]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_mount.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
49
50
51 static DEFINE_MUTEX(xfs_uuid_table_mutex);
52 static int xfs_uuid_table_size;
53 static uuid_t *xfs_uuid_table;
54
55 void
56 xfs_uuid_table_free(void)
57 {
58 if (xfs_uuid_table_size == 0)
59 return;
60 kmem_free(xfs_uuid_table);
61 xfs_uuid_table = NULL;
62 xfs_uuid_table_size = 0;
63 }
64
65 /*
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 */
69 STATIC int
70 xfs_uuid_mount(
71 struct xfs_mount *mp)
72 {
73 uuid_t *uuid = &mp->m_sb.sb_uuid;
74 int hole, i;
75
76 /* Publish UUID in struct super_block */
77 uuid_copy(&mp->m_super->s_uuid, uuid);
78
79 if (mp->m_flags & XFS_MOUNT_NOUUID)
80 return 0;
81
82 if (uuid_is_null(uuid)) {
83 xfs_warn(mp, "Filesystem has null UUID - can't mount");
84 return -EINVAL;
85 }
86
87 mutex_lock(&xfs_uuid_table_mutex);
88 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
89 if (uuid_is_null(&xfs_uuid_table[i])) {
90 hole = i;
91 continue;
92 }
93 if (uuid_equal(uuid, &xfs_uuid_table[i]))
94 goto out_duplicate;
95 }
96
97 if (hole < 0) {
98 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
99 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
100 KM_SLEEP);
101 hole = xfs_uuid_table_size++;
102 }
103 xfs_uuid_table[hole] = *uuid;
104 mutex_unlock(&xfs_uuid_table_mutex);
105
106 return 0;
107
108 out_duplicate:
109 mutex_unlock(&xfs_uuid_table_mutex);
110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 return -EINVAL;
112 }
113
114 STATIC void
115 xfs_uuid_unmount(
116 struct xfs_mount *mp)
117 {
118 uuid_t *uuid = &mp->m_sb.sb_uuid;
119 int i;
120
121 if (mp->m_flags & XFS_MOUNT_NOUUID)
122 return;
123
124 mutex_lock(&xfs_uuid_table_mutex);
125 for (i = 0; i < xfs_uuid_table_size; i++) {
126 if (uuid_is_null(&xfs_uuid_table[i]))
127 continue;
128 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 continue;
130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 break;
132 }
133 ASSERT(i < xfs_uuid_table_size);
134 mutex_unlock(&xfs_uuid_table_mutex);
135 }
136
137
138 STATIC void
139 __xfs_free_perag(
140 struct rcu_head *head)
141 {
142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
143
144 ASSERT(atomic_read(&pag->pag_ref) == 0);
145 kmem_free(pag);
146 }
147
148 /*
149 * Free up the per-ag resources associated with the mount structure.
150 */
151 STATIC void
152 xfs_free_perag(
153 xfs_mount_t *mp)
154 {
155 xfs_agnumber_t agno;
156 struct xfs_perag *pag;
157
158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 spin_lock(&mp->m_perag_lock);
160 pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 spin_unlock(&mp->m_perag_lock);
162 ASSERT(pag);
163 ASSERT(atomic_read(&pag->pag_ref) == 0);
164 xfs_buf_hash_destroy(pag);
165 call_rcu(&pag->rcu_head, __xfs_free_perag);
166 }
167 }
168
169 /*
170 * Check size of device based on the (data/realtime) block count.
171 * Note: this check is used by the growfs code as well as mount.
172 */
173 int
174 xfs_sb_validate_fsb_count(
175 xfs_sb_t *sbp,
176 uint64_t nblocks)
177 {
178 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
179 ASSERT(sbp->sb_blocklog >= BBSHIFT);
180
181 /* Limited by ULONG_MAX of page cache index */
182 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
183 return -EFBIG;
184 return 0;
185 }
186
187 int
188 xfs_initialize_perag(
189 xfs_mount_t *mp,
190 xfs_agnumber_t agcount,
191 xfs_agnumber_t *maxagi)
192 {
193 xfs_agnumber_t index;
194 xfs_agnumber_t first_initialised = NULLAGNUMBER;
195 xfs_perag_t *pag;
196 int error = -ENOMEM;
197
198 /*
199 * Walk the current per-ag tree so we don't try to initialise AGs
200 * that already exist (growfs case). Allocate and insert all the
201 * AGs we don't find ready for initialisation.
