]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/xfs/xfs_log_recover.c
Merge tag 'net-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_log_recover.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_trans_priv.h"
22 #include "xfs_alloc.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_trace.h"
25 #include "xfs_icache.h"
26 #include "xfs_error.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_ag.h"
29 #include "xfs_quota.h"
30
31
32 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
33
34 STATIC int
35 xlog_find_zeroed(
36 struct xlog *,
37 xfs_daddr_t *);
38 STATIC int
39 xlog_clear_stale_blocks(
40 struct xlog *,
41 xfs_lsn_t);
42 #if defined(DEBUG)
43 STATIC void
44 xlog_recover_check_summary(
45 struct xlog *);
46 #else
47 #define xlog_recover_check_summary(log)
48 #endif
49 STATIC int
50 xlog_do_recovery_pass(
51 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
52
53 /*
54 * Sector aligned buffer routines for buffer create/read/write/access
55 */
56
57 /*
58 * Verify the log-relative block number and length in basic blocks are valid for
59 * an operation involving the given XFS log buffer. Returns true if the fields
60 * are valid, false otherwise.
61 */
62 static inline bool
63 xlog_verify_bno(
64 struct xlog *log,
65 xfs_daddr_t blk_no,
66 int bbcount)
67 {
68 if (blk_no < 0 || blk_no >= log->l_logBBsize)
69 return false;
70 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
71 return false;
72 return true;
73 }
74
75 /*
76 * Allocate a buffer to hold log data. The buffer needs to be able to map to
77 * a range of nbblks basic blocks at any valid offset within the log.
78 */
79 static char *
80 xlog_alloc_buffer(
81 struct xlog *log,
82 int nbblks)
83 {
84 /*
85 * Pass log block 0 since we don't have an addr yet, buffer will be
86 * verified on read.
87 */
88 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
89 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
90 nbblks);
91 return NULL;
92 }
93
94 /*
95 * We do log I/O in units of log sectors (a power-of-2 multiple of the
96 * basic block size), so we round up the requested size to accommodate
97 * the basic blocks required for complete log sectors.
98 *
99 * In addition, the buffer may be used for a non-sector-aligned block
100 * offset, in which case an I/O of the requested size could extend
101 * beyond the end of the buffer. If the requested size is only 1 basic
102 * block it will never straddle a sector boundary, so this won't be an
103 * issue. Nor will this be a problem if the log I/O is done in basic
104 * blocks (sector size 1). But otherwise we extend the buffer by one
105 * extra log sector to ensure there's space to accommodate this
106 * possibility.
107 */
108 if (nbblks > 1 && log->l_sectBBsize > 1)
109 nbblks += log->l_sectBBsize;
110 nbblks = round_up(nbblks, log->l_sectBBsize);
111 return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
112 }
113
114 /*
115 * Return the address of the start of the given block number's data
116 * in a log buffer. The buffer covers a log sector-aligned region.
117 */
118 static inline unsigned int
119 xlog_align(
120 struct xlog *log,
121 xfs_daddr_t blk_no)
122 {
123 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
124 }
125
126 static int
127 xlog_do_io(
128 struct xlog *log,
129 xfs_daddr_t blk_no,
130 unsigned int nbblks,
131 char *data,
132 unsigned int op)
133 {
134 int error;
135
136 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
137 xfs_warn(log->l_mp,
138 "Invalid log block/length (0x%llx, 0x%x) for buffer",
139 blk_no, nbblks);
140 return -EFSCORRUPTED;
141 }
142
143 blk_no = round_down(blk_no, log->l_sectBBsize);
144 nbblks = round_up(nbblks, log->l_sectBBsize);
145 ASSERT(nbblks > 0);
146
147 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
148 BBTOB(nbblks), data, op);
149 if (error && !xlog_is_shutdown(log)) {
150 xfs_alert(log->l_mp,
151 "log recovery %s I/O error at daddr 0x%llx len %d error %d",
152 op == REQ_OP_WRITE ? "write" : "read",
153 blk_no, nbblks, error);
154 }
155 return error;
156 }
157
158 STATIC int
159 xlog_bread_noalign(
160 struct xlog *log,
161 xfs_daddr_t blk_no,
162 int nbblks,
163 char *data)
164 {
165 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
166 }
167
168 STATIC int
169 xlog_bread(
170 struct xlog *log,
171 xfs_daddr_t blk_no,
172 int nbblks,
173 char *data,
174 char **offset)
175 {
176 int error;
177
178 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
179 if (!error)
180 *offset = data + xlog_align(log, blk_no);
181 return error;
182 }
183
184 STATIC int
185 xlog_bwrite(
186 struct xlog *log,
187 xfs_daddr_t blk_no,
188 int nbblks,
189 char *data)
190 {
191 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
192 }
193
194 #ifdef DEBUG
195 /*
196 * dump debug superblock and log record information
197 */
198 STATIC void
199 xlog_header_check_dump(
200 xfs_mount_t *mp,
201 xlog_rec_header_t *head)
202 {
203 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
204 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
205 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
206 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
207 }
208 #else
209 #define xlog_header_check_dump(mp, head)
210 #endif
211
212 /*
213 * check log record header for recovery
214 */
215 STATIC int
216 xlog_header_check_recover(
217 xfs_mount_t *mp,
218 xlog_rec_header_t *head)
219 {
220 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
221
222 /*
223 * IRIX doesn't write the h_fmt field and leaves it zeroed
224 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
225 * a dirty log created in IRIX.
226 */
227 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
228 xfs_warn(mp,
229 "dirty log written in incompatible format - can't recover");
230 xlog_header_check_dump(mp, head);
231 return -EFSCORRUPTED;
232 }
233 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
234 &head->h_fs_uuid))) {
235 xfs_warn(mp,
236 "dirty log entry has mismatched uuid - can't recover");
237 xlog_header_check_dump(mp, head);
238 return -EFSCORRUPTED;
239 }
240 return 0;
241 }
242
243 /*
244 * read the head block of the log and check the header
245 */
246 STATIC int
247 xlog_header_check_mount(
248 xfs_mount_t *mp,
249 xlog_rec_header_t *head)
250 {
251 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
252
253 if (uuid_is_null(&head->h_fs_uuid)) {
254 /*
255 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
256 * h_fs_uuid is null, we assume this log was last mounted
257 * by IRIX and continue.
258 */
259 xfs_warn(mp, "null uuid in log - IRIX style log");
260 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
261 &head->h_fs_uuid))) {
262 xfs_warn(mp, "log has mismatched uuid - can't recover");
263 xlog_header_check_dump(mp, head);
264 return -EFSCORRUPTED;
265 }
266 return 0;
267 }
268
269 /*
270 * This routine finds (to an approximation) the first block in the physical
271 * log which contains the given cycle. It uses a binary search algorithm.
272 * Note that the algorithm can not be perfect because the disk will not
273 * necessarily be perfect.
274 */
275 STATIC int
276 xlog_find_cycle_start(
277 struct xlog *log,
278 char *buffer,
279 xfs_daddr_t first_blk,
280 xfs_daddr_t *last_blk,
281 uint cycle)
282 {
283 char *offset;
284 xfs_daddr_t mid_blk;
285 xfs_daddr_t end_blk;
286 uint mid_cycle;
287 int error;
288
289 end_blk = *last_blk;
290 mid_blk = BLK_AVG(first_blk, end_blk);
291 while (mid_blk != first_blk && mid_blk != end_blk) {
292 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
293 if (error)
294 return error;
295 mid_cycle = xlog_get_cycle(offset);
296 if (mid_cycle == cycle)
297 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
298 else
299 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
300 mid_blk = BLK_AVG(first_blk, end_blk);
301 }
302 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
303 (mid_blk == end_blk && mid_blk-1 == first_blk));
304
305 *last_blk = end_blk;
306
307 return 0;
308 }
309
310 /*
311 * Check that a range of blocks does not contain stop_on_cycle_no.
312 * Fill in *new_blk with the block offset where such a block is
313 * found, or with -1 (an invalid block number) if there is no such
314 * block in the range. The scan needs to occur from front to back
315 * and the pointer into the region must be updated since a later
316 * routine will need to perform another test.
317 */
318 STATIC int
319 xlog_find_verify_cycle(
320 struct xlog *log,
321 xfs_daddr_t start_blk,
322 int nbblks,
323 uint stop_on_cycle_no,
324 xfs_daddr_t *new_blk)
325 {
326 xfs_daddr_t i, j;
327 uint cycle;
328 char *buffer;
329 xfs_daddr_t bufblks;
330 char *buf = NULL;
331 int error = 0;
332
333 /*
334 * Greedily allocate a buffer big enough to handle the full
335 * range of basic blocks we'll be examining. If that fails,
336 * try a smaller size. We need to be able to read at least
337 * a log sector, or we're out of luck.
338 */
339 bufblks = 1 << ffs(nbblks);
340 while (bufblks > log->l_logBBsize)
341 bufblks >>= 1;
342 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
343 bufblks >>= 1;
344 if (bufblks < log->l_sectBBsize)
345 return -ENOMEM;
346 }
347
348 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
349 int bcount;
350
351 bcount = min(bufblks, (start_blk + nbblks - i));
352
353 error = xlog_bread(log, i, bcount, buffer, &buf);
354 if (error)
355 goto out;
356
357 for (j = 0; j < bcount; j++) {
358 cycle = xlog_get_cycle(buf);
359 if (cycle == stop_on_cycle_no) {
360 *new_blk = i+j;
361 goto out;
362 }
363
364 buf += BBSIZE;
365 }
366 }
367
368 *new_blk = -1;
369
370 out:
371 kmem_free(buffer);
372 return error;
373 }
374
375 static inline int
376 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
377 {
378 if (xfs_has_logv2(log->l_mp)) {
379 int h_size = be32_to_cpu(rh->h_size);
380
381 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
382 h_size > XLOG_HEADER_CYCLE_SIZE)
383 return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
384 }
385 return 1;
386 }
387
388 /*
389 * Potentially backup over partial log record write.
390 *
391 * In the typical case, last_blk is the number of the block directly after
392 * a good log record. Therefore, we subtract one to get the block number
393 * of the last block in the given buffer. extra_bblks contains the number
394 * of blocks we would have read on a previous read. This happens when the
395 * last log record is split over the end of the physical log.
396 *
397 * extra_bblks is the number of blocks potentially verified on a previous
398 * call to this routine.
399 */
400 STATIC int
401 xlog_find_verify_log_record(
402 struct xlog *log,
403 xfs_daddr_t start_blk,
404 xfs_daddr_t *last_blk,
405 int extra_bblks)
406 {
407 xfs_daddr_t i;
408 char *buffer;
409 char *offset = NULL;
410 xlog_rec_header_t *head = NULL;
411 int error = 0;
412 int smallmem = 0;
413 int num_blks = *last_blk - start_blk;
414 int xhdrs;
415
416 ASSERT(start_blk != 0 || *last_blk != start_blk);
417
418 buffer = xlog_alloc_buffer(log, num_blks);
419 if (!buffer) {
420 buffer = xlog_alloc_buffer(log, 1);
421 if (!buffer)
422 return -ENOMEM;
423 smallmem = 1;
424 } else {
425 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
426 if (error)
427 goto out;
428 offset += ((num_blks - 1) << BBSHIFT);
429 }
430
431 for (i = (*last_blk) - 1; i >= 0; i--) {
432 if (i < start_blk) {
433 /* valid log record not found */
434 xfs_warn(log->l_mp,
435 "Log inconsistent (didn't find previous header)");
436 ASSERT(0);
437 error = -EFSCORRUPTED;
438 goto out;
439 }
440
441 if (smallmem) {
442 error = xlog_bread(log, i, 1, buffer, &offset);
443 if (error)
444 goto out;
445 }
446
447 head = (xlog_rec_header_t *)offset;
448
449 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
450 break;
451
452 if (!smallmem)
453 offset -= BBSIZE;
454 }
455
456 /*
457 * We hit the beginning of the physical log & still no header. Return
458 * to caller. If caller can handle a return of -1, then this routine
459 * will be called again for the end of the physical log.
460 */
461 if (i == -1) {
462 error = 1;
463 goto out;
464 }
465
466 /*
467 * We have the final block of the good log (the first block
468 * of the log record _before_ the head. So we check the uuid.
469 */
470 if ((error = xlog_header_check_mount(log->l_mp, head)))
471 goto out;
472
473 /*
474 * We may have found a log record header before we expected one.
475 * last_blk will be the 1st block # with a given cycle #. We may end
476 * up reading an entire log record. In this case, we don't want to
477 * reset last_blk. Only when last_blk points in the middle of a log
478 * record do we update last_blk.
479 */
480 xhdrs = xlog_logrec_hblks(log, head);
481
482 if (*last_blk - i + extra_bblks !=
483 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
484 *last_blk = i;
485
486 out:
487 kmem_free(buffer);
488 return error;
489 }
490
491 /*
492 * Head is defined to be the point of the log where the next log write
493 * could go. This means that incomplete LR writes at the end are
494 * eliminated when calculating the head. We aren't guaranteed that previous
495 * LR have complete transactions. We only know that a cycle number of
496 * current cycle number -1 won't be present in the log if we start writing
497 * from our current block number.
498 *
499 * last_blk contains the block number of the first block with a given
500 * cycle number.
501 *
502 * Return: zero if normal, non-zero if error.
