]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_mount.c
970c19ba2f560f62bc077d6797c6713848dcd5ec
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44
45
46 static DEFINE_MUTEX(xfs_uuid_table_mutex);
47 static int xfs_uuid_table_size;
48 static uuid_t *xfs_uuid_table;
49
50 void
51 xfs_uuid_table_free(void)
52 {
53 if (xfs_uuid_table_size == 0)
54 return;
55 kmem_free(xfs_uuid_table);
56 xfs_uuid_table = NULL;
57 xfs_uuid_table_size = 0;
58 }
59
60 /*
61 * See if the UUID is unique among mounted XFS filesystems.
62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
63 */
64 STATIC int
65 xfs_uuid_mount(
66 struct xfs_mount *mp)
67 {
68 uuid_t *uuid = &mp->m_sb.sb_uuid;
69 int hole, i;
70
71 if (mp->m_flags & XFS_MOUNT_NOUUID)
72 return 0;
73
74 if (uuid_is_nil(uuid)) {
75 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
76 return -EINVAL;
77 }
78
79 mutex_lock(&xfs_uuid_table_mutex);
80 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
81 if (uuid_is_nil(&xfs_uuid_table[i])) {
82 hole = i;
83 continue;
84 }
85 if (uuid_equal(uuid, &xfs_uuid_table[i]))
86 goto out_duplicate;
87 }
88
89 if (hole < 0) {
90 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
91 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
92 KM_SLEEP);
93 hole = xfs_uuid_table_size++;
94 }
95 xfs_uuid_table[hole] = *uuid;
96 mutex_unlock(&xfs_uuid_table_mutex);
97
98 return 0;
99
100 out_duplicate:
101 mutex_unlock(&xfs_uuid_table_mutex);
102 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
103 return -EINVAL;
104 }
105
106 STATIC void
107 xfs_uuid_unmount(
108 struct xfs_mount *mp)
109 {
110 uuid_t *uuid = &mp->m_sb.sb_uuid;
111 int i;
112
113 if (mp->m_flags & XFS_MOUNT_NOUUID)
114 return;
115
116 mutex_lock(&xfs_uuid_table_mutex);
117 for (i = 0; i < xfs_uuid_table_size; i++) {
118 if (uuid_is_nil(&xfs_uuid_table[i]))
119 continue;
120 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
121 continue;
122 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
123 break;
124 }
125 ASSERT(i < xfs_uuid_table_size);
126 mutex_unlock(&xfs_uuid_table_mutex);
127 }
128
129
130 STATIC void
131 __xfs_free_perag(
132 struct rcu_head *head)
133 {
134 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
135
136 ASSERT(atomic_read(&pag->pag_ref) == 0);
137 kmem_free(pag);
138 }
139
140 /*
141 * Free up the per-ag resources associated with the mount structure.
142 */
143 STATIC void
144 xfs_free_perag(
145 xfs_mount_t *mp)
146 {
147 xfs_agnumber_t agno;
148 struct xfs_perag *pag;
149
150 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
151 spin_lock(&mp->m_perag_lock);
152 pag = radix_tree_delete(&mp->m_perag_tree, agno);
153 spin_unlock(&mp->m_perag_lock);
154 ASSERT(pag);
155 ASSERT(atomic_read(&pag->pag_ref) == 0);
156 call_rcu(&pag->rcu_head, __xfs_free_perag);
157 }
158 }
159
160 /*
161 * Check size of device based on the (data/realtime) block count.
162 * Note: this check is used by the growfs code as well as mount.
163 */
164 int
165 xfs_sb_validate_fsb_count(
166 xfs_sb_t *sbp,
167 __uint64_t nblocks)
168 {
169 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
170 ASSERT(sbp->sb_blocklog >= BBSHIFT);
171
172 /* Limited by ULONG_MAX of page cache index */
173 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
174 return -EFBIG;
175 return 0;
176 }
177
178 int
179 xfs_initialize_perag(
180 xfs_mount_t *mp,
181 xfs_agnumber_t agcount,
182 xfs_agnumber_t *maxagi)
183 {
184 xfs_agnumber_t index;
185 xfs_agnumber_t first_initialised = 0;
186 xfs_perag_t *pag;
187 int error = -ENOMEM;
188
189 /*
190 * Walk the current per-ag tree so we don't try to initialise AGs
191 * that already exist (growfs case). Allocate and insert all the
192 * AGs we don't find ready for initialisation.
