quotaoff_pass1(log, item);
4073 case XFS_LI_INODE:
4074 case XFS_LI_EFI:
4075 case XFS_LI_EFD:
4076 case XFS_LI_DQUOT:
4077 case XFS_LI_ICREATE:
4078 case XFS_LI_RUI:
4079 case XFS_LI_RUD:
4080 case XFS_LI_CUI:
4081 case XFS_LI_CUD:
4082 case XFS_LI_BUI:
4083 case XFS_LI_BUD:
4084 /* nothing to do in pass 1 */
4085 return 0;
4086 default:
4087 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4088 __func__, ITEM_TYPE(item));
4089 ASSERT(0);
4090 return -EIO;
4091 }
4092 }
4093
4094 STATIC int
4095 xlog_recover_commit_pass2(
4096 struct xlog *log,
4097 struct xlog_recover *trans,
4098 struct list_head *buffer_list,
4099 struct xlog_recover_item *item)
4100 {
4101 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4102
4103 switch (ITEM_TYPE(item)) {
4104 case XFS_LI_BUF:
4105 return xlog_recover_buffer_pass2(log, buffer_list, item,
4106 trans->r_lsn);
4107 case XFS_LI_INODE:
4108 return xlog_recover_inode_pass2(log, buffer_list, item,
4109 trans->r_lsn);
4110 case XFS_LI_EFI:
4111 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4112 case XFS_LI_EFD:
4113 return xlog_recover_efd_pass2(log, item);
4114 case XFS_LI_RUI:
4115 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4116 case XFS_LI_RUD:
4117 return xlog_recover_rud_pass2(log, item);
4118 case XFS_LI_CUI:
4119 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4120 case XFS_LI_CUD:
4121 return xlog_recover_cud_pass2(log, item);
4122 case XFS_LI_BUI:
4123 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4124 case XFS_LI_BUD:
4125 return xlog_recover_bud_pass2(log, item);
4126 case XFS_LI_DQUOT:
4127 return xlog_recover_dquot_pass2(log, buffer_list, item,
4128 trans->r_lsn);
4129 case XFS_LI_ICREATE:
4130 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4131 case XFS_LI_QUOTAOFF:
4132 /* nothing to do in pass2 */
4133 return 0;
4134 default:
4135 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4136 __func__, ITEM_TYPE(item));
4137 ASSERT(0);
4138 return -EIO;
4139 }
4140 }
4141
4142 STATIC int
4143 xlog_recover_items_pass2(
4144 struct xlog *log,
4145 struct xlog_recover *trans,
4146 struct list_head *buffer_list,
4147 struct list_head *item_list)
4148 {
4149 struct xlog_recover_item *item;
4150 int error = 0;
4151
4152 list_for_each_entry(item, item_list, ri_list) {
4153 error = xlog_recover_commit_pass2(log, trans,
4154 buffer_list, item);
4155 if (error)
4156 return error;
4157 }
4158
4159 return error;
4160 }
4161
4162 /*
4163 * Perform the transaction.
4164 *
4165 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4166 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4167 */
4168 STATIC int
4169 xlog_recover_commit_trans(
4170 struct xlog *log,
4171 struct xlog_recover *trans,
4172 int pass,
4173 struct list_head *buffer_list)
4174 {
4175 int error = 0;
4176 int items_queued = 0;
4177 struct xlog_recover_item *item;
4178 struct xlog_recover_item *next;
4179 LIST_HEAD (ra_list);
4180 LIST_HEAD (done_list);
4181
4182 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4183
4184 hlist_del_init(&trans->r_list);
4185
4186 error = xlog_recover_reorder_trans(log, trans, pass);
4187 if (error)
4188 return error;
4189
4190 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4191 switch (pass) {
4192 case XLOG_RECOVER_PASS1:
4193 error = xlog_recover_commit_pass1(log, trans, item);
4194 break;
4195 case XLOG_RECOVER_PASS2:
4196 xlog_recover_ra_pass2(log, item);
4197 list_move_tail(&item->ri_list, &ra_list);
4198 items_queued++;
4199 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4200 error = xlog_recover_items_pass2(log, trans,
4201 buffer_list, &ra_list);
4202 list_splice_tail_init(&ra_list, &done_list);
4203 items_queued = 0;
4204 }
4205
4206 break;
4207 default:
4208 ASSERT(0);
4209 }
4210
4211 if (error)
4212 goto out;
4213 }
4214
4215 out:
4216 if (!list_empty(&ra_list)) {
4217 if (!error)
4218 error = xlog_recover_items_pass2(log, trans,
4219 buffer_list, &ra_list);
4220 list_splice_tail_init(&ra_list, &done_list);
4221 }
4222
4223 if (!list_empty(&done_list))
4224 list_splice_init(&done_list, &trans->r_itemq);
4225
4226 return error;
4227 }
4228
4229 STATIC void
4230 xlog_recover_add_item(
4231 struct list_head *head)
4232 {
4233 xlog_recover_item_t *item;
4234
4235 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4236 INIT_LIST_HEAD(&item->ri_list);
4237 list_add_tail(&item->ri_list, head);
4238 }
4239
4240 STATIC int
4241 xlog_recover_add_to_cont_trans(
4242 struct xlog *log,
4243 struct xlog_recover *trans,
4244 char *dp,
4245 int len)
4246 {
4247 xlog_recover_item_t *item;
4248 char *ptr, *old_ptr;
4249 int old_len;
4250
4251 /*
4252 * If the transaction is empty, the header was split across this and the
4253 * previous record. Copy the rest of the header.
4254 */
4255 if (list_empty(&trans->r_itemq)) {
4256 ASSERT(len <= sizeof(struct xfs_trans_header));
4257 if (len > sizeof(struct xfs_trans_header)) {
4258 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4259 return -EIO;
4260 }
4261
4262 xlog_recover_add_item(&trans->r_itemq);
4263 ptr = (char *)&trans->r_theader +
4264 sizeof(struct xfs_trans_header) - len;
4265 memcpy(ptr, dp, len);
4266 return 0;
4267 }
4268
4269 /* take the tail entry */
4270 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4271
4272 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4273 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4274
4275 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4276 memcpy(&ptr[old_len], dp, len);
4277 item->ri_buf[item->ri_cnt-1].i_len += len;
4278 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4279 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4280 return 0;
4281 }
4282
4283 /*
4284 * The next region to add is the start of a new region. It could be
4285 * a whole region or it could be the first part of a new region. Because
4286 * of this, the assumption here is that the type and size fields of all
4287 * format structures fit into the first 32 bits of the structure.
4288 *
4289 * This works because all regions must be 32 bit aligned. Therefore, we
4290 * either have both fields or we have neither field. In the case we have
4291 * neither field, the data part of the region is zero length. We only have
4292 * a log_op_header and can throw away the header since a new one will appear
4293 * later. If we have at least 4 bytes, then we can determine how many regions
4294 * will appear in the current log item.