503 */
504 STATIC int
505 xlog_find_head(
506 struct xlog *log,
507 xfs_daddr_t *return_head_blk)
508 {
509 char *buffer;
510 char *offset;
511 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
512 int num_scan_bblks;
513 uint first_half_cycle, last_half_cycle;
514 uint stop_on_cycle;
515 int error, log_bbnum = log->l_logBBsize;
516
517 /* Is the end of the log device zeroed? */
518 error = xlog_find_zeroed(log, &first_blk);
519 if (error < 0) {
520 xfs_warn(log->l_mp, "empty log check failed");
521 return error;
522 }
523 if (error == 1) {
524 *return_head_blk = first_blk;
525
526 /* Is the whole lot zeroed? */
527 if (!first_blk) {
528 /* Linux XFS shouldn't generate totally zeroed logs -
529 * mkfs etc write a dummy unmount record to a fresh
530 * log so we can store the uuid in there
531 */
532 xfs_warn(log->l_mp, "totally zeroed log");
533 }
534
535 return 0;
536 }
537
538 first_blk = 0; /* get cycle # of 1st block */
539 buffer = xlog_alloc_buffer(log, 1);
540 if (!buffer)
541 return -ENOMEM;
542
543 error = xlog_bread(log, 0, 1, buffer, &offset);
544 if (error)
545 goto out_free_buffer;
546
547 first_half_cycle = xlog_get_cycle(offset);
548
549 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
550 error = xlog_bread(log, last_blk, 1, buffer, &offset);
551 if (error)
552 goto out_free_buffer;
553
554 last_half_cycle = xlog_get_cycle(offset);
555 ASSERT(last_half_cycle != 0);
556
557 /*
558 * If the 1st half cycle number is equal to the last half cycle number,
559 * then the entire log is stamped with the same cycle number. In this
560 * case, head_blk can't be set to zero (which makes sense). The below
561 * math doesn't work out properly with head_blk equal to zero. Instead,
562 * we set it to log_bbnum which is an invalid block number, but this
563 * value makes the math correct. If head_blk doesn't changed through
564 * all the tests below, *head_blk is set to zero at the very end rather
565 * than log_bbnum. In a sense, log_bbnum and zero are the same block
566 * in a circular file.
567 */
568 if (first_half_cycle == last_half_cycle) {
569 /*
570 * In this case we believe that the entire log should have
571 * cycle number last_half_cycle. We need to scan backwards
572 * from the end verifying that there are no holes still
573 * containing last_half_cycle - 1. If we find such a hole,
574 * then the start of that hole will be the new head. The
575 * simple case looks like
576 * x | x ... | x - 1 | x
577 * Another case that fits this picture would be
578 * x | x + 1 | x ... | x
579 * In this case the head really is somewhere at the end of the
580 * log, as one of the latest writes at the beginning was
581 * incomplete.
582 * One more case is
583 * x | x + 1 | x ... | x - 1 | x
584 * This is really the combination of the above two cases, and
585 * the head has to end up at the start of the x-1 hole at the
586 * end of the log.
587 *
588 * In the 256k log case, we will read from the beginning to the
589 * end of the log and search for cycle numbers equal to x-1.
590 * We don't worry about the x+1 blocks that we encounter,
591 * because we know that they cannot be the head since the log
592 * started with x.
593 */
594 head_blk = log_bbnum;
595 stop_on_cycle = last_half_cycle - 1;
596 } else {
597 /*
598 * In this case we want to find the first block with cycle
599 * number matching last_half_cycle. We expect the log to be
600 * some variation on
601 * x + 1 ... | x ... | x
602 * The first block with cycle number x (last_half_cycle) will
603 * be where the new head belongs. First we do a binary search
604 * for the first occurrence of last_half_cycle. The binary
605 * search may not be totally accurate, so then we scan back
606 * from there looking for occurrences of last_half_cycle before
607 * us. If that backwards scan wraps around the beginning of
608 * the log, then we look for occurrences of last_half_cycle - 1
609 * at the end of the log. The cases we're looking for look
610 * like
611 * v binary search stopped here
612 * x + 1 ... | x | x + 1 | x ... | x
613 * ^ but we want to locate this spot
614 * or
615 * <---------> less than scan distance
616 * x + 1 ... | x ... | x - 1 | x
617 * ^ we want to locate this spot
618 */
619 stop_on_cycle = last_half_cycle;
620 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
621 last_half_cycle);
622 if (error)
623 goto out_free_buffer;
624 }
625
626 /*
627 * Now validate the answer. Scan back some number of maximum possible
628 * blocks and make sure each one has the expected cycle number. The
629 * maximum is determined by the total possible amount of buffering
630 * in the in-core log. The following number can be made tighter if
631 * we actually look at the block size of the filesystem.
632 */
633 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
634 if (head_blk >= num_scan_bblks) {
635 /*
636 * We are guaranteed that the entire check can be performed
637 * in one buffer.
638 */
639 start_blk = head_blk - num_scan_bblks;
640 if ((error = xlog_find_verify_cycle(log,
641 start_blk, num_scan_bblks,
642 stop_on_cycle, &new_blk)))
643 goto out_free_buffer;
644 if (new_blk != -1)
645 head_blk = new_blk;
646 } else { /* need to read 2 parts of log */
647 /*
648 * We are going to scan backwards in the log in two parts.
649 * First we scan the physical end of the log. In this part
650 * of the log, we are looking for blocks with cycle number
651 * last_half_cycle - 1.
652 * If we find one, then we know that the log starts there, as
653 * we've found a hole that didn't get written in going around
654 * the end of the physical log. The simple case for this is
655 * x + 1 ... | x ... | x - 1 | x
656 * <---------> less than scan distance
657 * If all of the blocks at the end of the log have cycle number
658 * last_half_cycle, then we check the blocks at the start of
659 * the log looking for occurrences of last_half_cycle. If we
660 * find one, then our current estimate for the location of the
661 * first occurrence of last_half_cycle is wrong and we move
662 * back to the hole we've found. This case looks like
663 * x + 1 ... | x | x + 1 | x ...
664 * ^ binary search stopped here
665 * Another case we need to handle that only occurs in 256k
666 * logs is
667 * x + 1 ... | x ... | x+1 | x ...
668 * ^ binary search stops here
669 * In a 256k log, the scan at the end of the log will see the
670 * x + 1 blocks. We need to skip past those since that is
671 * certainly not the head of the log. By searching for
672 * last_half_cycle-1 we accomplish that.
673 */
674 ASSERT(head_blk <= INT_MAX &&
675 (xfs_daddr_t) num_scan_bblks >= head_blk);
676 start_blk = log_bbnum - (num_scan_bblks - head_blk);
677 if ((error = xlog_find_verify_cycle(log, start_blk,
678 num_scan_bblks - (int)head_blk,
679 (stop_on_cycle - 1), &new_blk)))
680 goto out_free_buffer;
681 if (new_blk != -1) {
682 head_blk = new_blk;
683 goto validate_head;
684 }
685
686 /*
687 * Scan beginning of log now. The last part of the physical
688 * log is good. This scan needs to verify that it doesn't find
689 * the last_half_cycle.
690 */
691 start_blk = 0;
692 ASSERT(head_blk <= INT_MAX);
693 if ((error = xlog_find_verify_cycle(log,
694 start_blk, (int)head_blk,
695 stop_on_cycle, &new_blk)))
696 goto out_free_buffer;
697 if (new_blk != -1)
698 head_blk = new_blk;
699 }
700
701 validate_head:
702 /*
703 * Now we need to make sure head_blk is not pointing to a block in
704 * the middle of a log record.
705 */
706 num_scan_bblks = XLOG_REC_SHIFT(log);
707 if (head_blk >= num_scan_bblks) {
708 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
709
710 /* start ptr at last block ptr before head_blk */
711 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
712 if (error == 1)
713 error = -EIO;
714 if (error)
715 goto out_free_buffer;
716 } else {
717 start_blk = 0;
718 ASSERT(head_blk <= INT_MAX);
719 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
720 if (error < 0)
721 goto out_free_buffer;
722 if (error == 1) {
723 /* We hit the beginning of the log during our search */
724 start_blk = log_bbnum - (num_scan_bblks - head_blk);
725 new_blk = log_bbnum;
726 ASSERT(start_blk <= INT_MAX &&
727 (xfs_daddr_t) log_bbnum-start_blk >= 0);
728 ASSERT(head_blk <= INT_MAX);
729 error = xlog_find_verify_log_record(log, start_blk,
730 &new_blk, (int)head_blk);
731 if (error == 1)
732 error = -EIO;
733 if (error)
734 goto out_free_buffer;
735 if (new_blk != log_bbnum)
736 head_blk = new_blk;
737 } else if (error)
738 goto out_free_buffer;
739 }
740
741 kmem_free(buffer);
742 if (head_blk == log_bbnum)
743 *return_head_blk = 0;
744 else
745 *return_head_blk = head_blk;
746 /*
747 * When returning here, we have a good block number. Bad block
748 * means that during a previous crash, we didn't have a clean break
749 * from cycle number N to cycle number N-1. In this case, we need
750 * to find the first block with cycle number N-1.
751 */
752 return 0;
753
754 out_free_buffer:
755 kmem_free(buffer);
756 if (error)
757 xfs_warn(log->l_mp, "failed to find log head");
758 return error;
759 }
760
761 /*
762 * Seek backwards in the log for log record headers.
763 *
764 * Given a starting log block, walk backwards until we find the provided number
765 * of records or hit the provided tail block. The return value is the number of
766 * records encountered or a negative error code. The log block and buffer
767 * pointer of the last record seen are returned in rblk and rhead respectively.
768 */
769 STATIC int
770 xlog_rseek_logrec_hdr(
771 struct xlog *log,
772 xfs_daddr_t head_blk,
773 xfs_daddr_t tail_blk,
774 int count,
775 char *buffer,
776 xfs_daddr_t *rblk,
777 struct xlog_rec_header **rhead,
778 bool *wrapped)
779 {
780 int i;
781 int error;
782 int found = 0;
783 char *offset = NULL;
784 xfs_daddr_t end_blk;
785
786 *wrapped = false;
787
788 /*
789 * Walk backwards from the head block until we hit the tail or the first
790 * block in the log.
791 */
792 end_blk = head_blk > tail_blk ? tail_blk : 0;
793 for (i = (int) head_blk - 1; i >= end_blk; i--) {
794 error = xlog_bread(log, i, 1, buffer, &offset);
795 if (error)
796 goto out_error;
797
798 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
799 *rblk = i;
800 *rhead = (struct xlog_rec_header *) offset;
801 if (++found == count)
802 break;
803 }
804 }
805
806 /*
807 * If we haven't hit the tail block or the log record header count,
808 * start looking again from the end of the physical log. Note that
809 * callers can pass head == tail if the tail is not yet known.
810 */
811 if (tail_blk >= head_blk && found != count) {
812 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
813 error = xlog_bread(log, i, 1, buffer, &offset);
814 if (error)
815 goto out_error;
816
817 if (*(__be32 *)offset ==
818 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
819 *wrapped = true;
820 *rblk = i;
821 *rhead = (struct xlog_rec_header *) offset;
822 if (++found == count)
823 break;
824 }
825 }
826 }
827
828 return found;
829
830 out_error:
831 return error;
832 }
833
834 /*
835 * Seek forward in the log for log record headers.
836 *
837 * Given head and tail blocks, walk forward from the tail block until we find
838 * the provided number of records or hit the head block. The return value is the
839 * number of records encountered or a negative error code. The log block and
840 * buffer pointer of the last record seen are returned in rblk and rhead
841 * respectively.
842 */
843 STATIC int
844 xlog_seek_logrec_hdr(
845 struct xlog *log,
846 xfs_daddr_t head_blk,
847 xfs_daddr_t tail_blk,
848 int count,
849 char *buffer,
850 xfs_daddr_t *rblk,
851 struct xlog_rec_header **rhead,
852 bool *wrapped)
853 {
854 int i;
855 int error;
856 int found = 0;
857 char *offset = NULL;
858 xfs_daddr_t end_blk;
859
860 *wrapped = false;
861
862 /*
863 * Walk forward from the tail block until we hit the head or the last
864 * block in the log.
865 */
866 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
867 for (i = (int) tail_blk; i <= end_blk; i++) {
868 error = xlog_bread(log, i, 1, buffer, &offset);
869 if (error)
870 goto out_error;
871
872 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
873 *rblk = i;
874 *rhead = (struct xlog_rec_header *) offset;
875 if (++found == count)
876 break;
877 }
878 }
879
880 /*
881 * If we haven't hit the head block or the log record header count,
882 * start looking again from the start of the physical log.
883 */
884 if (tail_blk > head_blk && found != count) {
885 for (i = 0; i < (int) head_blk; i++) {
886 error = xlog_bread(log, i, 1, buffer, &offset);
887 if (error)
888 goto out_error;
889
890 if (*(__be32 *)offset ==
891 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
892 *wrapped = true;
893 *rblk = i;
894 *rhead = (struct xlog_rec_header *) offset;
895 if (++found == count)
896 break;
897 }
898 }
899 }
900
901 return found;
902
903 out_error:
904 return error;
905 }
906
907 /*
908 * Calculate distance from head to tail (i.e., unused space in the log).
909 */
910 static inline int
911 xlog_tail_distance(
912 struct xlog *log,
913 xfs_daddr_t head_blk,
914 xfs_daddr_t tail_blk)
915 {
916 if (head_blk < tail_blk)
917 return tail_blk - head_blk;
918
919 return tail_blk + (log->l_logBBsize - head_blk);
920 }
921
922 /*
923 * Verify the log tail. This is particularly important when torn or incomplete
924 * writes have been detected near the front of the log and the head has been
925 * walked back accordingly.
926 *
927 * We also have to handle the case where the tail was pinned and the head
928 * blocked behind the tail right before a crash. If the tail had been pushed
929 * immediately prior to the crash and the subsequent checkpoint was only
930 * partially written, it's possible it overwrote the last referenced tail in the
931 * log with garbage. This is not a coherency problem because the tail must have
932 * been pushed before it can be overwritten, but appears as log corruption to
933 * recovery because we have no way to know the tail was updated if the
934 * subsequent checkpoint didn't write successfully.
935 *
936 * Therefore, CRC check the log from tail to head. If a failure occurs and the
937 * offending record is within max iclog bufs from the head, walk the tail
938 * forward and retry until a valid tail is found or corruption is detected out
939 * of the range of a possible overwrite.
940 */
941 STATIC int
942 xlog_verify_tail(
943 struct xlog *log,
944 xfs_daddr_t head_blk,
945 xfs_daddr_t *tail_blk,
946 int hsize)
947 {
948 struct xlog_rec_header *thead;
949 char *buffer;
950 xfs_daddr_t first_bad;
951 int error = 0;
952 bool wrapped;
953 xfs_daddr_t tmp_tail;
954 xfs_daddr_t orig_tail = *tail_blk;
955
956 buffer = xlog_alloc_buffer(log, 1);
957 if (!buffer)
958 return -ENOMEM;
959
960 /*
961 * Make sure the tail points to a record (returns positive count on
962 * success).