193 */
194 for (index = 0; index < agcount; index++) {
195 pag = xfs_perag_get(mp, index);
196 if (pag) {
197 xfs_perag_put(pag);
198 continue;
199 }
200 if (!first_initialised)
201 first_initialised = index;
202
203 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
204 if (!pag)
205 goto out_unwind;
206 pag->pag_agno = index;
207 pag->pag_mount = mp;
208 spin_lock_init(&pag->pag_ici_lock);
209 mutex_init(&pag->pag_ici_reclaim_lock);
210 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
211 spin_lock_init(&pag->pag_buf_lock);
212 pag->pag_buf_tree = RB_ROOT;
213
214 if (radix_tree_preload(GFP_NOFS))
215 goto out_unwind;
216
217 spin_lock(&mp->m_perag_lock);
218 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
219 BUG();
220 spin_unlock(&mp->m_perag_lock);
221 radix_tree_preload_end();
222 error = -EEXIST;
223 goto out_unwind;
224 }
225 spin_unlock(&mp->m_perag_lock);
226 radix_tree_preload_end();
227 }
228
229 index = xfs_set_inode_alloc(mp, agcount);
230
231 if (maxagi)
232 *maxagi = index;
233 return 0;
234
235 out_unwind:
236 kmem_free(pag);
237 for (; index > first_initialised; index--) {
238 pag = radix_tree_delete(&mp->m_perag_tree, index);
239 kmem_free(pag);
240 }
241 return error;
242 }
243
244 /*
245 * xfs_readsb
246 *
247 * Does the initial read of the superblock.
248 */
249 int
250 xfs_readsb(
251 struct xfs_mount *mp,
252 int flags)
253 {
254 unsigned int sector_size;
255 struct xfs_buf *bp;
256 struct xfs_sb *sbp = &mp->m_sb;
257 int error;
258 int loud = !(flags & XFS_MFSI_QUIET);
259 const struct xfs_buf_ops *buf_ops;
260
261 ASSERT(mp->m_sb_bp == NULL);
262 ASSERT(mp->m_ddev_targp != NULL);
263
264 /*
265 * For the initial read, we must guess at the sector
266 * size based on the block device. It's enough to
267 * get the sb_sectsize out of the superblock and
268 * then reread with the proper length.
269 * We don't verify it yet, because it may not be complete.
270 */
271 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
272 buf_ops = NULL;
273
274 /*
275 * Allocate a (locked) buffer to hold the superblock. This will be kept
276 * around at all times to optimize access to the superblock. Therefore,
277 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
278 * elevated.
279 */
280 reread:
281 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
282 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
283 buf_ops);
284 if (error) {
285 if (loud)
286 xfs_warn(mp, "SB validate failed with error %d.", error);
287 /* bad CRC means corrupted metadata */
288 if (error == -EFSBADCRC)
289 error = -EFSCORRUPTED;
290 return error;
291 }
292
293 /*
294 * Initialize the mount structure from the superblock.
295 */
296 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
297
298 /*
299 * If we haven't validated the superblock, do so now before we try
300 * to check the sector size and reread the superblock appropriately.
301 */
302 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
303 if (loud)
304 xfs_warn(mp, "Invalid superblock magic number");
305 error = -EINVAL;
306 goto release_buf;
307 }
308
309 /*
310 * We must be able to do sector-sized and sector-aligned IO.
311 */
312 if (sector_size > sbp->sb_sectsize) {
313 if (loud)
314 xfs_warn(mp, "device supports %u byte sectors (not %u)",
315 sector_size, sbp->sb_sectsize);
316 error = -ENOSYS;
317 goto release_buf;
318 }
319
320 if (buf_ops == NULL) {
321 /*
322 * Re-read the superblock so the buffer is correctly sized,
323 * and properly verified.
324 */
325 xfs_buf_relse(bp);
326 sector_size = sbp->sb_sectsize;
327 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
328 goto reread;
329 }
330
331 xfs_reinit_percpu_counters(mp);
332
333 /* no need to be quiet anymore, so reset the buf ops */
334 bp->b_ops = &xfs_sb_buf_ops;
335
336 mp->m_sb_bp = bp;
337 xfs_buf_unlock(bp);
338 return 0;
339
340 release_buf:
341 xfs_buf_relse(bp);
342 return error;
343 }
344
345 /*
346 * Update alignment values based on mount options and sb values
347 */
348 STATIC int
349 xfs_update_alignment(xfs_mount_t *mp)
350 {
351 xfs_sb_t *sbp = &(mp->m_sb);
352
353 if (mp->m_dalign) {
354 /*
355 * If stripe unit and stripe width are not multiples
356 * of the fs blocksize turn off alignment.
357 */
358 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
359 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
360 xfs_warn(mp,
361 "alignment check failed: sunit/swidth vs. blocksize(%d)",
362 sbp->sb_blocksize);
363 return -EINVAL;
364 } else {
365 /*
366 * Convert the stripe unit and width to FSBs.