4295 */
4296 STATIC int
4297 xlog_recover_add_to_trans(
4298 struct xlog *log,
4299 struct xlog_recover *trans,
4300 char *dp,
4301 int len)
4302 {
4303 struct xfs_inode_log_format *in_f; /* any will do */
4304 xlog_recover_item_t *item;
4305 char *ptr;
4306
4307 if (!len)
4308 return 0;
4309 if (list_empty(&trans->r_itemq)) {
4310 /* we need to catch log corruptions here */
4311 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4312 xfs_warn(log->l_mp, "%s: bad header magic number",
4313 __func__);
4314 ASSERT(0);
4315 return -EIO;
4316 }
4317
4318 if (len > sizeof(struct xfs_trans_header)) {
4319 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4320 ASSERT(0);
4321 return -EIO;
4322 }
4323
4324 /*
4325 * The transaction header can be arbitrarily split across op
4326 * records. If we don't have the whole thing here, copy what we
4327 * do have and handle the rest in the next record.
4328 */
4329 if (len == sizeof(struct xfs_trans_header))
4330 xlog_recover_add_item(&trans->r_itemq);
4331 memcpy(&trans->r_theader, dp, len);
4332 return 0;
4333 }
4334
4335 ptr = kmem_alloc(len, KM_SLEEP);
4336 memcpy(ptr, dp, len);
4337 in_f = (struct xfs_inode_log_format *)ptr;
4338
4339 /* take the tail entry */
4340 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4341 if (item->ri_total != 0 &&
4342 item->ri_total == item->ri_cnt) {
4343 /* tail item is in use, get a new one */
4344 xlog_recover_add_item(&trans->r_itemq);
4345 item = list_entry(trans->r_itemq.prev,
4346 xlog_recover_item_t, ri_list);
4347 }
4348
4349 if (item->ri_total == 0) { /* first region to be added */
4350 if (in_f->ilf_size == 0 ||
4351 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4352 xfs_warn(log->l_mp,
4353 "bad number of regions (%d) in inode log format",
4354 in_f->ilf_size);
4355 ASSERT(0);
4356 kmem_free(ptr);
4357 return -EIO;
4358 }
4359
4360 item->ri_total = in_f->ilf_size;
4361 item->ri_buf =
4362 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4363 KM_SLEEP);
4364 }
4365 ASSERT(item->ri_total > item->ri_cnt);
4366 /* Description region is ri_buf[0] */
4367 item->ri_buf[item->ri_cnt].i_addr = ptr;
4368 item->ri_buf[item->ri_cnt].i_len = len;
4369 item->ri_cnt++;
4370 trace_xfs_log_recover_item_add(log, trans, item, 0);
4371 return 0;
4372 }
4373
4374 /*
4375 * Free up any resources allocated by the transaction
4376 *
4377 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4378 */
4379 STATIC void
4380 xlog_recover_free_trans(
4381 struct xlog_recover *trans)
4382 {
4383 xlog_recover_item_t *item, *n;
4384 int i;
4385
4386 hlist_del_init(&trans->r_list);
4387
4388 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4389 /* Free the regions in the item. */
4390 list_del(&item->ri_list);
4391 for (i = 0; i < item->ri_cnt; i++)
4392 kmem_free(item->ri_buf[i].i_addr);
4393 /* Free the item itself */
4394 kmem_free(item->ri_buf);
4395 kmem_free(item);
4396 }
4397 /* Free the transaction recover structure */
4398 kmem_free(trans);
4399 }
4400
4401 /*
4402 * On error or completion, trans is freed.
4403 */
4404 STATIC int
4405 xlog_recovery_process_trans(
4406 struct xlog *log,
4407 struct xlog_recover *trans,
4408 char *dp,
4409 unsigned int len,
4410 unsigned int flags,
4411 int pass,
4412 struct list_head *buffer_list)
4413 {
4414 int error = 0;
4415 bool freeit = false;
4416
4417 /* mask off ophdr transaction container flags */
4418 flags &= ~XLOG_END_TRANS;
4419 if (flags & XLOG_WAS_CONT_TRANS)
4420 flags &= ~XLOG_CONTINUE_TRANS;
4421
4422 /*
4423 * Callees must not free the trans structure. We'll decide if we need to
4424 * free it or not based on the operation being done and it's result.
4425 */
4426 switch (flags) {
4427 /* expected flag values */
4428 case 0:
4429 case XLOG_CONTINUE_TRANS:
4430 error = xlog_recover_add_to_trans(log, trans, dp, len);
4431 break;
4432 case XLOG_WAS_CONT_TRANS:
4433 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4434 break;
4435 case XLOG_COMMIT_TRANS:
4436 error = xlog_recover_commit_trans(log, trans, pass,
4437 buffer_list);
4438 /* success or fail, we are now done with this transaction. */
4439 freeit = true;
4440 break;
4441
4442 /* unexpected flag values */
4443 case XLOG_UNMOUNT_TRANS:
4444 /* just skip trans */
4445 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4446 freeit = true;
4447 break;
4448 case XLOG_START_TRANS:
4449 default:
4450 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4451 ASSERT(0);
4452 error = -EIO;
4453 break;
4454 }
4455 if (error || freeit)
4456 xlog_recover_free_trans(trans);
4457 return error;
4458 }
4459
4460 /*
4461 * Lookup the transaction recovery structure associated with the ID in the
4462 * current ophdr. If the transaction doesn't exist and the start flag is set in
4463 * the ophdr, then allocate a new transaction for future ID matches to find.
4464 * Either way, return what we found during the lookup - an existing transaction
4465 * or nothing.
4466 */
4467 STATIC struct xlog_recover *
4468 xlog_recover_ophdr_to_trans(
4469 struct hlist_head rhash[],
4470 struct xlog_rec_header *rhead,
4471 struct xlog_op_header *ohead)
4472 {
4473 struct xlog_recover *trans;
4474 xlog_tid_t tid;
4475 struct hlist_head *rhp;
4476
4477 tid = be32_to_cpu(ohead->oh_tid);
4478 rhp = &rhash[XLOG_RHASH(tid)];
4479 hlist_for_each_entry(trans, rhp, r_list) {
4480 if (trans->r_log_tid == tid)
4481 return trans;
4482 }
4483
4484 /*
4485 * skip over non-start transaction headers - we could be
4486 * processing slack space before the next transaction starts
4487 */
4488 if (!(ohead->oh_flags & XLOG_START_TRANS))
4489 return NULL;
4490
4491 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4492
4493 /*
4494 * This is a new transaction so allocate a new recovery container to
4495 * hold the recovery ops that will follow.
4496 */
4497 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4498 trans->r_log_tid = tid;
4499 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4500 INIT_LIST_HEAD(&trans->r_itemq);
4501 INIT_HLIST_NODE(&trans->r_list);
4502 hlist_add_head(&trans->r_list, rhp);
4503
4504 /*
4505 * Nothing more to do for this ophdr. Items to be added to this new
4506 * transaction will be in subsequent ophdr containers.
4507 */
4508 return NULL;
4509 }
4510
4511 STATIC int
4512 xlog_recover_process_ophdr(
4513 struct xlog *log,
4514 struct hlist_head rhash[],
4515 struct xlog_rec_header *rhead,
4516 struct xlog_op_header *ohead,
4517 char *dp,
4518 char *end,
4519 int pass,
4520 struct list_head *buffer_list)
4521 {
4522 struct xlog_recover *trans;
4523 unsigned int len;
4524 int error;
4525
4526 /* Do we understand who wrote this op? */
4527 if (ohead->oh_clientid != XFS_TRANSACTION &&
4528 ohead->oh_clientid != XFS_LOG) {
4529 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4530 __func__, ohead->oh_clientid);
4531 ASSERT(0);
4532 return -EIO;
4533 }
4534
4535 /*
4536 * Check the ophdr contains all the data it is supposed to contain.
