]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_mount.c
[XFS] kill xfs_mount_init
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47
48 STATIC int xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int xfs_uuid_mount(xfs_mount_t *);
50 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
51
52
53 #ifdef HAVE_PERCPU_SB
54 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
55 int);
56 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
57 int);
58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 int64_t, int);
60 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61
62 #else
63
64 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
67
68 #endif
69
70 static const struct {
71 short offset;
72 short type; /* 0 = integer
73 * 1 = binary / string (no translation)
74 */
75 } xfs_sb_info[] = {
76 { offsetof(xfs_sb_t, sb_magicnum), 0 },
77 { offsetof(xfs_sb_t, sb_blocksize), 0 },
78 { offsetof(xfs_sb_t, sb_dblocks), 0 },
79 { offsetof(xfs_sb_t, sb_rblocks), 0 },
80 { offsetof(xfs_sb_t, sb_rextents), 0 },
81 { offsetof(xfs_sb_t, sb_uuid), 1 },
82 { offsetof(xfs_sb_t, sb_logstart), 0 },
83 { offsetof(xfs_sb_t, sb_rootino), 0 },
84 { offsetof(xfs_sb_t, sb_rbmino), 0 },
85 { offsetof(xfs_sb_t, sb_rsumino), 0 },
86 { offsetof(xfs_sb_t, sb_rextsize), 0 },
87 { offsetof(xfs_sb_t, sb_agblocks), 0 },
88 { offsetof(xfs_sb_t, sb_agcount), 0 },
89 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
90 { offsetof(xfs_sb_t, sb_logblocks), 0 },
91 { offsetof(xfs_sb_t, sb_versionnum), 0 },
92 { offsetof(xfs_sb_t, sb_sectsize), 0 },
93 { offsetof(xfs_sb_t, sb_inodesize), 0 },
94 { offsetof(xfs_sb_t, sb_inopblock), 0 },
95 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
96 { offsetof(xfs_sb_t, sb_blocklog), 0 },
97 { offsetof(xfs_sb_t, sb_sectlog), 0 },
98 { offsetof(xfs_sb_t, sb_inodelog), 0 },
99 { offsetof(xfs_sb_t, sb_inopblog), 0 },
100 { offsetof(xfs_sb_t, sb_agblklog), 0 },
101 { offsetof(xfs_sb_t, sb_rextslog), 0 },
102 { offsetof(xfs_sb_t, sb_inprogress), 0 },
103 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
104 { offsetof(xfs_sb_t, sb_icount), 0 },
105 { offsetof(xfs_sb_t, sb_ifree), 0 },
106 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
107 { offsetof(xfs_sb_t, sb_frextents), 0 },
108 { offsetof(xfs_sb_t, sb_uquotino), 0 },
109 { offsetof(xfs_sb_t, sb_gquotino), 0 },
110 { offsetof(xfs_sb_t, sb_qflags), 0 },
111 { offsetof(xfs_sb_t, sb_flags), 0 },
112 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
113 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114 { offsetof(xfs_sb_t, sb_unit), 0 },
115 { offsetof(xfs_sb_t, sb_width), 0 },
116 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
117 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118 { offsetof(xfs_sb_t, sb_logsectsize),0 },
119 { offsetof(xfs_sb_t, sb_logsunit), 0 },
120 { offsetof(xfs_sb_t, sb_features2), 0 },
121 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122 { sizeof(xfs_sb_t), 0 }
123 };
124
125 /*
126 * Free up the resources associated with a mount structure. Assume that
127 * the structure was initially zeroed, so we can tell which fields got
128 * initialized.
129 */
130 STATIC void
131 xfs_mount_free(
132 xfs_mount_t *mp)
133 {
134 if (mp->m_perag) {
135 int agno;
136
137 for (agno = 0; agno < mp->m_maxagi; agno++)
138 if (mp->m_perag[agno].pagb_list)
139 kmem_free(mp->m_perag[agno].pagb_list);
140 kmem_free(mp->m_perag);
141 }
142
143 spinlock_destroy(&mp->m_ail_lock);
144 spinlock_destroy(&mp->m_sb_lock);
145 mutex_destroy(&mp->m_ilock);
146 mutex_destroy(&mp->m_growlock);
147 if (mp->m_quotainfo)
148 XFS_QM_DONE(mp);
149
150 if (mp->m_fsname != NULL)
151 kmem_free(mp->m_fsname);
152 if (mp->m_rtname != NULL)
153 kmem_free(mp->m_rtname);
154 if (mp->m_logname != NULL)
155 kmem_free(mp->m_logname);
156 }
157
158 /*
159 * Check size of device based on the (data/realtime) block count.
160 * Note: this check is used by the growfs code as well as mount.
161 */
162 int
163 xfs_sb_validate_fsb_count(
164 xfs_sb_t *sbp,
165 __uint64_t nblocks)
166 {
167 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
168 ASSERT(sbp->sb_blocklog >= BBSHIFT);
169
170 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
171 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
172 return E2BIG;
173 #else /* Limited by UINT_MAX of sectors */
174 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
175 return E2BIG;
176 #endif
177 return 0;
178 }
179
180 /*
181 * Check the validity of the SB found.
182 */
183 STATIC int
184 xfs_mount_validate_sb(
185 xfs_mount_t *mp,
186 xfs_sb_t *sbp,
187 int flags)
188 {
189 /*
190 * If the log device and data device have the
191 * same device number, the log is internal.
192 * Consequently, the sb_logstart should be non-zero. If
193 * we have a zero sb_logstart in this case, we may be trying to mount
194 * a volume filesystem in a non-volume manner.
195 */
196 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
197 xfs_fs_mount_cmn_err(flags, "bad magic number");
198 return XFS_ERROR(EWRONGFS);
199 }
200
201 if (!xfs_sb_good_version(sbp)) {
202 xfs_fs_mount_cmn_err(flags, "bad version");
203 return XFS_ERROR(EWRONGFS);
204 }
205
206 if (unlikely(
207 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
208 xfs_fs_mount_cmn_err(flags,
209 "filesystem is marked as having an external log; "
210 "specify logdev on the\nmount command line.");
211 return XFS_ERROR(EINVAL);
212 }
213
214 if (unlikely(
215 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
216 xfs_fs_mount_cmn_err(flags,
217 "filesystem is marked as having an internal log; "
218 "do not specify logdev on\nthe mount command line.");
219 return XFS_ERROR(EINVAL);
220 }
221
222 /*
223 * More sanity checking. These were stolen directly from
224 * xfs_repair.
225 */
226 if (unlikely(
227 sbp->sb_agcount <= 0 ||
228 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
229 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
230 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
231 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
232 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
233 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
234 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
235 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
236 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
237 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
238 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
239 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
240 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
241 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
242 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
243 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
244 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
245 return XFS_ERROR(EFSCORRUPTED);
246 }
247
248 /*
249 * Sanity check AG count, size fields against data size field
250 */
251 if (unlikely(
252 sbp->sb_dblocks == 0 ||
253 sbp->sb_dblocks >
254 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
255 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
256 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
257 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
258 return XFS_ERROR(EFSCORRUPTED);
259 }
260
261 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
262 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
263 xfs_fs_mount_cmn_err(flags,
264 "file system too large to be mounted on this system.");
265 return XFS_ERROR(E2BIG);
266 }
267
268 if (unlikely(sbp->sb_inprogress)) {
269 xfs_fs_mount_cmn_err(flags, "file system busy");
270 return XFS_ERROR(EFSCORRUPTED);
271 }
272
273 /*
274 * Version 1 directory format has never worked on Linux.
275 */
276 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
277 xfs_fs_mount_cmn_err(flags,
278 "file system using version 1 directory format");
279 return XFS_ERROR(ENOSYS);
280 }
281
282 /*
283 * Until this is fixed only page-sized or smaller data blocks work.
284 */
285 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
286 xfs_fs_mount_cmn_err(flags,
287 "file system with blocksize %d bytes",
288 sbp->sb_blocksize);
289 xfs_fs_mount_cmn_err(flags,
290 "only pagesize (%ld) or less will currently work.",
291 PAGE_SIZE);
292 return XFS_ERROR(ENOSYS);
293 }
294
295 return 0;
296 }
297
298 STATIC void
299 xfs_initialize_perag_icache(
300 xfs_perag_t *pag)
301 {
302 if (!pag->pag_ici_init) {
303 rwlock_init(&pag->pag_ici_lock);
304 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
305 pag->pag_ici_init = 1;
306 }
307 }
308
309 xfs_agnumber_t
310 xfs_initialize_perag(
311 xfs_mount_t *mp,
312 xfs_agnumber_t agcount)
313 {
314 xfs_agnumber_t index, max_metadata;
315 xfs_perag_t *pag;
316 xfs_agino_t agino;
317 xfs_ino_t ino;
318 xfs_sb_t *sbp = &mp->m_sb;
319 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
320
321 /* Check to see if the filesystem can overflow 32 bit inodes */
322 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
323 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
324
325 /* Clear the mount flag if no inode can overflow 32 bits
326 * on this filesystem, or if specifically requested..
327 */
328 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
329 mp->m_flags |= XFS_MOUNT_32BITINODES;
330 } else {
331 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
332 }
333
334 /* If we can overflow then setup the ag headers accordingly */
335 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
336 /* Calculate how much should be reserved for inodes to
337 * meet the max inode percentage.