202 */
203 for (index = 0; index < agcount; index++) {
204 pag = xfs_perag_get(mp, index);
205 if (pag) {
206 xfs_perag_put(pag);
207 continue;
208 }
209
210 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
211 if (!pag)
212 goto out_unwind_new_pags;
213 pag->pag_agno = index;
214 pag->pag_mount = mp;
215 spin_lock_init(&pag->pag_ici_lock);
216 mutex_init(&pag->pag_ici_reclaim_lock);
217 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
218 if (xfs_buf_hash_init(pag))
219 goto out_free_pag;
220 init_waitqueue_head(&pag->pagb_wait);
221
222 if (radix_tree_preload(GFP_NOFS))
223 goto out_hash_destroy;
224
225 spin_lock(&mp->m_perag_lock);
226 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
227 BUG();
228 spin_unlock(&mp->m_perag_lock);
229 radix_tree_preload_end();
230 error = -EEXIST;
231 goto out_hash_destroy;
232 }
233 spin_unlock(&mp->m_perag_lock);
234 radix_tree_preload_end();
235 /* first new pag is fully initialized */
236 if (first_initialised == NULLAGNUMBER)
237 first_initialised = index;
238 }
239
240 index = xfs_set_inode_alloc(mp, agcount);
241
242 if (maxagi)
243 *maxagi = index;
244
245 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
246 return 0;
247
248 out_hash_destroy:
249 xfs_buf_hash_destroy(pag);
250 out_free_pag:
251 kmem_free(pag);
252 out_unwind_new_pags:
253 /* unwind any prior newly initialized pags */
254 for (index = first_initialised; index < agcount; index++) {
255 pag = radix_tree_delete(&mp->m_perag_tree, index);
256 if (!pag)
257 break;
258 xfs_buf_hash_destroy(pag);
259 kmem_free(pag);
260 }
261 return error;
262 }
263
264 /*
265 * xfs_readsb
266 *
267 * Does the initial read of the superblock.
268 */
269 int
270 xfs_readsb(
271 struct xfs_mount *mp,
272 int flags)
273 {
274 unsigned int sector_size;
275 struct xfs_buf *bp;
276 struct xfs_sb *sbp = &mp->m_sb;
277 int error;
278 int loud = !(flags & XFS_MFSI_QUIET);
279 const struct xfs_buf_ops *buf_ops;
280
281 ASSERT(mp->m_sb_bp == NULL);
282 ASSERT(mp->m_ddev_targp != NULL);
283
284 /*
285 * For the initial read, we must guess at the sector
286 * size based on the block device. It's enough to
287 * get the sb_sectsize out of the superblock and
288 * then reread with the proper length.
289 * We don't verify it yet, because it may not be complete.
290 */
291 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
292 buf_ops = NULL;
293
294 /*
295 * Allocate a (locked) buffer to hold the superblock. This will be kept
296 * around at all times to optimize access to the superblock. Therefore,
297 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
298 * elevated.
299 */
300 reread:
301 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
302 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
303 buf_ops);
304 if (error) {
305 if (loud)
306 xfs_warn(mp, "SB validate failed with error %d.", error);
307 /* bad CRC means corrupted metadata */
308 if (error == -EFSBADCRC)
309 error = -EFSCORRUPTED;
310 return error;
311 }
312
313 /*
314 * Initialize the mount structure from the superblock.
315 */
316 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
317
318 /*
319 * If we haven't validated the superblock, do so now before we try
320 * to check the sector size and reread the superblock appropriately.
321 */
322 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
323 if (loud)
324 xfs_warn(mp, "Invalid superblock magic number");
325 error = -EINVAL;
326 goto release_buf;
327 }
328
329 /*
330 * We must be able to do sector-sized and sector-aligned IO.
331 */
332 if (sector_size > sbp->sb_sectsize) {
333 if (loud)
334 xfs_warn(mp, "device supports %u byte sectors (not %u)",
335 sector_size, sbp->sb_sectsize);
336 error = -ENOSYS;
337 goto release_buf;
338 }
339
340 if (buf_ops == NULL) {
341 /*
342 * Re-read the superblock so the buffer is correctly sized,
343 * and properly verified.
344 */
345 xfs_buf_relse(bp);
346 sector_size = sbp->sb_sectsize;
347 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
348 goto reread;
349 }
350
351 xfs_reinit_percpu_counters(mp);
352
353 /* no need to be quiet anymore, so reset the buf ops */
354 bp->b_ops = &xfs_sb_buf_ops;
355
356 mp->m_sb_bp = bp;
357 xfs_buf_unlock(bp);
358 return 0;
359
360 release_buf:
361 xfs_buf_relse(bp);
362 return error;
363 }
364
365 /*
366 * Update alignment values based on mount options and sb values
367 */
368 STATIC int
369 xfs_update_alignment(xfs_mount_t *mp)
370 {
371 xfs_sb_t *sbp = &(mp->m_sb);
372
373 if (mp->m_dalign) {
374 /*
375 * If stripe unit and stripe width are not multiples
376 * of the fs blocksize turn off alignment.
377 */
378 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
379 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
380 xfs_warn(mp,
381 "alignment check failed: sunit/swidth vs. blocksize(%d)",
382 sbp->sb_blocksize);
383 return -EINVAL;
384 } else {
385 /*
386 * Convert the stripe unit and width to FSBs.
