]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_mount.c
Merge remote-tracking branches 'regulator/fix/as3722', 'regulator/fix/ltc3589' and...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45
46
47 #ifdef HAVE_PERCPU_SB
48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 int);
50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 int);
52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
57 #endif
58
59 static DEFINE_MUTEX(xfs_uuid_table_mutex);
60 static int xfs_uuid_table_size;
61 static uuid_t *xfs_uuid_table;
62
63 /*
64 * See if the UUID is unique among mounted XFS filesystems.
65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 */
67 STATIC int
68 xfs_uuid_mount(
69 struct xfs_mount *mp)
70 {
71 uuid_t *uuid = &mp->m_sb.sb_uuid;
72 int hole, i;
73
74 if (mp->m_flags & XFS_MOUNT_NOUUID)
75 return 0;
76
77 if (uuid_is_nil(uuid)) {
78 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 return XFS_ERROR(EINVAL);
80 }
81
82 mutex_lock(&xfs_uuid_table_mutex);
83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 if (uuid_is_nil(&xfs_uuid_table[i])) {
85 hole = i;
86 continue;
87 }
88 if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 goto out_duplicate;
90 }
91
92 if (hole < 0) {
93 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return XFS_ERROR(EINVAL);
108 }
109
110 STATIC void
111 xfs_uuid_unmount(
112 struct xfs_mount *mp)
113 {
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131 }
132
133
134 STATIC void
135 __xfs_free_perag(
136 struct rcu_head *head)
137 {
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142 }
143
144 /*
145 * Free up the per-ag resources associated with the mount structure.
146 */
147 STATIC void
148 xfs_free_perag(
149 xfs_mount_t *mp)
150 {
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 call_rcu(&pag->rcu_head, __xfs_free_perag);
161 }
162 }
163
164 /*
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
167 */
168 int
169 xfs_sb_validate_fsb_count(
170 xfs_sb_t *sbp,
171 __uint64_t nblocks)
172 {
173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 ASSERT(sbp->sb_blocklog >= BBSHIFT);
175
176 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
177 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 return EFBIG;
179 #else /* Limited by UINT_MAX of sectors */
180 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 return EFBIG;
182 #endif
183 return 0;
184 }
185
186 int
187 xfs_initialize_perag(
188 xfs_mount_t *mp,
189 xfs_agnumber_t agcount,
190 xfs_agnumber_t *maxagi)
191 {
192 xfs_agnumber_t index;
193 xfs_agnumber_t first_initialised = 0;
194 xfs_perag_t *pag;
195 xfs_agino_t agino;
196 xfs_ino_t ino;
197 xfs_sb_t *sbp = &mp->m_sb;
198 int error = -ENOMEM;
199
200 /*
201 * Walk the current per-ag tree so we don't try to initialise AGs
202 * that already exist (growfs case). Allocate and insert all the
203 * AGs we don't find ready for initialisation.
204 */
205 for (index = 0; index < agcount; index++) {
206 pag = xfs_perag_get(mp, index);
207 if (pag) {
208 xfs_perag_put(pag);
209 continue;
210 }
211 if (!first_initialised)
212 first_initialised = index;
213
214 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 if (!pag)
216 goto out_unwind;
217 pag->pag_agno = index;
218 pag->pag_mount = mp;
219 spin_lock_init(&pag->pag_ici_lock);
220 mutex_init(&pag->pag_ici_reclaim_lock);
221 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 spin_lock_init(&pag->pag_buf_lock);
223 pag->pag_buf_tree = RB_ROOT;
224
225 if (radix_tree_preload(GFP_NOFS))
226 goto out_unwind;
227
228 spin_lock(&mp->m_perag_lock);
229 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 BUG();
231 spin_unlock(&mp->m_perag_lock);
232 radix_tree_preload_end();
233 error = -EEXIST;
234 goto out_unwind;
235 }
236 spin_unlock(&mp->m_perag_lock);
237 radix_tree_preload_end();
238 }
239
240 /*
241 * If we mount with the inode64 option, or no inode overflows
242 * the legacy 32-bit address space clear the inode32 option.
243 */
244 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246
247 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 mp->m_flags |= XFS_MOUNT_32BITINODES;
249 else
250 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251
252 if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 index = xfs_set_inode32(mp);
254 else
255 index = xfs_set_inode64(mp);
256
257 if (maxagi)
258 *maxagi = index;
259 return 0;
260
261 out_unwind:
262 kmem_free(pag);
263 for (; index > first_initialised; index--) {
264 pag = radix_tree_delete(&mp->m_perag_tree, index);
265 kmem_free(pag);
266 }
267 return error;
268 }
269
270 /*
271 * xfs_readsb
272 *
273 * Does the initial read of the superblock.
274 */
275 int
276 xfs_readsb(
277 struct xfs_mount *mp,
278 int flags)
279 {
280 unsigned int sector_size;
281 struct xfs_buf *bp;
282 struct xfs_sb *sbp = &mp->m_sb;
283 int error;
284 int loud = !(flags & XFS_MFSI_QUIET);
285 const struct xfs_buf_ops *buf_ops;
286
287 ASSERT(mp->m_sb_bp == NULL);
288 ASSERT(mp->m_ddev_targp != NULL);
289
290 /*
291 * For the initial read, we must guess at the sector
292 * size based on the block device. It's enough to
293 * get the sb_sectsize out of the superblock and
294 * then reread with the proper length.
295 * We don't verify it yet, because it may not be complete.
296 */
297 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
298 buf_ops = NULL;
299
300 /*
301 * Allocate a (locked) buffer to hold the superblock.
302 * This will be kept around at all times to optimize
303 * access to the superblock.
304 */
305 reread:
306 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
307 BTOBB(sector_size), 0, buf_ops);
308 if (!bp) {
309 if (loud)
310 xfs_warn(mp, "SB buffer read failed");
311 return EIO;
312 }
313 if (bp->b_error) {
314 error = bp->b_error;
315 if (loud)
316 xfs_warn(mp, "SB validate failed with error %d.", error);
317 /* bad CRC means corrupted metadata */
318 if (error == EFSBADCRC)
319 error = EFSCORRUPTED;
320 goto release_buf;
321 }
322
323 /*
324 * Initialize the mount structure from the superblock.
325 */
326 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
327 xfs_sb_quota_from_disk(sbp);
328
329 /*
330 * If we haven't validated the superblock, do so now before we try
331 * to check the sector size and reread the superblock appropriately.
332 */
333 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
334 if (loud)
335 xfs_warn(mp, "Invalid superblock magic number");
336 error = EINVAL;
337 goto release_buf;
338 }
339
340 /*
341 * We must be able to do sector-sized and sector-aligned IO.
342 */
343 if (sector_size > sbp->sb_sectsize) {
344 if (loud)
345 xfs_warn(mp, "device supports %u byte sectors (not %u)",
346 sector_size, sbp->sb_sectsize);
347 error = ENOSYS;
348 goto release_buf;
349 }
350
351 if (buf_ops == NULL) {
352 /*
353 * Re-read the superblock so the buffer is correctly sized,
354 * and properly verified.