4537 */
4538 len = be32_to_cpu(ohead->oh_len);
4539 if (dp + len > end) {
4540 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4541 WARN_ON(1);
4542 return -EIO;
4543 }
4544
4545 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4546 if (!trans) {
4547 /* nothing to do, so skip over this ophdr */
4548 return 0;
4549 }
4550
4551 /*
4552 * The recovered buffer queue is drained only once we know that all
4553 * recovery items for the current LSN have been processed. This is
4554 * required because:
4555 *
4556 * - Buffer write submission updates the metadata LSN of the buffer.
4557 * - Log recovery skips items with a metadata LSN >= the current LSN of
4558 * the recovery item.
4559 * - Separate recovery items against the same metadata buffer can share
4560 * a current LSN. I.e., consider that the LSN of a recovery item is
4561 * defined as the starting LSN of the first record in which its
4562 * transaction appears, that a record can hold multiple transactions,
4563 * and/or that a transaction can span multiple records.
4564 *
4565 * In other words, we are allowed to submit a buffer from log recovery
4566 * once per current LSN. Otherwise, we may incorrectly skip recovery
4567 * items and cause corruption.
4568 *
4569 * We don't know up front whether buffers are updated multiple times per
4570 * LSN. Therefore, track the current LSN of each commit log record as it
4571 * is processed and drain the queue when it changes. Use commit records
4572 * because they are ordered correctly by the logging code.
4573 */
4574 if (log->l_recovery_lsn != trans->r_lsn &&
4575 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4576 error = xfs_buf_delwri_submit(buffer_list);
4577 if (error)
4578 return error;
4579 log->l_recovery_lsn = trans->r_lsn;
4580 }
4581
4582 return xlog_recovery_process_trans(log, trans, dp, len,
4583 ohead->oh_flags, pass, buffer_list);
4584 }
4585
4586 /*
4587 * There are two valid states of the r_state field. 0 indicates that the
4588 * transaction structure is in a normal state. We have either seen the
4589 * start of the transaction or the last operation we added was not a partial
4590 * operation. If the last operation we added to the transaction was a
4591 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4592 *
4593 * NOTE: skip LRs with 0 data length.
4594 */
4595 STATIC int
4596 xlog_recover_process_data(
4597 struct xlog *log,
4598 struct hlist_head rhash[],
4599 struct xlog_rec_header *rhead,
4600 char *dp,
4601 int pass,
4602 struct list_head *buffer_list)
4603 {
4604 struct xlog_op_header *ohead;
4605 char *end;
4606 int num_logops;
4607 int error;
4608
4609 end = dp + be32_to_cpu(rhead->h_len);
4610 num_logops = be32_to_cpu(rhead->h_num_logops);
4611
4612 /* check the log format matches our own - else we can't recover */
4613 if (xlog_header_check_recover(log->l_mp, rhead))
4614 return -EIO;
4615
4616 trace_xfs_log_recover_record(log, rhead, pass);
4617 while ((dp < end) && num_logops) {
4618
4619 ohead = (struct xlog_op_header *)dp;
4620 dp += sizeof(*ohead);
4621 ASSERT(dp <= end);
4622
4623 /* errors will abort recovery */
4624 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4625 dp, end, pass, buffer_list);
4626 if (error)
4627 return error;
4628
4629 dp += be32_to_cpu(ohead->oh_len);
4630 num_logops--;
4631 }
4632 return 0;
4633 }
4634
4635 /* Recover the EFI if necessary. */
4636 STATIC int
4637 xlog_recover_process_efi(
4638 struct xfs_mount *mp,
4639 struct xfs_ail *ailp,
4640 struct xfs_log_item *lip)
4641 {
4642 struct xfs_efi_log_item *efip;
4643 int error;
4644
4645 /*
4646 * Skip EFIs that we've already processed.
4647 */
4648 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4649 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4650 return 0;
4651
4652 spin_unlock(&ailp->xa_lock);
4653 error = xfs_efi_recover(mp, efip);
4654 spin_lock(&ailp->xa_lock);
4655
4656 return error;
4657 }
4658
4659 /* Release the EFI since we're cancelling everything. */
4660 STATIC void
4661 xlog_recover_cancel_efi(
4662 struct xfs_mount *mp,
4663 struct xfs_ail *ailp,
4664 struct xfs_log_item *lip)
4665 {
4666 struct xfs_efi_log_item *efip;
4667
4668 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4669
4670 spin_unlock(&ailp->xa_lock);
4671 xfs_efi_release(efip);
4672 spin_lock(&ailp->xa_lock);
4673 }
4674
4675 /* Recover the RUI if necessary. */
4676 STATIC int
4677 xlog_recover_process_rui(
4678 struct xfs_mount *mp,
4679 struct xfs_ail *ailp,
4680 struct xfs_log_item *lip)
4681 {
4682 struct xfs_rui_log_item *ruip;
4683 int error;
4684
4685 /*
4686 * Skip RUIs that we've already processed.
4687 */
4688 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4689 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4690 return 0;
4691
4692 spin_unlock(&ailp->xa_lock);
4693 error = xfs_rui_recover(mp, ruip);
4694 spin_lock(&ailp->xa_lock);
4695
4696 return error;
4697 }
4698
4699 /* Release the RUI since we're cancelling everything. */
4700 STATIC void
4701 xlog_recover_cancel_rui(
4702 struct xfs_mount *mp,
4703 struct xfs_ail *ailp,
4704 struct xfs_log_item *lip)
4705 {
4706 struct xfs_rui_log_item *ruip;
4707
4708 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4709
4710 spin_unlock(&ailp->xa_lock);
4711 xfs_rui_release(ruip);
4712 spin_lock(&ailp->xa_lock);
4713 }
4714
4715 /* Recover the CUI if necessary. */
4716 STATIC int
4717 xlog_recover_process_cui(
4718 struct xfs_mount *mp,
4719 struct xfs_ail *ailp,
4720 struct xfs_log_item *lip,
4721 struct xfs_defer_ops *dfops)
4722 {
4723 struct xfs_cui_log_item *cuip;
4724 int error;
4725
4726 /*
4727 * Skip CUIs that we've already processed.
4728 */
4729 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4730 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4731 return 0;
4732
4733 spin_unlock(&ailp->xa_lock);
4734 error = xfs_cui_recover(mp, cuip, dfops);
4735 spin_lock(&ailp->xa_lock);
4736
4737 return error;
4738 }
4739
4740 /* Release the CUI since we're cancelling everything. */
4741 STATIC void
4742 xlog_recover_cancel_cui(
4743 struct xfs_mount *mp,
4744 struct xfs_ail *ailp,
4745 struct xfs_log_item *lip)
4746 {
4747 struct xfs_cui_log_item *cuip;
4748
4749 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4750
4751 spin_unlock(&ailp->xa_lock);
4752 xfs_cui_release(cuip);
4753 spin_lock(&ailp->xa_lock);
4754 }
4755
4756 /* Recover the BUI if necessary. */
4757 STATIC int
4758 xlog_recover_process_bui(
4759 struct xfs_mount *mp,
4760 struct xfs_ail *ailp,
4761 struct xfs_log_item *lip,
4762 struct xfs_defer_ops *dfops)
4763 {
4764 struct xfs_bui_log_item *buip;
4765 int error;
4766
4767 /*
4768 * Skip BUIs that we've already processed.