963 */
964 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
965 &tmp_tail, &thead, &wrapped);
966 if (error < 0)
967 goto out;
968 if (*tail_blk != tmp_tail)
969 *tail_blk = tmp_tail;
970
971 /*
972 * Run a CRC check from the tail to the head. We can't just check
973 * MAX_ICLOGS records past the tail because the tail may point to stale
974 * blocks cleared during the search for the head/tail. These blocks are
975 * overwritten with zero-length records and thus record count is not a
976 * reliable indicator of the iclog state before a crash.
977 */
978 first_bad = 0;
979 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
980 XLOG_RECOVER_CRCPASS, &first_bad);
981 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
982 int tail_distance;
983
984 /*
985 * Is corruption within range of the head? If so, retry from
986 * the next record. Otherwise return an error.
987 */
988 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
989 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
990 break;
991
992 /* skip to the next record; returns positive count on success */
993 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
994 buffer, &tmp_tail, &thead, &wrapped);
995 if (error < 0)
996 goto out;
997
998 *tail_blk = tmp_tail;
999 first_bad = 0;
1000 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1001 XLOG_RECOVER_CRCPASS, &first_bad);
1002 }
1003
1004 if (!error && *tail_blk != orig_tail)
1005 xfs_warn(log->l_mp,
1006 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1007 orig_tail, *tail_blk);
1008 out:
1009 kmem_free(buffer);
1010 return error;
1011 }
1012
1013 /*
1014 * Detect and trim torn writes from the head of the log.
1015 *
1016 * Storage without sector atomicity guarantees can result in torn writes in the
1017 * log in the event of a crash. Our only means to detect this scenario is via
1018 * CRC verification. While we can't always be certain that CRC verification
1019 * failure is due to a torn write vs. an unrelated corruption, we do know that
1020 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1021 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1022 * the log and treat failures in this range as torn writes as a matter of
1023 * policy. In the event of CRC failure, the head is walked back to the last good
1024 * record in the log and the tail is updated from that record and verified.
1025 */
1026 STATIC int
1027 xlog_verify_head(
1028 struct xlog *log,
1029 xfs_daddr_t *head_blk, /* in/out: unverified head */
1030 xfs_daddr_t *tail_blk, /* out: tail block */
1031 char *buffer,
1032 xfs_daddr_t *rhead_blk, /* start blk of last record */
1033 struct xlog_rec_header **rhead, /* ptr to last record */
1034 bool *wrapped) /* last rec. wraps phys. log */
1035 {
1036 struct xlog_rec_header *tmp_rhead;
1037 char *tmp_buffer;
1038 xfs_daddr_t first_bad;
1039 xfs_daddr_t tmp_rhead_blk;
1040 int found;
1041 int error;
1042 bool tmp_wrapped;
1043
1044 /*
1045 * Check the head of the log for torn writes. Search backwards from the
1046 * head until we hit the tail or the maximum number of log record I/Os
1047 * that could have been in flight at one time. Use a temporary buffer so
1048 * we don't trash the rhead/buffer pointers from the caller.
1049 */
1050 tmp_buffer = xlog_alloc_buffer(log, 1);
1051 if (!tmp_buffer)
1052 return -ENOMEM;
1053 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1054 XLOG_MAX_ICLOGS, tmp_buffer,
1055 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1056 kmem_free(tmp_buffer);
1057 if (error < 0)
1058 return error;
1059
1060 /*
1061 * Now run a CRC verification pass over the records starting at the
1062 * block found above to the current head. If a CRC failure occurs, the
1063 * log block of the first bad record is saved in first_bad.
1064 */
1065 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1066 XLOG_RECOVER_CRCPASS, &first_bad);
1067 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1068 /*
1069 * We've hit a potential torn write. Reset the error and warn
1070 * about it.
1071 */
1072 error = 0;
1073 xfs_warn(log->l_mp,
1074 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1075 first_bad, *head_blk);
1076
1077 /*
1078 * Get the header block and buffer pointer for the last good
1079 * record before the bad record.
1080 *
1081 * Note that xlog_find_tail() clears the blocks at the new head
1082 * (i.e., the records with invalid CRC) if the cycle number
1083 * matches the current cycle.
1084 */
1085 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1086 buffer, rhead_blk, rhead, wrapped);
1087 if (found < 0)
1088 return found;
1089 if (found == 0) /* XXX: right thing to do here? */
1090 return -EIO;
1091
1092 /*
1093 * Reset the head block to the starting block of the first bad
1094 * log record and set the tail block based on the last good
1095 * record.
1096 *
1097 * Bail out if the updated head/tail match as this indicates
1098 * possible corruption outside of the acceptable
1099 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1100 */
1101 *head_blk = first_bad;
1102 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1103 if (*head_blk == *tail_blk) {
1104 ASSERT(0);
1105 return 0;
1106 }
1107 }
1108 if (error)
1109 return error;
1110
1111 return xlog_verify_tail(log, *head_blk, tail_blk,
1112 be32_to_cpu((*rhead)->h_size));
1113 }
1114
1115 /*
1116 * We need to make sure we handle log wrapping properly, so we can't use the
1117 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1118 * log.
1119 *
1120 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1121 * operation here and cast it back to a 64 bit daddr on return.
1122 */
1123 static inline xfs_daddr_t
1124 xlog_wrap_logbno(
1125 struct xlog *log,
1126 xfs_daddr_t bno)
1127 {
1128 int mod;
1129
1130 div_s64_rem(bno, log->l_logBBsize, &mod);
1131 return mod;
1132 }
1133
1134 /*
1135 * Check whether the head of the log points to an unmount record. In other
1136 * words, determine whether the log is clean. If so, update the in-core state
1137 * appropriately.
1138 */
1139 static int
1140 xlog_check_unmount_rec(
1141 struct xlog *log,
1142 xfs_daddr_t *head_blk,
1143 xfs_daddr_t *tail_blk,
1144 struct xlog_rec_header *rhead,
1145 xfs_daddr_t rhead_blk,
1146 char *buffer,
1147 bool *clean)
1148 {
1149 struct xlog_op_header *op_head;
1150 xfs_daddr_t umount_data_blk;
1151 xfs_daddr_t after_umount_blk;
1152 int hblks;
1153 int error;
1154 char *offset;
1155
1156 *clean = false;
1157
1158 /*
1159 * Look for unmount record. If we find it, then we know there was a
1160 * clean unmount. Since 'i' could be the last block in the physical
1161 * log, we convert to a log block before comparing to the head_blk.
1162 *
1163 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1164 * below. We won't want to clear the unmount record if there is one, so
1165 * we pass the lsn of the unmount record rather than the block after it.
1166 */
1167 hblks = xlog_logrec_hblks(log, rhead);
1168 after_umount_blk = xlog_wrap_logbno(log,
1169 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1170
1171 if (*head_blk == after_umount_blk &&
1172 be32_to_cpu(rhead->h_num_logops) == 1) {
1173 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1174 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1175 if (error)
1176 return error;
1177
1178 op_head = (struct xlog_op_header *)offset;
1179 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1180 /*
1181 * Set tail and last sync so that newly written log
1182 * records will point recovery to after the current
1183 * unmount record.
1184 */
1185 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1186 log->l_curr_cycle, after_umount_blk);
1187 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1188 log->l_curr_cycle, after_umount_blk);
1189 *tail_blk = after_umount_blk;
1190
1191 *clean = true;
1192 }
1193 }
1194
1195 return 0;
1196 }
1197
1198 static void
1199 xlog_set_state(
1200 struct xlog *log,
1201 xfs_daddr_t head_blk,
1202 struct xlog_rec_header *rhead,
1203 xfs_daddr_t rhead_blk,
1204 bool bump_cycle)
1205 {
1206 /*
1207 * Reset log values according to the state of the log when we
1208 * crashed. In the case where head_blk == 0, we bump curr_cycle
1209 * one because the next write starts a new cycle rather than
1210 * continuing the cycle of the last good log record. At this
1211 * point we have guaranteed that all partial log records have been
1212 * accounted for. Therefore, we know that the last good log record
1213 * written was complete and ended exactly on the end boundary
1214 * of the physical log.
1215 */
1216 log->l_prev_block = rhead_blk;
1217 log->l_curr_block = (int)head_blk;
1218 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1219 if (bump_cycle)
1220 log->l_curr_cycle++;
1221 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1222 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1223 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1224 BBTOB(log->l_curr_block));
1225 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1226 BBTOB(log->l_curr_block));
1227 }
1228
1229 /*
1230 * Find the sync block number or the tail of the log.
1231 *
1232 * This will be the block number of the last record to have its
1233 * associated buffers synced to disk. Every log record header has
1234 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1235 * to get a sync block number. The only concern is to figure out which
1236 * log record header to believe.
1237 *
1238 * The following algorithm uses the log record header with the largest
1239 * lsn. The entire log record does not need to be valid. We only care
1240 * that the header is valid.
1241 *
1242 * We could speed up search by using current head_blk buffer, but it is not
1243 * available.
1244 */
1245 STATIC int
1246 xlog_find_tail(
1247 struct xlog *log,
1248 xfs_daddr_t *head_blk,
1249 xfs_daddr_t *tail_blk)
1250 {
1251 xlog_rec_header_t *rhead;
1252 char *offset = NULL;
1253 char *buffer;
1254 int error;
1255 xfs_daddr_t rhead_blk;
1256 xfs_lsn_t tail_lsn;
1257 bool wrapped = false;
1258 bool clean = false;
1259
1260 /*
1261 * Find previous log record
1262 */
1263 if ((error = xlog_find_head(log, head_blk)))
1264 return error;
1265 ASSERT(*head_blk < INT_MAX);
1266
1267 buffer = xlog_alloc_buffer(log, 1);
1268 if (!buffer)
1269 return -ENOMEM;
1270 if (*head_blk == 0) { /* special case */
1271 error = xlog_bread(log, 0, 1, buffer, &offset);
1272 if (error)
1273 goto done;
1274
1275 if (xlog_get_cycle(offset) == 0) {
1276 *tail_blk = 0;
1277 /* leave all other log inited values alone */
1278 goto done;
1279 }
1280 }
1281
1282 /*
1283 * Search backwards through the log looking for the log record header
1284 * block. This wraps all the way back around to the head so something is
1285 * seriously wrong if we can't find it.
1286 */
1287 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1288 &rhead_blk, &rhead, &wrapped);
1289 if (error < 0)
1290 goto done;
1291 if (!error) {
1292 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1293 error = -EFSCORRUPTED;
1294 goto done;
1295 }
1296 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1297
1298 /*
1299 * Set the log state based on the current head record.
1300 */
1301 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1302 tail_lsn = atomic64_read(&log->l_tail_lsn);
1303
1304 /*
1305 * Look for an unmount record at the head of the log. This sets the log
1306 * state to determine whether recovery is necessary.
1307 */
1308 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1309 rhead_blk, buffer, &clean);
1310 if (error)
1311 goto done;
1312
1313 /*
1314 * Verify the log head if the log is not clean (e.g., we have anything
1315 * but an unmount record at the head). This uses CRC verification to
1316 * detect and trim torn writes. If discovered, CRC failures are
1317 * considered torn writes and the log head is trimmed accordingly.
1318 *
1319 * Note that we can only run CRC verification when the log is dirty
1320 * because there's no guarantee that the log data behind an unmount
1321 * record is compatible with the current architecture.
1322 */
1323 if (!clean) {
1324 xfs_daddr_t orig_head = *head_blk;
1325
1326 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1327 &rhead_blk, &rhead, &wrapped);
1328 if (error)
1329 goto done;
1330
1331 /* update in-core state again if the head changed */
1332 if (*head_blk != orig_head) {
1333 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1334 wrapped);
1335 tail_lsn = atomic64_read(&log->l_tail_lsn);
1336 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1337 rhead, rhead_blk, buffer,
1338 &clean);
1339 if (error)
1340 goto done;
1341 }
1342 }
1343
1344 /*
1345 * Note that the unmount was clean. If the unmount was not clean, we
1346 * need to know this to rebuild the superblock counters from the perag
1347 * headers if we have a filesystem using non-persistent counters.
1348 */
1349 if (clean)
1350 set_bit(XFS_OPSTATE_CLEAN, &log->l_mp->m_opstate);
1351
1352 /*
1353 * Make sure that there are no blocks in front of the head
1354 * with the same cycle number as the head. This can happen
1355 * because we allow multiple outstanding log writes concurrently,
1356 * and the later writes might make it out before earlier ones.
1357 *
1358 * We use the lsn from before modifying it so that we'll never
1359 * overwrite the unmount record after a clean unmount.
1360 *
1361 * Do this only if we are going to recover the filesystem
1362 *
1363 * NOTE: This used to say "if (!readonly)"
1364 * However on Linux, we can & do recover a read-only filesystem.
1365 * We only skip recovery if NORECOVERY is specified on mount,
1366 * in which case we would not be here.
1367 *
1368 * But... if the -device- itself is readonly, just skip this.
1369 * We can't recover this device anyway, so it won't matter.
1370 */
1371 if (!xfs_readonly_buftarg(log->l_targ))
1372 error = xlog_clear_stale_blocks(log, tail_lsn);
1373
1374 done:
1375 kmem_free(buffer);
1376
1377 if (error)
1378 xfs_warn(log->l_mp, "failed to locate log tail");
1379 return error;
1380 }
1381
1382 /*
1383 * Is the log zeroed at all?
1384 *
1385 * The last binary search should be changed to perform an X block read
1386 * once X becomes small enough. You can then search linearly through
1387 * the X blocks. This will cut down on the number of reads we need to do.
1388 *
1389 * If the log is partially zeroed, this routine will pass back the blkno
1390 * of the first block with cycle number 0. It won't have a complete LR
1391 * preceding it.