355 */
356 xfs_buf_relse(bp);
357 sector_size = sbp->sb_sectsize;
358 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
359 goto reread;
360 }
361
362 /* Initialize per-cpu counters */
363 xfs_icsb_reinit_counters(mp);
364
365 /* no need to be quiet anymore, so reset the buf ops */
366 bp->b_ops = &xfs_sb_buf_ops;
367
368 mp->m_sb_bp = bp;
369 xfs_buf_unlock(bp);
370 return 0;
371
372 release_buf:
373 xfs_buf_relse(bp);
374 return error;
375 }
376
377 /*
378 * Update alignment values based on mount options and sb values
379 */
380 STATIC int
381 xfs_update_alignment(xfs_mount_t *mp)
382 {
383 xfs_sb_t *sbp = &(mp->m_sb);
384
385 if (mp->m_dalign) {
386 /*
387 * If stripe unit and stripe width are not multiples
388 * of the fs blocksize turn off alignment.
389 */
390 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
391 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
392 xfs_warn(mp,
393 "alignment check failed: sunit/swidth vs. blocksize(%d)",
394 sbp->sb_blocksize);
395 return XFS_ERROR(EINVAL);
396 } else {
397 /*
398 * Convert the stripe unit and width to FSBs.
399 */
400 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
401 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
402 xfs_warn(mp,
403 "alignment check failed: sunit/swidth vs. agsize(%d)",
404 sbp->sb_agblocks);
405 return XFS_ERROR(EINVAL);
406 } else if (mp->m_dalign) {
407 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
408 } else {
409 xfs_warn(mp,
410 "alignment check failed: sunit(%d) less than bsize(%d)",
411 mp->m_dalign, sbp->sb_blocksize);
412 return XFS_ERROR(EINVAL);
413 }
414 }
415
416 /*
417 * Update superblock with new values
418 * and log changes
419 */
420 if (xfs_sb_version_hasdalign(sbp)) {
421 if (sbp->sb_unit != mp->m_dalign) {
422 sbp->sb_unit = mp->m_dalign;
423 mp->m_update_flags |= XFS_SB_UNIT;
424 }
425 if (sbp->sb_width != mp->m_swidth) {
426 sbp->sb_width = mp->m_swidth;
427 mp->m_update_flags |= XFS_SB_WIDTH;
428 }
429 } else {
430 xfs_warn(mp,
431 "cannot change alignment: superblock does not support data alignment");
432 return XFS_ERROR(EINVAL);
433 }
434 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
435 xfs_sb_version_hasdalign(&mp->m_sb)) {
436 mp->m_dalign = sbp->sb_unit;
437 mp->m_swidth = sbp->sb_width;
438 }
439
440 return 0;
441 }
442
443 /*
444 * Set the maximum inode count for this filesystem
445 */
446 STATIC void
447 xfs_set_maxicount(xfs_mount_t *mp)
448 {
449 xfs_sb_t *sbp = &(mp->m_sb);
450 __uint64_t icount;
451
452 if (sbp->sb_imax_pct) {
453 /*
454 * Make sure the maximum inode count is a multiple
455 * of the units we allocate inodes in.
456 */
457 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
458 do_div(icount, 100);
459 do_div(icount, mp->m_ialloc_blks);
460 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
461 sbp->sb_inopblog;
462 } else {
463 mp->m_maxicount = 0;
464 }
465 }
466
467 /*
468 * Set the default minimum read and write sizes unless
469 * already specified in a mount option.
470 * We use smaller I/O sizes when the file system
471 * is being used for NFS service (wsync mount option).
472 */
473 STATIC void
474 xfs_set_rw_sizes(xfs_mount_t *mp)
475 {
476 xfs_sb_t *sbp = &(mp->m_sb);
477 int readio_log, writeio_log;
478
479 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
480 if (mp->m_flags & XFS_MOUNT_WSYNC) {
481 readio_log = XFS_WSYNC_READIO_LOG;
482 writeio_log = XFS_WSYNC_WRITEIO_LOG;
483 } else {
484 readio_log = XFS_READIO_LOG_LARGE;
485 writeio_log = XFS_WRITEIO_LOG_LARGE;
486 }
487 } else {
488 readio_log = mp->m_readio_log;
489 writeio_log = mp->m_writeio_log;
490 }
491
492 if (sbp->sb_blocklog > readio_log) {
493 mp->m_readio_log = sbp->sb_blocklog;
494 } else {
495 mp->m_readio_log = readio_log;
496 }
497 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
498 if (sbp->sb_blocklog > writeio_log) {
499 mp->m_writeio_log = sbp->sb_blocklog;
500 } else {
501 mp->m_writeio_log = writeio_log;
502 }
503 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
504 }
505
506 /*
507 * precalculate the low space thresholds for dynamic speculative preallocation.
508 */
509 void
510 xfs_set_low_space_thresholds(
511 struct xfs_mount *mp)
512 {
513 int i;
514
515 for (i = 0; i < XFS_LOWSP_MAX; i++) {
516 __uint64_t space = mp->m_sb.sb_dblocks;
517
518 do_div(space, 100);
519 mp->m_low_space[i] = space * (i + 1);
520 }
521 }
522
523
524 /*
525 * Set whether we're using inode alignment.
526 */
527 STATIC void
528 xfs_set_inoalignment(xfs_mount_t *mp)
529 {
530 if (xfs_sb_version_hasalign(&mp->m_sb) &&
531 mp->m_sb.sb_inoalignmt >=
532 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
533 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
534 else
535 mp->m_inoalign_mask = 0;
536 /*
537 * If we are using stripe alignment, check whether
538 * the stripe unit is a multiple of the inode alignment
539 */
540 if (mp->m_dalign && mp->m_inoalign_mask &&
541 !(mp->m_dalign & mp->m_inoalign_mask))
542 mp->m_sinoalign = mp->m_dalign;
543 else
544 mp->m_sinoalign = 0;
545 }
546
547 /*
548 * Check that the data (and log if separate) is an ok size.
549 */
550 STATIC int
551 xfs_check_sizes(xfs_mount_t *mp)
552 {
553 xfs_buf_t *bp;
554 xfs_daddr_t d;
555
556 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
557 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
558 xfs_warn(mp, "filesystem size mismatch detected");
559 return XFS_ERROR(EFBIG);
560 }
561 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
562 d - XFS_FSS_TO_BB(mp, 1),
563 XFS_FSS_TO_BB(mp, 1), 0, NULL);
564 if (!bp) {
565 xfs_warn(mp, "last sector read failed");
566 return EIO;
567 }
568 xfs_buf_relse(bp);
569
570 if (mp->m_logdev_targp != mp->m_ddev_targp) {
571 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
572 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
573 xfs_warn(mp, "log size mismatch detected");
574 return XFS_ERROR(EFBIG);
575 }
576 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
577 d - XFS_FSB_TO_BB(mp, 1),
578 XFS_FSB_TO_BB(mp, 1), 0, NULL);
579 if (!bp) {
580 xfs_warn(mp, "log device read failed");
581 return EIO;
582 }
583 xfs_buf_relse(bp);
584 }
585 return 0;
586 }
587
588 /*
589 * Clear the quotaflags in memory and in the superblock.
590 */
591 int
592 xfs_mount_reset_sbqflags(
593 struct xfs_mount *mp)
594 {
595 int error;
596 struct xfs_trans *tp;
597
598 mp->m_qflags = 0;
599
600 /*
601 * It is OK to look at sb_qflags here in mount path,
602 * without m_sb_lock.