4769 */
4770 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4771 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4772 return 0;
4773
4774 spin_unlock(&ailp->xa_lock);
4775 error = xfs_bui_recover(mp, buip, dfops);
4776 spin_lock(&ailp->xa_lock);
4777
4778 return error;
4779 }
4780
4781 /* Release the BUI since we're cancelling everything. */
4782 STATIC void
4783 xlog_recover_cancel_bui(
4784 struct xfs_mount *mp,
4785 struct xfs_ail *ailp,
4786 struct xfs_log_item *lip)
4787 {
4788 struct xfs_bui_log_item *buip;
4789
4790 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4791
4792 spin_unlock(&ailp->xa_lock);
4793 xfs_bui_release(buip);
4794 spin_lock(&ailp->xa_lock);
4795 }
4796
4797 /* Is this log item a deferred action intent? */
4798 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4799 {
4800 switch (lip->li_type) {
4801 case XFS_LI_EFI:
4802 case XFS_LI_RUI:
4803 case XFS_LI_CUI:
4804 case XFS_LI_BUI:
4805 return true;
4806 default:
4807 return false;
4808 }
4809 }
4810
4811 /* Take all the collected deferred ops and finish them in order. */
4812 static int
4813 xlog_finish_defer_ops(
4814 struct xfs_mount *mp,
4815 struct xfs_defer_ops *dfops)
4816 {
4817 struct xfs_trans *tp;
4818 int64_t freeblks;
4819 uint resblks;
4820 int error;
4821
4822 /*
4823 * We're finishing the defer_ops that accumulated as a result of
4824 * recovering unfinished intent items during log recovery. We
4825 * reserve an itruncate transaction because it is the largest
4826 * permanent transaction type. Since we're the only user of the fs
4827 * right now, take 93% (15/16) of the available free blocks. Use
4828 * weird math to avoid a 64-bit division.
4829 */
4830 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4831 if (freeblks <= 0)
4832 return -ENOSPC;
4833 resblks = min_t(int64_t, UINT_MAX, freeblks);
4834 resblks = (resblks * 15) >> 4;
4835 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4836 0, XFS_TRANS_RESERVE, &tp);
4837 if (error)
4838 return error;
4839
4840 error = xfs_defer_finish(&tp, dfops);
4841 if (error)
4842 goto out_cancel;
4843
4844 return xfs_trans_commit(tp);
4845
4846 out_cancel:
4847 xfs_trans_cancel(tp);
4848 return error;
4849 }
4850
4851 /*
4852 * When this is called, all of the log intent items which did not have
4853 * corresponding log done items should be in the AIL. What we do now
4854 * is update the data structures associated with each one.
4855 *
4856 * Since we process the log intent items in normal transactions, they
4857 * will be removed at some point after the commit. This prevents us
4858 * from just walking down the list processing each one. We'll use a
4859 * flag in the intent item to skip those that we've already processed
4860 * and use the AIL iteration mechanism's generation count to try to
4861 * speed this up at least a bit.
4862 *
4863 * When we start, we know that the intents are the only things in the
4864 * AIL. As we process them, however, other items are added to the
4865 * AIL.
4866 */
4867 STATIC int
4868 xlog_recover_process_intents(
4869 struct xlog *log)
4870 {
4871 struct xfs_defer_ops dfops;
4872 struct xfs_ail_cursor cur;
4873 struct xfs_log_item *lip;
4874 struct xfs_ail *ailp;
4875 xfs_fsblock_t firstfsb;
4876 int error = 0;
4877 #if defined(DEBUG) || defined(XFS_WARN)
4878 xfs_lsn_t last_lsn;
4879 #endif
4880
4881 ailp = log->l_ailp;
4882 spin_lock(&ailp->xa_lock);
4883 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4884 #if defined(DEBUG) || defined(XFS_WARN)
4885 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4886 #endif
4887 xfs_defer_init(&dfops, &firstfsb);
4888 while (lip != NULL) {
4889 /*
4890 * We're done when we see something other than an intent.
4891 * There should be no intents left in the AIL now.
4892 */
4893 if (!xlog_item_is_intent(lip)) {
4894 #ifdef DEBUG
4895 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4896 ASSERT(!xlog_item_is_intent(lip));
4897 #endif
4898 break;
4899 }
4900
4901 /*
4902 * We should never see a redo item with a LSN higher than
4903 * the last transaction we found in the log at the start
4904 * of recovery.
4905 */
4906 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4907
4908 /*
4909 * NOTE: If your intent processing routine can create more
4910 * deferred ops, you /must/ attach them to the dfops in this
4911 * routine or else those subsequent intents will get
4912 * replayed in the wrong order!
4913 */
4914 switch (lip->li_type) {
4915 case XFS_LI_EFI:
4916 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4917 break;
4918 case XFS_LI_RUI:
4919 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4920 break;
4921 case XFS_LI_CUI:
4922 error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4923 &dfops);
4924 break;
4925 case XFS_LI_BUI:
4926 error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4927 &dfops);
4928 break;
4929 }
4930 if (error)
4931 goto out;
4932 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4933 }
4934 out:
4935 xfs_trans_ail_cursor_done(&cur);
4936 spin_unlock(&ailp->xa_lock);
4937 if (error)
4938 xfs_defer_cancel(&dfops);
4939 else
4940 error = xlog_finish_defer_ops(log->l_mp, &dfops);
4941
4942 return error;
4943 }
4944
4945 /*
4946 * A cancel occurs when the mount has failed and we're bailing out.
4947 * Release all pending log intent items so they don't pin the AIL.
4948 */
4949 STATIC int
4950 xlog_recover_cancel_intents(
4951 struct xlog *log)
4952 {
4953 struct xfs_log_item *lip;
4954 int error = 0;
4955 struct xfs_ail_cursor cur;
4956 struct xfs_ail *ailp;
4957
4958 ailp = log->l_ailp;
4959 spin_lock(&ailp->xa_lock);
4960 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4961 while (lip != NULL) {
4962 /*
4963 * We're done when we see something other than an intent.
4964 * There should be no intents left in the AIL now.
4965 */
4966 if (!xlog_item_is_intent(lip)) {
4967 #ifdef DEBUG
4968 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4969 ASSERT(!xlog_item_is_intent(lip));
4970 #endif
4971 break;
4972 }
4973
4974 switch (lip->li_type) {
4975 case XFS_LI_EFI:
4976 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4977 break;
4978 case XFS_LI_RUI:
4979 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4980 break;
4981 case XFS_LI_CUI:
4982 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4983 break;
4984 case XFS_LI_BUI:
4985 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4986 break;
4987 }
4988
4989 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4990 }
4991
4992 xfs_trans_ail_cursor_done(&cur);
4993 spin_unlock(&ailp->xa_lock);
4994 return error;
4995 }
4996
4997 /*
4998 * This routine performs a transaction to null out a bad inode pointer
4999 * in an agi unlinked inode hash bucket.