1392 *
1393 * Return:
1394 * 0 => the log is completely written to
1395 * 1 => use *blk_no as the first block of the log
1396 * <0 => error has occurred
1397 */
1398 STATIC int
1399 xlog_find_zeroed(
1400 struct xlog *log,
1401 xfs_daddr_t *blk_no)
1402 {
1403 char *buffer;
1404 char *offset;
1405 uint first_cycle, last_cycle;
1406 xfs_daddr_t new_blk, last_blk, start_blk;
1407 xfs_daddr_t num_scan_bblks;
1408 int error, log_bbnum = log->l_logBBsize;
1409
1410 *blk_no = 0;
1411
1412 /* check totally zeroed log */
1413 buffer = xlog_alloc_buffer(log, 1);
1414 if (!buffer)
1415 return -ENOMEM;
1416 error = xlog_bread(log, 0, 1, buffer, &offset);
1417 if (error)
1418 goto out_free_buffer;
1419
1420 first_cycle = xlog_get_cycle(offset);
1421 if (first_cycle == 0) { /* completely zeroed log */
1422 *blk_no = 0;
1423 kmem_free(buffer);
1424 return 1;
1425 }
1426
1427 /* check partially zeroed log */
1428 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1429 if (error)
1430 goto out_free_buffer;
1431
1432 last_cycle = xlog_get_cycle(offset);
1433 if (last_cycle != 0) { /* log completely written to */
1434 kmem_free(buffer);
1435 return 0;
1436 }
1437
1438 /* we have a partially zeroed log */
1439 last_blk = log_bbnum-1;
1440 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1441 if (error)
1442 goto out_free_buffer;
1443
1444 /*
1445 * Validate the answer. Because there is no way to guarantee that
1446 * the entire log is made up of log records which are the same size,
1447 * we scan over the defined maximum blocks. At this point, the maximum
1448 * is not chosen to mean anything special. XXXmiken
1449 */
1450 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1451 ASSERT(num_scan_bblks <= INT_MAX);
1452
1453 if (last_blk < num_scan_bblks)
1454 num_scan_bblks = last_blk;
1455 start_blk = last_blk - num_scan_bblks;
1456
1457 /*
1458 * We search for any instances of cycle number 0 that occur before
1459 * our current estimate of the head. What we're trying to detect is
1460 * 1 ... | 0 | 1 | 0...
1461 * ^ binary search ends here
1462 */
1463 if ((error = xlog_find_verify_cycle(log, start_blk,
1464 (int)num_scan_bblks, 0, &new_blk)))
1465 goto out_free_buffer;
1466 if (new_blk != -1)
1467 last_blk = new_blk;
1468
1469 /*
1470 * Potentially backup over partial log record write. We don't need
1471 * to search the end of the log because we know it is zero.
1472 */
1473 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1474 if (error == 1)
1475 error = -EIO;
1476 if (error)
1477 goto out_free_buffer;
1478
1479 *blk_no = last_blk;
1480 out_free_buffer:
1481 kmem_free(buffer);
1482 if (error)
1483 return error;
1484 return 1;
1485 }
1486
1487 /*
1488 * These are simple subroutines used by xlog_clear_stale_blocks() below
1489 * to initialize a buffer full of empty log record headers and write
1490 * them into the log.
1491 */
1492 STATIC void
1493 xlog_add_record(
1494 struct xlog *log,
1495 char *buf,
1496 int cycle,
1497 int block,
1498 int tail_cycle,
1499 int tail_block)
1500 {
1501 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1502
1503 memset(buf, 0, BBSIZE);
1504 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1505 recp->h_cycle = cpu_to_be32(cycle);
1506 recp->h_version = cpu_to_be32(
1507 xfs_has_logv2(log->l_mp) ? 2 : 1);
1508 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1509 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1510 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1511 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1512 }
1513
1514 STATIC int
1515 xlog_write_log_records(
1516 struct xlog *log,
1517 int cycle,
1518 int start_block,
1519 int blocks,
1520 int tail_cycle,
1521 int tail_block)
1522 {
1523 char *offset;
1524 char *buffer;
1525 int balign, ealign;
1526 int sectbb = log->l_sectBBsize;
1527 int end_block = start_block + blocks;
1528 int bufblks;
1529 int error = 0;
1530 int i, j = 0;
1531
1532 /*
1533 * Greedily allocate a buffer big enough to handle the full
1534 * range of basic blocks to be written. If that fails, try
1535 * a smaller size. We need to be able to write at least a
1536 * log sector, or we're out of luck.
1537 */
1538 bufblks = 1 << ffs(blocks);
1539 while (bufblks > log->l_logBBsize)
1540 bufblks >>= 1;
1541 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1542 bufblks >>= 1;
1543 if (bufblks < sectbb)
1544 return -ENOMEM;
1545 }
1546
1547 /* We may need to do a read at the start to fill in part of
1548 * the buffer in the starting sector not covered by the first
1549 * write below.
1550 */
1551 balign = round_down(start_block, sectbb);
1552 if (balign != start_block) {
1553 error = xlog_bread_noalign(log, start_block, 1, buffer);
1554 if (error)
1555 goto out_free_buffer;
1556
1557 j = start_block - balign;
1558 }
1559
1560 for (i = start_block; i < end_block; i += bufblks) {
1561 int bcount, endcount;
1562
1563 bcount = min(bufblks, end_block - start_block);
1564 endcount = bcount - j;
1565
1566 /* We may need to do a read at the end to fill in part of
1567 * the buffer in the final sector not covered by the write.
1568 * If this is the same sector as the above read, skip it.
1569 */
1570 ealign = round_down(end_block, sectbb);
1571 if (j == 0 && (start_block + endcount > ealign)) {
1572 error = xlog_bread_noalign(log, ealign, sectbb,
1573 buffer + BBTOB(ealign - start_block));
1574 if (error)
1575 break;
1576
1577 }
1578
1579 offset = buffer + xlog_align(log, start_block);
1580 for (; j < endcount; j++) {
1581 xlog_add_record(log, offset, cycle, i+j,
1582 tail_cycle, tail_block);
1583 offset += BBSIZE;
1584 }
1585 error = xlog_bwrite(log, start_block, endcount, buffer);
1586 if (error)
1587 break;
1588 start_block += endcount;
1589 j = 0;
1590 }
1591
1592 out_free_buffer:
1593 kmem_free(buffer);
1594 return error;
1595 }
1596
1597 /*
1598 * This routine is called to blow away any incomplete log writes out
1599 * in front of the log head. We do this so that we won't become confused
1600 * if we come up, write only a little bit more, and then crash again.
1601 * If we leave the partial log records out there, this situation could
1602 * cause us to think those partial writes are valid blocks since they
1603 * have the current cycle number. We get rid of them by overwriting them
1604 * with empty log records with the old cycle number rather than the
1605 * current one.
1606 *
1607 * The tail lsn is passed in rather than taken from
1608 * the log so that we will not write over the unmount record after a
1609 * clean unmount in a 512 block log. Doing so would leave the log without
1610 * any valid log records in it until a new one was written. If we crashed
1611 * during that time we would not be able to recover.
1612 */
1613 STATIC int
1614 xlog_clear_stale_blocks(
1615 struct xlog *log,
1616 xfs_lsn_t tail_lsn)
1617 {
1618 int tail_cycle, head_cycle;
1619 int tail_block, head_block;
1620 int tail_distance, max_distance;
1621 int distance;
1622 int error;
1623
1624 tail_cycle = CYCLE_LSN(tail_lsn);
1625 tail_block = BLOCK_LSN(tail_lsn);
1626 head_cycle = log->l_curr_cycle;
1627 head_block = log->l_curr_block;
1628
1629 /*
1630 * Figure out the distance between the new head of the log
1631 * and the tail. We want to write over any blocks beyond the
1632 * head that we may have written just before the crash, but
1633 * we don't want to overwrite the tail of the log.
1634 */
1635 if (head_cycle == tail_cycle) {
1636 /*
1637 * The tail is behind the head in the physical log,
1638 * so the distance from the head to the tail is the
1639 * distance from the head to the end of the log plus
1640 * the distance from the beginning of the log to the
1641 * tail.
1642 */
1643 if (XFS_IS_CORRUPT(log->l_mp,
1644 head_block < tail_block ||
1645 head_block >= log->l_logBBsize))
1646 return -EFSCORRUPTED;
1647 tail_distance = tail_block + (log->l_logBBsize - head_block);
1648 } else {
1649 /*
1650 * The head is behind the tail in the physical log,
1651 * so the distance from the head to the tail is just
1652 * the tail block minus the head block.
1653 */
1654 if (XFS_IS_CORRUPT(log->l_mp,
1655 head_block >= tail_block ||
1656 head_cycle != tail_cycle + 1))
1657 return -EFSCORRUPTED;
1658 tail_distance = tail_block - head_block;
1659 }
1660
1661 /*
1662 * If the head is right up against the tail, we can't clear
1663 * anything.
1664 */
1665 if (tail_distance <= 0) {
1666 ASSERT(tail_distance == 0);
1667 return 0;
1668 }
1669
1670 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1671 /*
1672 * Take the smaller of the maximum amount of outstanding I/O
1673 * we could have and the distance to the tail to clear out.
1674 * We take the smaller so that we don't overwrite the tail and
1675 * we don't waste all day writing from the head to the tail
1676 * for no reason.
1677 */
1678 max_distance = min(max_distance, tail_distance);
1679
1680 if ((head_block + max_distance) <= log->l_logBBsize) {
1681 /*
1682 * We can stomp all the blocks we need to without
1683 * wrapping around the end of the log. Just do it
1684 * in a single write. Use the cycle number of the
1685 * current cycle minus one so that the log will look like:
1686 * n ... | n - 1 ...
1687 */
1688 error = xlog_write_log_records(log, (head_cycle - 1),
1689 head_block, max_distance, tail_cycle,
1690 tail_block);
1691 if (error)
1692 return error;
1693 } else {
1694 /*
1695 * We need to wrap around the end of the physical log in
1696 * order to clear all the blocks. Do it in two separate
1697 * I/Os. The first write should be from the head to the
1698 * end of the physical log, and it should use the current
1699 * cycle number minus one just like above.
1700 */
1701 distance = log->l_logBBsize - head_block;
1702 error = xlog_write_log_records(log, (head_cycle - 1),
1703 head_block, distance, tail_cycle,
1704 tail_block);
1705
1706 if (error)
1707 return error;
1708
1709 /*
1710 * Now write the blocks at the start of the physical log.
1711 * This writes the remainder of the blocks we want to clear.
1712 * It uses the current cycle number since we're now on the
1713 * same cycle as the head so that we get:
1714 * n ... n ... | n - 1 ...
1715 * ^^^^^ blocks we're writing
1716 */
1717 distance = max_distance - (log->l_logBBsize - head_block);
1718 error = xlog_write_log_records(log, head_cycle, 0, distance,
1719 tail_cycle, tail_block);
1720 if (error)
1721 return error;
1722 }
1723
1724 return 0;
1725 }
1726
1727 /*
1728 * Release the recovered intent item in the AIL that matches the given intent
1729 * type and intent id.
1730 */
1731 void
1732 xlog_recover_release_intent(
1733 struct xlog *log,
1734 unsigned short intent_type,
1735 uint64_t intent_id)
1736 {
1737 struct xfs_ail_cursor cur;
1738 struct xfs_log_item *lip;
1739 struct xfs_ail *ailp = log->l_ailp;
1740
1741 spin_lock(&ailp->ail_lock);
1742 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
1743 lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
1744 if (lip->li_type != intent_type)
1745 continue;
1746 if (!lip->li_ops->iop_match(lip, intent_id))
1747 continue;
1748
1749 spin_unlock(&ailp->ail_lock);
1750 lip->li_ops->iop_release(lip);
1751 spin_lock(&ailp->ail_lock);
1752 break;
1753 }
1754
1755 xfs_trans_ail_cursor_done(&cur);
1756 spin_unlock(&ailp->ail_lock);
1757 }
1758
1759 int
1760 xlog_recover_iget(
1761 struct xfs_mount *mp,
1762 xfs_ino_t ino,
1763 struct xfs_inode **ipp)
1764 {
1765 int error;
1766
1767 error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
1768 if (error)
1769 return error;
1770
1771 error = xfs_qm_dqattach(*ipp);
1772 if (error) {
1773 xfs_irele(*ipp);
1774 return error;
1775 }
1776
1777 if (VFS_I(*ipp)->i_nlink == 0)
1778 xfs_iflags_set(*ipp, XFS_IRECOVERY);
1779
1780 return 0;
1781 }
1782
1783 /******************************************************************************
1784 *
1785 * Log recover routines
1786 *
1787 ******************************************************************************
1788 */
1789 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1790 &xlog_buf_item_ops,
1791 &xlog_inode_item_ops,
1792 &xlog_dquot_item_ops,
1793 &xlog_quotaoff_item_ops,
1794 &xlog_icreate_item_ops,
1795 &xlog_efi_item_ops,
1796 &xlog_efd_item_ops,
1797 &xlog_rui_item_ops,
1798 &xlog_rud_item_ops,
1799 &xlog_cui_item_ops,
1800 &xlog_cud_item_ops,
1801 &xlog_bui_item_ops,
1802 &xlog_bud_item_ops,
1803 };
1804
1805 static const struct xlog_recover_item_ops *
1806 xlog_find_item_ops(
1807 struct xlog_recover_item *item)
1808 {
1809 unsigned int i;
1810
1811 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1812 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1813 return xlog_recover_item_ops[i];
1814
1815 return NULL;
1816 }
1817
1818 /*
1819 * Sort the log items in the transaction.
1820 *
1821 * The ordering constraints are defined by the inode allocation and unlink
1822 * behaviour. The rules are:
1823 *
1824 * 1. Every item is only logged once in a given transaction. Hence it
1825 * represents the last logged state of the item. Hence ordering is
1826 * dependent on the order in which operations need to be performed so
1827 * required initial conditions are always met.
1828 *
1829 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1830 * there's nothing to replay from them so we can simply cull them
1831 * from the transaction. However, we can't do that until after we've
1832 * replayed all the other items because they may be dependent on the
1833 * cancelled buffer and replaying the cancelled buffer can remove it
1834 * form the cancelled buffer table. Hence they have tobe done last.