603 */
604 if (mp->m_sb.sb_qflags == 0)
605 return 0;
606 spin_lock(&mp->m_sb_lock);
607 mp->m_sb.sb_qflags = 0;
608 spin_unlock(&mp->m_sb_lock);
609
610 /*
611 * If the fs is readonly, let the incore superblock run
612 * with quotas off but don't flush the update out to disk
613 */
614 if (mp->m_flags & XFS_MOUNT_RDONLY)
615 return 0;
616
617 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
618 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
619 if (error) {
620 xfs_trans_cancel(tp, 0);
621 xfs_alert(mp, "%s: Superblock update failed!", __func__);
622 return error;
623 }
624
625 xfs_mod_sb(tp, XFS_SB_QFLAGS);
626 return xfs_trans_commit(tp, 0);
627 }
628
629 __uint64_t
630 xfs_default_resblks(xfs_mount_t *mp)
631 {
632 __uint64_t resblks;
633
634 /*
635 * We default to 5% or 8192 fsbs of space reserved, whichever is
636 * smaller. This is intended to cover concurrent allocation
637 * transactions when we initially hit enospc. These each require a 4
638 * block reservation. Hence by default we cover roughly 2000 concurrent
639 * allocation reservations.
640 */
641 resblks = mp->m_sb.sb_dblocks;
642 do_div(resblks, 20);
643 resblks = min_t(__uint64_t, resblks, 8192);
644 return resblks;
645 }
646
647 /*
648 * This function does the following on an initial mount of a file system:
649 * - reads the superblock from disk and init the mount struct
650 * - if we're a 32-bit kernel, do a size check on the superblock
651 * so we don't mount terabyte filesystems
652 * - init mount struct realtime fields
653 * - allocate inode hash table for fs
654 * - init directory manager
655 * - perform recovery and init the log manager
656 */
657 int
658 xfs_mountfs(
659 xfs_mount_t *mp)
660 {
661 xfs_sb_t *sbp = &(mp->m_sb);
662 xfs_inode_t *rip;
663 __uint64_t resblks;
664 uint quotamount = 0;
665 uint quotaflags = 0;
666 int error = 0;
667
668 xfs_sb_mount_common(mp, sbp);
669
670 /*
671 * Check for a mismatched features2 values. Older kernels
672 * read & wrote into the wrong sb offset for sb_features2
673 * on some platforms due to xfs_sb_t not being 64bit size aligned
674 * when sb_features2 was added, which made older superblock
675 * reading/writing routines swap it as a 64-bit value.
676 *
677 * For backwards compatibility, we make both slots equal.
678 *
679 * If we detect a mismatched field, we OR the set bits into the
680 * existing features2 field in case it has already been modified; we
681 * don't want to lose any features. We then update the bad location
682 * with the ORed value so that older kernels will see any features2
683 * flags, and mark the two fields as needing updates once the
684 * transaction subsystem is online.
685 */
686 if (xfs_sb_has_mismatched_features2(sbp)) {
687 xfs_warn(mp, "correcting sb_features alignment problem");
688 sbp->sb_features2 |= sbp->sb_bad_features2;
689 sbp->sb_bad_features2 = sbp->sb_features2;
690 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
691
692 /*
693 * Re-check for ATTR2 in case it was found in bad_features2
694 * slot.
695 */
696 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
697 !(mp->m_flags & XFS_MOUNT_NOATTR2))
698 mp->m_flags |= XFS_MOUNT_ATTR2;
699 }
700
701 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
702 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
703 xfs_sb_version_removeattr2(&mp->m_sb);
704 mp->m_update_flags |= XFS_SB_FEATURES2;
705
706 /* update sb_versionnum for the clearing of the morebits */
707 if (!sbp->sb_features2)
708 mp->m_update_flags |= XFS_SB_VERSIONNUM;
709 }
710
711 /* always use v2 inodes by default now */
712 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
713 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
714 mp->m_update_flags |= XFS_SB_VERSIONNUM;
715 }
716
717 /*
718 * Check if sb_agblocks is aligned at stripe boundary
719 * If sb_agblocks is NOT aligned turn off m_dalign since
720 * allocator alignment is within an ag, therefore ag has
721 * to be aligned at stripe boundary.
722 */
723 error = xfs_update_alignment(mp);
724 if (error)
725 goto out;
726
727 xfs_alloc_compute_maxlevels(mp);
728 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
729 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
730 xfs_ialloc_compute_maxlevels(mp);
731
732 xfs_set_maxicount(mp);
733
734 error = xfs_uuid_mount(mp);
735 if (error)
736 goto out;
737
738 /*
739 * Set the minimum read and write sizes
740 */
741 xfs_set_rw_sizes(mp);
742
743 /* set the low space thresholds for dynamic preallocation */
744 xfs_set_low_space_thresholds(mp);
745
746 /*
747 * Set the inode cluster size.
748 * This may still be overridden by the file system
749 * block size if it is larger than the chosen cluster size.
750 *
751 * For v5 filesystems, scale the cluster size with the inode size to
752 * keep a constant ratio of inode per cluster buffer, but only if mkfs
753 * has set the inode alignment value appropriately for larger cluster
754 * sizes.
755 */
756 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
757 if (xfs_sb_version_hascrc(&mp->m_sb)) {
758 int new_size = mp->m_inode_cluster_size;
759
760 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
761 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
762 mp->m_inode_cluster_size = new_size;
763 }
764
765 /*
766 * Set inode alignment fields
767 */
768 xfs_set_inoalignment(mp);
769
770 /*
771 * Check that the data (and log if separate) is an ok size.
772 */
773 error = xfs_check_sizes(mp);
774 if (error)
775 goto out_remove_uuid;
776
777 /*
778 * Initialize realtime fields in the mount structure
779 */
780 error = xfs_rtmount_init(mp);
781 if (error) {
782 xfs_warn(mp, "RT mount failed");
783 goto out_remove_uuid;
784 }
785
786 /*
787 * Copies the low order bits of the timestamp and the randomly
788 * set "sequence" number out of a UUID.
789 */
790 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
791
792 mp->m_dmevmask = 0; /* not persistent; set after each mount */
793
794 error = xfs_da_mount(mp);
795 if (error) {
796 xfs_warn(mp, "Failed dir/attr init: %d", error);
797 goto out_remove_uuid;
798 }
799
800 /*
801 * Initialize the precomputed transaction reservations values.
802 */
803 xfs_trans_init(mp);
804
805 /*
806 * Allocate and initialize the per-ag data.
807 */
808 spin_lock_init(&mp->m_perag_lock);
809 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
810 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
811 if (error) {
812 xfs_warn(mp, "Failed per-ag init: %d", error);
813 goto out_free_dir;
814 }
815
816 if (!sbp->sb_logblocks) {
817 xfs_warn(mp, "no log defined");
818 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
819 error = XFS_ERROR(EFSCORRUPTED);
820 goto out_free_perag;
821 }
822
823 /*
824 * log's mount-time initialization. Perform 1st part recovery if needed
825 */
826 error = xfs_log_mount(mp, mp->m_logdev_targp,
827 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
828 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
829 if (error) {
830 xfs_warn(mp, "log mount failed");
831 goto out_fail_wait;
832 }
833
834 /*
835 * Now the log is mounted, we know if it was an unclean shutdown or
836 * not. If it was, with the first phase of recovery has completed, we
837 * have consistent AG blocks on disk. We have not recovered EFIs yet,
838 * but they are recovered transactionally in the second recovery phase
839 * later.
840 *
841 * Hence we can safely re-initialise incore superblock counters from
842 * the per-ag data. These may not be correct if the filesystem was not
843 * cleanly unmounted, so we need to wait for recovery to finish before
844 * doing this.
845 *
846 * If the filesystem was cleanly unmounted, then we can trust the
847 * values in the superblock to be correct and we don't need to do
848 * anything here.