5000 */
5001 STATIC void
5002 xlog_recover_clear_agi_bucket(
5003 xfs_mount_t *mp,
5004 xfs_agnumber_t agno,
5005 int bucket)
5006 {
5007 xfs_trans_t *tp;
5008 xfs_agi_t *agi;
5009 xfs_buf_t *agibp;
5010 int offset;
5011 int error;
5012
5013 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5014 if (error)
5015 goto out_error;
5016
5017 error = xfs_read_agi(mp, tp, agno, &agibp);
5018 if (error)
5019 goto out_abort;
5020
5021 agi = XFS_BUF_TO_AGI(agibp);
5022 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5023 offset = offsetof(xfs_agi_t, agi_unlinked) +
5024 (sizeof(xfs_agino_t) * bucket);
5025 xfs_trans_log_buf(tp, agibp, offset,
5026 (offset + sizeof(xfs_agino_t) - 1));
5027
5028 error = xfs_trans_commit(tp);
5029 if (error)
5030 goto out_error;
5031 return;
5032
5033 out_abort:
5034 xfs_trans_cancel(tp);
5035 out_error:
5036 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5037 return;
5038 }
5039
5040 STATIC xfs_agino_t
5041 xlog_recover_process_one_iunlink(
5042 struct xfs_mount *mp,
5043 xfs_agnumber_t agno,
5044 xfs_agino_t agino,
5045 int bucket)
5046 {
5047 struct xfs_buf *ibp;
5048 struct xfs_dinode *dip;
5049 struct xfs_inode *ip;
5050 xfs_ino_t ino;
5051 int error;
5052
5053 ino = XFS_AGINO_TO_INO(mp, agno, agino);
5054 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5055 if (error)
5056 goto fail;
5057
5058 /*
5059 * Get the on disk inode to find the next inode in the bucket.
5060 */
5061 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5062 if (error)
5063 goto fail_iput;
5064
5065 xfs_iflags_clear(ip, XFS_IRECOVERY);
5066 ASSERT(VFS_I(ip)->i_nlink == 0);
5067 ASSERT(VFS_I(ip)->i_mode != 0);
5068
5069 /* setup for the next pass */
5070 agino = be32_to_cpu(dip->di_next_unlinked);
5071 xfs_buf_relse(ibp);
5072
5073 /*
5074 * Prevent any DMAPI event from being sent when the reference on
5075 * the inode is dropped.
5076 */
5077 ip->i_d.di_dmevmask = 0;
5078
5079 IRELE(ip);
5080 return agino;
5081
5082 fail_iput:
5083 IRELE(ip);
5084 fail:
5085 /*
5086 * We can't read in the inode this bucket points to, or this inode
5087 * is messed up. Just ditch this bucket of inodes. We will lose
5088 * some inodes and space, but at least we won't hang.
5089 *
5090 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5091 * clear the inode pointer in the bucket.
5092 */
5093 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5094 return NULLAGINO;
5095 }
5096
5097 /*
5098 * xlog_iunlink_recover
5099 *
5100 * This is called during recovery to process any inodes which
5101 * we unlinked but not freed when the system crashed. These
5102 * inodes will be on the lists in the AGI blocks. What we do
5103 * here is scan all the AGIs and fully truncate and free any
5104 * inodes found on the lists. Each inode is removed from the
5105 * lists when it has been fully truncated and is freed. The
5106 * freeing of the inode and its removal from the list must be
5107 * atomic.
5108 */
5109 STATIC void
5110 xlog_recover_process_iunlinks(
5111 struct xlog *log)
5112 {
5113 xfs_mount_t *mp;
5114 xfs_agnumber_t agno;
5115 xfs_agi_t *agi;
5116 xfs_buf_t *agibp;
5117 xfs_agino_t agino;
5118 int bucket;
5119 int error;
5120 uint mp_dmevmask;
5121
5122 mp = log->l_mp;
5123
5124 /*
5125 * Prevent any DMAPI event from being sent while in this function.
5126 */
5127 mp_dmevmask = mp->m_dmevmask;
5128 mp->m_dmevmask = 0;
5129
5130 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5131 /*
5132 * Find the agi for this ag.
5133 */
5134 error = xfs_read_agi(mp, NULL, agno, &agibp);
5135 if (error) {
5136 /*
5137 * AGI is b0rked. Don't process it.
5138 *
5139 * We should probably mark the filesystem as corrupt
5140 * after we've recovered all the ag's we can....
5141 */
5142 continue;
5143 }
5144 /*
5145 * Unlock the buffer so that it can be acquired in the normal
5146 * course of the transaction to truncate and free each inode.
5147 * Because we are not racing with anyone else here for the AGI
5148 * buffer, we don't even need to hold it locked to read the
5149 * initial unlinked bucket entries out of the buffer. We keep
5150 * buffer reference though, so that it stays pinned in memory
5151 * while we need the buffer.
5152 */
5153 agi = XFS_BUF_TO_AGI(agibp);
5154 xfs_buf_unlock(agibp);
5155
5156 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5157 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5158 while (agino != NULLAGINO) {
5159 agino = xlog_recover_process_one_iunlink(mp,
5160 agno, agino, bucket);
5161 }
5162 }
5163 xfs_buf_rele(agibp);
5164 }
5165
5166 mp->m_dmevmask = mp_dmevmask;
5167 }
5168
5169 STATIC int
5170 xlog_unpack_data(
5171 struct xlog_rec_header *rhead,
5172 char *dp,
5173 struct xlog *log)
5174 {
5175 int i, j, k;
5176
5177 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5178 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5179 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5180 dp += BBSIZE;
5181 }
5182
5183 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5184 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5185 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5186 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5187 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5188 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5189 dp += BBSIZE;
5190 }
5191 }
5192
5193 return 0;
5194 }
5195
5196 /*
5197 * CRC check, unpack and process a log record.
5198 */
5199 STATIC int
5200 xlog_recover_process(
5201 struct xlog *log,
5202 struct hlist_head rhash[],
5203 struct xlog_rec_header *rhead,
5204 char *dp,
5205 int pass,
5206 struct list_head *buffer_list)
5207 {
5208 int error;
5209 __le32 old_crc = rhead->h_crc;
5210 __le32 crc;
5211
5212
5213 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5214
5215 /*
5216 * Nothing else to do if this is a CRC verification pass. Just return
5217 * if this a record with a non-zero crc. Unfortunately, mkfs always
5218 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5219 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5220 * know precisely what failed.
5221 */
5222 if (pass == XLOG_RECOVER_CRCPASS) {
5223 if (old_crc && crc != old_crc)
5224 return -EFSBADCRC;
5225 return 0;
5226 }
5227
5228 /*
5229 * We're in the normal recovery path. Issue a warning if and only if the
5230 * CRC in the header is non-zero. This is an advisory warning and the
5231 * zero CRC check prevents warnings from being emitted when upgrading
5232 * the kernel from one that does not add CRCs by default.
5233 */
5234 if (crc != old_crc) {
5235 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5236 xfs_alert(log->l_mp,
5237 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5238 le32_to_cpu(old_crc),
5239 le32_to_cpu(crc));
5240 xfs_hex_dump(dp, 32);
5241 }
5242
5243 /*
5244 * If the filesystem is CRC enabled, this mismatch becomes a
5245 * fatal log corruption failure.