1835 *
1836 * 3. Inode allocation buffers must be replayed before inode items that
1837 * read the buffer and replay changes into it. For filesystems using the
1838 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1839 * treated the same as inode allocation buffers as they create and
1840 * initialise the buffers directly.
1841 *
1842 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1843 * This ensures that inodes are completely flushed to the inode buffer
1844 * in a "free" state before we remove the unlinked inode list pointer.
1845 *
1846 * Hence the ordering needs to be inode allocation buffers first, inode items
1847 * second, inode unlink buffers third and cancelled buffers last.
1848 *
1849 * But there's a problem with that - we can't tell an inode allocation buffer
1850 * apart from a regular buffer, so we can't separate them. We can, however,
1851 * tell an inode unlink buffer from the others, and so we can separate them out
1852 * from all the other buffers and move them to last.
1853 *
1854 * Hence, 4 lists, in order from head to tail:
1855 * - buffer_list for all buffers except cancelled/inode unlink buffers
1856 * - item_list for all non-buffer items
1857 * - inode_buffer_list for inode unlink buffers
1858 * - cancel_list for the cancelled buffers
1859 *
1860 * Note that we add objects to the tail of the lists so that first-to-last
1861 * ordering is preserved within the lists. Adding objects to the head of the
1862 * list means when we traverse from the head we walk them in last-to-first
1863 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1864 * but for all other items there may be specific ordering that we need to
1865 * preserve.
1866 */
1867 STATIC int
1868 xlog_recover_reorder_trans(
1869 struct xlog *log,
1870 struct xlog_recover *trans,
1871 int pass)
1872 {
1873 struct xlog_recover_item *item, *n;
1874 int error = 0;
1875 LIST_HEAD(sort_list);
1876 LIST_HEAD(cancel_list);
1877 LIST_HEAD(buffer_list);
1878 LIST_HEAD(inode_buffer_list);
1879 LIST_HEAD(item_list);
1880
1881 list_splice_init(&trans->r_itemq, &sort_list);
1882 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1883 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST;
1884
1885 item->ri_ops = xlog_find_item_ops(item);
1886 if (!item->ri_ops) {
1887 xfs_warn(log->l_mp,
1888 "%s: unrecognized type of log operation (%d)",
1889 __func__, ITEM_TYPE(item));
1890 ASSERT(0);
1891 /*
1892 * return the remaining items back to the transaction
1893 * item list so they can be freed in caller.
1894 */
1895 if (!list_empty(&sort_list))
1896 list_splice_init(&sort_list, &trans->r_itemq);
1897 error = -EFSCORRUPTED;
1898 break;
1899 }
1900
1901 if (item->ri_ops->reorder)
1902 fate = item->ri_ops->reorder(item);
1903
1904 switch (fate) {
1905 case XLOG_REORDER_BUFFER_LIST:
1906 list_move_tail(&item->ri_list, &buffer_list);
1907 break;
1908 case XLOG_REORDER_CANCEL_LIST:
1909 trace_xfs_log_recover_item_reorder_head(log,
1910 trans, item, pass);
1911 list_move(&item->ri_list, &cancel_list);
1912 break;
1913 case XLOG_REORDER_INODE_BUFFER_LIST:
1914 list_move(&item->ri_list, &inode_buffer_list);
1915 break;
1916 case XLOG_REORDER_ITEM_LIST:
1917 trace_xfs_log_recover_item_reorder_tail(log,
1918 trans, item, pass);
1919 list_move_tail(&item->ri_list, &item_list);
1920 break;
1921 }
1922 }
1923
1924 ASSERT(list_empty(&sort_list));
1925 if (!list_empty(&buffer_list))
1926 list_splice(&buffer_list, &trans->r_itemq);
1927 if (!list_empty(&item_list))
1928 list_splice_tail(&item_list, &trans->r_itemq);
1929 if (!list_empty(&inode_buffer_list))
1930 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1931 if (!list_empty(&cancel_list))
1932 list_splice_tail(&cancel_list, &trans->r_itemq);
1933 return error;
1934 }
1935
1936 void
1937 xlog_buf_readahead(
1938 struct xlog *log,
1939 xfs_daddr_t blkno,
1940 uint len,
1941 const struct xfs_buf_ops *ops)
1942 {
1943 if (!xlog_is_buffer_cancelled(log, blkno, len))
1944 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1945 }
1946
1947 STATIC int
1948 xlog_recover_items_pass2(
1949 struct xlog *log,
1950 struct xlog_recover *trans,
1951 struct list_head *buffer_list,
1952 struct list_head *item_list)
1953 {
1954 struct xlog_recover_item *item;
1955 int error = 0;
1956
1957 list_for_each_entry(item, item_list, ri_list) {
1958 trace_xfs_log_recover_item_recover(log, trans, item,
1959 XLOG_RECOVER_PASS2);
1960
1961 if (item->ri_ops->commit_pass2)
1962 error = item->ri_ops->commit_pass2(log, buffer_list,
1963 item, trans->r_lsn);
1964 if (error)
1965 return error;
1966 }
1967
1968 return error;
1969 }
1970
1971 /*
1972 * Perform the transaction.
1973 *
1974 * If the transaction modifies a buffer or inode, do it now. Otherwise,
1975 * EFIs and EFDs get queued up by adding entries into the AIL for them.
1976 */
1977 STATIC int
1978 xlog_recover_commit_trans(
1979 struct xlog *log,
1980 struct xlog_recover *trans,
1981 int pass,
1982 struct list_head *buffer_list)
1983 {
1984 int error = 0;
1985 int items_queued = 0;
1986 struct xlog_recover_item *item;
1987 struct xlog_recover_item *next;
1988 LIST_HEAD (ra_list);
1989 LIST_HEAD (done_list);
1990
1991 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1992
1993 hlist_del_init(&trans->r_list);
1994
1995 error = xlog_recover_reorder_trans(log, trans, pass);
1996 if (error)
1997 return error;
1998
1999 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
2000 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2001
2002 switch (pass) {
2003 case XLOG_RECOVER_PASS1:
2004 if (item->ri_ops->commit_pass1)
2005 error = item->ri_ops->commit_pass1(log, item);
2006 break;
2007 case XLOG_RECOVER_PASS2:
2008 if (item->ri_ops->ra_pass2)
2009 item->ri_ops->ra_pass2(log, item);
2010 list_move_tail(&item->ri_list, &ra_list);
2011 items_queued++;
2012 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
2013 error = xlog_recover_items_pass2(log, trans,
2014 buffer_list, &ra_list);
2015 list_splice_tail_init(&ra_list, &done_list);
2016 items_queued = 0;
2017 }
2018
2019 break;
2020 default:
2021 ASSERT(0);
2022 }
2023
2024 if (error)
2025 goto out;
2026 }
2027
2028 out:
2029 if (!list_empty(&ra_list)) {
2030 if (!error)
2031 error = xlog_recover_items_pass2(log, trans,
2032 buffer_list, &ra_list);
2033 list_splice_tail_init(&ra_list, &done_list);
2034 }
2035
2036 if (!list_empty(&done_list))
2037 list_splice_init(&done_list, &trans->r_itemq);
2038
2039 return error;
2040 }
2041
2042 STATIC void
2043 xlog_recover_add_item(
2044 struct list_head *head)
2045 {
2046 struct xlog_recover_item *item;
2047
2048 item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
2049 INIT_LIST_HEAD(&item->ri_list);
2050 list_add_tail(&item->ri_list, head);
2051 }
2052
2053 STATIC int
2054 xlog_recover_add_to_cont_trans(
2055 struct xlog *log,
2056 struct xlog_recover *trans,
2057 char *dp,
2058 int len)
2059 {
2060 struct xlog_recover_item *item;
2061 char *ptr, *old_ptr;
2062 int old_len;
2063
2064 /*
2065 * If the transaction is empty, the header was split across this and the
2066 * previous record. Copy the rest of the header.
2067 */
2068 if (list_empty(&trans->r_itemq)) {
2069 ASSERT(len <= sizeof(struct xfs_trans_header));
2070 if (len > sizeof(struct xfs_trans_header)) {
2071 xfs_warn(log->l_mp, "%s: bad header length", __func__);
2072 return -EFSCORRUPTED;
2073 }
2074
2075 xlog_recover_add_item(&trans->r_itemq);
2076 ptr = (char *)&trans->r_theader +
2077 sizeof(struct xfs_trans_header) - len;
2078 memcpy(ptr, dp, len);
2079 return 0;
2080 }
2081
2082 /* take the tail entry */
2083 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2084 ri_list);
2085
2086 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2087 old_len = item->ri_buf[item->ri_cnt-1].i_len;
2088
2089 ptr = kvrealloc(old_ptr, old_len, len + old_len, GFP_KERNEL);
2090 if (!ptr)
2091 return -ENOMEM;
2092 memcpy(&ptr[old_len], dp, len);
2093 item->ri_buf[item->ri_cnt-1].i_len += len;
2094 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2095 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2096 return 0;
2097 }
2098
2099 /*
2100 * The next region to add is the start of a new region. It could be
2101 * a whole region or it could be the first part of a new region. Because
2102 * of this, the assumption here is that the type and size fields of all
2103 * format structures fit into the first 32 bits of the structure.
2104 *
2105 * This works because all regions must be 32 bit aligned. Therefore, we
2106 * either have both fields or we have neither field. In the case we have
2107 * neither field, the data part of the region is zero length. We only have
2108 * a log_op_header and can throw away the header since a new one will appear
2109 * later. If we have at least 4 bytes, then we can determine how many regions
2110 * will appear in the current log item.
2111 */
2112 STATIC int
2113 xlog_recover_add_to_trans(
2114 struct xlog *log,
2115 struct xlog_recover *trans,
2116 char *dp,
2117 int len)
2118 {
2119 struct xfs_inode_log_format *in_f; /* any will do */
2120 struct xlog_recover_item *item;
2121 char *ptr;
2122
2123 if (!len)
2124 return 0;
2125 if (list_empty(&trans->r_itemq)) {
2126 /* we need to catch log corruptions here */
2127 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2128 xfs_warn(log->l_mp, "%s: bad header magic number",
2129 __func__);
2130 ASSERT(0);
2131 return -EFSCORRUPTED;
2132 }
2133
2134 if (len > sizeof(struct xfs_trans_header)) {
2135 xfs_warn(log->l_mp, "%s: bad header length", __func__);
2136 ASSERT(0);
2137 return -EFSCORRUPTED;
2138 }
2139
2140 /*
2141 * The transaction header can be arbitrarily split across op
2142 * records. If we don't have the whole thing here, copy what we
2143 * do have and handle the rest in the next record.
2144 */
2145 if (len == sizeof(struct xfs_trans_header))
2146 xlog_recover_add_item(&trans->r_itemq);
2147 memcpy(&trans->r_theader, dp, len);
2148 return 0;
2149 }
2150
2151 ptr = kmem_alloc(len, 0);
2152 memcpy(ptr, dp, len);
2153 in_f = (struct xfs_inode_log_format *)ptr;
2154
2155 /* take the tail entry */
2156 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2157 ri_list);
2158 if (item->ri_total != 0 &&
2159 item->ri_total == item->ri_cnt) {
2160 /* tail item is in use, get a new one */
2161 xlog_recover_add_item(&trans->r_itemq);
2162 item = list_entry(trans->r_itemq.prev,
2163 struct xlog_recover_item, ri_list);
2164 }
2165
2166 if (item->ri_total == 0) { /* first region to be added */
2167 if (in_f->ilf_size == 0 ||
2168 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2169 xfs_warn(log->l_mp,
2170 "bad number of regions (%d) in inode log format",
2171 in_f->ilf_size);
2172 ASSERT(0);
2173 kmem_free(ptr);
2174 return -EFSCORRUPTED;
2175 }
2176
2177 item->ri_total = in_f->ilf_size;
2178 item->ri_buf =
2179 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2180 0);
2181 }
2182
2183 if (item->ri_total <= item->ri_cnt) {
2184 xfs_warn(log->l_mp,
2185 "log item region count (%d) overflowed size (%d)",
2186 item->ri_cnt, item->ri_total);
2187 ASSERT(0);
2188 kmem_free(ptr);
2189 return -EFSCORRUPTED;
2190 }
2191
2192 /* Description region is ri_buf[0] */
2193 item->ri_buf[item->ri_cnt].i_addr = ptr;
2194 item->ri_buf[item->ri_cnt].i_len = len;
2195 item->ri_cnt++;
2196 trace_xfs_log_recover_item_add(log, trans, item, 0);
2197 return 0;
2198 }
2199
2200 /*
2201 * Free up any resources allocated by the transaction
2202 *
2203 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2204 */
2205 STATIC void
2206 xlog_recover_free_trans(
2207 struct xlog_recover *trans)
2208 {
2209 struct xlog_recover_item *item, *n;
2210 int i;
2211
2212 hlist_del_init(&trans->r_list);
2213
2214 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2215 /* Free the regions in the item. */
2216 list_del(&item->ri_list);
2217 for (i = 0; i < item->ri_cnt; i++)
2218 kmem_free(item->ri_buf[i].i_addr);
2219 /* Free the item itself */
2220 kmem_free(item->ri_buf);
2221 kmem_free(item);
2222 }
2223 /* Free the transaction recover structure */
2224 kmem_free(trans);
2225 }
2226
2227 /*
2228 * On error or completion, trans is freed.
2229 */
2230 STATIC int
2231 xlog_recovery_process_trans(
2232 struct xlog *log,
2233 struct xlog_recover *trans,
2234 char *dp,
2235 unsigned int len,
2236 unsigned int flags,
2237 int pass,
2238 struct list_head *buffer_list)
2239 {
2240 int error = 0;
2241 bool freeit = false;
2242
2243 /* mask off ophdr transaction container flags */
2244 flags &= ~XLOG_END_TRANS;
2245 if (flags & XLOG_WAS_CONT_TRANS)
2246 flags &= ~XLOG_CONTINUE_TRANS;
2247
2248 /*
2249 * Callees must not free the trans structure. We'll decide if we need to
2250 * free it or not based on the operation being done and it's result.