387 */
388 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
389 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
390 xfs_warn(mp,
391 "alignment check failed: sunit/swidth vs. agsize(%d)",
392 sbp->sb_agblocks);
393 return -EINVAL;
394 } else if (mp->m_dalign) {
395 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
396 } else {
397 xfs_warn(mp,
398 "alignment check failed: sunit(%d) less than bsize(%d)",
399 mp->m_dalign, sbp->sb_blocksize);
400 return -EINVAL;
401 }
402 }
403
404 /*
405 * Update superblock with new values
406 * and log changes
407 */
408 if (xfs_sb_version_hasdalign(sbp)) {
409 if (sbp->sb_unit != mp->m_dalign) {
410 sbp->sb_unit = mp->m_dalign;
411 mp->m_update_sb = true;
412 }
413 if (sbp->sb_width != mp->m_swidth) {
414 sbp->sb_width = mp->m_swidth;
415 mp->m_update_sb = true;
416 }
417 } else {
418 xfs_warn(mp,
419 "cannot change alignment: superblock does not support data alignment");
420 return -EINVAL;
421 }
422 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
423 xfs_sb_version_hasdalign(&mp->m_sb)) {
424 mp->m_dalign = sbp->sb_unit;
425 mp->m_swidth = sbp->sb_width;
426 }
427
428 return 0;
429 }
430
431 /*
432 * Set the maximum inode count for this filesystem
433 */
434 STATIC void
435 xfs_set_maxicount(xfs_mount_t *mp)
436 {
437 xfs_sb_t *sbp = &(mp->m_sb);
438 uint64_t icount;
439
440 if (sbp->sb_imax_pct) {
441 /*
442 * Make sure the maximum inode count is a multiple
443 * of the units we allocate inodes in.
444 */
445 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
446 do_div(icount, 100);
447 do_div(icount, mp->m_ialloc_blks);
448 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
449 sbp->sb_inopblog;
450 } else {
451 mp->m_maxicount = 0;
452 }
453 }
454
455 /*
456 * Set the default minimum read and write sizes unless
457 * already specified in a mount option.
458 * We use smaller I/O sizes when the file system
459 * is being used for NFS service (wsync mount option).
460 */
461 STATIC void
462 xfs_set_rw_sizes(xfs_mount_t *mp)
463 {
464 xfs_sb_t *sbp = &(mp->m_sb);
465 int readio_log, writeio_log;
466
467 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
468 if (mp->m_flags & XFS_MOUNT_WSYNC) {
469 readio_log = XFS_WSYNC_READIO_LOG;
470 writeio_log = XFS_WSYNC_WRITEIO_LOG;
471 } else {
472 readio_log = XFS_READIO_LOG_LARGE;
473 writeio_log = XFS_WRITEIO_LOG_LARGE;
474 }
475 } else {
476 readio_log = mp->m_readio_log;
477 writeio_log = mp->m_writeio_log;
478 }
479
480 if (sbp->sb_blocklog > readio_log) {
481 mp->m_readio_log = sbp->sb_blocklog;
482 } else {
483 mp->m_readio_log = readio_log;
484 }
485 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
486 if (sbp->sb_blocklog > writeio_log) {
487 mp->m_writeio_log = sbp->sb_blocklog;
488 } else {
489 mp->m_writeio_log = writeio_log;
490 }
491 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
492 }
493
494 /*
495 * precalculate the low space thresholds for dynamic speculative preallocation.
496 */
497 void
498 xfs_set_low_space_thresholds(
499 struct xfs_mount *mp)
500 {
501 int i;
502
503 for (i = 0; i < XFS_LOWSP_MAX; i++) {
504 uint64_t space = mp->m_sb.sb_dblocks;
505
506 do_div(space, 100);
507 mp->m_low_space[i] = space * (i + 1);
508 }
509 }
510
511
512 /*
513 * Set whether we're using inode alignment.
514 */
515 STATIC void
516 xfs_set_inoalignment(xfs_mount_t *mp)
517 {
518 if (xfs_sb_version_hasalign(&mp->m_sb) &&
519 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
520 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
521 else
522 mp->m_inoalign_mask = 0;
523 /*
524 * If we are using stripe alignment, check whether
525 * the stripe unit is a multiple of the inode alignment
526 */
527 if (mp->m_dalign && mp->m_inoalign_mask &&
528 !(mp->m_dalign & mp->m_inoalign_mask))
529 mp->m_sinoalign = mp->m_dalign;
530 else
531 mp->m_sinoalign = 0;
532 }
533
534 /*
535 * Check that the data (and log if separate) is an ok size.
536 */
537 STATIC int
538 xfs_check_sizes(
539 struct xfs_mount *mp)
540 {
541 struct xfs_buf *bp;
542 xfs_daddr_t d;
543 int error;
544
545 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
546 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
547 xfs_warn(mp, "filesystem size mismatch detected");
548 return -EFBIG;
549 }
550 error = xfs_buf_read_uncached(mp->m_ddev_targp,
551 d - XFS_FSS_TO_BB(mp, 1),
552 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
553 if (error) {
554 xfs_warn(mp, "last sector read failed");
555 return error;
556 }
557 xfs_buf_relse(bp);
558
559 if (mp->m_logdev_targp == mp->m_ddev_targp)
560 return 0;
561
562 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
563 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
564 xfs_warn(mp, "log size mismatch detected");
565 return -EFBIG;
566 }
567 error = xfs_buf_read_uncached(mp->m_logdev_targp,
568 d - XFS_FSB_TO_BB(mp, 1),
569 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
570 if (error) {
571 xfs_warn(mp, "log device read failed");
572 return error;
573 }
574 xfs_buf_relse(bp);
575 return 0;
576 }
577
578 /*
579 * Clear the quotaflags in memory and in the superblock.