5246 */
5247 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5248 return -EFSCORRUPTED;
5249 }
5250
5251 error = xlog_unpack_data(rhead, dp, log);
5252 if (error)
5253 return error;
5254
5255 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5256 buffer_list);
5257 }
5258
5259 STATIC int
5260 xlog_valid_rec_header(
5261 struct xlog *log,
5262 struct xlog_rec_header *rhead,
5263 xfs_daddr_t blkno)
5264 {
5265 int hlen;
5266
5267 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5268 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5269 XFS_ERRLEVEL_LOW, log->l_mp);
5270 return -EFSCORRUPTED;
5271 }
5272 if (unlikely(
5273 (!rhead->h_version ||
5274 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5275 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5276 __func__, be32_to_cpu(rhead->h_version));
5277 return -EIO;
5278 }
5279
5280 /* LR body must have data or it wouldn't have been written */
5281 hlen = be32_to_cpu(rhead->h_len);
5282 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5283 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5284 XFS_ERRLEVEL_LOW, log->l_mp);
5285 return -EFSCORRUPTED;
5286 }
5287 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5288 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5289 XFS_ERRLEVEL_LOW, log->l_mp);
5290 return -EFSCORRUPTED;
5291 }
5292 return 0;
5293 }
5294
5295 /*
5296 * Read the log from tail to head and process the log records found.
5297 * Handle the two cases where the tail and head are in the same cycle
5298 * and where the active portion of the log wraps around the end of
5299 * the physical log separately. The pass parameter is passed through
5300 * to the routines called to process the data and is not looked at
5301 * here.
5302 */
5303 STATIC int
5304 xlog_do_recovery_pass(
5305 struct xlog *log,
5306 xfs_daddr_t head_blk,
5307 xfs_daddr_t tail_blk,
5308 int pass,
5309 xfs_daddr_t *first_bad) /* out: first bad log rec */
5310 {
5311 xlog_rec_header_t *rhead;
5312 xfs_daddr_t blk_no, rblk_no;
5313 xfs_daddr_t rhead_blk;
5314 char *offset;
5315 xfs_buf_t *hbp, *dbp;
5316 int error = 0, h_size, h_len;
5317 int error2 = 0;
5318 int bblks, split_bblks;
5319 int hblks, split_hblks, wrapped_hblks;
5320 int i;
5321 struct hlist_head rhash[XLOG_RHASH_SIZE];
5322 LIST_HEAD (buffer_list);
5323
5324 ASSERT(head_blk != tail_blk);
5325 blk_no = rhead_blk = tail_blk;
5326
5327 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5328 INIT_HLIST_HEAD(&rhash[i]);
5329
5330 /*
5331 * Read the header of the tail block and get the iclog buffer size from
5332 * h_size. Use this to tell how many sectors make up the log header.
5333 */
5334 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5335 /*
5336 * When using variable length iclogs, read first sector of
5337 * iclog header and extract the header size from it. Get a
5338 * new hbp that is the correct size.
5339 */
5340 hbp = xlog_get_bp(log, 1);
5341 if (!hbp)
5342 return -ENOMEM;
5343
5344 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5345 if (error)
5346 goto bread_err1;
5347
5348 rhead = (xlog_rec_header_t *)offset;
5349 error = xlog_valid_rec_header(log, rhead, tail_blk);
5350 if (error)
5351 goto bread_err1;
5352
5353 /*
5354 * xfsprogs has a bug where record length is based on lsunit but
5355 * h_size (iclog size) is hardcoded to 32k. Now that we
5356 * unconditionally CRC verify the unmount record, this means the
5357 * log buffer can be too small for the record and cause an
5358 * overrun.
5359 *
5360 * Detect this condition here. Use lsunit for the buffer size as
5361 * long as this looks like the mkfs case. Otherwise, return an
5362 * error to avoid a buffer overrun.
5363 */
5364 h_size = be32_to_cpu(rhead->h_size);
5365 h_len = be32_to_cpu(rhead->h_len);
5366 if (h_len > h_size) {
5367 if (h_len <= log->l_mp->m_logbsize &&
5368 be32_to_cpu(rhead->h_num_logops) == 1) {
5369 xfs_warn(log->l_mp,
5370 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5371 h_size, log->l_mp->m_logbsize);
5372 h_size = log->l_mp->m_logbsize;
5373 } else
5374 return -EFSCORRUPTED;
5375 }
5376
5377 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5378 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5379 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5380 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5381 hblks++;
5382 xlog_put_bp(hbp);
5383 hbp = xlog_get_bp(log, hblks);
5384 } else {
5385 hblks = 1;
5386 }
5387 } else {
5388 ASSERT(log->l_sectBBsize == 1);
5389 hblks = 1;
5390 hbp = xlog_get_bp(log, 1);
5391 h_size = XLOG_BIG_RECORD_BSIZE;
5392 }
5393
5394 if (!hbp)
5395 return -ENOMEM;
5396 dbp = xlog_get_bp(log, BTOBB(h_size));
5397 if (!dbp) {
5398 xlog_put_bp(hbp);
5399 return -ENOMEM;
5400 }
5401
5402 memset(rhash, 0, sizeof(rhash));
5403 if (tail_blk > head_blk) {
5404 /*
5405 * Perform recovery around the end of the physical log.
5406 * When the head is not on the same cycle number as the tail,
5407 * we can't do a sequential recovery.
5408 */
5409 while (blk_no < log->l_logBBsize) {
5410 /*
5411 * Check for header wrapping around physical end-of-log
5412 */
5413 offset = hbp->b_addr;
5414 split_hblks = 0;
5415 wrapped_hblks = 0;
5416 if (blk_no + hblks <= log->l_logBBsize) {
5417 /* Read header in one read */
5418 error = xlog_bread(log, blk_no, hblks, hbp,
5419 &offset);
5420 if (error)
5421 goto bread_err2;
5422 } else {
5423 /* This LR is split across physical log end */
5424 if (blk_no != log->l_logBBsize) {
5425 /* some data before physical log end */
5426 ASSERT(blk_no <= INT_MAX);
5427 split_hblks = log->l_logBBsize - (int)blk_no;
5428 ASSERT(split_hblks > 0);
5429 error = xlog_bread(log, blk_no,
5430 split_hblks, hbp,
5431 &offset);
5432 if (error)
5433 goto bread_err2;
5434 }
5435
5436 /*
5437 * Note: this black magic still works with
5438 * large sector sizes (non-512) only because:
5439 * - we increased the buffer size originally
5440 * by 1 sector giving us enough extra space
5441 * for the second read;
5442 * - the log start is guaranteed to be sector
5443 * aligned;
5444 * - we read the log end (LR header start)
5445 * _first_, then the log start (LR header end)
5446 * - order is important.
5447 */
5448 wrapped_hblks = hblks - split_hblks;
5449 error = xlog_bread_offset(log, 0,
5450 wrapped_hblks, hbp,
5451 offset + BBTOB(split_hblks));
5452 if (error)
5453 goto bread_err2;
5454 }
5455 rhead = (xlog_rec_header_t *)offset;
5456 error = xlog_valid_rec_header(log, rhead,
5457 split_hblks ? blk_no : 0);
5458 if (error)
5459 goto bread_err2;
5460
5461 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5462 blk_no += hblks;
5463
5464 /*
5465 * Read the log record data in multiple reads if it
5466 * wraps around the end of the log. Note that if the
5467 * header already wrapped, blk_no could point past the
5468 * end of the log. The record data is contiguous in
5469 * that case.