2251 */
2252 switch (flags) {
2253 /* expected flag values */
2254 case 0:
2255 case XLOG_CONTINUE_TRANS:
2256 error = xlog_recover_add_to_trans(log, trans, dp, len);
2257 break;
2258 case XLOG_WAS_CONT_TRANS:
2259 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2260 break;
2261 case XLOG_COMMIT_TRANS:
2262 error = xlog_recover_commit_trans(log, trans, pass,
2263 buffer_list);
2264 /* success or fail, we are now done with this transaction. */
2265 freeit = true;
2266 break;
2267
2268 /* unexpected flag values */
2269 case XLOG_UNMOUNT_TRANS:
2270 /* just skip trans */
2271 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2272 freeit = true;
2273 break;
2274 case XLOG_START_TRANS:
2275 default:
2276 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2277 ASSERT(0);
2278 error = -EFSCORRUPTED;
2279 break;
2280 }
2281 if (error || freeit)
2282 xlog_recover_free_trans(trans);
2283 return error;
2284 }
2285
2286 /*
2287 * Lookup the transaction recovery structure associated with the ID in the
2288 * current ophdr. If the transaction doesn't exist and the start flag is set in
2289 * the ophdr, then allocate a new transaction for future ID matches to find.
2290 * Either way, return what we found during the lookup - an existing transaction
2291 * or nothing.
2292 */
2293 STATIC struct xlog_recover *
2294 xlog_recover_ophdr_to_trans(
2295 struct hlist_head rhash[],
2296 struct xlog_rec_header *rhead,
2297 struct xlog_op_header *ohead)
2298 {
2299 struct xlog_recover *trans;
2300 xlog_tid_t tid;
2301 struct hlist_head *rhp;
2302
2303 tid = be32_to_cpu(ohead->oh_tid);
2304 rhp = &rhash[XLOG_RHASH(tid)];
2305 hlist_for_each_entry(trans, rhp, r_list) {
2306 if (trans->r_log_tid == tid)
2307 return trans;
2308 }
2309
2310 /*
2311 * skip over non-start transaction headers - we could be
2312 * processing slack space before the next transaction starts
2313 */
2314 if (!(ohead->oh_flags & XLOG_START_TRANS))
2315 return NULL;
2316
2317 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2318
2319 /*
2320 * This is a new transaction so allocate a new recovery container to
2321 * hold the recovery ops that will follow.
2322 */
2323 trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
2324 trans->r_log_tid = tid;
2325 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2326 INIT_LIST_HEAD(&trans->r_itemq);
2327 INIT_HLIST_NODE(&trans->r_list);
2328 hlist_add_head(&trans->r_list, rhp);
2329
2330 /*
2331 * Nothing more to do for this ophdr. Items to be added to this new
2332 * transaction will be in subsequent ophdr containers.
2333 */
2334 return NULL;
2335 }
2336
2337 STATIC int
2338 xlog_recover_process_ophdr(
2339 struct xlog *log,
2340 struct hlist_head rhash[],
2341 struct xlog_rec_header *rhead,
2342 struct xlog_op_header *ohead,
2343 char *dp,
2344 char *end,
2345 int pass,
2346 struct list_head *buffer_list)
2347 {
2348 struct xlog_recover *trans;
2349 unsigned int len;
2350 int error;
2351
2352 /* Do we understand who wrote this op? */
2353 if (ohead->oh_clientid != XFS_TRANSACTION &&
2354 ohead->oh_clientid != XFS_LOG) {
2355 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2356 __func__, ohead->oh_clientid);
2357 ASSERT(0);
2358 return -EFSCORRUPTED;
2359 }
2360
2361 /*
2362 * Check the ophdr contains all the data it is supposed to contain.
2363 */
2364 len = be32_to_cpu(ohead->oh_len);
2365 if (dp + len > end) {
2366 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2367 WARN_ON(1);
2368 return -EFSCORRUPTED;
2369 }
2370
2371 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2372 if (!trans) {
2373 /* nothing to do, so skip over this ophdr */
2374 return 0;
2375 }
2376
2377 /*
2378 * The recovered buffer queue is drained only once we know that all
2379 * recovery items for the current LSN have been processed. This is
2380 * required because:
2381 *
2382 * - Buffer write submission updates the metadata LSN of the buffer.
2383 * - Log recovery skips items with a metadata LSN >= the current LSN of
2384 * the recovery item.
2385 * - Separate recovery items against the same metadata buffer can share
2386 * a current LSN. I.e., consider that the LSN of a recovery item is
2387 * defined as the starting LSN of the first record in which its
2388 * transaction appears, that a record can hold multiple transactions,
2389 * and/or that a transaction can span multiple records.
2390 *
2391 * In other words, we are allowed to submit a buffer from log recovery
2392 * once per current LSN. Otherwise, we may incorrectly skip recovery
2393 * items and cause corruption.
2394 *
2395 * We don't know up front whether buffers are updated multiple times per
2396 * LSN. Therefore, track the current LSN of each commit log record as it
2397 * is processed and drain the queue when it changes. Use commit records
2398 * because they are ordered correctly by the logging code.
2399 */
2400 if (log->l_recovery_lsn != trans->r_lsn &&
2401 ohead->oh_flags & XLOG_COMMIT_TRANS) {
2402 error = xfs_buf_delwri_submit(buffer_list);
2403 if (error)
2404 return error;
2405 log->l_recovery_lsn = trans->r_lsn;
2406 }
2407
2408 return xlog_recovery_process_trans(log, trans, dp, len,
2409 ohead->oh_flags, pass, buffer_list);
2410 }
2411
2412 /*
2413 * There are two valid states of the r_state field. 0 indicates that the
2414 * transaction structure is in a normal state. We have either seen the
2415 * start of the transaction or the last operation we added was not a partial
2416 * operation. If the last operation we added to the transaction was a
2417 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2418 *
2419 * NOTE: skip LRs with 0 data length.
2420 */
2421 STATIC int
2422 xlog_recover_process_data(
2423 struct xlog *log,
2424 struct hlist_head rhash[],
2425 struct xlog_rec_header *rhead,
2426 char *dp,
2427 int pass,
2428 struct list_head *buffer_list)
2429 {
2430 struct xlog_op_header *ohead;
2431 char *end;
2432 int num_logops;
2433 int error;
2434
2435 end = dp + be32_to_cpu(rhead->h_len);
2436 num_logops = be32_to_cpu(rhead->h_num_logops);
2437
2438 /* check the log format matches our own - else we can't recover */
2439 if (xlog_header_check_recover(log->l_mp, rhead))
2440 return -EIO;
2441
2442 trace_xfs_log_recover_record(log, rhead, pass);
2443 while ((dp < end) && num_logops) {
2444
2445 ohead = (struct xlog_op_header *)dp;
2446 dp += sizeof(*ohead);
2447 ASSERT(dp <= end);
2448
2449 /* errors will abort recovery */
2450 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2451 dp, end, pass, buffer_list);
2452 if (error)
2453 return error;
2454
2455 dp += be32_to_cpu(ohead->oh_len);
2456 num_logops--;
2457 }
2458 return 0;
2459 }
2460
2461 /* Take all the collected deferred ops and finish them in order. */
2462 static int
2463 xlog_finish_defer_ops(
2464 struct xfs_mount *mp,
2465 struct list_head *capture_list)
2466 {
2467 struct xfs_defer_capture *dfc, *next;
2468 struct xfs_trans *tp;
2469 struct xfs_inode *ip;
2470 int error = 0;
2471
2472 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2473 struct xfs_trans_res resv;
2474
2475 /*
2476 * Create a new transaction reservation from the captured
2477 * information. Set logcount to 1 to force the new transaction
2478 * to regrant every roll so that we can make forward progress
2479 * in recovery no matter how full the log might be.
2480 */
2481 resv.tr_logres = dfc->dfc_logres;
2482 resv.tr_logcount = 1;
2483 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2484
2485 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2486 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2487 if (error) {
2488 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2489 return error;
2490 }
2491
2492 /*
2493 * Transfer to this new transaction all the dfops we captured
2494 * from recovering a single intent item.
2495 */
2496 list_del_init(&dfc->dfc_list);
2497 xfs_defer_ops_continue(dfc, tp, &ip);
2498
2499 error = xfs_trans_commit(tp);
2500 if (ip) {
2501 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2502 xfs_irele(ip);
2503 }
2504 if (error)
2505 return error;
2506 }
2507
2508 ASSERT(list_empty(capture_list));
2509 return 0;
2510 }
2511
2512 /* Release all the captured defer ops and capture structures in this list. */
2513 static void
2514 xlog_abort_defer_ops(
2515 struct xfs_mount *mp,
2516 struct list_head *capture_list)
2517 {
2518 struct xfs_defer_capture *dfc;
2519 struct xfs_defer_capture *next;
2520
2521 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2522 list_del_init(&dfc->dfc_list);
2523 xfs_defer_ops_release(mp, dfc);
2524 }
2525 }
2526 /*
2527 * When this is called, all of the log intent items which did not have
2528 * corresponding log done items should be in the AIL. What we do now
2529 * is update the data structures associated with each one.
2530 *
2531 * Since we process the log intent items in normal transactions, they
2532 * will be removed at some point after the commit. This prevents us
2533 * from just walking down the list processing each one. We'll use a
2534 * flag in the intent item to skip those that we've already processed
2535 * and use the AIL iteration mechanism's generation count to try to
2536 * speed this up at least a bit.
2537 *
2538 * When we start, we know that the intents are the only things in the
2539 * AIL. As we process them, however, other items are added to the
2540 * AIL.
2541 */
2542 STATIC int
2543 xlog_recover_process_intents(
2544 struct xlog *log)
2545 {
2546 LIST_HEAD(capture_list);
2547 struct xfs_ail_cursor cur;
2548 struct xfs_log_item *lip;
2549 struct xfs_ail *ailp;
2550 int error = 0;
2551 #if defined(DEBUG) || defined(XFS_WARN)
2552 xfs_lsn_t last_lsn;
2553 #endif
2554
2555 ailp = log->l_ailp;
2556 spin_lock(&ailp->ail_lock);
2557 #if defined(DEBUG) || defined(XFS_WARN)
2558 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2559 #endif
2560 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2561 lip != NULL;
2562 lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
2563 /*
2564 * We're done when we see something other than an intent.
2565 * There should be no intents left in the AIL now.
2566 */
2567 if (!xlog_item_is_intent(lip)) {
2568 #ifdef DEBUG
2569 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2570 ASSERT(!xlog_item_is_intent(lip));
2571 #endif
2572 break;
2573 }
2574
2575 /*
2576 * We should never see a redo item with a LSN higher than
2577 * the last transaction we found in the log at the start
2578 * of recovery.
2579 */
2580 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
2581
2582 /*
2583 * NOTE: If your intent processing routine can create more
2584 * deferred ops, you /must/ attach them to the capture list in
2585 * the recover routine or else those subsequent intents will be
2586 * replayed in the wrong order!
2587 */
2588 spin_unlock(&ailp->ail_lock);
2589 error = lip->li_ops->iop_recover(lip, &capture_list);
2590 spin_lock(&ailp->ail_lock);
2591 if (error) {
2592 trace_xlog_intent_recovery_failed(log->l_mp, error,
2593 lip->li_ops->iop_recover);
2594 break;
2595 }
2596 }
2597
2598 xfs_trans_ail_cursor_done(&cur);
2599 spin_unlock(&ailp->ail_lock);
2600 if (error)
2601 goto err;
2602
2603 error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2604 if (error)
2605 goto err;
2606
2607 return 0;
2608 err:
2609 xlog_abort_defer_ops(log->l_mp, &capture_list);
2610 return error;
2611 }
2612
2613 /*
2614 * A cancel occurs when the mount has failed and we're bailing out.
2615 * Release all pending log intent items so they don't pin the AIL.
2616 */
2617 STATIC void
2618 xlog_recover_cancel_intents(
2619 struct xlog *log)
2620 {
2621 struct xfs_log_item *lip;
2622 struct xfs_ail_cursor cur;
2623 struct xfs_ail *ailp;
2624
2625 ailp = log->l_ailp;
2626 spin_lock(&ailp->ail_lock);
2627 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2628 while (lip != NULL) {
2629 /*
2630 * We're done when we see something other than an intent.
2631 * There should be no intents left in the AIL now.
2632 */
2633 if (!xlog_item_is_intent(lip)) {
2634 #ifdef DEBUG
2635 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2636 ASSERT(!xlog_item_is_intent(lip));
2637 #endif
2638 break;
2639 }
2640
2641 spin_unlock(&ailp->ail_lock);
2642 lip->li_ops->iop_release(lip);
2643 spin_lock(&ailp->ail_lock);
2644 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2645 }
2646
2647 xfs_trans_ail_cursor_done(&cur);
2648 spin_unlock(&ailp->ail_lock);
2649 }
2650
2651 /*
2652 * This routine performs a transaction to null out a bad inode pointer
2653 * in an agi unlinked inode hash bucket.
2654 */
2655 STATIC void
2656 xlog_recover_clear_agi_bucket(
2657 xfs_mount_t *mp,
2658 xfs_agnumber_t agno,
2659 int bucket)
2660 {
2661 xfs_trans_t *tp;
2662 xfs_agi_t *agi;
2663 struct xfs_buf *agibp;
2664 int offset;
2665 int error;
2666
2667 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2668 if (error)
2669 goto out_error;
2670
2671 error = xfs_read_agi(mp, tp, agno, &agibp);
2672 if (error)
2673 goto out_abort;
2674
2675 agi = agibp->b_addr;
2676 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2677 offset = offsetof(xfs_agi_t, agi_unlinked) +
2678 (sizeof(xfs_agino_t) * bucket);
2679 xfs_trans_log_buf(tp, agibp, offset,
2680 (offset + sizeof(xfs_agino_t) - 1));
2681
2682 error = xfs_trans_commit(tp);
2683 if (error)
2684 goto out_error;
2685 return;
2686
2687 out_abort:
2688 xfs_trans_cancel(tp);
2689 out_error:
2690 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
2691 return;
2692 }
2693
2694 STATIC xfs_agino_t
2695 xlog_recover_process_one_iunlink(
2696 struct xfs_mount *mp,
2697 xfs_agnumber_t agno,
2698 xfs_agino_t agino,
2699 int bucket)
2700 {
2701 struct xfs_buf *ibp;
2702 struct xfs_dinode *dip;
2703 struct xfs_inode *ip;
2704 xfs_ino_t ino;
2705 int error;
2706
2707 ino = XFS_AGINO_TO_INO(mp, agno, agino);
2708 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
2709 if (error)
2710 goto fail;
2711
2712 /*
2713 * Get the on disk inode to find the next inode in the bucket.