580 */
581 int
582 xfs_mount_reset_sbqflags(
583 struct xfs_mount *mp)
584 {
585 mp->m_qflags = 0;
586
587 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
588 if (mp->m_sb.sb_qflags == 0)
589 return 0;
590 spin_lock(&mp->m_sb_lock);
591 mp->m_sb.sb_qflags = 0;
592 spin_unlock(&mp->m_sb_lock);
593
594 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
595 return 0;
596
597 return xfs_sync_sb(mp, false);
598 }
599
600 uint64_t
601 xfs_default_resblks(xfs_mount_t *mp)
602 {
603 uint64_t resblks;
604
605 /*
606 * We default to 5% or 8192 fsbs of space reserved, whichever is
607 * smaller. This is intended to cover concurrent allocation
608 * transactions when we initially hit enospc. These each require a 4
609 * block reservation. Hence by default we cover roughly 2000 concurrent
610 * allocation reservations.
611 */
612 resblks = mp->m_sb.sb_dblocks;
613 do_div(resblks, 20);
614 resblks = min_t(uint64_t, resblks, 8192);
615 return resblks;
616 }
617
618 /*
619 * This function does the following on an initial mount of a file system:
620 * - reads the superblock from disk and init the mount struct
621 * - if we're a 32-bit kernel, do a size check on the superblock
622 * so we don't mount terabyte filesystems
623 * - init mount struct realtime fields
624 * - allocate inode hash table for fs
625 * - init directory manager
626 * - perform recovery and init the log manager
627 */
628 int
629 xfs_mountfs(
630 struct xfs_mount *mp)
631 {
632 struct xfs_sb *sbp = &(mp->m_sb);
633 struct xfs_inode *rip;
634 uint64_t resblks;
635 uint quotamount = 0;
636 uint quotaflags = 0;
637 int error = 0;
638
639 xfs_sb_mount_common(mp, sbp);
640
641 /*
642 * Check for a mismatched features2 values. Older kernels read & wrote
643 * into the wrong sb offset for sb_features2 on some platforms due to
644 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
645 * which made older superblock reading/writing routines swap it as a
646 * 64-bit value.
647 *
648 * For backwards compatibility, we make both slots equal.
649 *
650 * If we detect a mismatched field, we OR the set bits into the existing
651 * features2 field in case it has already been modified; we don't want
652 * to lose any features. We then update the bad location with the ORed
653 * value so that older kernels will see any features2 flags. The
654 * superblock writeback code ensures the new sb_features2 is copied to
655 * sb_bad_features2 before it is logged or written to disk.
656 */
657 if (xfs_sb_has_mismatched_features2(sbp)) {
658 xfs_warn(mp, "correcting sb_features alignment problem");
659 sbp->sb_features2 |= sbp->sb_bad_features2;
660 mp->m_update_sb = true;
661
662 /*
663 * Re-check for ATTR2 in case it was found in bad_features2
664 * slot.
665 */
666 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
667 !(mp->m_flags & XFS_MOUNT_NOATTR2))
668 mp->m_flags |= XFS_MOUNT_ATTR2;
669 }
670
671 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
672 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
673 xfs_sb_version_removeattr2(&mp->m_sb);
674 mp->m_update_sb = true;
675
676 /* update sb_versionnum for the clearing of the morebits */
677 if (!sbp->sb_features2)
678 mp->m_update_sb = true;
679 }
680
681 /* always use v2 inodes by default now */
682 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
683 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
684 mp->m_update_sb = true;
685 }
686
687 /*
688 * Check if sb_agblocks is aligned at stripe boundary
689 * If sb_agblocks is NOT aligned turn off m_dalign since
690 * allocator alignment is within an ag, therefore ag has
691 * to be aligned at stripe boundary.
692 */
693 error = xfs_update_alignment(mp);
694 if (error)
695 goto out;
696
697 xfs_alloc_compute_maxlevels(mp);
698 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
699 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
700 xfs_ialloc_compute_maxlevels(mp);
701 xfs_rmapbt_compute_maxlevels(mp);
702 xfs_refcountbt_compute_maxlevels(mp);
703
704 xfs_set_maxicount(mp);
705
706 /* enable fail_at_unmount as default */
707 mp->m_fail_unmount = 1;
708
709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
710 if (error)
711 goto out;
712
713 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
714 &mp->m_kobj, "stats");
715 if (error)
716 goto out_remove_sysfs;
717
718 error = xfs_error_sysfs_init(mp);
719 if (error)
720 goto out_del_stats;
721
722 error = xfs_errortag_init(mp);
723 if (error)
724 goto out_remove_error_sysfs;
725
726 error = xfs_uuid_mount(mp);
727 if (error)
728 goto out_remove_errortag;
729
730 /*
731 * Set the minimum read and write sizes
732 */
733 xfs_set_rw_sizes(mp);
734
735 /* set the low space thresholds for dynamic preallocation */
736 xfs_set_low_space_thresholds(mp);
737
738 /*
739 * Set the inode cluster size.
740 * This may still be overridden by the file system
741 * block size if it is larger than the chosen cluster size.
742 *
743 * For v5 filesystems, scale the cluster size with the inode size to
744 * keep a constant ratio of inode per cluster buffer, but only if mkfs
745 * has set the inode alignment value appropriately for larger cluster
746 * sizes.