367 */
368 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
369 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
370 xfs_warn(mp,
371 "alignment check failed: sunit/swidth vs. agsize(%d)",
372 sbp->sb_agblocks);
373 return -EINVAL;
374 } else if (mp->m_dalign) {
375 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
376 } else {
377 xfs_warn(mp,
378 "alignment check failed: sunit(%d) less than bsize(%d)",
379 mp->m_dalign, sbp->sb_blocksize);
380 return -EINVAL;
381 }
382 }
383
384 /*
385 * Update superblock with new values
386 * and log changes
387 */
388 if (xfs_sb_version_hasdalign(sbp)) {
389 if (sbp->sb_unit != mp->m_dalign) {
390 sbp->sb_unit = mp->m_dalign;
391 mp->m_update_sb = true;
392 }
393 if (sbp->sb_width != mp->m_swidth) {
394 sbp->sb_width = mp->m_swidth;
395 mp->m_update_sb = true;
396 }
397 } else {
398 xfs_warn(mp,
399 "cannot change alignment: superblock does not support data alignment");
400 return -EINVAL;
401 }
402 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
403 xfs_sb_version_hasdalign(&mp->m_sb)) {
404 mp->m_dalign = sbp->sb_unit;
405 mp->m_swidth = sbp->sb_width;
406 }
407
408 return 0;
409 }
410
411 /*
412 * Set the maximum inode count for this filesystem
413 */
414 STATIC void
415 xfs_set_maxicount(xfs_mount_t *mp)
416 {
417 xfs_sb_t *sbp = &(mp->m_sb);
418 __uint64_t icount;
419
420 if (sbp->sb_imax_pct) {
421 /*
422 * Make sure the maximum inode count is a multiple
423 * of the units we allocate inodes in.
424 */
425 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
426 do_div(icount, 100);
427 do_div(icount, mp->m_ialloc_blks);
428 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
429 sbp->sb_inopblog;
430 } else {
431 mp->m_maxicount = 0;
432 }
433 }
434
435 /*
436 * Set the default minimum read and write sizes unless
437 * already specified in a mount option.
438 * We use smaller I/O sizes when the file system
439 * is being used for NFS service (wsync mount option).
440 */
441 STATIC void
442 xfs_set_rw_sizes(xfs_mount_t *mp)
443 {
444 xfs_sb_t *sbp = &(mp->m_sb);
445 int readio_log, writeio_log;
446
447 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
448 if (mp->m_flags & XFS_MOUNT_WSYNC) {
449 readio_log = XFS_WSYNC_READIO_LOG;
450 writeio_log = XFS_WSYNC_WRITEIO_LOG;
451 } else {
452 readio_log = XFS_READIO_LOG_LARGE;
453 writeio_log = XFS_WRITEIO_LOG_LARGE;
454 }
455 } else {
456 readio_log = mp->m_readio_log;
457 writeio_log = mp->m_writeio_log;
458 }
459
460 if (sbp->sb_blocklog > readio_log) {
461 mp->m_readio_log = sbp->sb_blocklog;
462 } else {
463 mp->m_readio_log = readio_log;
464 }
465 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
466 if (sbp->sb_blocklog > writeio_log) {
467 mp->m_writeio_log = sbp->sb_blocklog;
468 } else {
469 mp->m_writeio_log = writeio_log;
470 }
471 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
472 }
473
474 /*
475 * precalculate the low space thresholds for dynamic speculative preallocation.
476 */
477 void
478 xfs_set_low_space_thresholds(
479 struct xfs_mount *mp)
480 {
481 int i;
482
483 for (i = 0; i < XFS_LOWSP_MAX; i++) {
484 __uint64_t space = mp->m_sb.sb_dblocks;
485
486 do_div(space, 100);
487 mp->m_low_space[i] = space * (i + 1);
488 }
489 }
490
491
492 /*
493 * Set whether we're using inode alignment.
494 */
495 STATIC void
496 xfs_set_inoalignment(xfs_mount_t *mp)
497 {
498 if (xfs_sb_version_hasalign(&mp->m_sb) &&
499 mp->m_sb.sb_inoalignmt >=
500 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
501 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
502 else
503 mp->m_inoalign_mask = 0;
504 /*
505 * If we are using stripe alignment, check whether
506 * the stripe unit is a multiple of the inode alignment
507 */
508 if (mp->m_dalign && mp->m_inoalign_mask &&
509 !(mp->m_dalign & mp->m_inoalign_mask))
510 mp->m_sinoalign = mp->m_dalign;
511 else
512 mp->m_sinoalign = 0;
513 }
514
515 /*
516 * Check that the data (and log if separate) is an ok size.
517 */
518 STATIC int
519 xfs_check_sizes(
520 struct xfs_mount *mp)
521 {
522 struct xfs_buf *bp;
523 xfs_daddr_t d;
524 int error;
525
526 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
527 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
528 xfs_warn(mp, "filesystem size mismatch detected");
529 return -EFBIG;
530 }
531 error = xfs_buf_read_uncached(mp->m_ddev_targp,
532 d - XFS_FSS_TO_BB(mp, 1),
533 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
534 if (error) {
535 xfs_warn(mp, "last sector read failed");
536 return error;
537 }
538 xfs_buf_relse(bp);
539
540 if (mp->m_logdev_targp == mp->m_ddev_targp)
541 return 0;
542
543 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
544 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
545 xfs_warn(mp, "log size mismatch detected");
546 return -EFBIG;
547 }
548 error = xfs_buf_read_uncached(mp->m_logdev_targp,
549 d - XFS_FSB_TO_BB(mp, 1),
550 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
551 if (error) {
552 xfs_warn(mp, "log device read failed");
553 return error;
554 }
555 xfs_buf_relse(bp);
556 return 0;
557 }
558
559 /*
560 * Clear the quotaflags in memory and in the superblock.