338 */
339 if (mp->m_maxicount) {
340 __uint64_t icount;
341
342 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
343 do_div(icount, 100);
344 icount += sbp->sb_agblocks - 1;
345 do_div(icount, sbp->sb_agblocks);
346 max_metadata = icount;
347 } else {
348 max_metadata = agcount;
349 }
350 for (index = 0; index < agcount; index++) {
351 ino = XFS_AGINO_TO_INO(mp, index, agino);
352 if (ino > max_inum) {
353 index++;
354 break;
355 }
356
357 /* This ag is preferred for inodes */
358 pag = &mp->m_perag[index];
359 pag->pagi_inodeok = 1;
360 if (index < max_metadata)
361 pag->pagf_metadata = 1;
362 xfs_initialize_perag_icache(pag);
363 }
364 } else {
365 /* Setup default behavior for smaller filesystems */
366 for (index = 0; index < agcount; index++) {
367 pag = &mp->m_perag[index];
368 pag->pagi_inodeok = 1;
369 xfs_initialize_perag_icache(pag);
370 }
371 }
372 return index;
373 }
374
375 void
376 xfs_sb_from_disk(
377 xfs_sb_t *to,
378 xfs_dsb_t *from)
379 {
380 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
381 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
382 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
383 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
384 to->sb_rextents = be64_to_cpu(from->sb_rextents);
385 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
386 to->sb_logstart = be64_to_cpu(from->sb_logstart);
387 to->sb_rootino = be64_to_cpu(from->sb_rootino);
388 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
389 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
390 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
391 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
392 to->sb_agcount = be32_to_cpu(from->sb_agcount);
393 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
394 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
395 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
396 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
397 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
398 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
399 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
400 to->sb_blocklog = from->sb_blocklog;
401 to->sb_sectlog = from->sb_sectlog;
402 to->sb_inodelog = from->sb_inodelog;
403 to->sb_inopblog = from->sb_inopblog;
404 to->sb_agblklog = from->sb_agblklog;
405 to->sb_rextslog = from->sb_rextslog;
406 to->sb_inprogress = from->sb_inprogress;
407 to->sb_imax_pct = from->sb_imax_pct;
408 to->sb_icount = be64_to_cpu(from->sb_icount);
409 to->sb_ifree = be64_to_cpu(from->sb_ifree);
410 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
411 to->sb_frextents = be64_to_cpu(from->sb_frextents);
412 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
413 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
414 to->sb_qflags = be16_to_cpu(from->sb_qflags);
415 to->sb_flags = from->sb_flags;
416 to->sb_shared_vn = from->sb_shared_vn;
417 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
418 to->sb_unit = be32_to_cpu(from->sb_unit);
419 to->sb_width = be32_to_cpu(from->sb_width);
420 to->sb_dirblklog = from->sb_dirblklog;
421 to->sb_logsectlog = from->sb_logsectlog;
422 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
423 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
424 to->sb_features2 = be32_to_cpu(from->sb_features2);
425 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
426 }
427
428 /*
429 * Copy in core superblock to ondisk one.
430 *
431 * The fields argument is mask of superblock fields to copy.
432 */
433 void
434 xfs_sb_to_disk(
435 xfs_dsb_t *to,
436 xfs_sb_t *from,
437 __int64_t fields)
438 {
439 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
440 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
441 xfs_sb_field_t f;
442 int first;
443 int size;
444
445 ASSERT(fields);
446 if (!fields)
447 return;
448
449 while (fields) {
450 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
451 first = xfs_sb_info[f].offset;
452 size = xfs_sb_info[f + 1].offset - first;
453
454 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
455
456 if (size == 1 || xfs_sb_info[f].type == 1) {
457 memcpy(to_ptr + first, from_ptr + first, size);
458 } else {
459 switch (size) {
460 case 2:
461 *(__be16 *)(to_ptr + first) =
462 cpu_to_be16(*(__u16 *)(from_ptr + first));
463 break;
464 case 4:
465 *(__be32 *)(to_ptr + first) =
466 cpu_to_be32(*(__u32 *)(from_ptr + first));
467 break;
468 case 8:
469 *(__be64 *)(to_ptr + first) =
470 cpu_to_be64(*(__u64 *)(from_ptr + first));
471 break;
472 default:
473 ASSERT(0);
474 }
475 }
476
477 fields &= ~(1LL << f);
478 }
479 }
480
481 /*
482 * xfs_readsb
483 *
484 * Does the initial read of the superblock.
485 */
486 int
487 xfs_readsb(xfs_mount_t *mp, int flags)
488 {
489 unsigned int sector_size;
490 unsigned int extra_flags;
491 xfs_buf_t *bp;
492 int error;
493
494 ASSERT(mp->m_sb_bp == NULL);
495 ASSERT(mp->m_ddev_targp != NULL);
496
497 /*
498 * Allocate a (locked) buffer to hold the superblock.
499 * This will be kept around at all times to optimize
500 * access to the superblock.
501 */
502 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
503 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
504
505 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
506 BTOBB(sector_size), extra_flags);
507 if (!bp || XFS_BUF_ISERROR(bp)) {
508 xfs_fs_mount_cmn_err(flags, "SB read failed");
509 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
510 goto fail;
511 }
512 ASSERT(XFS_BUF_ISBUSY(bp));
513 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
514
515 /*
516 * Initialize the mount structure from the superblock.
517 * But first do some basic consistency checking.
518 */
519 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
520
521 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
522 if (error) {
523 xfs_fs_mount_cmn_err(flags, "SB validate failed");
524 goto fail;
525 }
526
527 /*
528 * We must be able to do sector-sized and sector-aligned IO.
529 */
530 if (sector_size > mp->m_sb.sb_sectsize) {
531 xfs_fs_mount_cmn_err(flags,
532 "device supports only %u byte sectors (not %u)",
533 sector_size, mp->m_sb.sb_sectsize);
534 error = ENOSYS;
535 goto fail;
536 }
537
538 /*
539 * If device sector size is smaller than the superblock size,
540 * re-read the superblock so the buffer is correctly sized.
541 */
542 if (sector_size < mp->m_sb.sb_sectsize) {
543 XFS_BUF_UNMANAGE(bp);
544 xfs_buf_relse(bp);
545 sector_size = mp->m_sb.sb_sectsize;
546 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
547 BTOBB(sector_size), extra_flags);
548 if (!bp || XFS_BUF_ISERROR(bp)) {
549 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
550 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
551 goto fail;
552 }
553 ASSERT(XFS_BUF_ISBUSY(bp));
554 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
555 }
556
557 /* Initialize per-cpu counters */
558 xfs_icsb_reinit_counters(mp);
559
560 mp->m_sb_bp = bp;
561 xfs_buf_relse(bp);
562 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
563 return 0;
564
565 fail:
566 if (bp) {
567 XFS_BUF_UNMANAGE(bp);
568 xfs_buf_relse(bp);
569 }
570 return error;
571 }
572
573
574 /*
575 * xfs_mount_common
576 *
577 * Mount initialization code establishing various mount
578 * fields from the superblock associated with the given
579 * mount structure
580 */
581 STATIC void
582 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
583 {
584 int i;
585
586 mp->m_agfrotor = mp->m_agirotor = 0;
587 spin_lock_init(&mp->m_agirotor_lock);
588 mp->m_maxagi = mp->m_sb.sb_agcount;
589 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
590 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
591 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
592 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
593 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
594 mp->m_litino = sbp->sb_inodesize -
595 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
596 mp->m_blockmask = sbp->sb_blocksize - 1;
597 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
598 mp->m_blockwmask = mp->m_blockwsize - 1;
599 INIT_LIST_HEAD(&mp->m_del_inodes);
600
601 /*
602 * Setup for attributes, in case they get created.
603 * This value is for inodes getting attributes for the first time,
604 * the per-inode value is for old attribute values.
605 */
606 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
607 switch (sbp->sb_inodesize) {
608 case 256:
609 mp->m_attroffset = XFS_LITINO(mp) -
610 XFS_BMDR_SPACE_CALC(MINABTPTRS);
611 break;
612 case 512:
613 case 1024:
614 case 2048:
615 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
616 break;
617 default:
618 ASSERT(0);
619 }
620 ASSERT(mp->m_attroffset < XFS_LITINO(mp));
621
622 for (i = 0; i < 2; i++) {
623 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
624 xfs_alloc, i == 0);
625 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
626 xfs_alloc, i == 0);
627 }
628 for (i = 0; i < 2; i++) {
629 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
630 xfs_bmbt, i == 0);
631 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
632 xfs_bmbt, i == 0);
633 }
634 for (i = 0; i < 2; i++) {
635 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
636 xfs_inobt, i == 0);
637 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
638 xfs_inobt, i == 0);
639 }
640
641 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
642 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
643 sbp->sb_inopblock);
644 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
645 }
646
647 /*
648 * xfs_initialize_perag_data
649 *
650 * Read in each per-ag structure so we can count up the number of
651 * allocated inodes, free inodes and used filesystem blocks as this
652 * information is no longer persistent in the superblock. Once we have
653 * this information, write it into the in-core superblock structure.
654 */
655 STATIC int
656 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
657 {
658 xfs_agnumber_t index;
659 xfs_perag_t *pag;
660 xfs_sb_t *sbp = &mp->m_sb;
661 uint64_t ifree = 0;
662 uint64_t ialloc = 0;
663 uint64_t bfree = 0;
664 uint64_t bfreelst = 0;
665 uint64_t btree = 0;
666 int error;
667
668 for (index = 0; index < agcount; index++) {
669 /*
670 * read the agf, then the agi. This gets us
671 * all the inforamtion we need and populates the
672 * per-ag structures for us.