747 */
748 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
749 if (xfs_sb_version_hascrc(&mp->m_sb)) {
750 int new_size = mp->m_inode_cluster_size;
751
752 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
753 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
754 mp->m_inode_cluster_size = new_size;
755 }
756
757 /*
758 * If enabled, sparse inode chunk alignment is expected to match the
759 * cluster size. Full inode chunk alignment must match the chunk size,
760 * but that is checked on sb read verification...
761 */
762 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
763 mp->m_sb.sb_spino_align !=
764 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
765 xfs_warn(mp,
766 "Sparse inode block alignment (%u) must match cluster size (%llu).",
767 mp->m_sb.sb_spino_align,
768 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
769 error = -EINVAL;
770 goto out_remove_uuid;
771 }
772
773 /*
774 * Set inode alignment fields
775 */
776 xfs_set_inoalignment(mp);
777
778 /*
779 * Check that the data (and log if separate) is an ok size.
780 */
781 error = xfs_check_sizes(mp);
782 if (error)
783 goto out_remove_uuid;
784
785 /*
786 * Initialize realtime fields in the mount structure
787 */
788 error = xfs_rtmount_init(mp);
789 if (error) {
790 xfs_warn(mp, "RT mount failed");
791 goto out_remove_uuid;
792 }
793
794 /*
795 * Copies the low order bits of the timestamp and the randomly
796 * set "sequence" number out of a UUID.
797 */
798 mp->m_fixedfsid[0] =
799 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
800 get_unaligned_be16(&sbp->sb_uuid.b[4]);
801 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
802
803 mp->m_dmevmask = 0; /* not persistent; set after each mount */
804
805 error = xfs_da_mount(mp);
806 if (error) {
807 xfs_warn(mp, "Failed dir/attr init: %d", error);
808 goto out_remove_uuid;
809 }
810
811 /*
812 * Initialize the precomputed transaction reservations values.
813 */
814 xfs_trans_init(mp);
815
816 /*
817 * Allocate and initialize the per-ag data.
818 */
819 spin_lock_init(&mp->m_perag_lock);
820 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
821 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
822 if (error) {
823 xfs_warn(mp, "Failed per-ag init: %d", error);
824 goto out_free_dir;
825 }
826
827 if (!sbp->sb_logblocks) {
828 xfs_warn(mp, "no log defined");
829 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
830 error = -EFSCORRUPTED;
831 goto out_free_perag;
832 }
833
834 /*
835 * Log's mount-time initialization. The first part of recovery can place
836 * some items on the AIL, to be handled when recovery is finished or
837 * cancelled.
838 */
839 error = xfs_log_mount(mp, mp->m_logdev_targp,
840 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
841 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
842 if (error) {
843 xfs_warn(mp, "log mount failed");
844 goto out_fail_wait;
845 }
846
847 /*
848 * Now the log is mounted, we know if it was an unclean shutdown or
849 * not. If it was, with the first phase of recovery has completed, we
850 * have consistent AG blocks on disk. We have not recovered EFIs yet,
851 * but they are recovered transactionally in the second recovery phase
852 * later.
853 *
854 * Hence we can safely re-initialise incore superblock counters from
855 * the per-ag data. These may not be correct if the filesystem was not
856 * cleanly unmounted, so we need to wait for recovery to finish before
857 * doing this.
858 *
859 * If the filesystem was cleanly unmounted, then we can trust the
860 * values in the superblock to be correct and we don't need to do
861 * anything here.
862 *
863 * If we are currently making the filesystem, the initialisation will
864 * fail as the perag data is in an undefined state.
865 */
866 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
867 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
868 !mp->m_sb.sb_inprogress) {
869 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
870 if (error)
871 goto out_log_dealloc;
872 }
873
874 /*
875 * Get and sanity-check the root inode.
876 * Save the pointer to it in the mount structure.
877 */
878 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
879 if (error) {
880 xfs_warn(mp, "failed to read root inode");
881 goto out_log_dealloc;
882 }
883
884 ASSERT(rip != NULL);
885
886 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
887 xfs_warn(mp, "corrupted root inode %llu: not a directory",
888 (unsigned long long)rip->i_ino);
889 xfs_iunlock(rip, XFS_ILOCK_EXCL);
890 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
891 mp);
892 error = -EFSCORRUPTED;
893 goto out_rele_rip;
894 }
895 mp->m_rootip = rip; /* save it */
896
897 xfs_iunlock(rip, XFS_ILOCK_EXCL);
898
899 /*
900 * Initialize realtime inode pointers in the mount structure
901 */
902 error = xfs_rtmount_inodes(mp);
903 if (error) {
904 /*
905 * Free up the root inode.
906 */
907 xfs_warn(mp, "failed to read RT inodes");
908 goto out_rele_rip;
909 }
910
911 /*
912 * If this is a read-only mount defer the superblock updates until
913 * the next remount into writeable mode. Otherwise we would never
914 * perform the update e.g. for the root filesystem.
915 */
916 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
917 error = xfs_sync_sb(mp, false);
918 if (error) {
919 xfs_warn(mp, "failed to write sb changes");
920 goto out_rtunmount;
921 }
922 }
923
924 /*
925 * Initialise the XFS quota management subsystem for this mount
926 */
927 if (XFS_IS_QUOTA_RUNNING(mp)) {
928 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
929 if (error)
930 goto out_rtunmount;
931 } else {
932 ASSERT(!XFS_IS_QUOTA_ON(mp));
933
934 /*
935 * If a file system had quotas running earlier, but decided to
936 * mount without -o uquota/pquota/gquota options, revoke the
937 * quotachecked license.