561 */
562 int
563 xfs_mount_reset_sbqflags(
564 struct xfs_mount *mp)
565 {
566 mp->m_qflags = 0;
567
568 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
569 if (mp->m_sb.sb_qflags == 0)
570 return 0;
571 spin_lock(&mp->m_sb_lock);
572 mp->m_sb.sb_qflags = 0;
573 spin_unlock(&mp->m_sb_lock);
574
575 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
576 return 0;
577
578 return xfs_sync_sb(mp, false);
579 }
580
581 __uint64_t
582 xfs_default_resblks(xfs_mount_t *mp)
583 {
584 __uint64_t resblks;
585
586 /*
587 * We default to 5% or 8192 fsbs of space reserved, whichever is
588 * smaller. This is intended to cover concurrent allocation
589 * transactions when we initially hit enospc. These each require a 4
590 * block reservation. Hence by default we cover roughly 2000 concurrent
591 * allocation reservations.
592 */
593 resblks = mp->m_sb.sb_dblocks;
594 do_div(resblks, 20);
595 resblks = min_t(__uint64_t, resblks, 8192);
596 return resblks;
597 }
598
599 /*
600 * This function does the following on an initial mount of a file system:
601 * - reads the superblock from disk and init the mount struct
602 * - if we're a 32-bit kernel, do a size check on the superblock
603 * so we don't mount terabyte filesystems
604 * - init mount struct realtime fields
605 * - allocate inode hash table for fs
606 * - init directory manager
607 * - perform recovery and init the log manager
608 */
609 int
610 xfs_mountfs(
611 struct xfs_mount *mp)
612 {
613 struct xfs_sb *sbp = &(mp->m_sb);
614 struct xfs_inode *rip;
615 __uint64_t resblks;
616 uint quotamount = 0;
617 uint quotaflags = 0;
618 int error = 0;
619
620 xfs_sb_mount_common(mp, sbp);
621
622 /*
623 * Check for a mismatched features2 values. Older kernels read & wrote
624 * into the wrong sb offset for sb_features2 on some platforms due to
625 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
626 * which made older superblock reading/writing routines swap it as a
627 * 64-bit value.
628 *
629 * For backwards compatibility, we make both slots equal.
630 *
631 * If we detect a mismatched field, we OR the set bits into the existing
632 * features2 field in case it has already been modified; we don't want
633 * to lose any features. We then update the bad location with the ORed
634 * value so that older kernels will see any features2 flags. The
635 * superblock writeback code ensures the new sb_features2 is copied to
636 * sb_bad_features2 before it is logged or written to disk.
637 */
638 if (xfs_sb_has_mismatched_features2(sbp)) {
639 xfs_warn(mp, "correcting sb_features alignment problem");
640 sbp->sb_features2 |= sbp->sb_bad_features2;
641 mp->m_update_sb = true;
642
643 /*
644 * Re-check for ATTR2 in case it was found in bad_features2
645 * slot.
646 */
647 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
648 !(mp->m_flags & XFS_MOUNT_NOATTR2))
649 mp->m_flags |= XFS_MOUNT_ATTR2;
650 }
651
652 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
653 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
654 xfs_sb_version_removeattr2(&mp->m_sb);
655 mp->m_update_sb = true;
656
657 /* update sb_versionnum for the clearing of the morebits */
658 if (!sbp->sb_features2)
659 mp->m_update_sb = true;
660 }
661
662 /* always use v2 inodes by default now */
663 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
664 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
665 mp->m_update_sb = true;
666 }
667
668 /*
669 * Check if sb_agblocks is aligned at stripe boundary
670 * If sb_agblocks is NOT aligned turn off m_dalign since
671 * allocator alignment is within an ag, therefore ag has
672 * to be aligned at stripe boundary.
673 */
674 error = xfs_update_alignment(mp);
675 if (error)
676 goto out;
677
678 xfs_alloc_compute_maxlevels(mp);
679 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
680 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
681 xfs_ialloc_compute_maxlevels(mp);
682
683 xfs_set_maxicount(mp);
684
685 /* enable fail_at_unmount as default */
686 mp->m_fail_unmount = 1;
687
688 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
689 if (error)
690 goto out;
691
692 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
693 &mp->m_kobj, "stats");
694 if (error)
695 goto out_remove_sysfs;
696
697 error = xfs_error_sysfs_init(mp);
698 if (error)
699 goto out_del_stats;
700
701
702 error = xfs_uuid_mount(mp);
703 if (error)
704 goto out_remove_error_sysfs;
705
706 /*
707 * Set the minimum read and write sizes
708 */
709 xfs_set_rw_sizes(mp);
710
711 /* set the low space thresholds for dynamic preallocation */
712 xfs_set_low_space_thresholds(mp);
713
714 /*
715 * Set the inode cluster size.