849 *
850 * If we are currently making the filesystem, the initialisation will
851 * fail as the perag data is in an undefined state.
852 */
853 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
854 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
855 !mp->m_sb.sb_inprogress) {
856 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
857 if (error)
858 goto out_fail_wait;
859 }
860
861 /*
862 * Get and sanity-check the root inode.
863 * Save the pointer to it in the mount structure.
864 */
865 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
866 if (error) {
867 xfs_warn(mp, "failed to read root inode");
868 goto out_log_dealloc;
869 }
870
871 ASSERT(rip != NULL);
872
873 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
874 xfs_warn(mp, "corrupted root inode %llu: not a directory",
875 (unsigned long long)rip->i_ino);
876 xfs_iunlock(rip, XFS_ILOCK_EXCL);
877 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
878 mp);
879 error = XFS_ERROR(EFSCORRUPTED);
880 goto out_rele_rip;
881 }
882 mp->m_rootip = rip; /* save it */
883
884 xfs_iunlock(rip, XFS_ILOCK_EXCL);
885
886 /*
887 * Initialize realtime inode pointers in the mount structure
888 */
889 error = xfs_rtmount_inodes(mp);
890 if (error) {
891 /*
892 * Free up the root inode.
893 */
894 xfs_warn(mp, "failed to read RT inodes");
895 goto out_rele_rip;
896 }
897
898 /*
899 * If this is a read-only mount defer the superblock updates until
900 * the next remount into writeable mode. Otherwise we would never
901 * perform the update e.g. for the root filesystem.
902 */
903 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
904 error = xfs_mount_log_sb(mp, mp->m_update_flags);
905 if (error) {
906 xfs_warn(mp, "failed to write sb changes");
907 goto out_rtunmount;
908 }
909 }
910
911 /*
912 * Initialise the XFS quota management subsystem for this mount
913 */
914 if (XFS_IS_QUOTA_RUNNING(mp)) {
915 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
916 if (error)
917 goto out_rtunmount;
918 } else {
919 ASSERT(!XFS_IS_QUOTA_ON(mp));
920
921 /*
922 * If a file system had quotas running earlier, but decided to
923 * mount without -o uquota/pquota/gquota options, revoke the
924 * quotachecked license.
925 */
926 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
927 xfs_notice(mp, "resetting quota flags");
928 error = xfs_mount_reset_sbqflags(mp);
929 if (error)
930 return error;
931 }
932 }
933
934 /*
935 * Finish recovering the file system. This part needed to be
936 * delayed until after the root and real-time bitmap inodes
937 * were consistently read in.
938 */
939 error = xfs_log_mount_finish(mp);
940 if (error) {
941 xfs_warn(mp, "log mount finish failed");
942 goto out_rtunmount;
943 }
944
945 /*
946 * Complete the quota initialisation, post-log-replay component.
947 */
948 if (quotamount) {
949 ASSERT(mp->m_qflags == 0);
950 mp->m_qflags = quotaflags;
951
952 xfs_qm_mount_quotas(mp);
953 }
954
955 /*
956 * Now we are mounted, reserve a small amount of unused space for
957 * privileged transactions. This is needed so that transaction
958 * space required for critical operations can dip into this pool
959 * when at ENOSPC. This is needed for operations like create with
960 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
961 * are not allowed to use this reserved space.
962 *
963 * This may drive us straight to ENOSPC on mount, but that implies
964 * we were already there on the last unmount. Warn if this occurs.
965 */
966 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
967 resblks = xfs_default_resblks(mp);
968 error = xfs_reserve_blocks(mp, &resblks, NULL);
969 if (error)
970 xfs_warn(mp,
971 "Unable to allocate reserve blocks. Continuing without reserve pool.");
972 }
973
974 return 0;
975
976 out_rtunmount:
977 xfs_rtunmount_inodes(mp);
978 out_rele_rip:
979 IRELE(rip);
980 out_log_dealloc:
981 xfs_log_unmount(mp);
982 out_fail_wait:
983 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
984 xfs_wait_buftarg(mp->m_logdev_targp);
985 xfs_wait_buftarg(mp->m_ddev_targp);
986 out_free_perag:
987 xfs_free_perag(mp);
988 out_free_dir:
989 xfs_da_unmount(mp);
990 out_remove_uuid:
991 xfs_uuid_unmount(mp);
992 out:
993 return error;
994 }
995
996 /*
997 * This flushes out the inodes,dquots and the superblock, unmounts the
998 * log and makes sure that incore structures are freed.
999 */
1000 void
1001 xfs_unmountfs(
1002 struct xfs_mount *mp)
1003 {
1004 __uint64_t resblks;
1005 int error;
1006
1007 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1008
1009 xfs_qm_unmount_quotas(mp);
1010 xfs_rtunmount_inodes(mp);
1011 IRELE(mp->m_rootip);
1012
1013 /*
1014 * We can potentially deadlock here if we have an inode cluster
1015 * that has been freed has its buffer still pinned in memory because
1016 * the transaction is still sitting in a iclog. The stale inodes
1017 * on that buffer will have their flush locks held until the
1018 * transaction hits the disk and the callbacks run. the inode
1019 * flush takes the flush lock unconditionally and with nothing to
1020 * push out the iclog we will never get that unlocked. hence we
1021 * need to force the log first.
1022 */
1023 xfs_log_force(mp, XFS_LOG_SYNC);
1024
1025 /*
1026 * Flush all pending changes from the AIL.
1027 */
1028 xfs_ail_push_all_sync(mp->m_ail);
1029
1030 /*
1031 * And reclaim all inodes. At this point there should be no dirty
1032 * inodes and none should be pinned or locked, but use synchronous
1033 * reclaim just to be sure. We can stop background inode reclaim
1034 * here as well if it is still running.
1035 */
1036 cancel_delayed_work_sync(&mp->m_reclaim_work);
1037 xfs_reclaim_inodes(mp, SYNC_WAIT);
1038
1039 xfs_qm_unmount(mp);
1040
1041 /*
1042 * Unreserve any blocks we have so that when we unmount we don't account
1043 * the reserved free space as used. This is really only necessary for
1044 * lazy superblock counting because it trusts the incore superblock
1045 * counters to be absolutely correct on clean unmount.
1046 *
1047 * We don't bother correcting this elsewhere for lazy superblock
1048 * counting because on mount of an unclean filesystem we reconstruct the
1049 * correct counter value and this is irrelevant.
1050 *
1051 * For non-lazy counter filesystems, this doesn't matter at all because
1052 * we only every apply deltas to the superblock and hence the incore
1053 * value does not matter....
1054 */
1055 resblks = 0;
1056 error = xfs_reserve_blocks(mp, &resblks, NULL);
1057 if (error)
1058 xfs_warn(mp, "Unable to free reserved block pool. "
1059 "Freespace may not be correct on next mount.");
1060
1061 error = xfs_log_sbcount(mp);
1062 if (error)
1063 xfs_warn(mp, "Unable to update superblock counters. "
1064 "Freespace may not be correct on next mount.");
1065
1066 xfs_log_unmount(mp);
1067 xfs_da_unmount(mp);
1068 xfs_uuid_unmount(mp);
1069
1070 #if defined(DEBUG)
1071 xfs_errortag_clearall(mp, 0);
1072 #endif
1073 xfs_free_perag(mp);
1074 }
1075
1076 int
1077 xfs_fs_writable(xfs_mount_t *mp)
1078 {
1079 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1080 (mp->m_flags & XFS_MOUNT_RDONLY));
1081 }
1082
1083 /*
1084 * xfs_log_sbcount
1085 *
1086 * Sync the superblock counters to disk.