938 */
939 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
940 xfs_notice(mp, "resetting quota flags");
941 error = xfs_mount_reset_sbqflags(mp);
942 if (error)
943 goto out_rtunmount;
944 }
945 }
946
947 /*
948 * During the second phase of log recovery, we need iget and
949 * iput to behave like they do for an active filesystem.
950 * xfs_fs_drop_inode needs to be able to prevent the deletion
951 * of inodes before we're done replaying log items on those
952 * inodes.
953 */
954 mp->m_super->s_flags |= MS_ACTIVE;
955
956 /*
957 * Finish recovering the file system. This part needed to be delayed
958 * until after the root and real-time bitmap inodes were consistently
959 * read in.
960 */
961 error = xfs_log_mount_finish(mp);
962 if (error) {
963 xfs_warn(mp, "log mount finish failed");
964 goto out_rtunmount;
965 }
966
967 /*
968 * Now the log is fully replayed, we can transition to full read-only
969 * mode for read-only mounts. This will sync all the metadata and clean
970 * the log so that the recovery we just performed does not have to be
971 * replayed again on the next mount.
972 *
973 * We use the same quiesce mechanism as the rw->ro remount, as they are
974 * semantically identical operations.
975 */
976 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
977 XFS_MOUNT_RDONLY) {
978 xfs_quiesce_attr(mp);
979 }
980
981 /*
982 * Complete the quota initialisation, post-log-replay component.
983 */
984 if (quotamount) {
985 ASSERT(mp->m_qflags == 0);
986 mp->m_qflags = quotaflags;
987
988 xfs_qm_mount_quotas(mp);
989 }
990
991 /*
992 * Now we are mounted, reserve a small amount of unused space for
993 * privileged transactions. This is needed so that transaction
994 * space required for critical operations can dip into this pool
995 * when at ENOSPC. This is needed for operations like create with
996 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
997 * are not allowed to use this reserved space.
998 *
999 * This may drive us straight to ENOSPC on mount, but that implies
1000 * we were already there on the last unmount. Warn if this occurs.
1001 */
1002 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1003 resblks = xfs_default_resblks(mp);
1004 error = xfs_reserve_blocks(mp, &resblks, NULL);
1005 if (error)
1006 xfs_warn(mp,
1007 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1008
1009 /* Recover any CoW blocks that never got remapped. */
1010 error = xfs_reflink_recover_cow(mp);
1011 if (error) {
1012 xfs_err(mp,
1013 "Error %d recovering leftover CoW allocations.", error);
1014 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1015 goto out_quota;
1016 }
1017
1018 /* Reserve AG blocks for future btree expansion. */
1019 error = xfs_fs_reserve_ag_blocks(mp);
1020 if (error && error != -ENOSPC)
1021 goto out_agresv;
1022 }
1023
1024 return 0;
1025
1026 out_agresv:
1027 xfs_fs_unreserve_ag_blocks(mp);
1028 out_quota:
1029 xfs_qm_unmount_quotas(mp);
1030 out_rtunmount:
1031 mp->m_super->s_flags &= ~MS_ACTIVE;
1032 xfs_rtunmount_inodes(mp);
1033 out_rele_rip:
1034 IRELE(rip);
1035 cancel_delayed_work_sync(&mp->m_reclaim_work);
1036 xfs_reclaim_inodes(mp, SYNC_WAIT);
1037 out_log_dealloc:
1038 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1039 xfs_log_mount_cancel(mp);
1040 out_fail_wait:
1041 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1042 xfs_wait_buftarg(mp->m_logdev_targp);
1043 xfs_wait_buftarg(mp->m_ddev_targp);
1044 out_free_perag:
1045 xfs_free_perag(mp);
1046 out_free_dir:
1047 xfs_da_unmount(mp);
1048 out_remove_uuid:
1049 xfs_uuid_unmount(mp);
1050 out_remove_errortag:
1051 xfs_errortag_del(mp);
1052 out_remove_error_sysfs:
1053 xfs_error_sysfs_del(mp);
1054 out_del_stats:
1055 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1056 out_remove_sysfs:
1057 xfs_sysfs_del(&mp->m_kobj);
1058 out:
1059 return error;
1060 }
1061
1062 /*
1063 * This flushes out the inodes,dquots and the superblock, unmounts the
1064 * log and makes sure that incore structures are freed.
1065 */
1066 void
1067 xfs_unmountfs(
1068 struct xfs_mount *mp)
1069 {
1070 uint64_t resblks;
1071 int error;
1072
1073 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1074 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1075
1076 xfs_fs_unreserve_ag_blocks(mp);
1077 xfs_qm_unmount_quotas(mp);
1078 xfs_rtunmount_inodes(mp);
1079 IRELE(mp->m_rootip);
1080
1081 /*
1082 * We can potentially deadlock here if we have an inode cluster
1083 * that has been freed has its buffer still pinned in memory because
1084 * the transaction is still sitting in a iclog. The stale inodes
1085 * on that buffer will have their flush locks held until the
1086 * transaction hits the disk and the callbacks run. the inode
1087 * flush takes the flush lock unconditionally and with nothing to
1088 * push out the iclog we will never get that unlocked. hence we
1089 * need to force the log first.