716 * This may still be overridden by the file system
717 * block size if it is larger than the chosen cluster size.
718 *
719 * For v5 filesystems, scale the cluster size with the inode size to
720 * keep a constant ratio of inode per cluster buffer, but only if mkfs
721 * has set the inode alignment value appropriately for larger cluster
722 * sizes.
723 */
724 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
725 if (xfs_sb_version_hascrc(&mp->m_sb)) {
726 int new_size = mp->m_inode_cluster_size;
727
728 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
729 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
730 mp->m_inode_cluster_size = new_size;
731 }
732
733 /*
734 * If enabled, sparse inode chunk alignment is expected to match the
735 * cluster size. Full inode chunk alignment must match the chunk size,
736 * but that is checked on sb read verification...
737 */
738 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
739 mp->m_sb.sb_spino_align !=
740 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
741 xfs_warn(mp,
742 "Sparse inode block alignment (%u) must match cluster size (%llu).",
743 mp->m_sb.sb_spino_align,
744 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
745 error = -EINVAL;
746 goto out_remove_uuid;
747 }
748
749 /*
750 * Set inode alignment fields
751 */
752 xfs_set_inoalignment(mp);
753
754 /*
755 * Check that the data (and log if separate) is an ok size.
756 */
757 error = xfs_check_sizes(mp);
758 if (error)
759 goto out_remove_uuid;
760
761 /*
762 * Initialize realtime fields in the mount structure
763 */
764 error = xfs_rtmount_init(mp);
765 if (error) {
766 xfs_warn(mp, "RT mount failed");
767 goto out_remove_uuid;
768 }
769
770 /*
771 * Copies the low order bits of the timestamp and the randomly
772 * set "sequence" number out of a UUID.
773 */
774 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
775
776 mp->m_dmevmask = 0; /* not persistent; set after each mount */
777
778 error = xfs_da_mount(mp);
779 if (error) {
780 xfs_warn(mp, "Failed dir/attr init: %d", error);
781 goto out_remove_uuid;
782 }
783
784 /*
785 * Initialize the precomputed transaction reservations values.
786 */
787 xfs_trans_init(mp);
788
789 /*
790 * Allocate and initialize the per-ag data.
791 */
792 spin_lock_init(&mp->m_perag_lock);
793 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
794 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
795 if (error) {
796 xfs_warn(mp, "Failed per-ag init: %d", error);
797 goto out_free_dir;
798 }
799
800 if (!sbp->sb_logblocks) {
801 xfs_warn(mp, "no log defined");
802 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
803 error = -EFSCORRUPTED;
804 goto out_free_perag;
805 }
806
807 /*
808 * Log's mount-time initialization. The first part of recovery can place
809 * some items on the AIL, to be handled when recovery is finished or
810 * cancelled.
811 */
812 error = xfs_log_mount(mp, mp->m_logdev_targp,
813 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
814 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
815 if (error) {
816 xfs_warn(mp, "log mount failed");
817 goto out_fail_wait;
818 }
819
820 /*
821 * Now the log is mounted, we know if it was an unclean shutdown or
822 * not. If it was, with the first phase of recovery has completed, we
823 * have consistent AG blocks on disk. We have not recovered EFIs yet,
824 * but they are recovered transactionally in the second recovery phase
825 * later.
826 *
827 * Hence we can safely re-initialise incore superblock counters from
828 * the per-ag data. These may not be correct if the filesystem was not
829 * cleanly unmounted, so we need to wait for recovery to finish before
830 * doing this.
831 *
832 * If the filesystem was cleanly unmounted, then we can trust the
833 * values in the superblock to be correct and we don't need to do
834 * anything here.
835 *
836 * If we are currently making the filesystem, the initialisation will
837 * fail as the perag data is in an undefined state.
838 */
839 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
840 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
841 !mp->m_sb.sb_inprogress) {
842 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
843 if (error)
844 goto out_log_dealloc;
845 }
846
847 /*
848 * Get and sanity-check the root inode.
849 * Save the pointer to it in the mount structure.
850 */
851 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
852 if (error) {
853 xfs_warn(mp, "failed to read root inode");
854 goto out_log_dealloc;
855 }
856
857 ASSERT(rip != NULL);
858
859 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
860 xfs_warn(mp, "corrupted root inode %llu: not a directory",
861 (unsigned long long)rip->i_ino);
862 xfs_iunlock(rip, XFS_ILOCK_EXCL);
863 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
864 mp);
865 error = -EFSCORRUPTED;
866 goto out_rele_rip;
867 }
868 mp->m_rootip = rip; /* save it */
869
870 xfs_iunlock(rip, XFS_ILOCK_EXCL);
871
872 /*
873 * Initialize realtime inode pointers in the mount structure
874 */
875 error = xfs_rtmount_inodes(mp);
876 if (error) {
877 /*
878 * Free up the root inode.