673 */
674 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
675 if (error)
676 return error;
677
678 error = xfs_ialloc_pagi_init(mp, NULL, index);
679 if (error)
680 return error;
681 pag = &mp->m_perag[index];
682 ifree += pag->pagi_freecount;
683 ialloc += pag->pagi_count;
684 bfree += pag->pagf_freeblks;
685 bfreelst += pag->pagf_flcount;
686 btree += pag->pagf_btreeblks;
687 }
688 /*
689 * Overwrite incore superblock counters with just-read data
690 */
691 spin_lock(&mp->m_sb_lock);
692 sbp->sb_ifree = ifree;
693 sbp->sb_icount = ialloc;
694 sbp->sb_fdblocks = bfree + bfreelst + btree;
695 spin_unlock(&mp->m_sb_lock);
696
697 /* Fixup the per-cpu counters as well. */
698 xfs_icsb_reinit_counters(mp);
699
700 return 0;
701 }
702
703 /*
704 * Update alignment values based on mount options and sb values
705 */
706 STATIC int
707 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
708 {
709 xfs_sb_t *sbp = &(mp->m_sb);
710
711 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
712 /*
713 * If stripe unit and stripe width are not multiples
714 * of the fs blocksize turn off alignment.
715 */
716 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
717 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
718 if (mp->m_flags & XFS_MOUNT_RETERR) {
719 cmn_err(CE_WARN,
720 "XFS: alignment check 1 failed");
721 return XFS_ERROR(EINVAL);
722 }
723 mp->m_dalign = mp->m_swidth = 0;
724 } else {
725 /*
726 * Convert the stripe unit and width to FSBs.
727 */
728 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
729 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
730 if (mp->m_flags & XFS_MOUNT_RETERR) {
731 return XFS_ERROR(EINVAL);
732 }
733 xfs_fs_cmn_err(CE_WARN, mp,
734 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
735 mp->m_dalign, mp->m_swidth,
736 sbp->sb_agblocks);
737
738 mp->m_dalign = 0;
739 mp->m_swidth = 0;
740 } else if (mp->m_dalign) {
741 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
742 } else {
743 if (mp->m_flags & XFS_MOUNT_RETERR) {
744 xfs_fs_cmn_err(CE_WARN, mp,
745 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
746 mp->m_dalign,
747 mp->m_blockmask +1);
748 return XFS_ERROR(EINVAL);
749 }
750 mp->m_swidth = 0;
751 }
752 }
753
754 /*
755 * Update superblock with new values
756 * and log changes
757 */
758 if (xfs_sb_version_hasdalign(sbp)) {
759 if (sbp->sb_unit != mp->m_dalign) {
760 sbp->sb_unit = mp->m_dalign;
761 *update_flags |= XFS_SB_UNIT;
762 }
763 if (sbp->sb_width != mp->m_swidth) {
764 sbp->sb_width = mp->m_swidth;
765 *update_flags |= XFS_SB_WIDTH;
766 }
767 }
768 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
769 xfs_sb_version_hasdalign(&mp->m_sb)) {
770 mp->m_dalign = sbp->sb_unit;
771 mp->m_swidth = sbp->sb_width;
772 }
773
774 return 0;
775 }
776
777 /*
778 * Set the maximum inode count for this filesystem
779 */
780 STATIC void
781 xfs_set_maxicount(xfs_mount_t *mp)
782 {
783 xfs_sb_t *sbp = &(mp->m_sb);
784 __uint64_t icount;
785
786 if (sbp->sb_imax_pct) {
787 /*
788 * Make sure the maximum inode count is a multiple
789 * of the units we allocate inodes in.
790 */
791 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
792 do_div(icount, 100);
793 do_div(icount, mp->m_ialloc_blks);
794 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
795 sbp->sb_inopblog;
796 } else {
797 mp->m_maxicount = 0;
798 }
799 }
800
801 /*
802 * Set the default minimum read and write sizes unless
803 * already specified in a mount option.
804 * We use smaller I/O sizes when the file system
805 * is being used for NFS service (wsync mount option).
806 */
807 STATIC void
808 xfs_set_rw_sizes(xfs_mount_t *mp)
809 {
810 xfs_sb_t *sbp = &(mp->m_sb);
811 int readio_log, writeio_log;
812
813 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
814 if (mp->m_flags & XFS_MOUNT_WSYNC) {
815 readio_log = XFS_WSYNC_READIO_LOG;
816 writeio_log = XFS_WSYNC_WRITEIO_LOG;
817 } else {
818 readio_log = XFS_READIO_LOG_LARGE;
819 writeio_log = XFS_WRITEIO_LOG_LARGE;
820 }
821 } else {
822 readio_log = mp->m_readio_log;
823 writeio_log = mp->m_writeio_log;
824 }
825
826 if (sbp->sb_blocklog > readio_log) {
827 mp->m_readio_log = sbp->sb_blocklog;
828 } else {
829 mp->m_readio_log = readio_log;
830 }
831 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
832 if (sbp->sb_blocklog > writeio_log) {
833 mp->m_writeio_log = sbp->sb_blocklog;
834 } else {
835 mp->m_writeio_log = writeio_log;
836 }
837 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
838 }
839
840 /*
841 * Set whether we're using inode alignment.
842 */
843 STATIC void
844 xfs_set_inoalignment(xfs_mount_t *mp)
845 {
846 if (xfs_sb_version_hasalign(&mp->m_sb) &&
847 mp->m_sb.sb_inoalignmt >=
848 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
849 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
850 else
851 mp->m_inoalign_mask = 0;
852 /*
853 * If we are using stripe alignment, check whether
854 * the stripe unit is a multiple of the inode alignment
855 */
856 if (mp->m_dalign && mp->m_inoalign_mask &&
857 !(mp->m_dalign & mp->m_inoalign_mask))
858 mp->m_sinoalign = mp->m_dalign;
859 else
860 mp->m_sinoalign = 0;
861 }
862
863 /*
864 * Check that the data (and log if separate) are an ok size.
865 */
866 STATIC int
867 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
868 {
869 xfs_buf_t *bp;
870 xfs_daddr_t d;
871 int error;
872
873 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
874 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
875 cmn_err(CE_WARN, "XFS: size check 1 failed");
876 return XFS_ERROR(E2BIG);
877 }
878 error = xfs_read_buf(mp, mp->m_ddev_targp,
879 d - XFS_FSS_TO_BB(mp, 1),
880 XFS_FSS_TO_BB(mp, 1), 0, &bp);
881 if (!error) {
882 xfs_buf_relse(bp);
883 } else {
884 cmn_err(CE_WARN, "XFS: size check 2 failed");
885 if (error == ENOSPC)
886 error = XFS_ERROR(E2BIG);
887 return error;
888 }
889
890 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
891 mp->m_logdev_targp != mp->m_ddev_targp) {
892 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
893 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
894 cmn_err(CE_WARN, "XFS: size check 3 failed");
895 return XFS_ERROR(E2BIG);
896 }
897 error = xfs_read_buf(mp, mp->m_logdev_targp,
898 d - XFS_FSB_TO_BB(mp, 1),
899 XFS_FSB_TO_BB(mp, 1), 0, &bp);
900 if (!error) {
901 xfs_buf_relse(bp);
902 } else {
903 cmn_err(CE_WARN, "XFS: size check 3 failed");
904 if (error == ENOSPC)
905 error = XFS_ERROR(E2BIG);
906 return error;
907 }
908 }
909 return 0;
910 }
911
912 /*
913 * xfs_mountfs
914 *
915 * This function does the following on an initial mount of a file system:
916 * - reads the superblock from disk and init the mount struct
917 * - if we're a 32-bit kernel, do a size check on the superblock
918 * so we don't mount terabyte filesystems
919 * - init mount struct realtime fields
920 * - allocate inode hash table for fs
921 * - init directory manager
922 * - perform recovery and init the log manager
923 */
924 int
925 xfs_mountfs(
926 xfs_mount_t *mp,
927 int mfsi_flags)
928 {
929 xfs_sb_t *sbp = &(mp->m_sb);
930 xfs_inode_t *rip;
931 __uint64_t resblks;
932 __int64_t update_flags = 0LL;
933 uint quotamount, quotaflags;
934 int agno;
935 int uuid_mounted = 0;
936 int error = 0;
937
938 xfs_mount_common(mp, sbp);
939
940 /*
941 * Check for a mismatched features2 values. Older kernels
942 * read & wrote into the wrong sb offset for sb_features2
943 * on some platforms due to xfs_sb_t not being 64bit size aligned
944 * when sb_features2 was added, which made older superblock
945 * reading/writing routines swap it as a 64-bit value.
946 *
947 * For backwards compatibility, we make both slots equal.
948 *
949 * If we detect a mismatched field, we OR the set bits into the
950 * existing features2 field in case it has already been modified; we
951 * don't want to lose any features. We then update the bad location
952 * with the ORed value so that older kernels will see any features2
953 * flags, and mark the two fields as needing updates once the
954 * transaction subsystem is online.