5470 */
5471 if (blk_no + bblks <= log->l_logBBsize ||
5472 blk_no >= log->l_logBBsize) {
5473 /* mod blk_no in case the header wrapped and
5474 * pushed it beyond the end of the log */
5475 rblk_no = do_mod(blk_no, log->l_logBBsize);
5476 error = xlog_bread(log, rblk_no, bblks, dbp,
5477 &offset);
5478 if (error)
5479 goto bread_err2;
5480 } else {
5481 /* This log record is split across the
5482 * physical end of log */
5483 offset = dbp->b_addr;
5484 split_bblks = 0;
5485 if (blk_no != log->l_logBBsize) {
5486 /* some data is before the physical
5487 * end of log */
5488 ASSERT(!wrapped_hblks);
5489 ASSERT(blk_no <= INT_MAX);
5490 split_bblks =
5491 log->l_logBBsize - (int)blk_no;
5492 ASSERT(split_bblks > 0);
5493 error = xlog_bread(log, blk_no,
5494 split_bblks, dbp,
5495 &offset);
5496 if (error)
5497 goto bread_err2;
5498 }
5499
5500 /*
5501 * Note: this black magic still works with
5502 * large sector sizes (non-512) only because:
5503 * - we increased the buffer size originally
5504 * by 1 sector giving us enough extra space
5505 * for the second read;
5506 * - the log start is guaranteed to be sector
5507 * aligned;
5508 * - we read the log end (LR header start)
5509 * _first_, then the log start (LR header end)
5510 * - order is important.
5511 */
5512 error = xlog_bread_offset(log, 0,
5513 bblks - split_bblks, dbp,
5514 offset + BBTOB(split_bblks));
5515 if (error)
5516 goto bread_err2;
5517 }
5518
5519 error = xlog_recover_process(log, rhash, rhead, offset,
5520 pass, &buffer_list);
5521 if (error)
5522 goto bread_err2;
5523
5524 blk_no += bblks;
5525 rhead_blk = blk_no;
5526 }
5527
5528 ASSERT(blk_no >= log->l_logBBsize);
5529 blk_no -= log->l_logBBsize;
5530 rhead_blk = blk_no;
5531 }
5532
5533 /* read first part of physical log */
5534 while (blk_no < head_blk) {
5535 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5536 if (error)
5537 goto bread_err2;
5538
5539 rhead = (xlog_rec_header_t *)offset;
5540 error = xlog_valid_rec_header(log, rhead, blk_no);
5541 if (error)
5542 goto bread_err2;
5543
5544 /* blocks in data section */
5545 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5546 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5547 &offset);
5548 if (error)
5549 goto bread_err2;
5550
5551 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5552 &buffer_list);
5553 if (error)
5554 goto bread_err2;
5555
5556 blk_no += bblks + hblks;
5557 rhead_blk = blk_no;
5558 }
5559
5560 bread_err2:
5561 xlog_put_bp(dbp);
5562 bread_err1:
5563 xlog_put_bp(hbp);
5564
5565 /*
5566 * Submit buffers that have been added from the last record processed,
5567 * regardless of error status.
5568 */
5569 if (!list_empty(&buffer_list))
5570 error2 = xfs_buf_delwri_submit(&buffer_list);
5571
5572 if (error && first_bad)
5573 *first_bad = rhead_blk;
5574
5575 /*
5576 * Transactions are freed at commit time but transactions without commit
5577 * records on disk are never committed. Free any that may be left in the
5578 * hash table.
5579 */
5580 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5581 struct hlist_node *tmp;
5582 struct xlog_recover *trans;
5583
5584 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5585 xlog_recover_free_trans(trans);
5586 }
5587
5588 return error ? error : error2;
5589 }
5590
5591 /*
5592 * Do the recovery of the log. We actually do this in two phases.
5593 * The two passes are necessary in order to implement the function
5594 * of cancelling a record written into the log. The first pass
5595 * determines those things which have been cancelled, and the
5596 * second pass replays log items normally except for those which
5597 * have been cancelled. The handling of the replay and cancellations
5598 * takes place in the log item type specific routines.
5599 *
5600 * The table of items which have cancel records in the log is allocated
5601 * and freed at this level, since only here do we know when all of
5602 * the log recovery has been completed.
5603 */
5604 STATIC int
5605 xlog_do_log_recovery(
5606 struct xlog *log,
5607 xfs_daddr_t head_blk,
5608 xfs_daddr_t tail_blk)
5609 {
5610 int error, i;
5611
5612 ASSERT(head_blk != tail_blk);
5613
5614 /*
5615 * First do a pass to find all of the cancelled buf log items.
5616 * Store them in the buf_cancel_table for use in the second pass.
5617 */
5618 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5619 sizeof(struct list_head),
5620 KM_SLEEP);
5621 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5622 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5623
5624 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5625 XLOG_RECOVER_PASS1, NULL);
5626 if (error != 0) {
5627 kmem_free(log->l_buf_cancel_table);
5628 log->l_buf_cancel_table = NULL;
5629 return error;
5630 }
5631 /*
5632 * Then do a second pass to actually recover the items in the log.
5633 * When it is complete free the table of buf cancel items.
5634 */
5635 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5636 XLOG_RECOVER_PASS2, NULL);
5637 #ifdef DEBUG
5638 if (!error) {
5639 int i;
5640
5641 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5642 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5643 }
5644 #endif /* DEBUG */
5645
5646 kmem_free(log->l_buf_cancel_table);
5647 log->l_buf_cancel_table = NULL;
5648
5649 return error;
5650 }
5651
5652 /*
5653 * Do the actual recovery
5654 */
5655 STATIC int
5656 xlog_do_recover(
5657 struct xlog *log,
5658 xfs_daddr_t head_blk,
5659 xfs_daddr_t tail_blk)
5660 {
5661 struct xfs_mount *mp = log->l_mp;
5662 int error;
5663 xfs_buf_t *bp;
5664 xfs_sb_t *sbp;
5665
5666 trace_xfs_log_recover(log, head_blk, tail_blk);
5667
5668 /*
5669 * First replay the images in the log.
5670 */
5671 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5672 if (error)
5673 return error;
5674
5675 /*
5676 * If IO errors happened during recovery, bail out.
5677 */
5678 if (XFS_FORCED_SHUTDOWN(mp)) {
5679 return -EIO;
5680 }
5681
5682 /*
5683 * We now update the tail_lsn since much of the recovery has completed
5684 * and there may be space available to use. If there were no extent
5685 * or iunlinks, we can free up the entire log and set the tail_lsn to
5686 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5687 * lsn of the last known good LR on disk. If there are extent frees
5688 * or iunlinks they will have some entries in the AIL; so we look at
5689 * the AIL to determine how to set the tail_lsn.
5690 */
5691 xlog_assign_tail_lsn(mp);
5692
5693 /*
5694 * Now that we've finished replaying all buffer and inode
5695 * updates, re-read in the superblock and reverify it.
