]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_mount.c
xfs: make buffer read verication an IO completion function
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46
47
48 #ifdef HAVE_PERCPU_SB
49 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
50 int);
51 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52 int);
53 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
54 #else
55
56 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
57 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
58 #endif
59
60 static const struct {
61 short offset;
62 short type; /* 0 = integer
63 * 1 = binary / string (no translation)
64 */
65 } xfs_sb_info[] = {
66 { offsetof(xfs_sb_t, sb_magicnum), 0 },
67 { offsetof(xfs_sb_t, sb_blocksize), 0 },
68 { offsetof(xfs_sb_t, sb_dblocks), 0 },
69 { offsetof(xfs_sb_t, sb_rblocks), 0 },
70 { offsetof(xfs_sb_t, sb_rextents), 0 },
71 { offsetof(xfs_sb_t, sb_uuid), 1 },
72 { offsetof(xfs_sb_t, sb_logstart), 0 },
73 { offsetof(xfs_sb_t, sb_rootino), 0 },
74 { offsetof(xfs_sb_t, sb_rbmino), 0 },
75 { offsetof(xfs_sb_t, sb_rsumino), 0 },
76 { offsetof(xfs_sb_t, sb_rextsize), 0 },
77 { offsetof(xfs_sb_t, sb_agblocks), 0 },
78 { offsetof(xfs_sb_t, sb_agcount), 0 },
79 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
80 { offsetof(xfs_sb_t, sb_logblocks), 0 },
81 { offsetof(xfs_sb_t, sb_versionnum), 0 },
82 { offsetof(xfs_sb_t, sb_sectsize), 0 },
83 { offsetof(xfs_sb_t, sb_inodesize), 0 },
84 { offsetof(xfs_sb_t, sb_inopblock), 0 },
85 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
86 { offsetof(xfs_sb_t, sb_blocklog), 0 },
87 { offsetof(xfs_sb_t, sb_sectlog), 0 },
88 { offsetof(xfs_sb_t, sb_inodelog), 0 },
89 { offsetof(xfs_sb_t, sb_inopblog), 0 },
90 { offsetof(xfs_sb_t, sb_agblklog), 0 },
91 { offsetof(xfs_sb_t, sb_rextslog), 0 },
92 { offsetof(xfs_sb_t, sb_inprogress), 0 },
93 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
94 { offsetof(xfs_sb_t, sb_icount), 0 },
95 { offsetof(xfs_sb_t, sb_ifree), 0 },
96 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
97 { offsetof(xfs_sb_t, sb_frextents), 0 },
98 { offsetof(xfs_sb_t, sb_uquotino), 0 },
99 { offsetof(xfs_sb_t, sb_gquotino), 0 },
100 { offsetof(xfs_sb_t, sb_qflags), 0 },
101 { offsetof(xfs_sb_t, sb_flags), 0 },
102 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
103 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
104 { offsetof(xfs_sb_t, sb_unit), 0 },
105 { offsetof(xfs_sb_t, sb_width), 0 },
106 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
107 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
108 { offsetof(xfs_sb_t, sb_logsectsize),0 },
109 { offsetof(xfs_sb_t, sb_logsunit), 0 },
110 { offsetof(xfs_sb_t, sb_features2), 0 },
111 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
112 { sizeof(xfs_sb_t), 0 }
113 };
114
115 static DEFINE_MUTEX(xfs_uuid_table_mutex);
116 static int xfs_uuid_table_size;
117 static uuid_t *xfs_uuid_table;
118
119 /*
120 * See if the UUID is unique among mounted XFS filesystems.
121 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
122 */
123 STATIC int
124 xfs_uuid_mount(
125 struct xfs_mount *mp)
126 {
127 uuid_t *uuid = &mp->m_sb.sb_uuid;
128 int hole, i;
129
130 if (mp->m_flags & XFS_MOUNT_NOUUID)
131 return 0;
132
133 if (uuid_is_nil(uuid)) {
134 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
135 return XFS_ERROR(EINVAL);
136 }
137
138 mutex_lock(&xfs_uuid_table_mutex);
139 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
140 if (uuid_is_nil(&xfs_uuid_table[i])) {
141 hole = i;
142 continue;
143 }
144 if (uuid_equal(uuid, &xfs_uuid_table[i]))
145 goto out_duplicate;
146 }
147
148 if (hole < 0) {
149 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
150 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
151 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
152 KM_SLEEP);
153 hole = xfs_uuid_table_size++;
154 }
155 xfs_uuid_table[hole] = *uuid;
156 mutex_unlock(&xfs_uuid_table_mutex);
157
158 return 0;
159
160 out_duplicate:
161 mutex_unlock(&xfs_uuid_table_mutex);
162 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
163 return XFS_ERROR(EINVAL);
164 }
165
166 STATIC void
167 xfs_uuid_unmount(
168 struct xfs_mount *mp)
169 {
170 uuid_t *uuid = &mp->m_sb.sb_uuid;
171 int i;
172
173 if (mp->m_flags & XFS_MOUNT_NOUUID)
174 return;
175
176 mutex_lock(&xfs_uuid_table_mutex);
177 for (i = 0; i < xfs_uuid_table_size; i++) {
178 if (uuid_is_nil(&xfs_uuid_table[i]))
179 continue;
180 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
181 continue;
182 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
183 break;
184 }
185 ASSERT(i < xfs_uuid_table_size);
186 mutex_unlock(&xfs_uuid_table_mutex);
187 }
188
189
190 /*
191 * Reference counting access wrappers to the perag structures.