955 */
956 if (xfs_sb_has_mismatched_features2(sbp)) {
957 cmn_err(CE_WARN,
958 "XFS: correcting sb_features alignment problem");
959 sbp->sb_features2 |= sbp->sb_bad_features2;
960 sbp->sb_bad_features2 = sbp->sb_features2;
961 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
962
963 /*
964 * Re-check for ATTR2 in case it was found in bad_features2
965 * slot.
966 */
967 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
968 !(mp->m_flags & XFS_MOUNT_NOATTR2))
969 mp->m_flags |= XFS_MOUNT_ATTR2;
970 }
971
972 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
973 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
974 xfs_sb_version_removeattr2(&mp->m_sb);
975 update_flags |= XFS_SB_FEATURES2;
976
977 /* update sb_versionnum for the clearing of the morebits */
978 if (!sbp->sb_features2)
979 update_flags |= XFS_SB_VERSIONNUM;
980 }
981
982 /*
983 * Check if sb_agblocks is aligned at stripe boundary
984 * If sb_agblocks is NOT aligned turn off m_dalign since
985 * allocator alignment is within an ag, therefore ag has
986 * to be aligned at stripe boundary.
987 */
988 error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
989 if (error)
990 goto error1;
991
992 xfs_alloc_compute_maxlevels(mp);
993 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
994 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
995 xfs_ialloc_compute_maxlevels(mp);
996
997 xfs_set_maxicount(mp);
998
999 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1000
1001 /*
1002 * XFS uses the uuid from the superblock as the unique
1003 * identifier for fsid. We can not use the uuid from the volume
1004 * since a single partition filesystem is identical to a single
1005 * partition volume/filesystem.
1006 */
1007 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1008 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1009 if (xfs_uuid_mount(mp)) {
1010 error = XFS_ERROR(EINVAL);
1011 goto error1;
1012 }
1013 uuid_mounted=1;
1014 }
1015
1016 /*
1017 * Set the minimum read and write sizes
1018 */
1019 xfs_set_rw_sizes(mp);
1020
1021 /*
1022 * Set the inode cluster size.
1023 * This may still be overridden by the file system
1024 * block size if it is larger than the chosen cluster size.
1025 */
1026 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1027
1028 /*
1029 * Set inode alignment fields
1030 */
1031 xfs_set_inoalignment(mp);
1032
1033 /*
1034 * Check that the data (and log if separate) are an ok size.
1035 */
1036 error = xfs_check_sizes(mp, mfsi_flags);
1037 if (error)
1038 goto error1;
1039
1040 /*
1041 * Initialize realtime fields in the mount structure
1042 */
1043 error = xfs_rtmount_init(mp);
1044 if (error) {
1045 cmn_err(CE_WARN, "XFS: RT mount failed");
1046 goto error1;
1047 }
1048
1049 /*
1050 * For client case we are done now
1051 */
1052 if (mfsi_flags & XFS_MFSI_CLIENT) {
1053 return 0;
1054 }
1055
1056 /*
1057 * Copies the low order bits of the timestamp and the randomly
1058 * set "sequence" number out of a UUID.
1059 */
1060 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1061
1062 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1063
1064 xfs_dir_mount(mp);
1065
1066 /*
1067 * Initialize the attribute manager's entries.
1068 */
1069 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1070
1071 /*
1072 * Initialize the precomputed transaction reservations values.
1073 */
1074 xfs_trans_init(mp);
1075
1076 /*
1077 * Allocate and initialize the per-ag data.
1078 */
1079 init_rwsem(&mp->m_peraglock);
1080 mp->m_perag =
1081 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1082
1083 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1084
1085 /*
1086 * log's mount-time initialization. Perform 1st part recovery if needed
1087 */
1088 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
1089 error = xfs_log_mount(mp, mp->m_logdev_targp,
1090 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1091 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1092 if (error) {
1093 cmn_err(CE_WARN, "XFS: log mount failed");
1094 goto error2;
1095 }
1096 } else { /* No log has been defined */
1097 cmn_err(CE_WARN, "XFS: no log defined");
1098 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1099 error = XFS_ERROR(EFSCORRUPTED);
1100 goto error2;
1101 }
1102
1103 /*
1104 * Now the log is mounted, we know if it was an unclean shutdown or
1105 * not. If it was, with the first phase of recovery has completed, we
1106 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1107 * but they are recovered transactionally in the second recovery phase
1108 * later.
1109 *
1110 * Hence we can safely re-initialise incore superblock counters from
1111 * the per-ag data. These may not be correct if the filesystem was not
1112 * cleanly unmounted, so we need to wait for recovery to finish before
1113 * doing this.
1114 *
1115 * If the filesystem was cleanly unmounted, then we can trust the
1116 * values in the superblock to be correct and we don't need to do
1117 * anything here.
1118 *
1119 * If we are currently making the filesystem, the initialisation will
1120 * fail as the perag data is in an undefined state.
1121 */
1122
1123 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1124 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1125 !mp->m_sb.sb_inprogress) {
1126 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1127 if (error) {
1128 goto error2;
1129 }
1130 }
1131 /*
1132 * Get and sanity-check the root inode.
1133 * Save the pointer to it in the mount structure.
1134 */
1135 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1136 if (error) {
1137 cmn_err(CE_WARN, "XFS: failed to read root inode");
1138 goto error3;
1139 }
1140
1141 ASSERT(rip != NULL);
1142
1143 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1144 cmn_err(CE_WARN, "XFS: corrupted root inode");
1145 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1146 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1147 (unsigned long long)rip->i_ino);
1148 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1149 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1150 mp);
1151 error = XFS_ERROR(EFSCORRUPTED);
1152 goto error4;
1153 }
1154 mp->m_rootip = rip; /* save it */
1155
1156 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1157
1158 /*
1159 * Initialize realtime inode pointers in the mount structure
1160 */
1161 error = xfs_rtmount_inodes(mp);
1162 if (error) {
1163 /*
1164 * Free up the root inode.
1165 */
1166 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1167 goto error4;
1168 }
1169
1170 /*
1171 * If fs is not mounted readonly, then update the superblock changes.
1172 */
1173 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1174 error = xfs_mount_log_sb(mp, update_flags);
1175 if (error) {
1176 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1177 goto error4;
1178 }
1179 }
1180
1181 /*
1182 * Initialise the XFS quota management subsystem for this mount
1183 */
1184 error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1185 if (error)
1186 goto error4;
1187
1188 /*
1189 * Finish recovering the file system. This part needed to be
1190 * delayed until after the root and real-time bitmap inodes
1191 * were consistently read in.
1192 */
1193 error = xfs_log_mount_finish(mp, mfsi_flags);
1194 if (error) {
1195 cmn_err(CE_WARN, "XFS: log mount finish failed");
1196 goto error4;
1197 }
1198
1199 /*
1200 * Complete the quota initialisation, post-log-replay component.
1201 */
1202 error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1203 if (error)
1204 goto error4;
1205
1206 /*
1207 * Now we are mounted, reserve a small amount of unused space for
1208 * privileged transactions. This is needed so that transaction
1209 * space required for critical operations can dip into this pool
1210 * when at ENOSPC. This is needed for operations like create with
1211 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1212 * are not allowed to use this reserved space.
1213 *
1214 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1215 * This may drive us straight to ENOSPC on mount, but that implies
1216 * we were already there on the last unmount. Warn if this occurs.
1217 */
1218 resblks = mp->m_sb.sb_dblocks;
1219 do_div(resblks, 20);
1220 resblks = min_t(__uint64_t, resblks, 1024);
1221 error = xfs_reserve_blocks(mp, &resblks, NULL);
1222 if (error)
1223 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1224 "Continuing without a reserve pool.");
1225
1226 return 0;
1227
1228 error4:
1229 /*
1230 * Free up the root inode.
1231 */
1232 IRELE(rip);
1233 error3:
1234 xfs_log_unmount_dealloc(mp);
1235 error2:
1236 for (agno = 0; agno < sbp->sb_agcount; agno++)
1237 if (mp->m_perag[agno].pagb_list)
1238 kmem_free(mp->m_perag[agno].pagb_list);
1239 kmem_free(mp->m_perag);
1240 mp->m_perag = NULL;
1241 /* FALLTHROUGH */
1242 error1:
1243 if (uuid_mounted)
1244 uuid_table_remove(&mp->m_sb.sb_uuid);
1245 return error;
1246 }
1247
1248 /*
1249 * xfs_unmountfs
1250 *
1251 * This flushes out the inodes,dquots and the superblock, unmounts the
1252 * log and makes sure that incore structures are freed.
1253 */
1254 int
1255 xfs_unmountfs(xfs_mount_t *mp)
1256 {
1257 __uint64_t resblks;
1258 int error = 0;
1259
1260 /*
1261 * We can potentially deadlock here if we have an inode cluster
1262 * that has been freed has it's buffer still pinned in memory because
1263 * the transaction is still sitting in a iclog. The stale inodes
1264 * on that buffer will have their flush locks held until the
1265 * transaction hits the disk and the callbacks run. the inode
1266 * flush takes the flush lock unconditionally and with nothing to
1267 * push out the iclog we will never get that unlocked. hence we
1268 * need to force the log first.
1269 */
1270 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1271 xfs_iflush_all(mp);
1272
1273 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1274
1275 /*
1276 * Flush out the log synchronously so that we know for sure
1277 * that nothing is pinned. This is important because bflush()
1278 * will skip pinned buffers.