879 */
880 xfs_warn(mp, "failed to read RT inodes");
881 goto out_rele_rip;
882 }
883
884 /*
885 * If this is a read-only mount defer the superblock updates until
886 * the next remount into writeable mode. Otherwise we would never
887 * perform the update e.g. for the root filesystem.
888 */
889 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
890 error = xfs_sync_sb(mp, false);
891 if (error) {
892 xfs_warn(mp, "failed to write sb changes");
893 goto out_rtunmount;
894 }
895 }
896
897 /*
898 * Initialise the XFS quota management subsystem for this mount
899 */
900 if (XFS_IS_QUOTA_RUNNING(mp)) {
901 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
902 if (error)
903 goto out_rtunmount;
904 } else {
905 ASSERT(!XFS_IS_QUOTA_ON(mp));
906
907 /*
908 * If a file system had quotas running earlier, but decided to
909 * mount without -o uquota/pquota/gquota options, revoke the
910 * quotachecked license.
911 */
912 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
913 xfs_notice(mp, "resetting quota flags");
914 error = xfs_mount_reset_sbqflags(mp);
915 if (error)
916 goto out_rtunmount;
917 }
918 }
919
920 /*
921 * Finish recovering the file system. This part needed to be delayed
922 * until after the root and real-time bitmap inodes were consistently
923 * read in.
924 */
925 error = xfs_log_mount_finish(mp);
926 if (error) {
927 xfs_warn(mp, "log mount finish failed");
928 goto out_rtunmount;
929 }
930
931 /*
932 * Complete the quota initialisation, post-log-replay component.
933 */
934 if (quotamount) {
935 ASSERT(mp->m_qflags == 0);
936 mp->m_qflags = quotaflags;
937
938 xfs_qm_mount_quotas(mp);
939 }
940
941 /*
942 * Now we are mounted, reserve a small amount of unused space for
943 * privileged transactions. This is needed so that transaction
944 * space required for critical operations can dip into this pool
945 * when at ENOSPC. This is needed for operations like create with
946 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
947 * are not allowed to use this reserved space.
948 *
949 * This may drive us straight to ENOSPC on mount, but that implies
950 * we were already there on the last unmount. Warn if this occurs.
951 */
952 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
953 resblks = xfs_default_resblks(mp);
954 error = xfs_reserve_blocks(mp, &resblks, NULL);
955 if (error)
956 xfs_warn(mp,
957 "Unable to allocate reserve blocks. Continuing without reserve pool.");
958 }
959
960 return 0;
961
962 out_rtunmount:
963 xfs_rtunmount_inodes(mp);
964 out_rele_rip:
965 IRELE(rip);
966 cancel_delayed_work_sync(&mp->m_reclaim_work);
967 xfs_reclaim_inodes(mp, SYNC_WAIT);
968 out_log_dealloc:
969 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
970 xfs_log_mount_cancel(mp);
971 out_fail_wait:
972 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
973 xfs_wait_buftarg(mp->m_logdev_targp);
974 xfs_wait_buftarg(mp->m_ddev_targp);
975 out_free_perag:
976 xfs_free_perag(mp);
977 out_free_dir:
978 xfs_da_unmount(mp);
979 out_remove_uuid:
980 xfs_uuid_unmount(mp);
981 out_remove_error_sysfs:
982 xfs_error_sysfs_del(mp);
983 out_del_stats:
984 xfs_sysfs_del(&mp->m_stats.xs_kobj);
985 out_remove_sysfs:
986 xfs_sysfs_del(&mp->m_kobj);
987 out:
988 return error;
989 }
990
991 /*
992 * This flushes out the inodes,dquots and the superblock, unmounts the
993 * log and makes sure that incore structures are freed.
994 */
995 void
996 xfs_unmountfs(
997 struct xfs_mount *mp)
998 {
999 __uint64_t resblks;
1000 int error;
1001
1002 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1003
1004 xfs_qm_unmount_quotas(mp);
1005 xfs_rtunmount_inodes(mp);
1006 IRELE(mp->m_rootip);
1007
1008 /*
1009 * We can potentially deadlock here if we have an inode cluster
1010 * that has been freed has its buffer still pinned in memory because
1011 * the transaction is still sitting in a iclog. The stale inodes
1012 * on that buffer will have their flush locks held until the
1013 * transaction hits the disk and the callbacks run. the inode
1014 * flush takes the flush lock unconditionally and with nothing to
1015 * push out the iclog we will never get that unlocked. hence we
1016 * need to force the log first.
1017 */
1018 xfs_log_force(mp, XFS_LOG_SYNC);
1019
1020 /*
1021 * We now need to tell the world we are unmounting. This will allow
1022 * us to detect that the filesystem is going away and we should error
1023 * out anything that we have been retrying in the background. This will
1024 * prevent neverending retries in AIL pushing from hanging the unmount.