1087 *
1088 * Note this code can be called during the process of freezing, so
1089 * we may need to use the transaction allocator which does not
1090 * block when the transaction subsystem is in its frozen state.
1091 */
1092 int
1093 xfs_log_sbcount(xfs_mount_t *mp)
1094 {
1095 xfs_trans_t *tp;
1096 int error;
1097
1098 if (!xfs_fs_writable(mp))
1099 return 0;
1100
1101 xfs_icsb_sync_counters(mp, 0);
1102
1103 /*
1104 * we don't need to do this if we are updating the superblock
1105 * counters on every modification.
1106 */
1107 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1108 return 0;
1109
1110 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1112 if (error) {
1113 xfs_trans_cancel(tp, 0);
1114 return error;
1115 }
1116
1117 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1118 xfs_trans_set_sync(tp);
1119 error = xfs_trans_commit(tp, 0);
1120 return error;
1121 }
1122
1123 /*
1124 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1125 * a delta to a specified field in the in-core superblock. Simply
1126 * switch on the field indicated and apply the delta to that field.
1127 * Fields are not allowed to dip below zero, so if the delta would
1128 * do this do not apply it and return EINVAL.
1129 *
1130 * The m_sb_lock must be held when this routine is called.
1131 */
1132 STATIC int
1133 xfs_mod_incore_sb_unlocked(
1134 xfs_mount_t *mp,
1135 xfs_sb_field_t field,
1136 int64_t delta,
1137 int rsvd)
1138 {
1139 int scounter; /* short counter for 32 bit fields */
1140 long long lcounter; /* long counter for 64 bit fields */
1141 long long res_used, rem;
1142
1143 /*
1144 * With the in-core superblock spin lock held, switch
1145 * on the indicated field. Apply the delta to the
1146 * proper field. If the fields value would dip below
1147 * 0, then do not apply the delta and return EINVAL.
1148 */
1149 switch (field) {
1150 case XFS_SBS_ICOUNT:
1151 lcounter = (long long)mp->m_sb.sb_icount;
1152 lcounter += delta;
1153 if (lcounter < 0) {
1154 ASSERT(0);
1155 return XFS_ERROR(EINVAL);
1156 }
1157 mp->m_sb.sb_icount = lcounter;
1158 return 0;
1159 case XFS_SBS_IFREE:
1160 lcounter = (long long)mp->m_sb.sb_ifree;
1161 lcounter += delta;
1162 if (lcounter < 0) {
1163 ASSERT(0);
1164 return XFS_ERROR(EINVAL);
1165 }
1166 mp->m_sb.sb_ifree = lcounter;
1167 return 0;
1168 case XFS_SBS_FDBLOCKS:
1169 lcounter = (long long)
1170 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1171 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1172
1173 if (delta > 0) { /* Putting blocks back */
1174 if (res_used > delta) {
1175 mp->m_resblks_avail += delta;
1176 } else {
1177 rem = delta - res_used;
1178 mp->m_resblks_avail = mp->m_resblks;
1179 lcounter += rem;
1180 }
1181 } else { /* Taking blocks away */
1182 lcounter += delta;
1183 if (lcounter >= 0) {
1184 mp->m_sb.sb_fdblocks = lcounter +
1185 XFS_ALLOC_SET_ASIDE(mp);
1186 return 0;
1187 }
1188
1189 /*
1190 * We are out of blocks, use any available reserved
1191 * blocks if were allowed to.
1192 */
1193 if (!rsvd)
1194 return XFS_ERROR(ENOSPC);
1195
1196 lcounter = (long long)mp->m_resblks_avail + delta;
1197 if (lcounter >= 0) {
1198 mp->m_resblks_avail = lcounter;
1199 return 0;
1200 }
1201 printk_once(KERN_WARNING
1202 "Filesystem \"%s\": reserve blocks depleted! "
1203 "Consider increasing reserve pool size.",
1204 mp->m_fsname);
1205 return XFS_ERROR(ENOSPC);
1206 }
1207
1208 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1209 return 0;
1210 case XFS_SBS_FREXTENTS:
1211 lcounter = (long long)mp->m_sb.sb_frextents;
1212 lcounter += delta;
1213 if (lcounter < 0) {
1214 return XFS_ERROR(ENOSPC);
1215 }
1216 mp->m_sb.sb_frextents = lcounter;
1217 return 0;
1218 case XFS_SBS_DBLOCKS:
1219 lcounter = (long long)mp->m_sb.sb_dblocks;
1220 lcounter += delta;
1221 if (lcounter < 0) {
1222 ASSERT(0);
1223 return XFS_ERROR(EINVAL);
1224 }
1225 mp->m_sb.sb_dblocks = lcounter;
1226 return 0;
1227 case XFS_SBS_AGCOUNT:
1228 scounter = mp->m_sb.sb_agcount;
1229 scounter += delta;
1230 if (scounter < 0) {
1231 ASSERT(0);
1232 return XFS_ERROR(EINVAL);
1233 }
1234 mp->m_sb.sb_agcount = scounter;
1235 return 0;
1236 case XFS_SBS_IMAX_PCT:
1237 scounter = mp->m_sb.sb_imax_pct;
1238 scounter += delta;
1239 if (scounter < 0) {
1240 ASSERT(0);
1241 return XFS_ERROR(EINVAL);
1242 }
1243 mp->m_sb.sb_imax_pct = scounter;
1244 return 0;
1245 case XFS_SBS_REXTSIZE:
1246 scounter = mp->m_sb.sb_rextsize;
1247 scounter += delta;
1248 if (scounter < 0) {
1249 ASSERT(0);
1250 return XFS_ERROR(EINVAL);
1251 }
1252 mp->m_sb.sb_rextsize = scounter;
1253 return 0;
1254 case XFS_SBS_RBMBLOCKS:
1255 scounter = mp->m_sb.sb_rbmblocks;
1256 scounter += delta;
1257 if (scounter < 0) {
1258 ASSERT(0);
1259 return XFS_ERROR(EINVAL);
1260 }
1261 mp->m_sb.sb_rbmblocks = scounter;
1262 return 0;
1263 case XFS_SBS_RBLOCKS:
1264 lcounter = (long long)mp->m_sb.sb_rblocks;
1265 lcounter += delta;
1266 if (lcounter < 0) {
1267 ASSERT(0);
1268 return XFS_ERROR(EINVAL);
1269 }
1270 mp->m_sb.sb_rblocks = lcounter;
1271 return 0;
1272 case XFS_SBS_REXTENTS:
1273 lcounter = (long long)mp->m_sb.sb_rextents;
1274 lcounter += delta;
1275 if (lcounter < 0) {
1276 ASSERT(0);
1277 return XFS_ERROR(EINVAL);
1278 }
1279 mp->m_sb.sb_rextents = lcounter;
1280 return 0;
1281 case XFS_SBS_REXTSLOG:
1282 scounter = mp->m_sb.sb_rextslog;
1283 scounter += delta;
1284 if (scounter < 0) {
1285 ASSERT(0);
1286 return XFS_ERROR(EINVAL);
1287 }
1288 mp->m_sb.sb_rextslog = scounter;
1289 return 0;
1290 default:
1291 ASSERT(0);
1292 return XFS_ERROR(EINVAL);
1293 }
1294 }
1295
1296 /*
1297 * xfs_mod_incore_sb() is used to change a field in the in-core
1298 * superblock structure by the specified delta. This modification
1299 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1300 * routine to do the work.