1279 */
1280 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1281
1282 xfs_binval(mp->m_ddev_targp);
1283 if (mp->m_rtdev_targp) {
1284 xfs_binval(mp->m_rtdev_targp);
1285 }
1286
1287 /*
1288 * Unreserve any blocks we have so that when we unmount we don't account
1289 * the reserved free space as used. This is really only necessary for
1290 * lazy superblock counting because it trusts the incore superblock
1291 * counters to be aboslutely correct on clean unmount.
1292 *
1293 * We don't bother correcting this elsewhere for lazy superblock
1294 * counting because on mount of an unclean filesystem we reconstruct the
1295 * correct counter value and this is irrelevant.
1296 *
1297 * For non-lazy counter filesystems, this doesn't matter at all because
1298 * we only every apply deltas to the superblock and hence the incore
1299 * value does not matter....
1300 */
1301 resblks = 0;
1302 error = xfs_reserve_blocks(mp, &resblks, NULL);
1303 if (error)
1304 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1305 "Freespace may not be correct on next mount.");
1306
1307 error = xfs_log_sbcount(mp, 1);
1308 if (error)
1309 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1310 "Freespace may not be correct on next mount.");
1311 xfs_unmountfs_writesb(mp);
1312 xfs_unmountfs_wait(mp); /* wait for async bufs */
1313 xfs_log_unmount(mp); /* Done! No more fs ops. */
1314
1315 xfs_freesb(mp);
1316
1317 /*
1318 * All inodes from this mount point should be freed.
1319 */
1320 ASSERT(mp->m_inodes == NULL);
1321
1322 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1323 uuid_table_remove(&mp->m_sb.sb_uuid);
1324
1325 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1326 xfs_errortag_clearall(mp, 0);
1327 #endif
1328 xfs_mount_free(mp);
1329 return 0;
1330 }
1331
1332 STATIC void
1333 xfs_unmountfs_wait(xfs_mount_t *mp)
1334 {
1335 if (mp->m_logdev_targp != mp->m_ddev_targp)
1336 xfs_wait_buftarg(mp->m_logdev_targp);
1337 if (mp->m_rtdev_targp)
1338 xfs_wait_buftarg(mp->m_rtdev_targp);
1339 xfs_wait_buftarg(mp->m_ddev_targp);
1340 }
1341
1342 int
1343 xfs_fs_writable(xfs_mount_t *mp)
1344 {
1345 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1346 (mp->m_flags & XFS_MOUNT_RDONLY));
1347 }
1348
1349 /*
1350 * xfs_log_sbcount
1351 *
1352 * Called either periodically to keep the on disk superblock values
1353 * roughly up to date or from unmount to make sure the values are
1354 * correct on a clean unmount.
1355 *
1356 * Note this code can be called during the process of freezing, so
1357 * we may need to use the transaction allocator which does not not
1358 * block when the transaction subsystem is in its frozen state.
1359 */
1360 int
1361 xfs_log_sbcount(
1362 xfs_mount_t *mp,
1363 uint sync)
1364 {
1365 xfs_trans_t *tp;
1366 int error;
1367
1368 if (!xfs_fs_writable(mp))
1369 return 0;
1370
1371 xfs_icsb_sync_counters(mp, 0);
1372
1373 /*
1374 * we don't need to do this if we are updating the superblock
1375 * counters on every modification.
1376 */
1377 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1378 return 0;
1379
1380 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1381 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1382 XFS_DEFAULT_LOG_COUNT);
1383 if (error) {
1384 xfs_trans_cancel(tp, 0);
1385 return error;
1386 }
1387
1388 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1389 if (sync)
1390 xfs_trans_set_sync(tp);
1391 error = xfs_trans_commit(tp, 0);
1392 return error;
1393 }
1394
1395 STATIC void
1396 xfs_mark_shared_ro(
1397 xfs_mount_t *mp,
1398 xfs_buf_t *bp)
1399 {
1400 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp);
1401 __uint16_t version;
1402
1403 if (!(sb->sb_flags & XFS_SBF_READONLY))
1404 sb->sb_flags |= XFS_SBF_READONLY;
1405
1406 version = be16_to_cpu(sb->sb_versionnum);
1407 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1408 !(version & XFS_SB_VERSION_SHAREDBIT))
1409 version |= XFS_SB_VERSION_SHAREDBIT;
1410 sb->sb_versionnum = cpu_to_be16(version);
1411 }
1412
1413 int
1414 xfs_unmountfs_writesb(xfs_mount_t *mp)
1415 {
1416 xfs_buf_t *sbp;
1417 int error = 0;
1418
1419 /*
1420 * skip superblock write if fs is read-only, or
1421 * if we are doing a forced umount.
1422 */
1423 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1424 XFS_FORCED_SHUTDOWN(mp))) {
1425
1426 sbp = xfs_getsb(mp, 0);
1427
1428 /*
1429 * mark shared-readonly if desired
1430 */
1431 if (mp->m_mk_sharedro)
1432 xfs_mark_shared_ro(mp, sbp);
1433
1434 XFS_BUF_UNDONE(sbp);
1435 XFS_BUF_UNREAD(sbp);
1436 XFS_BUF_UNDELAYWRITE(sbp);
1437 XFS_BUF_WRITE(sbp);
1438 XFS_BUF_UNASYNC(sbp);
1439 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1440 xfsbdstrat(mp, sbp);
1441 error = xfs_iowait(sbp);
1442 if (error)
1443 xfs_ioerror_alert("xfs_unmountfs_writesb",
1444 mp, sbp, XFS_BUF_ADDR(sbp));
1445 if (error && mp->m_mk_sharedro)
1446 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly");
1447 xfs_buf_relse(sbp);
1448 }
1449 return error;
1450 }
1451
1452 /*
1453 * xfs_mod_sb() can be used to copy arbitrary changes to the
1454 * in-core superblock into the superblock buffer to be logged.
1455 * It does not provide the higher level of locking that is
1456 * needed to protect the in-core superblock from concurrent
1457 * access.
1458 */
1459 void
1460 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1461 {
1462 xfs_buf_t *bp;
1463 int first;
1464 int last;
1465 xfs_mount_t *mp;
1466 xfs_sb_field_t f;
1467
1468 ASSERT(fields);
1469 if (!fields)
1470 return;
1471 mp = tp->t_mountp;
1472 bp = xfs_trans_getsb(tp, mp, 0);
1473 first = sizeof(xfs_sb_t);
1474 last = 0;
1475
1476 /* translate/copy */
1477
1478 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1479
1480 /* find modified range */
1481
1482 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1483 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1484 first = xfs_sb_info[f].offset;
1485
1486 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1487 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1488 last = xfs_sb_info[f + 1].offset - 1;
1489
1490 xfs_trans_log_buf(tp, bp, first, last);
1491 }
1492
1493
1494 /*
1495 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1496 * a delta to a specified field in the in-core superblock. Simply
1497 * switch on the field indicated and apply the delta to that field.
1498 * Fields are not allowed to dip below zero, so if the delta would
1499 * do this do not apply it and return EINVAL.
1500 *
1501 * The m_sb_lock must be held when this routine is called.
1502 */
1503 int
1504 xfs_mod_incore_sb_unlocked(
1505 xfs_mount_t *mp,
1506 xfs_sb_field_t field,
1507 int64_t delta,
1508 int rsvd)
1509 {
1510 int scounter; /* short counter for 32 bit fields */
1511 long long lcounter; /* long counter for 64 bit fields */
1512 long long res_used, rem;
1513
1514 /*
1515 * With the in-core superblock spin lock held, switch
1516 * on the indicated field. Apply the delta to the
1517 * proper field. If the fields value would dip below
1518 * 0, then do not apply the delta and return EINVAL.
1519 */
1520 switch (field) {
1521 case XFS_SBS_ICOUNT:
1522 lcounter = (long long)mp->m_sb.sb_icount;
1523 lcounter += delta;
1524 if (lcounter < 0) {
1525 ASSERT(0);
1526 return XFS_ERROR(EINVAL);
1527 }
1528 mp->m_sb.sb_icount = lcounter;
1529 return 0;
1530 case XFS_SBS_IFREE:
1531 lcounter = (long long)mp->m_sb.sb_ifree;
1532 lcounter += delta;
1533 if (lcounter < 0) {
1534 ASSERT(0);
1535 return XFS_ERROR(EINVAL);
1536 }
1537 mp->m_sb.sb_ifree = lcounter;
1538 return 0;
1539 case XFS_SBS_FDBLOCKS:
1540 lcounter = (long long)
1541 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1542 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1543
1544 if (delta > 0) { /* Putting blocks back */
1545 if (res_used > delta) {
1546 mp->m_resblks_avail += delta;
1547 } else {
1548 rem = delta - res_used;
1549 mp->m_resblks_avail = mp->m_resblks;
1550 lcounter += rem;
1551 }
1552 } else { /* Taking blocks away */
1553
1554 lcounter += delta;
1555
1556 /*
1557 * If were out of blocks, use any available reserved blocks if
1558 * were allowed to.