2714 */
2715 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &ibp);
2716 if (error)
2717 goto fail_iput;
2718 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2719
2720 xfs_iflags_clear(ip, XFS_IRECOVERY);
2721 ASSERT(VFS_I(ip)->i_nlink == 0);
2722 ASSERT(VFS_I(ip)->i_mode != 0);
2723
2724 /* setup for the next pass */
2725 agino = be32_to_cpu(dip->di_next_unlinked);
2726 xfs_buf_relse(ibp);
2727
2728 xfs_irele(ip);
2729 return agino;
2730
2731 fail_iput:
2732 xfs_irele(ip);
2733 fail:
2734 /*
2735 * We can't read in the inode this bucket points to, or this inode
2736 * is messed up. Just ditch this bucket of inodes. We will lose
2737 * some inodes and space, but at least we won't hang.
2738 *
2739 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
2740 * clear the inode pointer in the bucket.
2741 */
2742 xlog_recover_clear_agi_bucket(mp, agno, bucket);
2743 return NULLAGINO;
2744 }
2745
2746 /*
2747 * Recover AGI unlinked lists
2748 *
2749 * This is called during recovery to process any inodes which we unlinked but
2750 * not freed when the system crashed. These inodes will be on the lists in the
2751 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2752 * any inodes found on the lists. Each inode is removed from the lists when it
2753 * has been fully truncated and is freed. The freeing of the inode and its
2754 * removal from the list must be atomic.
2755 *
2756 * If everything we touch in the agi processing loop is already in memory, this
2757 * loop can hold the cpu for a long time. It runs without lock contention,
2758 * memory allocation contention, the need wait for IO, etc, and so will run
2759 * until we either run out of inodes to process, run low on memory or we run out
2760 * of log space.
2761 *
2762 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2763 * and can prevent other filesystem work (such as CIL pushes) from running. This
2764 * can lead to deadlocks if the recovery process runs out of log reservation
2765 * space. Hence we need to yield the CPU when there is other kernel work
2766 * scheduled on this CPU to ensure other scheduled work can run without undue
2767 * latency.
2768 */
2769 STATIC void
2770 xlog_recover_process_iunlinks(
2771 struct xlog *log)
2772 {
2773 struct xfs_mount *mp = log->l_mp;
2774 struct xfs_perag *pag;
2775 xfs_agnumber_t agno;
2776 struct xfs_agi *agi;
2777 struct xfs_buf *agibp;
2778 xfs_agino_t agino;
2779 int bucket;
2780 int error;
2781
2782 for_each_perag(mp, agno, pag) {
2783 error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
2784 if (error) {
2785 /*
2786 * AGI is b0rked. Don't process it.
2787 *
2788 * We should probably mark the filesystem as corrupt
2789 * after we've recovered all the ag's we can....
2790 */
2791 continue;
2792 }
2793 /*
2794 * Unlock the buffer so that it can be acquired in the normal
2795 * course of the transaction to truncate and free each inode.
2796 * Because we are not racing with anyone else here for the AGI
2797 * buffer, we don't even need to hold it locked to read the
2798 * initial unlinked bucket entries out of the buffer. We keep
2799 * buffer reference though, so that it stays pinned in memory
2800 * while we need the buffer.
2801 */
2802 agi = agibp->b_addr;
2803 xfs_buf_unlock(agibp);
2804
2805 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2806 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2807 while (agino != NULLAGINO) {
2808 agino = xlog_recover_process_one_iunlink(mp,
2809 pag->pag_agno, agino, bucket);
2810 cond_resched();
2811 }
2812 }
2813 xfs_buf_rele(agibp);
2814 }
2815
2816 /*
2817 * Flush the pending unlinked inodes to ensure that the inactivations
2818 * are fully completed on disk and the incore inodes can be reclaimed
2819 * before we signal that recovery is complete.
2820 */
2821 xfs_inodegc_flush(mp);
2822 }
2823
2824 STATIC void
2825 xlog_unpack_data(
2826 struct xlog_rec_header *rhead,
2827 char *dp,
2828 struct xlog *log)
2829 {
2830 int i, j, k;
2831
2832 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2833 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2834 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2835 dp += BBSIZE;
2836 }
2837
2838 if (xfs_has_logv2(log->l_mp)) {
2839 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2840 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2841 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2842 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2843 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2844 dp += BBSIZE;
2845 }
2846 }
2847 }
2848
2849 /*
2850 * CRC check, unpack and process a log record.
2851 */
2852 STATIC int
2853 xlog_recover_process(
2854 struct xlog *log,
2855 struct hlist_head rhash[],
2856 struct xlog_rec_header *rhead,
2857 char *dp,
2858 int pass,
2859 struct list_head *buffer_list)
2860 {
2861 __le32 old_crc = rhead->h_crc;
2862 __le32 crc;
2863
2864 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2865
2866 /*
2867 * Nothing else to do if this is a CRC verification pass. Just return
2868 * if this a record with a non-zero crc. Unfortunately, mkfs always
2869 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2870 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2871 * know precisely what failed.
2872 */
2873 if (pass == XLOG_RECOVER_CRCPASS) {
2874 if (old_crc && crc != old_crc)
2875 return -EFSBADCRC;
2876 return 0;
2877 }
2878
2879 /*
2880 * We're in the normal recovery path. Issue a warning if and only if the
2881 * CRC in the header is non-zero. This is an advisory warning and the
2882 * zero CRC check prevents warnings from being emitted when upgrading
2883 * the kernel from one that does not add CRCs by default.
2884 */
2885 if (crc != old_crc) {
2886 if (old_crc || xfs_has_crc(log->l_mp)) {
2887 xfs_alert(log->l_mp,
2888 "log record CRC mismatch: found 0x%x, expected 0x%x.",
2889 le32_to_cpu(old_crc),
2890 le32_to_cpu(crc));
2891 xfs_hex_dump(dp, 32);
2892 }
2893
2894 /*
2895 * If the filesystem is CRC enabled, this mismatch becomes a
2896 * fatal log corruption failure.
2897 */
2898 if (xfs_has_crc(log->l_mp)) {
2899 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2900 return -EFSCORRUPTED;
2901 }
2902 }
2903
2904 xlog_unpack_data(rhead, dp, log);
2905
2906 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2907 buffer_list);
2908 }
2909
2910 STATIC int
2911 xlog_valid_rec_header(
2912 struct xlog *log,
2913 struct xlog_rec_header *rhead,
2914 xfs_daddr_t blkno,
2915 int bufsize)
2916 {
2917 int hlen;
2918
2919 if (XFS_IS_CORRUPT(log->l_mp,
2920 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2921 return -EFSCORRUPTED;
2922 if (XFS_IS_CORRUPT(log->l_mp,
2923 (!rhead->h_version ||
2924 (be32_to_cpu(rhead->h_version) &
2925 (~XLOG_VERSION_OKBITS))))) {
2926 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2927 __func__, be32_to_cpu(rhead->h_version));
2928 return -EFSCORRUPTED;
2929 }
2930
2931 /*
2932 * LR body must have data (or it wouldn't have been written)
2933 * and h_len must not be greater than LR buffer size.
2934 */
2935 hlen = be32_to_cpu(rhead->h_len);
2936 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2937 return -EFSCORRUPTED;
2938
2939 if (XFS_IS_CORRUPT(log->l_mp,
2940 blkno > log->l_logBBsize || blkno > INT_MAX))
2941 return -EFSCORRUPTED;
2942 return 0;
2943 }
2944
2945 /*
2946 * Read the log from tail to head and process the log records found.
2947 * Handle the two cases where the tail and head are in the same cycle
2948 * and where the active portion of the log wraps around the end of
2949 * the physical log separately. The pass parameter is passed through
2950 * to the routines called to process the data and is not looked at
2951 * here.
2952 */
2953 STATIC int
2954 xlog_do_recovery_pass(
2955 struct xlog *log,
2956 xfs_daddr_t head_blk,
2957 xfs_daddr_t tail_blk,
2958 int pass,
2959 xfs_daddr_t *first_bad) /* out: first bad log rec */
2960 {
2961 xlog_rec_header_t *rhead;
2962 xfs_daddr_t blk_no, rblk_no;
2963 xfs_daddr_t rhead_blk;
2964 char *offset;
2965 char *hbp, *dbp;
2966 int error = 0, h_size, h_len;
2967 int error2 = 0;
2968 int bblks, split_bblks;
2969 int hblks, split_hblks, wrapped_hblks;
2970 int i;
2971 struct hlist_head rhash[XLOG_RHASH_SIZE];
2972 LIST_HEAD (buffer_list);
2973
2974 ASSERT(head_blk != tail_blk);
2975 blk_no = rhead_blk = tail_blk;
2976
2977 for (i = 0; i < XLOG_RHASH_SIZE; i++)
2978 INIT_HLIST_HEAD(&rhash[i]);
2979
2980 /*
2981 * Read the header of the tail block and get the iclog buffer size from
2982 * h_size. Use this to tell how many sectors make up the log header.
2983 */
2984 if (xfs_has_logv2(log->l_mp)) {
2985 /*
2986 * When using variable length iclogs, read first sector of
2987 * iclog header and extract the header size from it. Get a
2988 * new hbp that is the correct size.
2989 */
2990 hbp = xlog_alloc_buffer(log, 1);
2991 if (!hbp)
2992 return -ENOMEM;
2993
2994 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2995 if (error)
2996 goto bread_err1;
2997
2998 rhead = (xlog_rec_header_t *)offset;
2999
3000 /*
3001 * xfsprogs has a bug where record length is based on lsunit but
3002 * h_size (iclog size) is hardcoded to 32k. Now that we
3003 * unconditionally CRC verify the unmount record, this means the
3004 * log buffer can be too small for the record and cause an
3005 * overrun.
3006 *
3007 * Detect this condition here. Use lsunit for the buffer size as
3008 * long as this looks like the mkfs case. Otherwise, return an
3009 * error to avoid a buffer overrun.
3010 */
3011 h_size = be32_to_cpu(rhead->h_size);
3012 h_len = be32_to_cpu(rhead->h_len);
3013 if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
3014 rhead->h_num_logops == cpu_to_be32(1)) {
3015 xfs_warn(log->l_mp,
3016 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
3017 h_size, log->l_mp->m_logbsize);
3018 h_size = log->l_mp->m_logbsize;
3019 }
3020
3021 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
3022 if (error)
3023 goto bread_err1;
3024
3025 hblks = xlog_logrec_hblks(log, rhead);
3026 if (hblks != 1) {
3027 kmem_free(hbp);
3028 hbp = xlog_alloc_buffer(log, hblks);
3029 }
3030 } else {
3031 ASSERT(log->l_sectBBsize == 1);
3032 hblks = 1;
3033 hbp = xlog_alloc_buffer(log, 1);
3034 h_size = XLOG_BIG_RECORD_BSIZE;
3035 }
3036
3037 if (!hbp)
3038 return -ENOMEM;
3039 dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3040 if (!dbp) {
3041 kmem_free(hbp);
3042 return -ENOMEM;
3043 }
3044
3045 memset(rhash, 0, sizeof(rhash));
3046 if (tail_blk > head_blk) {
3047 /*
3048 * Perform recovery around the end of the physical log.
3049 * When the head is not on the same cycle number as the tail,
3050 * we can't do a sequential recovery.
3051 */
3052 while (blk_no < log->l_logBBsize) {
3053 /*
3054 * Check for header wrapping around physical end-of-log
3055 */
3056 offset = hbp;
3057 split_hblks = 0;
3058 wrapped_hblks = 0;
3059 if (blk_no + hblks <= log->l_logBBsize) {
3060 /* Read header in one read */
3061 error = xlog_bread(log, blk_no, hblks, hbp,
3062 &offset);
3063 if (error)
3064 goto bread_err2;
3065 } else {
3066 /* This LR is split across physical log end */
3067 if (blk_no != log->l_logBBsize) {
3068 /* some data before physical log end */
3069 ASSERT(blk_no <= INT_MAX);
3070 split_hblks = log->l_logBBsize - (int)blk_no;
3071 ASSERT(split_hblks > 0);
3072 error = xlog_bread(log, blk_no,
3073 split_hblks, hbp,
3074 &offset);
3075 if (error)
3076 goto bread_err2;
3077 }
3078
3079 /*
3080 * Note: this black magic still works with
3081 * large sector sizes (non-512) only because:
3082 * - we increased the buffer size originally
3083 * by 1 sector giving us enough extra space
3084 * for the second read;
3085 * - the log start is guaranteed to be sector
3086 * aligned;
3087 * - we read the log end (LR header start)
3088 * _first_, then the log start (LR header end)
3089 * - order is important.
3090 */
3091 wrapped_hblks = hblks - split_hblks;
3092 error = xlog_bread_noalign(log, 0,
3093 wrapped_hblks,
3094 offset + BBTOB(split_hblks));
3095 if (error)
3096 goto bread_err2;
3097 }
3098 rhead = (xlog_rec_header_t *)offset;
3099 error = xlog_valid_rec_header(log, rhead,
3100 split_hblks ? blk_no : 0, h_size);
3101 if (error)
3102 goto bread_err2;
3103
3104 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3105 blk_no += hblks;
3106
3107 /*
3108 * Read the log record data in multiple reads if it
3109 * wraps around the end of the log. Note that if the
3110 * header already wrapped, blk_no could point past the
3111 * end of the log. The record data is contiguous in
3112 * that case.