5696 */
5697 bp = xfs_getsb(mp, 0);
5698 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5699 ASSERT(!(bp->b_flags & XBF_WRITE));
5700 bp->b_flags |= XBF_READ;
5701 bp->b_ops = &xfs_sb_buf_ops;
5702
5703 error = xfs_buf_submit_wait(bp);
5704 if (error) {
5705 if (!XFS_FORCED_SHUTDOWN(mp)) {
5706 xfs_buf_ioerror_alert(bp, __func__);
5707 ASSERT(0);
5708 }
5709 xfs_buf_relse(bp);
5710 return error;
5711 }
5712
5713 /* Convert superblock from on-disk format */
5714 sbp = &mp->m_sb;
5715 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5716 xfs_buf_relse(bp);
5717
5718 /* re-initialise in-core superblock and geometry structures */
5719 xfs_reinit_percpu_counters(mp);
5720 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5721 if (error) {
5722 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5723 return error;
5724 }
5725 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5726
5727 xlog_recover_check_summary(log);
5728
5729 /* Normal transactions can now occur */
5730 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5731 return 0;
5732 }
5733
5734 /*
5735 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5736 *
5737 * Return error or zero.
5738 */
5739 int
5740 xlog_recover(
5741 struct xlog *log)
5742 {
5743 xfs_daddr_t head_blk, tail_blk;
5744 int error;
5745
5746 /* find the tail of the log */
5747 error = xlog_find_tail(log, &head_blk, &tail_blk);
5748 if (error)
5749 return error;
5750
5751 /*
5752 * The superblock was read before the log was available and thus the LSN
5753 * could not be verified. Check the superblock LSN against the current
5754 * LSN now that it's known.
5755 */
5756 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5757 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5758 return -EINVAL;
5759
5760 if (tail_blk != head_blk) {
5761 /* There used to be a comment here:
5762 *
5763 * disallow recovery on read-only mounts. note -- mount
5764 * checks for ENOSPC and turns it into an intelligent
5765 * error message.
5766 * ...but this is no longer true. Now, unless you specify
5767 * NORECOVERY (in which case this function would never be
5768 * called), we just go ahead and recover. We do this all
5769 * under the vfs layer, so we can get away with it unless
5770 * the device itself is read-only, in which case we fail.
5771 */
5772 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5773 return error;
5774 }
5775
5776 /*
5777 * Version 5 superblock log feature mask validation. We know the
5778 * log is dirty so check if there are any unknown log features
5779 * in what we need to recover. If there are unknown features
5780 * (e.g. unsupported transactions, then simply reject the
5781 * attempt at recovery before touching anything.
5782 */
5783 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5784 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5785 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5786 xfs_warn(log->l_mp,
5787 "Superblock has unknown incompatible log features (0x%x) enabled.",
5788 (log->l_mp->m_sb.sb_features_log_incompat &
5789 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5790 xfs_warn(log->l_mp,
5791 "The log can not be fully and/or safely recovered by this kernel.");
5792 xfs_warn(log->l_mp,
5793 "Please recover the log on a kernel that supports the unknown features.");
5794 return -EINVAL;
5795 }
5796
5797 /*
5798 * Delay log recovery if the debug hook is set. This is debug
5799 * instrumention to coordinate simulation of I/O failures with
5800 * log recovery.
5801 */
5802 if (xfs_globals.log_recovery_delay) {
5803 xfs_notice(log->l_mp,
5804 "Delaying log recovery for %d seconds.",
5805 xfs_globals.log_recovery_delay);
5806 msleep(xfs_globals.log_recovery_delay * 1000);
5807 }
5808
5809 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5810 log->l_mp->m_logname ? log->l_mp->m_logname
5811 : "internal");
5812
5813 error = xlog_do_recover(log, head_blk, tail_blk);
5814 log->l_flags |= XLOG_RECOVERY_NEEDED;
5815 }
5816 return error;
5817 }
5818
5819 /*
5820 * In the first part of recovery we replay inodes and buffers and build
5821 * up the list of extent free items which need to be processed. Here
5822 * we process the extent free items and clean up the on disk unlinked
5823 * inode lists. This is separated from the first part of recovery so
5824 * that the root and real-time bitmap inodes can be read in from disk in
5825 * between the two stages. This is necessary so that we can free space
5826 * in the real-time portion of the file system.
5827 */
5828 int
5829 xlog_recover_finish(
5830 struct xlog *log)
5831 {
5832 /*
5833 * Now we're ready to do the transactions needed for the
5834 * rest of recovery. Start with completing all the extent
5835 * free intent records and then process the unlinked inode
5836 * lists. At this point, we essentially run in normal mode
5837 * except that we're still performing recovery actions
5838 * rather than accepting new requests.
5839 */
5840 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5841 int error;
5842 error = xlog_recover_process_intents(log);
5843 if (error) {
5844 xfs_alert(log->l_mp, "Failed to recover intents");
5845 return error;
5846 }
5847
5848 /*
5849 * Sync the log to get all the intents out of the AIL.
5850 * This isn't absolutely necessary, but it helps in
5851 * case the unlink transactions would have problems
5852 * pushing the intents out of the way.
5853 */
5854 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5855
5856 xlog_recover_process_iunlinks(log);
5857
5858 xlog_recover_check_summary(log);
5859
5860 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5861 log->l_mp->m_logname ? log->l_mp->m_logname
5862 : "internal");
5863 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5864 } else {
5865 xfs_info(log->l_mp, "Ending clean mount");
5866 }
5867 return 0;
5868 }
5869
5870 int
5871 xlog_recover_cancel(
5872 struct xlog *log)
5873 {
5874 int error = 0;
5875
5876 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5877 error = xlog_recover_cancel_intents(log);
5878
5879 return error;
5880 }
5881
5882 #if defined(DEBUG)
5883 /*
5884 * Read all of the agf and agi counters and check that they
5885 * are consistent with the superblock counters.
5886 */
5887 STATIC void
5888 xlog_recover_check_summary(
5889 struct xlog *log)
5890 {
5891 xfs_mount_t *mp;
5892 xfs_agf_t *agfp;
5893 xfs_buf_t *agfbp;
5894 xfs_buf_t *agibp;
5895 xfs_agnumber_t agno;
5896 uint64_t freeblks;
5897 uint64_t itotal;
5898 uint64_t ifree;
5899 int error;
5900
5901 mp = log->l_mp;
5902
5903 freeblks = 0LL;
5904 itotal = 0LL;
5905 ifree = 0LL;
5906 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5907 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5908 if (error) {
5909 xfs_alert(mp, "%s agf read failed agno %d error %d",
5910 __func__, agno, error);
5911 } else {
5912 agfp = XFS_BUF_TO_AGF(agfbp);
5913 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5914 be32_to_cpu(agfp->agf_flcount);
5915 xfs_buf_relse(agfbp);
5916 }
5917
5918 error = xfs_read_agi(mp, NULL, agno, &agibp);
5919 if (error) {
5920 xfs_alert(mp, "%s agi read failed agno %d error %d",
5921 __func__, agno, error);
5922 } else {
5923 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5924
5925 itotal += be32_to_cpu(agi->agi_count);
5926 ifree += be32_to_cpu(agi->agi_freecount);
5927 xfs_buf_relse(agibp);
5928 }
5929 }
5930 }
5931 #endif /* DEBUG */