1559 */
1560
1561 if (lcounter < 0) {
1562 if (rsvd) {
1563 lcounter = (long long)mp->m_resblks_avail + delta;
1564 if (lcounter < 0) {
1565 return XFS_ERROR(ENOSPC);
1566 }
1567 mp->m_resblks_avail = lcounter;
1568 return 0;
1569 } else { /* not reserved */
1570 return XFS_ERROR(ENOSPC);
1571 }
1572 }
1573 }
1574
1575 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1576 return 0;
1577 case XFS_SBS_FREXTENTS:
1578 lcounter = (long long)mp->m_sb.sb_frextents;
1579 lcounter += delta;
1580 if (lcounter < 0) {
1581 return XFS_ERROR(ENOSPC);
1582 }
1583 mp->m_sb.sb_frextents = lcounter;
1584 return 0;
1585 case XFS_SBS_DBLOCKS:
1586 lcounter = (long long)mp->m_sb.sb_dblocks;
1587 lcounter += delta;
1588 if (lcounter < 0) {
1589 ASSERT(0);
1590 return XFS_ERROR(EINVAL);
1591 }
1592 mp->m_sb.sb_dblocks = lcounter;
1593 return 0;
1594 case XFS_SBS_AGCOUNT:
1595 scounter = mp->m_sb.sb_agcount;
1596 scounter += delta;
1597 if (scounter < 0) {
1598 ASSERT(0);
1599 return XFS_ERROR(EINVAL);
1600 }
1601 mp->m_sb.sb_agcount = scounter;
1602 return 0;
1603 case XFS_SBS_IMAX_PCT:
1604 scounter = mp->m_sb.sb_imax_pct;
1605 scounter += delta;
1606 if (scounter < 0) {
1607 ASSERT(0);
1608 return XFS_ERROR(EINVAL);
1609 }
1610 mp->m_sb.sb_imax_pct = scounter;
1611 return 0;
1612 case XFS_SBS_REXTSIZE:
1613 scounter = mp->m_sb.sb_rextsize;
1614 scounter += delta;
1615 if (scounter < 0) {
1616 ASSERT(0);
1617 return XFS_ERROR(EINVAL);
1618 }
1619 mp->m_sb.sb_rextsize = scounter;
1620 return 0;
1621 case XFS_SBS_RBMBLOCKS:
1622 scounter = mp->m_sb.sb_rbmblocks;
1623 scounter += delta;
1624 if (scounter < 0) {
1625 ASSERT(0);
1626 return XFS_ERROR(EINVAL);
1627 }
1628 mp->m_sb.sb_rbmblocks = scounter;
1629 return 0;
1630 case XFS_SBS_RBLOCKS:
1631 lcounter = (long long)mp->m_sb.sb_rblocks;
1632 lcounter += delta;
1633 if (lcounter < 0) {
1634 ASSERT(0);
1635 return XFS_ERROR(EINVAL);
1636 }
1637 mp->m_sb.sb_rblocks = lcounter;
1638 return 0;
1639 case XFS_SBS_REXTENTS:
1640 lcounter = (long long)mp->m_sb.sb_rextents;
1641 lcounter += delta;
1642 if (lcounter < 0) {
1643 ASSERT(0);
1644 return XFS_ERROR(EINVAL);
1645 }
1646 mp->m_sb.sb_rextents = lcounter;
1647 return 0;
1648 case XFS_SBS_REXTSLOG:
1649 scounter = mp->m_sb.sb_rextslog;
1650 scounter += delta;
1651 if (scounter < 0) {
1652 ASSERT(0);
1653 return XFS_ERROR(EINVAL);
1654 }
1655 mp->m_sb.sb_rextslog = scounter;
1656 return 0;
1657 default:
1658 ASSERT(0);
1659 return XFS_ERROR(EINVAL);
1660 }
1661 }
1662
1663 /*
1664 * xfs_mod_incore_sb() is used to change a field in the in-core
1665 * superblock structure by the specified delta. This modification
1666 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1667 * routine to do the work.
1668 */
1669 int
1670 xfs_mod_incore_sb(
1671 xfs_mount_t *mp,
1672 xfs_sb_field_t field,
1673 int64_t delta,
1674 int rsvd)
1675 {
1676 int status;
1677
1678 /* check for per-cpu counters */
1679 switch (field) {
1680 #ifdef HAVE_PERCPU_SB
1681 case XFS_SBS_ICOUNT:
1682 case XFS_SBS_IFREE:
1683 case XFS_SBS_FDBLOCKS:
1684 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1685 status = xfs_icsb_modify_counters(mp, field,
1686 delta, rsvd);
1687 break;
1688 }
1689 /* FALLTHROUGH */
1690 #endif
1691 default:
1692 spin_lock(&mp->m_sb_lock);
1693 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1694 spin_unlock(&mp->m_sb_lock);
1695 break;
1696 }
1697
1698 return status;
1699 }
1700
1701 /*
1702 * xfs_mod_incore_sb_batch() is used to change more than one field
1703 * in the in-core superblock structure at a time. This modification
1704 * is protected by a lock internal to this module. The fields and
1705 * changes to those fields are specified in the array of xfs_mod_sb
1706 * structures passed in.
1707 *
1708 * Either all of the specified deltas will be applied or none of
1709 * them will. If any modified field dips below 0, then all modifications
1710 * will be backed out and EINVAL will be returned.
1711 */
1712 int
1713 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1714 {
1715 int status=0;
1716 xfs_mod_sb_t *msbp;
1717
1718 /*
1719 * Loop through the array of mod structures and apply each
1720 * individually. If any fail, then back out all those
1721 * which have already been applied. Do all of this within
1722 * the scope of the m_sb_lock so that all of the changes will
1723 * be atomic.
1724 */
1725 spin_lock(&mp->m_sb_lock);
1726 msbp = &msb[0];
1727 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1728 /*
1729 * Apply the delta at index n. If it fails, break
1730 * from the loop so we'll fall into the undo loop
1731 * below.
1732 */
1733 switch (msbp->msb_field) {
1734 #ifdef HAVE_PERCPU_SB
1735 case XFS_SBS_ICOUNT:
1736 case XFS_SBS_IFREE:
1737 case XFS_SBS_FDBLOCKS:
1738 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1739 spin_unlock(&mp->m_sb_lock);
1740 status = xfs_icsb_modify_counters(mp,
1741 msbp->msb_field,
1742 msbp->msb_delta, rsvd);
1743 spin_lock(&mp->m_sb_lock);
1744 break;
1745 }
1746 /* FALLTHROUGH */
1747 #endif
1748 default:
1749 status = xfs_mod_incore_sb_unlocked(mp,
1750 msbp->msb_field,
1751 msbp->msb_delta, rsvd);
1752 break;
1753 }
1754
1755 if (status != 0) {
1756 break;
1757 }
1758 }
1759
1760 /*
1761 * If we didn't complete the loop above, then back out
1762 * any changes made to the superblock. If you add code
1763 * between the loop above and here, make sure that you
1764 * preserve the value of status. Loop back until
1765 * we step below the beginning of the array. Make sure
1766 * we don't touch anything back there.
1767 */
1768 if (status != 0) {
1769 msbp--;
1770 while (msbp >= msb) {
1771 switch (msbp->msb_field) {
1772 #ifdef HAVE_PERCPU_SB
1773 case XFS_SBS_ICOUNT:
1774 case XFS_SBS_IFREE:
1775 case XFS_SBS_FDBLOCKS:
1776 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1777 spin_unlock(&mp->m_sb_lock);
1778 status = xfs_icsb_modify_counters(mp,
1779 msbp->msb_field,
1780 -(msbp->msb_delta),
1781 rsvd);
1782 spin_lock(&mp->m_sb_lock);
1783 break;
1784 }
1785 /* FALLTHROUGH */
1786 #endif
1787 default:
1788 status = xfs_mod_incore_sb_unlocked(mp,
1789 msbp->msb_field,
1790 -(msbp->msb_delta),
1791 rsvd);
1792 break;
1793 }
1794 ASSERT(status == 0);
1795 msbp--;
1796 }
1797 }
1798 spin_unlock(&mp->m_sb_lock);
1799 return status;
1800 }
1801
1802 /*
1803 * xfs_getsb() is called to obtain the buffer for the superblock.
1804 * The buffer is returned locked and read in from disk.
1805 * The buffer should be released with a call to xfs_brelse().
1806 *
1807 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1808 * the superblock buffer if it can be locked without sleeping.
1809 * If it can't then we'll return NULL.
1810 */
1811 xfs_buf_t *
1812 xfs_getsb(
1813 xfs_mount_t *mp,
1814 int flags)
1815 {
1816 xfs_buf_t *bp;
1817
1818 ASSERT(mp->m_sb_bp != NULL);
1819 bp = mp->m_sb_bp;
1820 if (flags & XFS_BUF_TRYLOCK) {
1821 if (!XFS_BUF_CPSEMA(bp)) {
1822 return NULL;
1823 }
1824 } else {
1825 XFS_BUF_PSEMA(bp, PRIBIO);
1826 }
1827 XFS_BUF_HOLD(bp);
1828 ASSERT(XFS_BUF_ISDONE(bp));
1829 return bp;
1830 }
1831
1832 /*
1833 * Used to free the superblock along various error paths.
1834 */
1835 void
1836 xfs_freesb(
1837 xfs_mount_t *mp)
1838 {
1839 xfs_buf_t *bp;
1840
1841 /*
1842 * Use xfs_getsb() so that the buffer will be locked
1843 * when we call xfs_buf_relse().
1844 */
1845 bp = xfs_getsb(mp, 0);
1846 XFS_BUF_UNMANAGE(bp);
1847 xfs_buf_relse(bp);
1848 mp->m_sb_bp = NULL;
1849 }
1850
1851 /*
1852 * See if the UUID is unique among mounted XFS filesystems.