1090 */
1091 xfs_log_force(mp, XFS_LOG_SYNC);
1092
1093 /*
1094 * Wait for all busy extents to be freed, including completion of
1095 * any discard operation.
1096 */
1097 xfs_extent_busy_wait_all(mp);
1098 flush_workqueue(xfs_discard_wq);
1099
1100 /*
1101 * We now need to tell the world we are unmounting. This will allow
1102 * us to detect that the filesystem is going away and we should error
1103 * out anything that we have been retrying in the background. This will
1104 * prevent neverending retries in AIL pushing from hanging the unmount.
1105 */
1106 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1107
1108 /*
1109 * Flush all pending changes from the AIL.
1110 */
1111 xfs_ail_push_all_sync(mp->m_ail);
1112
1113 /*
1114 * And reclaim all inodes. At this point there should be no dirty
1115 * inodes and none should be pinned or locked, but use synchronous
1116 * reclaim just to be sure. We can stop background inode reclaim
1117 * here as well if it is still running.
1118 */
1119 cancel_delayed_work_sync(&mp->m_reclaim_work);
1120 xfs_reclaim_inodes(mp, SYNC_WAIT);
1121
1122 xfs_qm_unmount(mp);
1123
1124 /*
1125 * Unreserve any blocks we have so that when we unmount we don't account
1126 * the reserved free space as used. This is really only necessary for
1127 * lazy superblock counting because it trusts the incore superblock
1128 * counters to be absolutely correct on clean unmount.
1129 *
1130 * We don't bother correcting this elsewhere for lazy superblock
1131 * counting because on mount of an unclean filesystem we reconstruct the
1132 * correct counter value and this is irrelevant.
1133 *
1134 * For non-lazy counter filesystems, this doesn't matter at all because
1135 * we only every apply deltas to the superblock and hence the incore
1136 * value does not matter....
1137 */
1138 resblks = 0;
1139 error = xfs_reserve_blocks(mp, &resblks, NULL);
1140 if (error)
1141 xfs_warn(mp, "Unable to free reserved block pool. "
1142 "Freespace may not be correct on next mount.");
1143
1144 error = xfs_log_sbcount(mp);
1145 if (error)
1146 xfs_warn(mp, "Unable to update superblock counters. "
1147 "Freespace may not be correct on next mount.");
1148
1149
1150 xfs_log_unmount(mp);
1151 xfs_da_unmount(mp);
1152 xfs_uuid_unmount(mp);
1153
1154 #if defined(DEBUG)
1155 xfs_errortag_clearall(mp);
1156 #endif
1157 xfs_free_perag(mp);
1158
1159 xfs_errortag_del(mp);
1160 xfs_error_sysfs_del(mp);
1161 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1162 xfs_sysfs_del(&mp->m_kobj);
1163 }
1164
1165 /*
1166 * Determine whether modifications can proceed. The caller specifies the minimum
1167 * freeze level for which modifications should not be allowed. This allows
1168 * certain operations to proceed while the freeze sequence is in progress, if
1169 * necessary.
1170 */
1171 bool
1172 xfs_fs_writable(
1173 struct xfs_mount *mp,
1174 int level)
1175 {
1176 ASSERT(level > SB_UNFROZEN);
1177 if ((mp->m_super->s_writers.frozen >= level) ||
1178 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1179 return false;
1180
1181 return true;
1182 }
1183
1184 /*
1185 * xfs_log_sbcount
1186 *
1187 * Sync the superblock counters to disk.
1188 *
1189 * Note this code can be called during the process of freezing, so we use the
1190 * transaction allocator that does not block when the transaction subsystem is
1191 * in its frozen state.
1192 */
1193 int
1194 xfs_log_sbcount(xfs_mount_t *mp)
1195 {
1196 /* allow this to proceed during the freeze sequence... */
1197 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1198 return 0;
1199
1200 /*
1201 * we don't need to do this if we are updating the superblock
1202 * counters on every modification.
1203 */
1204 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1205 return 0;
1206
1207 return xfs_sync_sb(mp, true);
1208 }
1209
1210 /*
1211 * Deltas for the inode count are +/-64, hence we use a large batch size
1212 * of 128 so we don't need to take the counter lock on every update.
1213 */
1214 #define XFS_ICOUNT_BATCH 128
1215 int
1216 xfs_mod_icount(
1217 struct xfs_mount *mp,
1218 int64_t delta)
1219 {
1220 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1221 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1222 ASSERT(0);
1223 percpu_counter_add(&mp->m_icount, -delta);
1224 return -EINVAL;
1225 }
1226 return 0;
1227 }
1228
1229 int
1230 xfs_mod_ifree(
1231 struct xfs_mount *mp,
1232 int64_t delta)
1233 {
1234 percpu_counter_add(&mp->m_ifree, delta);
1235 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1236 ASSERT(0);
1237 percpu_counter_add(&mp->m_ifree, -delta);
1238 return -EINVAL;
1239 }
1240 return 0;
1241 }
1242
1243 /*
1244 * Deltas for the block count can vary from 1 to very large, but lock contention
1245 * only occurs on frequent small block count updates such as in the delayed
1246 * allocation path for buffered writes (page a time updates). Hence we set
1247 * a large batch count (1024) to minimise global counter updates except when
1248 * we get near to ENOSPC and we have to be very accurate with our updates.