1301 */
1302 int
1303 xfs_mod_incore_sb(
1304 struct xfs_mount *mp,
1305 xfs_sb_field_t field,
1306 int64_t delta,
1307 int rsvd)
1308 {
1309 int status;
1310
1311 #ifdef HAVE_PERCPU_SB
1312 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1313 #endif
1314 spin_lock(&mp->m_sb_lock);
1315 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1316 spin_unlock(&mp->m_sb_lock);
1317
1318 return status;
1319 }
1320
1321 /*
1322 * Change more than one field in the in-core superblock structure at a time.
1323 *
1324 * The fields and changes to those fields are specified in the array of
1325 * xfs_mod_sb structures passed in. Either all of the specified deltas
1326 * will be applied or none of them will. If any modified field dips below 0,
1327 * then all modifications will be backed out and EINVAL will be returned.
1328 *
1329 * Note that this function may not be used for the superblock values that
1330 * are tracked with the in-memory per-cpu counters - a direct call to
1331 * xfs_icsb_modify_counters is required for these.
1332 */
1333 int
1334 xfs_mod_incore_sb_batch(
1335 struct xfs_mount *mp,
1336 xfs_mod_sb_t *msb,
1337 uint nmsb,
1338 int rsvd)
1339 {
1340 xfs_mod_sb_t *msbp;
1341 int error = 0;
1342
1343 /*
1344 * Loop through the array of mod structures and apply each individually.
1345 * If any fail, then back out all those which have already been applied.
1346 * Do all of this within the scope of the m_sb_lock so that all of the
1347 * changes will be atomic.
1348 */
1349 spin_lock(&mp->m_sb_lock);
1350 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1351 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1352 msbp->msb_field > XFS_SBS_FDBLOCKS);
1353
1354 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1355 msbp->msb_delta, rsvd);
1356 if (error)
1357 goto unwind;
1358 }
1359 spin_unlock(&mp->m_sb_lock);
1360 return 0;
1361
1362 unwind:
1363 while (--msbp >= msb) {
1364 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1365 -msbp->msb_delta, rsvd);
1366 ASSERT(error == 0);
1367 }
1368 spin_unlock(&mp->m_sb_lock);
1369 return error;
1370 }
1371
1372 /*
1373 * xfs_getsb() is called to obtain the buffer for the superblock.
1374 * The buffer is returned locked and read in from disk.
1375 * The buffer should be released with a call to xfs_brelse().
1376 *
1377 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1378 * the superblock buffer if it can be locked without sleeping.
1379 * If it can't then we'll return NULL.
1380 */
1381 struct xfs_buf *
1382 xfs_getsb(
1383 struct xfs_mount *mp,
1384 int flags)
1385 {
1386 struct xfs_buf *bp = mp->m_sb_bp;
1387
1388 if (!xfs_buf_trylock(bp)) {
1389 if (flags & XBF_TRYLOCK)
1390 return NULL;
1391 xfs_buf_lock(bp);
1392 }
1393
1394 xfs_buf_hold(bp);
1395 ASSERT(XFS_BUF_ISDONE(bp));
1396 return bp;
1397 }
1398
1399 /*
1400 * Used to free the superblock along various error paths.
1401 */
1402 void
1403 xfs_freesb(
1404 struct xfs_mount *mp)
1405 {
1406 struct xfs_buf *bp = mp->m_sb_bp;
1407
1408 xfs_buf_lock(bp);
1409 mp->m_sb_bp = NULL;
1410 xfs_buf_relse(bp);
1411 }
1412
1413 /*
1414 * Used to log changes to the superblock unit and width fields which could
1415 * be altered by the mount options, as well as any potential sb_features2
1416 * fixup. Only the first superblock is updated.
1417 */
1418 int
1419 xfs_mount_log_sb(
1420 xfs_mount_t *mp,
1421 __int64_t fields)
1422 {
1423 xfs_trans_t *tp;
1424 int error;
1425
1426 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1427 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1428 XFS_SB_VERSIONNUM));
1429
1430 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1431 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1432 if (error) {
1433 xfs_trans_cancel(tp, 0);
1434 return error;
1435 }
1436 xfs_mod_sb(tp, fields);
1437 error = xfs_trans_commit(tp, 0);
1438 return error;
1439 }
1440
1441 /*
1442 * If the underlying (data/log/rt) device is readonly, there are some
1443 * operations that cannot proceed.
1444 */
1445 int
1446 xfs_dev_is_read_only(
1447 struct xfs_mount *mp,
1448 char *message)
1449 {
1450 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1451 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1452 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1453 xfs_notice(mp, "%s required on read-only device.", message);
1454 xfs_notice(mp, "write access unavailable, cannot proceed.");
1455 return EROFS;
1456 }
1457 return 0;
1458 }
1459
1460 #ifdef HAVE_PERCPU_SB
1461 /*
1462 * Per-cpu incore superblock counters
1463 *
1464 * Simple concept, difficult implementation
1465 *
1466 * Basically, replace the incore superblock counters with a distributed per cpu
1467 * counter for contended fields (e.g. free block count).
1468 *
1469 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1470 * hence needs to be accurately read when we are running low on space. Hence
1471 * there is a method to enable and disable the per-cpu counters based on how
1472 * much "stuff" is available in them.
1473 *
1474 * Basically, a counter is enabled if there is enough free resource to justify
1475 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1476 * ENOSPC), then we disable the counters to synchronise all callers and
1477 * re-distribute the available resources.
1478 *
1479 * If, once we redistributed the available resources, we still get a failure,
1480 * we disable the per-cpu counter and go through the slow path.
1481 *
1482 * The slow path is the current xfs_mod_incore_sb() function. This means that
1483 * when we disable a per-cpu counter, we need to drain its resources back to
1484 * the global superblock. We do this after disabling the counter to prevent
1485 * more threads from queueing up on the counter.
1486 *
1487 * Essentially, this means that we still need a lock in the fast path to enable
1488 * synchronisation between the global counters and the per-cpu counters. This
1489 * is not a problem because the lock will be local to a CPU almost all the time
1490 * and have little contention except when we get to ENOSPC conditions.
1491 *
1492 * Basically, this lock becomes a barrier that enables us to lock out the fast
1493 * path while we do things like enabling and disabling counters and
1494 * synchronising the counters.
1495 *
1496 * Locking rules:
1497 *
1498 * 1. m_sb_lock before picking up per-cpu locks
1499 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1500 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1501 * 4. modifying per-cpu counters requires holding per-cpu lock
1502 * 5. modifying global counters requires holding m_sb_lock
1503 * 6. enabling or disabling a counter requires holding the m_sb_lock
1504 * and _none_ of the per-cpu locks.
1505 *
1506 * Disabled counters are only ever re-enabled by a balance operation
1507 * that results in more free resources per CPU than a given threshold.
1508 * To ensure counters don't remain disabled, they are rebalanced when
1509 * the global resource goes above a higher threshold (i.e. some hysteresis
1510 * is present to prevent thrashing).
1511 */
1512
1513 #ifdef CONFIG_HOTPLUG_CPU
1514 /*
1515 * hot-plug CPU notifier support.
1516 *
1517 * We need a notifier per filesystem as we need to be able to identify
1518 * the filesystem to balance the counters out. This is achieved by
1519 * having a notifier block embedded in the xfs_mount_t and doing pointer
1520 * magic to get the mount pointer from the notifier block address.