1853 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1854 */
1855 STATIC int
1856 xfs_uuid_mount(
1857 xfs_mount_t *mp)
1858 {
1859 if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1860 cmn_err(CE_WARN,
1861 "XFS: Filesystem %s has nil UUID - can't mount",
1862 mp->m_fsname);
1863 return -1;
1864 }
1865 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1866 cmn_err(CE_WARN,
1867 "XFS: Filesystem %s has duplicate UUID - can't mount",
1868 mp->m_fsname);
1869 return -1;
1870 }
1871 return 0;
1872 }
1873
1874 /*
1875 * Used to log changes to the superblock unit and width fields which could
1876 * be altered by the mount options, as well as any potential sb_features2
1877 * fixup. Only the first superblock is updated.
1878 */
1879 STATIC int
1880 xfs_mount_log_sb(
1881 xfs_mount_t *mp,
1882 __int64_t fields)
1883 {
1884 xfs_trans_t *tp;
1885 int error;
1886
1887 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1888 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1889 XFS_SB_VERSIONNUM));
1890
1891 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1892 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1893 XFS_DEFAULT_LOG_COUNT);
1894 if (error) {
1895 xfs_trans_cancel(tp, 0);
1896 return error;
1897 }
1898 xfs_mod_sb(tp, fields);
1899 error = xfs_trans_commit(tp, 0);
1900 return error;
1901 }
1902
1903
1904 #ifdef HAVE_PERCPU_SB
1905 /*
1906 * Per-cpu incore superblock counters
1907 *
1908 * Simple concept, difficult implementation
1909 *
1910 * Basically, replace the incore superblock counters with a distributed per cpu
1911 * counter for contended fields (e.g. free block count).
1912 *
1913 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1914 * hence needs to be accurately read when we are running low on space. Hence
1915 * there is a method to enable and disable the per-cpu counters based on how
1916 * much "stuff" is available in them.
1917 *
1918 * Basically, a counter is enabled if there is enough free resource to justify
1919 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1920 * ENOSPC), then we disable the counters to synchronise all callers and
1921 * re-distribute the available resources.
1922 *
1923 * If, once we redistributed the available resources, we still get a failure,
1924 * we disable the per-cpu counter and go through the slow path.
1925 *
1926 * The slow path is the current xfs_mod_incore_sb() function. This means that
1927 * when we disable a per-cpu counter, we need to drain it's resources back to
1928 * the global superblock. We do this after disabling the counter to prevent
1929 * more threads from queueing up on the counter.
1930 *
1931 * Essentially, this means that we still need a lock in the fast path to enable
1932 * synchronisation between the global counters and the per-cpu counters. This
1933 * is not a problem because the lock will be local to a CPU almost all the time
1934 * and have little contention except when we get to ENOSPC conditions.
1935 *
1936 * Basically, this lock becomes a barrier that enables us to lock out the fast
1937 * path while we do things like enabling and disabling counters and
1938 * synchronising the counters.
1939 *
1940 * Locking rules:
1941 *
1942 * 1. m_sb_lock before picking up per-cpu locks
1943 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1944 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1945 * 4. modifying per-cpu counters requires holding per-cpu lock
1946 * 5. modifying global counters requires holding m_sb_lock
1947 * 6. enabling or disabling a counter requires holding the m_sb_lock
1948 * and _none_ of the per-cpu locks.
1949 *
1950 * Disabled counters are only ever re-enabled by a balance operation
1951 * that results in more free resources per CPU than a given threshold.
1952 * To ensure counters don't remain disabled, they are rebalanced when
1953 * the global resource goes above a higher threshold (i.e. some hysteresis
1954 * is present to prevent thrashing).
1955 */
1956
1957 #ifdef CONFIG_HOTPLUG_CPU
1958 /*
1959 * hot-plug CPU notifier support.
1960 *
1961 * We need a notifier per filesystem as we need to be able to identify
1962 * the filesystem to balance the counters out. This is achieved by
1963 * having a notifier block embedded in the xfs_mount_t and doing pointer
1964 * magic to get the mount pointer from the notifier block address.
1965 */
1966 STATIC int
1967 xfs_icsb_cpu_notify(
1968 struct notifier_block *nfb,
1969 unsigned long action,
1970 void *hcpu)
1971 {
1972 xfs_icsb_cnts_t *cntp;
1973 xfs_mount_t *mp;
1974
1975 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1976 cntp = (xfs_icsb_cnts_t *)
1977 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1978 switch (action) {
1979 case CPU_UP_PREPARE:
1980 case CPU_UP_PREPARE_FROZEN:
1981 /* Easy Case - initialize the area and locks, and
1982 * then rebalance when online does everything else for us. */
1983 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1984 break;
1985 case CPU_ONLINE:
1986 case CPU_ONLINE_FROZEN:
1987 xfs_icsb_lock(mp);
1988 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1989 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1990 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1991 xfs_icsb_unlock(mp);
1992 break;
1993 case CPU_DEAD:
1994 case CPU_DEAD_FROZEN:
1995 /* Disable all the counters, then fold the dead cpu's
1996 * count into the total on the global superblock and
1997 * re-enable the counters. */
1998 xfs_icsb_lock(mp);
1999 spin_lock(&mp->m_sb_lock);
2000 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2001 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2002 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2003
2004 mp->m_sb.sb_icount += cntp->icsb_icount;
2005 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2006 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2007
2008 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2009
2010 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2011 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2012 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2013 spin_unlock(&mp->m_sb_lock);
2014 xfs_icsb_unlock(mp);
2015 break;
2016 }
2017
2018 return NOTIFY_OK;
2019 }
2020 #endif /* CONFIG_HOTPLUG_CPU */
2021
2022 int
2023 xfs_icsb_init_counters(
2024 xfs_mount_t *mp)
2025 {
2026 xfs_icsb_cnts_t *cntp;
2027 int i;
2028
2029 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2030 if (mp->m_sb_cnts == NULL)
2031 return -ENOMEM;
2032
2033 #ifdef CONFIG_HOTPLUG_CPU
2034 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2035 mp->m_icsb_notifier.priority = 0;
2036 register_hotcpu_notifier(&mp->m_icsb_notifier);
2037 #endif /* CONFIG_HOTPLUG_CPU */
2038
2039 for_each_online_cpu(i) {
2040 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2041 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2042 }
2043
2044 mutex_init(&mp->m_icsb_mutex);
2045
2046 /*
2047 * start with all counters disabled so that the
2048 * initial balance kicks us off correctly
2049 */
2050 mp->m_icsb_counters = -1;
2051 return 0;
2052 }
2053
2054 void
2055 xfs_icsb_reinit_counters(
2056 xfs_mount_t *mp)
2057 {
2058 xfs_icsb_lock(mp);
2059 /*
2060 * start with all counters disabled so that the
2061 * initial balance kicks us off correctly
2062 */
2063 mp->m_icsb_counters = -1;
2064 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2065 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2066 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2067 xfs_icsb_unlock(mp);
2068 }
2069
2070 void
2071 xfs_icsb_destroy_counters(
2072 xfs_mount_t *mp)
2073 {
2074 if (mp->m_sb_cnts) {
2075 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2076 free_percpu(mp->m_sb_cnts);
2077 }
2078 mutex_destroy(&mp->m_icsb_mutex);
2079 }
2080
2081 STATIC_INLINE void
2082 xfs_icsb_lock_cntr(
2083 xfs_icsb_cnts_t *icsbp)
2084 {
2085 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2086 ndelay(1000);
2087 }
2088 }
2089
2090 STATIC_INLINE void
2091 xfs_icsb_unlock_cntr(
2092 xfs_icsb_cnts_t *icsbp)
2093 {
2094 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2095 }
2096
2097
2098 STATIC_INLINE void
2099 xfs_icsb_lock_all_counters(
2100 xfs_mount_t *mp)
2101 {
2102 xfs_icsb_cnts_t *cntp;
2103 int i;
2104
2105 for_each_online_cpu(i) {
2106 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2107 xfs_icsb_lock_cntr(cntp);
2108 }
2109 }
2110
2111 STATIC_INLINE void
2112 xfs_icsb_unlock_all_counters(
2113 xfs_mount_t *mp)
2114 {
2115 xfs_icsb_cnts_t *cntp;
2116 int i;
2117
2118 for_each_online_cpu(i) {
2119 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2120 xfs_icsb_unlock_cntr(cntp);
2121 }
2122 }
2123
2124 STATIC void
2125 xfs_icsb_count(
2126 xfs_mount_t *mp,
2127 xfs_icsb_cnts_t *cnt,
2128 int flags)
2129 {
2130 xfs_icsb_cnts_t *cntp;
2131 int i;
2132
2133 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2134
2135 if (!(flags & XFS_ICSB_LAZY_COUNT))
2136 xfs_icsb_lock_all_counters(mp);
2137
2138 for_each_online_cpu(i) {
2139 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2140 cnt->icsb_icount += cntp->icsb_icount;
2141 cnt->icsb_ifree += cntp->icsb_ifree;
2142 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2143 }
2144
2145 if (!(flags & XFS_ICSB_LAZY_COUNT))
2146 xfs_icsb_unlock_all_counters(mp);
2147 }
2148
2149 STATIC int
2150 xfs_icsb_counter_disabled(
2151 xfs_mount_t *mp,
2152 xfs_sb_field_t field)
2153 {
2154 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2155 return test_bit(field, &mp->m_icsb_counters);
2156 }
2157
2158 STATIC void
2159 xfs_icsb_disable_counter(
2160 xfs_mount_t *mp,
2161 xfs_sb_field_t field)
2162 {
2163 xfs_icsb_cnts_t cnt;
2164
2165 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2166
2167 /*
2168 * If we are already disabled, then there is nothing to do
2169 * here. We check before locking all the counters to avoid
2170 * the expensive lock operation when being called in the
2171 * slow path and the counter is already disabled. This is
2172 * safe because the only time we set or clear this state is under
2173 * the m_icsb_mutex.