192 * Because we never free per-ag structures, the only thing we
193 * have to protect against changes is the tree structure itself.
194 */
195 struct xfs_perag *
196 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
197 {
198 struct xfs_perag *pag;
199 int ref = 0;
200
201 rcu_read_lock();
202 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
203 if (pag) {
204 ASSERT(atomic_read(&pag->pag_ref) >= 0);
205 ref = atomic_inc_return(&pag->pag_ref);
206 }
207 rcu_read_unlock();
208 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
209 return pag;
210 }
211
212 /*
213 * search from @first to find the next perag with the given tag set.
214 */
215 struct xfs_perag *
216 xfs_perag_get_tag(
217 struct xfs_mount *mp,
218 xfs_agnumber_t first,
219 int tag)
220 {
221 struct xfs_perag *pag;
222 int found;
223 int ref;
224
225 rcu_read_lock();
226 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
227 (void **)&pag, first, 1, tag);
228 if (found <= 0) {
229 rcu_read_unlock();
230 return NULL;
231 }
232 ref = atomic_inc_return(&pag->pag_ref);
233 rcu_read_unlock();
234 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
235 return pag;
236 }
237
238 void
239 xfs_perag_put(struct xfs_perag *pag)
240 {
241 int ref;
242
243 ASSERT(atomic_read(&pag->pag_ref) > 0);
244 ref = atomic_dec_return(&pag->pag_ref);
245 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
246 }
247
248 STATIC void
249 __xfs_free_perag(
250 struct rcu_head *head)
251 {
252 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
253
254 ASSERT(atomic_read(&pag->pag_ref) == 0);
255 kmem_free(pag);
256 }
257
258 /*
259 * Free up the per-ag resources associated with the mount structure.
260 */
261 STATIC void
262 xfs_free_perag(
263 xfs_mount_t *mp)
264 {
265 xfs_agnumber_t agno;
266 struct xfs_perag *pag;
267
268 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
269 spin_lock(&mp->m_perag_lock);
270 pag = radix_tree_delete(&mp->m_perag_tree, agno);
271 spin_unlock(&mp->m_perag_lock);
272 ASSERT(pag);
273 ASSERT(atomic_read(&pag->pag_ref) == 0);
274 call_rcu(&pag->rcu_head, __xfs_free_perag);
275 }
276 }
277
278 /*
279 * Check size of device based on the (data/realtime) block count.
280 * Note: this check is used by the growfs code as well as mount.
281 */
282 int
283 xfs_sb_validate_fsb_count(
284 xfs_sb_t *sbp,
285 __uint64_t nblocks)
286 {
287 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
288 ASSERT(sbp->sb_blocklog >= BBSHIFT);
289
290 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
291 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
292 return EFBIG;
293 #else /* Limited by UINT_MAX of sectors */
294 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
295 return EFBIG;
296 #endif
297 return 0;
298 }
299
300 /*
301 * Check the validity of the SB found.
302 */
303 STATIC int
304 xfs_mount_validate_sb(
305 xfs_mount_t *mp,
306 xfs_sb_t *sbp,
307 int flags)
308 {
309 int loud = !(flags & XFS_MFSI_QUIET);
310
311 /*
312 * If the log device and data device have the
313 * same device number, the log is internal.
314 * Consequently, the sb_logstart should be non-zero. If
315 * we have a zero sb_logstart in this case, we may be trying to mount
316 * a volume filesystem in a non-volume manner.
317 */
318 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
319 if (loud)
320 xfs_warn(mp, "bad magic number");
321 return XFS_ERROR(EWRONGFS);
322 }
323
324 if (!xfs_sb_good_version(sbp)) {
325 if (loud)
326 xfs_warn(mp, "bad version");
327 return XFS_ERROR(EWRONGFS);
328 }
329
330 if (unlikely(
331 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
332 if (loud)
333 xfs_warn(mp,
334 "filesystem is marked as having an external log; "
335 "specify logdev on the mount command line.");
336 return XFS_ERROR(EINVAL);
337 }
338
339 if (unlikely(
340 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
341 if (loud)
342 xfs_warn(mp,
343 "filesystem is marked as having an internal log; "
344 "do not specify logdev on the mount command line.");
345 return XFS_ERROR(EINVAL);
346 }
347
348 /*
349 * More sanity checking. Most of these were stolen directly from
350 * xfs_repair.
351 */
352 if (unlikely(
353 sbp->sb_agcount <= 0 ||
354 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
355 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
356 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
357 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
358 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
359 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
360 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
361 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
362 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
363 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
364 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
365 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
366 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
367 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
368 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
369 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
370 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
371 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
372 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
373 sbp->sb_dblocks == 0 ||
374 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
375 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
376 if (loud)
377 XFS_CORRUPTION_ERROR("SB sanity check failed",
378 XFS_ERRLEVEL_LOW, mp, sbp);
379 return XFS_ERROR(EFSCORRUPTED);
380 }
381
382 /*
383 * Until this is fixed only page-sized or smaller data blocks work.