1521 */
1522 STATIC int
1523 xfs_icsb_cpu_notify(
1524 struct notifier_block *nfb,
1525 unsigned long action,
1526 void *hcpu)
1527 {
1528 xfs_icsb_cnts_t *cntp;
1529 xfs_mount_t *mp;
1530
1531 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1532 cntp = (xfs_icsb_cnts_t *)
1533 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1534 switch (action) {
1535 case CPU_UP_PREPARE:
1536 case CPU_UP_PREPARE_FROZEN:
1537 /* Easy Case - initialize the area and locks, and
1538 * then rebalance when online does everything else for us. */
1539 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1540 break;
1541 case CPU_ONLINE:
1542 case CPU_ONLINE_FROZEN:
1543 xfs_icsb_lock(mp);
1544 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1545 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1546 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1547 xfs_icsb_unlock(mp);
1548 break;
1549 case CPU_DEAD:
1550 case CPU_DEAD_FROZEN:
1551 /* Disable all the counters, then fold the dead cpu's
1552 * count into the total on the global superblock and
1553 * re-enable the counters. */
1554 xfs_icsb_lock(mp);
1555 spin_lock(&mp->m_sb_lock);
1556 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1557 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1558 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1559
1560 mp->m_sb.sb_icount += cntp->icsb_icount;
1561 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1562 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1563
1564 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1565
1566 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1567 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1568 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1569 spin_unlock(&mp->m_sb_lock);
1570 xfs_icsb_unlock(mp);
1571 break;
1572 }
1573
1574 return NOTIFY_OK;
1575 }
1576 #endif /* CONFIG_HOTPLUG_CPU */
1577
1578 int
1579 xfs_icsb_init_counters(
1580 xfs_mount_t *mp)
1581 {
1582 xfs_icsb_cnts_t *cntp;
1583 int i;
1584
1585 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1586 if (mp->m_sb_cnts == NULL)
1587 return -ENOMEM;
1588
1589 for_each_online_cpu(i) {
1590 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1591 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1592 }
1593
1594 mutex_init(&mp->m_icsb_mutex);
1595
1596 /*
1597 * start with all counters disabled so that the
1598 * initial balance kicks us off correctly
1599 */
1600 mp->m_icsb_counters = -1;
1601
1602 #ifdef CONFIG_HOTPLUG_CPU
1603 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1604 mp->m_icsb_notifier.priority = 0;
1605 register_hotcpu_notifier(&mp->m_icsb_notifier);
1606 #endif /* CONFIG_HOTPLUG_CPU */
1607
1608 return 0;
1609 }
1610
1611 void
1612 xfs_icsb_reinit_counters(
1613 xfs_mount_t *mp)
1614 {
1615 xfs_icsb_lock(mp);
1616 /*
1617 * start with all counters disabled so that the
1618 * initial balance kicks us off correctly
1619 */
1620 mp->m_icsb_counters = -1;
1621 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1622 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1623 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1624 xfs_icsb_unlock(mp);
1625 }
1626
1627 void
1628 xfs_icsb_destroy_counters(
1629 xfs_mount_t *mp)
1630 {
1631 if (mp->m_sb_cnts) {
1632 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1633 free_percpu(mp->m_sb_cnts);
1634 }
1635 mutex_destroy(&mp->m_icsb_mutex);
1636 }
1637
1638 STATIC void
1639 xfs_icsb_lock_cntr(
1640 xfs_icsb_cnts_t *icsbp)
1641 {
1642 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1643 ndelay(1000);
1644 }
1645 }
1646
1647 STATIC void
1648 xfs_icsb_unlock_cntr(
1649 xfs_icsb_cnts_t *icsbp)
1650 {
1651 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1652 }
1653
1654
1655 STATIC void
1656 xfs_icsb_lock_all_counters(
1657 xfs_mount_t *mp)
1658 {
1659 xfs_icsb_cnts_t *cntp;
1660 int i;
1661
1662 for_each_online_cpu(i) {
1663 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1664 xfs_icsb_lock_cntr(cntp);
1665 }
1666 }
1667
1668 STATIC void
1669 xfs_icsb_unlock_all_counters(
1670 xfs_mount_t *mp)
1671 {
1672 xfs_icsb_cnts_t *cntp;
1673 int i;
1674
1675 for_each_online_cpu(i) {
1676 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1677 xfs_icsb_unlock_cntr(cntp);
1678 }
1679 }
1680
1681 STATIC void
1682 xfs_icsb_count(
1683 xfs_mount_t *mp,
1684 xfs_icsb_cnts_t *cnt,
1685 int flags)
1686 {
1687 xfs_icsb_cnts_t *cntp;
1688 int i;
1689
1690 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1691
1692 if (!(flags & XFS_ICSB_LAZY_COUNT))
1693 xfs_icsb_lock_all_counters(mp);
1694
1695 for_each_online_cpu(i) {
1696 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1697 cnt->icsb_icount += cntp->icsb_icount;
1698 cnt->icsb_ifree += cntp->icsb_ifree;
1699 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1700 }
1701
1702 if (!(flags & XFS_ICSB_LAZY_COUNT))
1703 xfs_icsb_unlock_all_counters(mp);
1704 }
1705
1706 STATIC int
1707 xfs_icsb_counter_disabled(
1708 xfs_mount_t *mp,
1709 xfs_sb_field_t field)
1710 {
1711 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1712 return test_bit(field, &mp->m_icsb_counters);
1713 }
1714
1715 STATIC void
1716 xfs_icsb_disable_counter(
1717 xfs_mount_t *mp,
1718 xfs_sb_field_t field)
1719 {
1720 xfs_icsb_cnts_t cnt;
1721
1722 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1723
1724 /*
1725 * If we are already disabled, then there is nothing to do
1726 * here. We check before locking all the counters to avoid
1727 * the expensive lock operation when being called in the
1728 * slow path and the counter is already disabled. This is
1729 * safe because the only time we set or clear this state is under
1730 * the m_icsb_mutex.
1731 */
1732 if (xfs_icsb_counter_disabled(mp, field))
1733 return;
1734
1735 xfs_icsb_lock_all_counters(mp);
1736 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1737 /* drain back to superblock */
1738
1739 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1740 switch(field) {
1741 case XFS_SBS_ICOUNT:
1742 mp->m_sb.sb_icount = cnt.icsb_icount;
1743 break;
1744 case XFS_SBS_IFREE:
1745 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1746 break;
1747 case XFS_SBS_FDBLOCKS:
1748 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1749 break;
1750 default:
1751 BUG();
1752 }
1753 }
1754
1755 xfs_icsb_unlock_all_counters(mp);
1756 }
1757
1758 STATIC void
1759 xfs_icsb_enable_counter(
1760 xfs_mount_t *mp,
1761 xfs_sb_field_t field,
1762 uint64_t count,
1763 uint64_t resid)
1764 {
1765 xfs_icsb_cnts_t *cntp;
1766 int i;
1767
1768 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1769
1770 xfs_icsb_lock_all_counters(mp);
1771 for_each_online_cpu(i) {
1772 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1773 switch (field) {
1774 case XFS_SBS_ICOUNT:
1775 cntp->icsb_icount = count + resid;
1776 break;
1777 case XFS_SBS_IFREE:
1778 cntp->icsb_ifree = count + resid;
1779 break;
1780 case XFS_SBS_FDBLOCKS:
1781 cntp->icsb_fdblocks = count + resid;
1782 break;
1783 default:
1784 BUG();
1785 break;
1786 }
1787 resid = 0;
1788 }
1789 clear_bit(field, &mp->m_icsb_counters);
1790 xfs_icsb_unlock_all_counters(mp);
1791 }
1792
1793 void
1794 xfs_icsb_sync_counters_locked(
1795 xfs_mount_t *mp,
1796 int flags)
1797 {
1798 xfs_icsb_cnts_t cnt;
1799
1800 xfs_icsb_count(mp, &cnt, flags);
1801
1802 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1803 mp->m_sb.sb_icount = cnt.icsb_icount;
1804 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1805 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1806 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1807 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1808 }
1809
1810 /*
1811 * Accurate update of per-cpu counters to incore superblock
1812 */
1813 void
1814 xfs_icsb_sync_counters(
1815 xfs_mount_t *mp,
1816 int flags)
1817 {
1818 spin_lock(&mp->m_sb_lock);
1819 xfs_icsb_sync_counters_locked(mp, flags);
1820 spin_unlock(&mp->m_sb_lock);
1821 }
1822
1823 /*
1824 * Balance and enable/disable counters as necessary.