2174 */
2175 if (xfs_icsb_counter_disabled(mp, field))
2176 return;
2177
2178 xfs_icsb_lock_all_counters(mp);
2179 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2180 /* drain back to superblock */
2181
2182 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2183 switch(field) {
2184 case XFS_SBS_ICOUNT:
2185 mp->m_sb.sb_icount = cnt.icsb_icount;
2186 break;
2187 case XFS_SBS_IFREE:
2188 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2189 break;
2190 case XFS_SBS_FDBLOCKS:
2191 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2192 break;
2193 default:
2194 BUG();
2195 }
2196 }
2197
2198 xfs_icsb_unlock_all_counters(mp);
2199 }
2200
2201 STATIC void
2202 xfs_icsb_enable_counter(
2203 xfs_mount_t *mp,
2204 xfs_sb_field_t field,
2205 uint64_t count,
2206 uint64_t resid)
2207 {
2208 xfs_icsb_cnts_t *cntp;
2209 int i;
2210
2211 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2212
2213 xfs_icsb_lock_all_counters(mp);
2214 for_each_online_cpu(i) {
2215 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2216 switch (field) {
2217 case XFS_SBS_ICOUNT:
2218 cntp->icsb_icount = count + resid;
2219 break;
2220 case XFS_SBS_IFREE:
2221 cntp->icsb_ifree = count + resid;
2222 break;
2223 case XFS_SBS_FDBLOCKS:
2224 cntp->icsb_fdblocks = count + resid;
2225 break;
2226 default:
2227 BUG();
2228 break;
2229 }
2230 resid = 0;
2231 }
2232 clear_bit(field, &mp->m_icsb_counters);
2233 xfs_icsb_unlock_all_counters(mp);
2234 }
2235
2236 void
2237 xfs_icsb_sync_counters_locked(
2238 xfs_mount_t *mp,
2239 int flags)
2240 {
2241 xfs_icsb_cnts_t cnt;
2242
2243 xfs_icsb_count(mp, &cnt, flags);
2244
2245 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2246 mp->m_sb.sb_icount = cnt.icsb_icount;
2247 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2248 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2249 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2250 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2251 }
2252
2253 /*
2254 * Accurate update of per-cpu counters to incore superblock
2255 */
2256 void
2257 xfs_icsb_sync_counters(
2258 xfs_mount_t *mp,
2259 int flags)
2260 {
2261 spin_lock(&mp->m_sb_lock);
2262 xfs_icsb_sync_counters_locked(mp, flags);
2263 spin_unlock(&mp->m_sb_lock);
2264 }
2265
2266 /*
2267 * Balance and enable/disable counters as necessary.
2268 *
2269 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2270 * chosen to be the same number as single on disk allocation chunk per CPU, and
2271 * free blocks is something far enough zero that we aren't going thrash when we
2272 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2273 * prevent looping endlessly when xfs_alloc_space asks for more than will
2274 * be distributed to a single CPU but each CPU has enough blocks to be
2275 * reenabled.
2276 *
2277 * Note that we can be called when counters are already disabled.
2278 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2279 * prevent locking every per-cpu counter needlessly.
2280 */
2281
2282 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2283 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2284 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2285 STATIC void
2286 xfs_icsb_balance_counter_locked(
2287 xfs_mount_t *mp,
2288 xfs_sb_field_t field,
2289 int min_per_cpu)
2290 {
2291 uint64_t count, resid;
2292 int weight = num_online_cpus();
2293 uint64_t min = (uint64_t)min_per_cpu;
2294
2295 /* disable counter and sync counter */
2296 xfs_icsb_disable_counter(mp, field);
2297
2298 /* update counters - first CPU gets residual*/
2299 switch (field) {
2300 case XFS_SBS_ICOUNT:
2301 count = mp->m_sb.sb_icount;
2302 resid = do_div(count, weight);
2303 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2304 return;
2305 break;
2306 case XFS_SBS_IFREE:
2307 count = mp->m_sb.sb_ifree;
2308 resid = do_div(count, weight);
2309 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2310 return;
2311 break;
2312 case XFS_SBS_FDBLOCKS:
2313 count = mp->m_sb.sb_fdblocks;
2314 resid = do_div(count, weight);
2315 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2316 return;
2317 break;
2318 default:
2319 BUG();
2320 count = resid = 0; /* quiet, gcc */
2321 break;
2322 }
2323
2324 xfs_icsb_enable_counter(mp, field, count, resid);
2325 }
2326
2327 STATIC void
2328 xfs_icsb_balance_counter(
2329 xfs_mount_t *mp,
2330 xfs_sb_field_t fields,
2331 int min_per_cpu)
2332 {
2333 spin_lock(&mp->m_sb_lock);
2334 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2335 spin_unlock(&mp->m_sb_lock);
2336 }
2337
2338 STATIC int
2339 xfs_icsb_modify_counters(
2340 xfs_mount_t *mp,
2341 xfs_sb_field_t field,
2342 int64_t delta,
2343 int rsvd)
2344 {
2345 xfs_icsb_cnts_t *icsbp;
2346 long long lcounter; /* long counter for 64 bit fields */
2347 int cpu, ret = 0;
2348
2349 might_sleep();
2350 again:
2351 cpu = get_cpu();
2352 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2353
2354 /*
2355 * if the counter is disabled, go to slow path
2356 */
2357 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2358 goto slow_path;
2359 xfs_icsb_lock_cntr(icsbp);
2360 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2361 xfs_icsb_unlock_cntr(icsbp);
2362 goto slow_path;
2363 }
2364
2365 switch (field) {
2366 case XFS_SBS_ICOUNT:
2367 lcounter = icsbp->icsb_icount;
2368 lcounter += delta;
2369 if (unlikely(lcounter < 0))
2370 goto balance_counter;
2371 icsbp->icsb_icount = lcounter;
2372 break;
2373
2374 case XFS_SBS_IFREE:
2375 lcounter = icsbp->icsb_ifree;
2376 lcounter += delta;
2377 if (unlikely(lcounter < 0))
2378 goto balance_counter;
2379 icsbp->icsb_ifree = lcounter;
2380 break;
2381
2382 case XFS_SBS_FDBLOCKS:
2383 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2384
2385 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2386 lcounter += delta;
2387 if (unlikely(lcounter < 0))
2388 goto balance_counter;
2389 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2390 break;
2391 default:
2392 BUG();
2393 break;
2394 }
2395 xfs_icsb_unlock_cntr(icsbp);
2396 put_cpu();
2397 return 0;
2398
2399 slow_path:
2400 put_cpu();
2401
2402 /*
2403 * serialise with a mutex so we don't burn lots of cpu on
2404 * the superblock lock. We still need to hold the superblock
2405 * lock, however, when we modify the global structures.
2406 */
2407 xfs_icsb_lock(mp);
2408
2409 /*
2410 * Now running atomically.
2411 *
2412 * If the counter is enabled, someone has beaten us to rebalancing.
2413 * Drop the lock and try again in the fast path....
2414 */
2415 if (!(xfs_icsb_counter_disabled(mp, field))) {
2416 xfs_icsb_unlock(mp);
2417 goto again;
2418 }
2419
2420 /*
2421 * The counter is currently disabled. Because we are
2422 * running atomically here, we know a rebalance cannot
2423 * be in progress. Hence we can go straight to operating
2424 * on the global superblock. We do not call xfs_mod_incore_sb()
2425 * here even though we need to get the m_sb_lock. Doing so
2426 * will cause us to re-enter this function and deadlock.
2427 * Hence we get the m_sb_lock ourselves and then call
2428 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2429 * directly on the global counters.
2430 */
2431 spin_lock(&mp->m_sb_lock);
2432 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2433 spin_unlock(&mp->m_sb_lock);
2434
2435 /*
2436 * Now that we've modified the global superblock, we
2437 * may be able to re-enable the distributed counters
2438 * (e.g. lots of space just got freed). After that
2439 * we are done.
2440 */
2441 if (ret != ENOSPC)
2442 xfs_icsb_balance_counter(mp, field, 0);
2443 xfs_icsb_unlock(mp);
2444 return ret;
2445
2446 balance_counter:
2447 xfs_icsb_unlock_cntr(icsbp);
2448 put_cpu();
2449
2450 /*
2451 * We may have multiple threads here if multiple per-cpu
2452 * counters run dry at the same time. This will mean we can
2453 * do more balances than strictly necessary but it is not
2454 * the common slowpath case.
2455 */
2456 xfs_icsb_lock(mp);
2457
2458 /*
2459 * running atomically.
2460 *
2461 * This will leave the counter in the correct state for future
2462 * accesses. After the rebalance, we simply try again and our retry
2463 * will either succeed through the fast path or slow path without
2464 * another balance operation being required.
2465 */
2466 xfs_icsb_balance_counter(mp, field, delta);
2467 xfs_icsb_unlock(mp);
2468 goto again;
2469 }
2470
2471 #endif