1025 */
1026 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1027
1028 /*
1029 * Flush all pending changes from the AIL.
1030 */
1031 xfs_ail_push_all_sync(mp->m_ail);
1032
1033 /*
1034 * And reclaim all inodes. At this point there should be no dirty
1035 * inodes and none should be pinned or locked, but use synchronous
1036 * reclaim just to be sure. We can stop background inode reclaim
1037 * here as well if it is still running.
1038 */
1039 cancel_delayed_work_sync(&mp->m_reclaim_work);
1040 xfs_reclaim_inodes(mp, SYNC_WAIT);
1041
1042 xfs_qm_unmount(mp);
1043
1044 /*
1045 * Unreserve any blocks we have so that when we unmount we don't account
1046 * the reserved free space as used. This is really only necessary for
1047 * lazy superblock counting because it trusts the incore superblock
1048 * counters to be absolutely correct on clean unmount.
1049 *
1050 * We don't bother correcting this elsewhere for lazy superblock
1051 * counting because on mount of an unclean filesystem we reconstruct the
1052 * correct counter value and this is irrelevant.
1053 *
1054 * For non-lazy counter filesystems, this doesn't matter at all because
1055 * we only every apply deltas to the superblock and hence the incore
1056 * value does not matter....
1057 */
1058 resblks = 0;
1059 error = xfs_reserve_blocks(mp, &resblks, NULL);
1060 if (error)
1061 xfs_warn(mp, "Unable to free reserved block pool. "
1062 "Freespace may not be correct on next mount.");
1063
1064 error = xfs_log_sbcount(mp);
1065 if (error)
1066 xfs_warn(mp, "Unable to update superblock counters. "
1067 "Freespace may not be correct on next mount.");
1068
1069
1070 xfs_log_unmount(mp);
1071 xfs_da_unmount(mp);
1072 xfs_uuid_unmount(mp);
1073
1074 #if defined(DEBUG)
1075 xfs_errortag_clearall(mp, 0);
1076 #endif
1077 xfs_free_perag(mp);
1078
1079 xfs_error_sysfs_del(mp);
1080 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1081 xfs_sysfs_del(&mp->m_kobj);
1082 }
1083
1084 /*
1085 * Determine whether modifications can proceed. The caller specifies the minimum
1086 * freeze level for which modifications should not be allowed. This allows
1087 * certain operations to proceed while the freeze sequence is in progress, if
1088 * necessary.
1089 */
1090 bool
1091 xfs_fs_writable(
1092 struct xfs_mount *mp,
1093 int level)
1094 {
1095 ASSERT(level > SB_UNFROZEN);
1096 if ((mp->m_super->s_writers.frozen >= level) ||
1097 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1098 return false;
1099
1100 return true;
1101 }
1102
1103 /*
1104 * xfs_log_sbcount
1105 *
1106 * Sync the superblock counters to disk.
1107 *
1108 * Note this code can be called during the process of freezing, so we use the
1109 * transaction allocator that does not block when the transaction subsystem is
1110 * in its frozen state.
1111 */
1112 int
1113 xfs_log_sbcount(xfs_mount_t *mp)
1114 {
1115 /* allow this to proceed during the freeze sequence... */
1116 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1117 return 0;
1118
1119 /*
1120 * we don't need to do this if we are updating the superblock
1121 * counters on every modification.
1122 */
1123 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1124 return 0;
1125
1126 return xfs_sync_sb(mp, true);
1127 }
1128
1129 /*
1130 * Deltas for the inode count are +/-64, hence we use a large batch size
1131 * of 128 so we don't need to take the counter lock on every update.
1132 */
1133 #define XFS_ICOUNT_BATCH 128
1134 int
1135 xfs_mod_icount(
1136 struct xfs_mount *mp,
1137 int64_t delta)
1138 {
1139 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1140 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1141 ASSERT(0);
1142 percpu_counter_add(&mp->m_icount, -delta);
1143 return -EINVAL;
1144 }
1145 return 0;
1146 }
1147
1148 int
1149 xfs_mod_ifree(
1150 struct xfs_mount *mp,
1151 int64_t delta)
1152 {
1153 percpu_counter_add(&mp->m_ifree, delta);
1154 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1155 ASSERT(0);
1156 percpu_counter_add(&mp->m_ifree, -delta);
1157 return -EINVAL;
1158 }
1159 return 0;
1160 }
1161
1162 /*
1163 * Deltas for the block count can vary from 1 to very large, but lock contention
1164 * only occurs on frequent small block count updates such as in the delayed
1165 * allocation path for buffered writes (page a time updates). Hence we set
1166 * a large batch count (1024) to minimise global counter updates except when
1167 * we get near to ENOSPC and we have to be very accurate with our updates.