1249 */
1250 #define XFS_FDBLOCKS_BATCH 1024
1251 int
1252 xfs_mod_fdblocks(
1253 struct xfs_mount *mp,
1254 int64_t delta,
1255 bool rsvd)
1256 {
1257 int64_t lcounter;
1258 long long res_used;
1259 s32 batch;
1260
1261 if (delta > 0) {
1262 /*
1263 * If the reserve pool is depleted, put blocks back into it
1264 * first. Most of the time the pool is full.
1265 */
1266 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1267 percpu_counter_add(&mp->m_fdblocks, delta);
1268 return 0;
1269 }
1270
1271 spin_lock(&mp->m_sb_lock);
1272 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1273
1274 if (res_used > delta) {
1275 mp->m_resblks_avail += delta;
1276 } else {
1277 delta -= res_used;
1278 mp->m_resblks_avail = mp->m_resblks;
1279 percpu_counter_add(&mp->m_fdblocks, delta);
1280 }
1281 spin_unlock(&mp->m_sb_lock);
1282 return 0;
1283 }
1284
1285 /*
1286 * Taking blocks away, need to be more accurate the closer we
1287 * are to zero.
1288 *
1289 * If the counter has a value of less than 2 * max batch size,
1290 * then make everything serialise as we are real close to
1291 * ENOSPC.
1292 */
1293 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1294 XFS_FDBLOCKS_BATCH) < 0)
1295 batch = 1;
1296 else
1297 batch = XFS_FDBLOCKS_BATCH;
1298
1299 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1300 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1301 XFS_FDBLOCKS_BATCH) >= 0) {
1302 /* we had space! */
1303 return 0;
1304 }
1305
1306 /*
1307 * lock up the sb for dipping into reserves before releasing the space
1308 * that took us to ENOSPC.
1309 */
1310 spin_lock(&mp->m_sb_lock);
1311 percpu_counter_add(&mp->m_fdblocks, -delta);
1312 if (!rsvd)
1313 goto fdblocks_enospc;
1314
1315 lcounter = (long long)mp->m_resblks_avail + delta;
1316 if (lcounter >= 0) {
1317 mp->m_resblks_avail = lcounter;
1318 spin_unlock(&mp->m_sb_lock);
1319 return 0;
1320 }
1321 printk_once(KERN_WARNING
1322 "Filesystem \"%s\": reserve blocks depleted! "
1323 "Consider increasing reserve pool size.",
1324 mp->m_fsname);
1325 fdblocks_enospc:
1326 spin_unlock(&mp->m_sb_lock);
1327 return -ENOSPC;
1328 }
1329
1330 int
1331 xfs_mod_frextents(
1332 struct xfs_mount *mp,
1333 int64_t delta)
1334 {
1335 int64_t lcounter;
1336 int ret = 0;
1337
1338 spin_lock(&mp->m_sb_lock);
1339 lcounter = mp->m_sb.sb_frextents + delta;
1340 if (lcounter < 0)
1341 ret = -ENOSPC;
1342 else
1343 mp->m_sb.sb_frextents = lcounter;
1344 spin_unlock(&mp->m_sb_lock);
1345 return ret;
1346 }
1347
1348 /*
1349 * xfs_getsb() is called to obtain the buffer for the superblock.
1350 * The buffer is returned locked and read in from disk.
1351 * The buffer should be released with a call to xfs_brelse().
1352 *
1353 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1354 * the superblock buffer if it can be locked without sleeping.
1355 * If it can't then we'll return NULL.
1356 */
1357 struct xfs_buf *
1358 xfs_getsb(
1359 struct xfs_mount *mp,
1360 int flags)
1361 {
1362 struct xfs_buf *bp = mp->m_sb_bp;
1363
1364 if (!xfs_buf_trylock(bp)) {
1365 if (flags & XBF_TRYLOCK)
1366 return NULL;
1367 xfs_buf_lock(bp);
1368 }
1369
1370 xfs_buf_hold(bp);
1371 ASSERT(bp->b_flags & XBF_DONE);
1372 return bp;
1373 }
1374
1375 /*
1376 * Used to free the superblock along various error paths.
1377 */
1378 void
1379 xfs_freesb(
1380 struct xfs_mount *mp)
1381 {
1382 struct xfs_buf *bp = mp->m_sb_bp;
1383
1384 xfs_buf_lock(bp);
1385 mp->m_sb_bp = NULL;
1386 xfs_buf_relse(bp);
1387 }
1388
1389 /*
1390 * If the underlying (data/log/rt) device is readonly, there are some
1391 * operations that cannot proceed.
1392 */
1393 int
1394 xfs_dev_is_read_only(
1395 struct xfs_mount *mp,
1396 char *message)
1397 {
1398 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1399 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1400 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1401 xfs_notice(mp, "%s required on read-only device.", message);
1402 xfs_notice(mp, "write access unavailable, cannot proceed.");
1403 return -EROFS;
1404 }
1405 return 0;
1406 }