3113 */
3114 if (blk_no + bblks <= log->l_logBBsize ||
3115 blk_no >= log->l_logBBsize) {
3116 rblk_no = xlog_wrap_logbno(log, blk_no);
3117 error = xlog_bread(log, rblk_no, bblks, dbp,
3118 &offset);
3119 if (error)
3120 goto bread_err2;
3121 } else {
3122 /* This log record is split across the
3123 * physical end of log */
3124 offset = dbp;
3125 split_bblks = 0;
3126 if (blk_no != log->l_logBBsize) {
3127 /* some data is before the physical
3128 * end of log */
3129 ASSERT(!wrapped_hblks);
3130 ASSERT(blk_no <= INT_MAX);
3131 split_bblks =
3132 log->l_logBBsize - (int)blk_no;
3133 ASSERT(split_bblks > 0);
3134 error = xlog_bread(log, blk_no,
3135 split_bblks, dbp,
3136 &offset);
3137 if (error)
3138 goto bread_err2;
3139 }
3140
3141 /*
3142 * Note: this black magic still works with
3143 * large sector sizes (non-512) only because:
3144 * - we increased the buffer size originally
3145 * by 1 sector giving us enough extra space
3146 * for the second read;
3147 * - the log start is guaranteed to be sector
3148 * aligned;
3149 * - we read the log end (LR header start)
3150 * _first_, then the log start (LR header end)
3151 * - order is important.
3152 */
3153 error = xlog_bread_noalign(log, 0,
3154 bblks - split_bblks,
3155 offset + BBTOB(split_bblks));
3156 if (error)
3157 goto bread_err2;
3158 }
3159
3160 error = xlog_recover_process(log, rhash, rhead, offset,
3161 pass, &buffer_list);
3162 if (error)
3163 goto bread_err2;
3164
3165 blk_no += bblks;
3166 rhead_blk = blk_no;
3167 }
3168
3169 ASSERT(blk_no >= log->l_logBBsize);
3170 blk_no -= log->l_logBBsize;
3171 rhead_blk = blk_no;
3172 }
3173
3174 /* read first part of physical log */
3175 while (blk_no < head_blk) {
3176 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3177 if (error)
3178 goto bread_err2;
3179
3180 rhead = (xlog_rec_header_t *)offset;
3181 error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3182 if (error)
3183 goto bread_err2;
3184
3185 /* blocks in data section */
3186 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3187 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3188 &offset);
3189 if (error)
3190 goto bread_err2;
3191
3192 error = xlog_recover_process(log, rhash, rhead, offset, pass,
3193 &buffer_list);
3194 if (error)
3195 goto bread_err2;
3196
3197 blk_no += bblks + hblks;
3198 rhead_blk = blk_no;
3199 }
3200
3201 bread_err2:
3202 kmem_free(dbp);
3203 bread_err1:
3204 kmem_free(hbp);
3205
3206 /*
3207 * Submit buffers that have been added from the last record processed,
3208 * regardless of error status.
3209 */
3210 if (!list_empty(&buffer_list))
3211 error2 = xfs_buf_delwri_submit(&buffer_list);
3212
3213 if (error && first_bad)
3214 *first_bad = rhead_blk;
3215
3216 /*
3217 * Transactions are freed at commit time but transactions without commit
3218 * records on disk are never committed. Free any that may be left in the
3219 * hash table.
3220 */
3221 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3222 struct hlist_node *tmp;
3223 struct xlog_recover *trans;
3224
3225 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3226 xlog_recover_free_trans(trans);
3227 }
3228
3229 return error ? error : error2;
3230 }
3231
3232 /*
3233 * Do the recovery of the log. We actually do this in two phases.
3234 * The two passes are necessary in order to implement the function
3235 * of cancelling a record written into the log. The first pass
3236 * determines those things which have been cancelled, and the
3237 * second pass replays log items normally except for those which
3238 * have been cancelled. The handling of the replay and cancellations
3239 * takes place in the log item type specific routines.
3240 *
3241 * The table of items which have cancel records in the log is allocated
3242 * and freed at this level, since only here do we know when all of
3243 * the log recovery has been completed.
3244 */
3245 STATIC int
3246 xlog_do_log_recovery(
3247 struct xlog *log,
3248 xfs_daddr_t head_blk,
3249 xfs_daddr_t tail_blk)
3250 {
3251 int error, i;
3252
3253 ASSERT(head_blk != tail_blk);
3254
3255 /*
3256 * First do a pass to find all of the cancelled buf log items.
3257 * Store them in the buf_cancel_table for use in the second pass.
3258 */
3259 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3260 sizeof(struct list_head),
3261 0);
3262 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3263 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3264
3265 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3266 XLOG_RECOVER_PASS1, NULL);
3267 if (error != 0) {
3268 kmem_free(log->l_buf_cancel_table);
3269 log->l_buf_cancel_table = NULL;
3270 return error;
3271 }
3272 /*
3273 * Then do a second pass to actually recover the items in the log.
3274 * When it is complete free the table of buf cancel items.
3275 */
3276 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3277 XLOG_RECOVER_PASS2, NULL);
3278 #ifdef DEBUG
3279 if (!error) {
3280 int i;
3281
3282 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3283 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3284 }
3285 #endif /* DEBUG */
3286
3287 kmem_free(log->l_buf_cancel_table);
3288 log->l_buf_cancel_table = NULL;
3289
3290 return error;
3291 }
3292
3293 /*
3294 * Do the actual recovery
3295 */
3296 STATIC int
3297 xlog_do_recover(
3298 struct xlog *log,
3299 xfs_daddr_t head_blk,
3300 xfs_daddr_t tail_blk)
3301 {
3302 struct xfs_mount *mp = log->l_mp;
3303 struct xfs_buf *bp = mp->m_sb_bp;
3304 struct xfs_sb *sbp = &mp->m_sb;
3305 int error;
3306
3307 trace_xfs_log_recover(log, head_blk, tail_blk);
3308
3309 /*
3310 * First replay the images in the log.
3311 */
3312 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3313 if (error)
3314 return error;
3315
3316 if (xlog_is_shutdown(log))
3317 return -EIO;
3318
3319 /*
3320 * We now update the tail_lsn since much of the recovery has completed
3321 * and there may be space available to use. If there were no extent
3322 * or iunlinks, we can free up the entire log and set the tail_lsn to
3323 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3324 * lsn of the last known good LR on disk. If there are extent frees
3325 * or iunlinks they will have some entries in the AIL; so we look at
3326 * the AIL to determine how to set the tail_lsn.
3327 */
3328 xlog_assign_tail_lsn(mp);
3329
3330 /*
3331 * Now that we've finished replaying all buffer and inode updates,
3332 * re-read the superblock and reverify it.
3333 */
3334 xfs_buf_lock(bp);
3335 xfs_buf_hold(bp);
3336 error = _xfs_buf_read(bp, XBF_READ);
3337 if (error) {
3338 if (!xlog_is_shutdown(log)) {
3339 xfs_buf_ioerror_alert(bp, __this_address);
3340 ASSERT(0);
3341 }
3342 xfs_buf_relse(bp);
3343 return error;
3344 }
3345
3346 /* Convert superblock from on-disk format */
3347 xfs_sb_from_disk(sbp, bp->b_addr);
3348 xfs_buf_relse(bp);
3349
3350 /* re-initialise in-core superblock and geometry structures */
3351 mp->m_features |= xfs_sb_version_to_features(sbp);
3352 xfs_reinit_percpu_counters(mp);
3353 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
3354 if (error) {
3355 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3356 return error;
3357 }
3358 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3359
3360 xlog_recover_check_summary(log);
3361
3362 /* Normal transactions can now occur */
3363 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
3364 return 0;
3365 }
3366
3367 /*
3368 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3369 *
3370 * Return error or zero.
3371 */
3372 int
3373 xlog_recover(
3374 struct xlog *log)
3375 {
3376 xfs_daddr_t head_blk, tail_blk;
3377 int error;
3378
3379 /* find the tail of the log */
3380 error = xlog_find_tail(log, &head_blk, &tail_blk);
3381 if (error)
3382 return error;
3383
3384 /*
3385 * The superblock was read before the log was available and thus the LSN
3386 * could not be verified. Check the superblock LSN against the current
3387 * LSN now that it's known.
3388 */
3389 if (xfs_has_crc(log->l_mp) &&
3390 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3391 return -EINVAL;
3392
3393 if (tail_blk != head_blk) {
3394 /* There used to be a comment here:
3395 *
3396 * disallow recovery on read-only mounts. note -- mount
3397 * checks for ENOSPC and turns it into an intelligent
3398 * error message.
3399 * ...but this is no longer true. Now, unless you specify
3400 * NORECOVERY (in which case this function would never be
3401 * called), we just go ahead and recover. We do this all
3402 * under the vfs layer, so we can get away with it unless
3403 * the device itself is read-only, in which case we fail.
3404 */
3405 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3406 return error;
3407 }
3408
3409 /*
3410 * Version 5 superblock log feature mask validation. We know the
3411 * log is dirty so check if there are any unknown log features
3412 * in what we need to recover. If there are unknown features
3413 * (e.g. unsupported transactions, then simply reject the
3414 * attempt at recovery before touching anything.
3415 */
3416 if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
3417 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3418 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3419 xfs_warn(log->l_mp,
3420 "Superblock has unknown incompatible log features (0x%x) enabled.",
3421 (log->l_mp->m_sb.sb_features_log_incompat &
3422 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3423 xfs_warn(log->l_mp,
3424 "The log can not be fully and/or safely recovered by this kernel.");
3425 xfs_warn(log->l_mp,
3426 "Please recover the log on a kernel that supports the unknown features.");
3427 return -EINVAL;
3428 }
3429
3430 /*
3431 * Delay log recovery if the debug hook is set. This is debug
3432 * instrumentation to coordinate simulation of I/O failures with
3433 * log recovery.
3434 */
3435 if (xfs_globals.log_recovery_delay) {
3436 xfs_notice(log->l_mp,
3437 "Delaying log recovery for %d seconds.",
3438 xfs_globals.log_recovery_delay);
3439 msleep(xfs_globals.log_recovery_delay * 1000);
3440 }
3441
3442 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3443 log->l_mp->m_logname ? log->l_mp->m_logname
3444 : "internal");
3445
3446 error = xlog_do_recover(log, head_blk, tail_blk);
3447 set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
3448 }
3449 return error;
3450 }
3451
3452 /*
3453 * In the first part of recovery we replay inodes and buffers and build up the
3454 * list of intents which need to be processed. Here we process the intents and
3455 * clean up the on disk unlinked inode lists. This is separated from the first
3456 * part of recovery so that the root and real-time bitmap inodes can be read in
3457 * from disk in between the two stages. This is necessary so that we can free
3458 * space in the real-time portion of the file system.
3459 */
3460 int
3461 xlog_recover_finish(
3462 struct xlog *log)
3463 {
3464 int error;
3465
3466 error = xlog_recover_process_intents(log);
3467 if (error) {
3468 /*
3469 * Cancel all the unprocessed intent items now so that we don't
3470 * leave them pinned in the AIL. This can cause the AIL to
3471 * livelock on the pinned item if anyone tries to push the AIL
3472 * (inode reclaim does this) before we get around to
3473 * xfs_log_mount_cancel.
3474 */
3475 xlog_recover_cancel_intents(log);
3476 xfs_alert(log->l_mp, "Failed to recover intents");
3477 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
3478 return error;
3479 }
3480
3481 /*
3482 * Sync the log to get all the intents out of the AIL. This isn't
3483 * absolutely necessary, but it helps in case the unlink transactions
3484 * would have problems pushing the intents out of the way.
3485 */
3486 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3487
3488 /*
3489 * Now that we've recovered the log and all the intents, we can clear
3490 * the log incompat feature bits in the superblock because there's no
3491 * longer anything to protect. We rely on the AIL push to write out the
3492 * updated superblock after everything else.
3493 */
3494 if (xfs_clear_incompat_log_features(log->l_mp)) {
3495 error = xfs_sync_sb(log->l_mp, false);
3496 if (error < 0) {
3497 xfs_alert(log->l_mp,
3498 "Failed to clear log incompat features on recovery");
3499 return error;
3500 }
3501 }
3502
3503 xlog_recover_process_iunlinks(log);
3504 xlog_recover_check_summary(log);
3505 return 0;
3506 }
3507
3508 void
3509 xlog_recover_cancel(
3510 struct xlog *log)
3511 {
3512 if (xlog_recovery_needed(log))
3513 xlog_recover_cancel_intents(log);
3514 }
3515
3516 #if defined(DEBUG)
3517 /*
3518 * Read all of the agf and agi counters and check that they
3519 * are consistent with the superblock counters.
3520 */
3521 STATIC void
3522 xlog_recover_check_summary(
3523 struct xlog *log)
3524 {
3525 struct xfs_mount *mp = log->l_mp;
3526 struct xfs_perag *pag;
3527 struct xfs_buf *agfbp;
3528 struct xfs_buf *agibp;
3529 xfs_agnumber_t agno;
3530 uint64_t freeblks;
3531 uint64_t itotal;
3532 uint64_t ifree;
3533 int error;
3534
3535 mp = log->l_mp;
3536
3537 freeblks = 0LL;
3538 itotal = 0LL;
3539 ifree = 0LL;
3540 for_each_perag(mp, agno, pag) {
3541 error = xfs_read_agf(mp, NULL, pag->pag_agno, 0, &agfbp);
3542 if (error) {
3543 xfs_alert(mp, "%s agf read failed agno %d error %d",
3544 __func__, pag->pag_agno, error);
3545 } else {
3546 struct xfs_agf *agfp = agfbp->b_addr;
3547
3548 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3549 be32_to_cpu(agfp->agf_flcount);
3550 xfs_buf_relse(agfbp);
3551 }
3552
3553 error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
3554 if (error) {
3555 xfs_alert(mp, "%s agi read failed agno %d error %d",
3556 __func__, pag->pag_agno, error);
3557 } else {
3558 struct xfs_agi *agi = agibp->b_addr;
3559
3560 itotal += be32_to_cpu(agi->agi_count);
3561 ifree += be32_to_cpu(agi->agi_freecount);
3562 xfs_buf_relse(agibp);
3563 }
3564 }
3565 }
3566 #endif /* DEBUG */