1168 */
1169 #define XFS_FDBLOCKS_BATCH 1024
1170 int
1171 xfs_mod_fdblocks(
1172 struct xfs_mount *mp,
1173 int64_t delta,
1174 bool rsvd)
1175 {
1176 int64_t lcounter;
1177 long long res_used;
1178 s32 batch;
1179
1180 if (delta > 0) {
1181 /*
1182 * If the reserve pool is depleted, put blocks back into it
1183 * first. Most of the time the pool is full.
1184 */
1185 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1186 percpu_counter_add(&mp->m_fdblocks, delta);
1187 return 0;
1188 }
1189
1190 spin_lock(&mp->m_sb_lock);
1191 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1192
1193 if (res_used > delta) {
1194 mp->m_resblks_avail += delta;
1195 } else {
1196 delta -= res_used;
1197 mp->m_resblks_avail = mp->m_resblks;
1198 percpu_counter_add(&mp->m_fdblocks, delta);
1199 }
1200 spin_unlock(&mp->m_sb_lock);
1201 return 0;
1202 }
1203
1204 /*
1205 * Taking blocks away, need to be more accurate the closer we
1206 * are to zero.
1207 *
1208 * If the counter has a value of less than 2 * max batch size,
1209 * then make everything serialise as we are real close to
1210 * ENOSPC.
1211 */
1212 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1213 XFS_FDBLOCKS_BATCH) < 0)
1214 batch = 1;
1215 else
1216 batch = XFS_FDBLOCKS_BATCH;
1217
1218 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1219 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1220 XFS_FDBLOCKS_BATCH) >= 0) {
1221 /* we had space! */
1222 return 0;
1223 }
1224
1225 /*
1226 * lock up the sb for dipping into reserves before releasing the space
1227 * that took us to ENOSPC.
1228 */
1229 spin_lock(&mp->m_sb_lock);
1230 percpu_counter_add(&mp->m_fdblocks, -delta);
1231 if (!rsvd)
1232 goto fdblocks_enospc;
1233
1234 lcounter = (long long)mp->m_resblks_avail + delta;
1235 if (lcounter >= 0) {
1236 mp->m_resblks_avail = lcounter;
1237 spin_unlock(&mp->m_sb_lock);
1238 return 0;
1239 }
1240 printk_once(KERN_WARNING
1241 "Filesystem \"%s\": reserve blocks depleted! "
1242 "Consider increasing reserve pool size.",
1243 mp->m_fsname);
1244 fdblocks_enospc:
1245 spin_unlock(&mp->m_sb_lock);
1246 return -ENOSPC;
1247 }
1248
1249 int
1250 xfs_mod_frextents(
1251 struct xfs_mount *mp,
1252 int64_t delta)
1253 {
1254 int64_t lcounter;
1255 int ret = 0;
1256
1257 spin_lock(&mp->m_sb_lock);
1258 lcounter = mp->m_sb.sb_frextents + delta;
1259 if (lcounter < 0)
1260 ret = -ENOSPC;
1261 else
1262 mp->m_sb.sb_frextents = lcounter;
1263 spin_unlock(&mp->m_sb_lock);
1264 return ret;
1265 }
1266
1267 /*
1268 * xfs_getsb() is called to obtain the buffer for the superblock.
1269 * The buffer is returned locked and read in from disk.
1270 * The buffer should be released with a call to xfs_brelse().
1271 *
1272 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1273 * the superblock buffer if it can be locked without sleeping.
1274 * If it can't then we'll return NULL.
1275 */
1276 struct xfs_buf *
1277 xfs_getsb(
1278 struct xfs_mount *mp,
1279 int flags)
1280 {
1281 struct xfs_buf *bp = mp->m_sb_bp;
1282
1283 if (!xfs_buf_trylock(bp)) {
1284 if (flags & XBF_TRYLOCK)
1285 return NULL;
1286 xfs_buf_lock(bp);
1287 }
1288
1289 xfs_buf_hold(bp);
1290 ASSERT(bp->b_flags & XBF_DONE);
1291 return bp;
1292 }
1293
1294 /*
1295 * Used to free the superblock along various error paths.
1296 */
1297 void
1298 xfs_freesb(
1299 struct xfs_mount *mp)
1300 {
1301 struct xfs_buf *bp = mp->m_sb_bp;
1302
1303 xfs_buf_lock(bp);
1304 mp->m_sb_bp = NULL;
1305 xfs_buf_relse(bp);
1306 }
1307
1308 /*
1309 * If the underlying (data/log/rt) device is readonly, there are some
1310 * operations that cannot proceed.
1311 */
1312 int
1313 xfs_dev_is_read_only(
1314 struct xfs_mount *mp,
1315 char *message)
1316 {
1317 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1318 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1319 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1320 xfs_notice(mp, "%s required on read-only device.", message);
1321 xfs_notice(mp, "write access unavailable, cannot proceed.");
1322 return -EROFS;
1323 }
1324 return 0;
1325 }