1825 *
1826 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1827 * chosen to be the same number as single on disk allocation chunk per CPU, and
1828 * free blocks is something far enough zero that we aren't going thrash when we
1829 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1830 * prevent looping endlessly when xfs_alloc_space asks for more than will
1831 * be distributed to a single CPU but each CPU has enough blocks to be
1832 * reenabled.
1833 *
1834 * Note that we can be called when counters are already disabled.
1835 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1836 * prevent locking every per-cpu counter needlessly.
1837 */
1838
1839 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1840 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1841 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1842 STATIC void
1843 xfs_icsb_balance_counter_locked(
1844 xfs_mount_t *mp,
1845 xfs_sb_field_t field,
1846 int min_per_cpu)
1847 {
1848 uint64_t count, resid;
1849 int weight = num_online_cpus();
1850 uint64_t min = (uint64_t)min_per_cpu;
1851
1852 /* disable counter and sync counter */
1853 xfs_icsb_disable_counter(mp, field);
1854
1855 /* update counters - first CPU gets residual*/
1856 switch (field) {
1857 case XFS_SBS_ICOUNT:
1858 count = mp->m_sb.sb_icount;
1859 resid = do_div(count, weight);
1860 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1861 return;
1862 break;
1863 case XFS_SBS_IFREE:
1864 count = mp->m_sb.sb_ifree;
1865 resid = do_div(count, weight);
1866 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1867 return;
1868 break;
1869 case XFS_SBS_FDBLOCKS:
1870 count = mp->m_sb.sb_fdblocks;
1871 resid = do_div(count, weight);
1872 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1873 return;
1874 break;
1875 default:
1876 BUG();
1877 count = resid = 0; /* quiet, gcc */
1878 break;
1879 }
1880
1881 xfs_icsb_enable_counter(mp, field, count, resid);
1882 }
1883
1884 STATIC void
1885 xfs_icsb_balance_counter(
1886 xfs_mount_t *mp,
1887 xfs_sb_field_t fields,
1888 int min_per_cpu)
1889 {
1890 spin_lock(&mp->m_sb_lock);
1891 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1892 spin_unlock(&mp->m_sb_lock);
1893 }
1894
1895 int
1896 xfs_icsb_modify_counters(
1897 xfs_mount_t *mp,
1898 xfs_sb_field_t field,
1899 int64_t delta,
1900 int rsvd)
1901 {
1902 xfs_icsb_cnts_t *icsbp;
1903 long long lcounter; /* long counter for 64 bit fields */
1904 int ret = 0;
1905
1906 might_sleep();
1907 again:
1908 preempt_disable();
1909 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1910
1911 /*
1912 * if the counter is disabled, go to slow path
1913 */
1914 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1915 goto slow_path;
1916 xfs_icsb_lock_cntr(icsbp);
1917 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1918 xfs_icsb_unlock_cntr(icsbp);
1919 goto slow_path;
1920 }
1921
1922 switch (field) {
1923 case XFS_SBS_ICOUNT:
1924 lcounter = icsbp->icsb_icount;
1925 lcounter += delta;
1926 if (unlikely(lcounter < 0))
1927 goto balance_counter;
1928 icsbp->icsb_icount = lcounter;
1929 break;
1930
1931 case XFS_SBS_IFREE:
1932 lcounter = icsbp->icsb_ifree;
1933 lcounter += delta;
1934 if (unlikely(lcounter < 0))
1935 goto balance_counter;
1936 icsbp->icsb_ifree = lcounter;
1937 break;
1938
1939 case XFS_SBS_FDBLOCKS:
1940 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1941
1942 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1943 lcounter += delta;
1944 if (unlikely(lcounter < 0))
1945 goto balance_counter;
1946 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1947 break;
1948 default:
1949 BUG();
1950 break;
1951 }
1952 xfs_icsb_unlock_cntr(icsbp);
1953 preempt_enable();
1954 return 0;
1955
1956 slow_path:
1957 preempt_enable();
1958
1959 /*
1960 * serialise with a mutex so we don't burn lots of cpu on
1961 * the superblock lock. We still need to hold the superblock
1962 * lock, however, when we modify the global structures.
1963 */
1964 xfs_icsb_lock(mp);
1965
1966 /*
1967 * Now running atomically.
1968 *
1969 * If the counter is enabled, someone has beaten us to rebalancing.
1970 * Drop the lock and try again in the fast path....
1971 */
1972 if (!(xfs_icsb_counter_disabled(mp, field))) {
1973 xfs_icsb_unlock(mp);
1974 goto again;
1975 }
1976
1977 /*
1978 * The counter is currently disabled. Because we are
1979 * running atomically here, we know a rebalance cannot
1980 * be in progress. Hence we can go straight to operating
1981 * on the global superblock. We do not call xfs_mod_incore_sb()
1982 * here even though we need to get the m_sb_lock. Doing so
1983 * will cause us to re-enter this function and deadlock.
1984 * Hence we get the m_sb_lock ourselves and then call
1985 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1986 * directly on the global counters.
1987 */
1988 spin_lock(&mp->m_sb_lock);
1989 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1990 spin_unlock(&mp->m_sb_lock);
1991
1992 /*
1993 * Now that we've modified the global superblock, we
1994 * may be able to re-enable the distributed counters
1995 * (e.g. lots of space just got freed). After that
1996 * we are done.
1997 */
1998 if (ret != ENOSPC)
1999 xfs_icsb_balance_counter(mp, field, 0);
2000 xfs_icsb_unlock(mp);
2001 return ret;
2002
2003 balance_counter:
2004 xfs_icsb_unlock_cntr(icsbp);
2005 preempt_enable();
2006
2007 /*
2008 * We may have multiple threads here if multiple per-cpu
2009 * counters run dry at the same time. This will mean we can
2010 * do more balances than strictly necessary but it is not
2011 * the common slowpath case.
2012 */
2013 xfs_icsb_lock(mp);
2014
2015 /*
2016 * running atomically.
2017 *
2018 * This will leave the counter in the correct state for future
2019 * accesses. After the rebalance, we simply try again and our retry
2020 * will either succeed through the fast path or slow path without
2021 * another balance operation being required.
2022 */
2023 xfs_icsb_balance_counter(mp, field, delta);
2024 xfs_icsb_unlock(mp);
2025 goto again;
2026 }
2027
2028 #endif