384 */
385 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
386 if (loud) {
387 xfs_warn(mp,
388 "File system with blocksize %d bytes. "
389 "Only pagesize (%ld) or less will currently work.",
390 sbp->sb_blocksize, PAGE_SIZE);
391 }
392 return XFS_ERROR(ENOSYS);
393 }
394
395 /*
396 * Currently only very few inode sizes are supported.
397 */
398 switch (sbp->sb_inodesize) {
399 case 256:
400 case 512:
401 case 1024:
402 case 2048:
403 break;
404 default:
405 if (loud)
406 xfs_warn(mp, "inode size of %d bytes not supported",
407 sbp->sb_inodesize);
408 return XFS_ERROR(ENOSYS);
409 }
410
411 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
412 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
413 if (loud)
414 xfs_warn(mp,
415 "file system too large to be mounted on this system.");
416 return XFS_ERROR(EFBIG);
417 }
418
419 if (unlikely(sbp->sb_inprogress)) {
420 if (loud)
421 xfs_warn(mp, "file system busy");
422 return XFS_ERROR(EFSCORRUPTED);
423 }
424
425 /*
426 * Version 1 directory format has never worked on Linux.
427 */
428 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
429 if (loud)
430 xfs_warn(mp,
431 "file system using version 1 directory format");
432 return XFS_ERROR(ENOSYS);
433 }
434
435 return 0;
436 }
437
438 int
439 xfs_initialize_perag(
440 xfs_mount_t *mp,
441 xfs_agnumber_t agcount,
442 xfs_agnumber_t *maxagi)
443 {
444 xfs_agnumber_t index;
445 xfs_agnumber_t first_initialised = 0;
446 xfs_perag_t *pag;
447 xfs_agino_t agino;
448 xfs_ino_t ino;
449 xfs_sb_t *sbp = &mp->m_sb;
450 int error = -ENOMEM;
451
452 /*
453 * Walk the current per-ag tree so we don't try to initialise AGs
454 * that already exist (growfs case). Allocate and insert all the
455 * AGs we don't find ready for initialisation.
456 */
457 for (index = 0; index < agcount; index++) {
458 pag = xfs_perag_get(mp, index);
459 if (pag) {
460 xfs_perag_put(pag);
461 continue;
462 }
463 if (!first_initialised)
464 first_initialised = index;
465
466 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
467 if (!pag)
468 goto out_unwind;
469 pag->pag_agno = index;
470 pag->pag_mount = mp;
471 spin_lock_init(&pag->pag_ici_lock);
472 mutex_init(&pag->pag_ici_reclaim_lock);
473 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
474 spin_lock_init(&pag->pag_buf_lock);
475 pag->pag_buf_tree = RB_ROOT;
476
477 if (radix_tree_preload(GFP_NOFS))
478 goto out_unwind;
479
480 spin_lock(&mp->m_perag_lock);
481 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
482 BUG();
483 spin_unlock(&mp->m_perag_lock);
484 radix_tree_preload_end();
485 error = -EEXIST;
486 goto out_unwind;
487 }
488 spin_unlock(&mp->m_perag_lock);
489 radix_tree_preload_end();
490 }
491
492 /*
493 * If we mount with the inode64 option, or no inode overflows
494 * the legacy 32-bit address space clear the inode32 option.
495 */
496 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
497 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
498
499 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
500 mp->m_flags |= XFS_MOUNT_32BITINODES;
501 else
502 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
503
504 if (mp->m_flags & XFS_MOUNT_32BITINODES)
505 index = xfs_set_inode32(mp);
506 else
507 index = xfs_set_inode64(mp);
508
509 if (maxagi)
510 *maxagi = index;
511 return 0;
512
513 out_unwind:
514 kmem_free(pag);
515 for (; index > first_initialised; index--) {
516 pag = radix_tree_delete(&mp->m_perag_tree, index);
517 kmem_free(pag);
518 }
519 return error;
520 }
521
522 void
523 xfs_sb_from_disk(
524 struct xfs_mount *mp,
525 xfs_dsb_t *from)
526 {
527 struct xfs_sb *to = &mp->m_sb;
528
529 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
530 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
531 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
532 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
533 to->sb_rextents = be64_to_cpu(from->sb_rextents);
534 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
535 to->sb_logstart = be64_to_cpu(from->sb_logstart);
536 to->sb_rootino = be64_to_cpu(from->sb_rootino);
537 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
538 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
539 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
540 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
541 to->sb_agcount = be32_to_cpu(from->sb_agcount);
542 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
543 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
544 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
545 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
546 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
547 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
548 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
549 to->sb_blocklog = from->sb_blocklog;
550 to->sb_sectlog = from->sb_sectlog;
551 to->sb_inodelog = from->sb_inodelog;
552 to->sb_inopblog = from->sb_inopblog;
553 to->sb_agblklog = from->sb_agblklog;
554 to->sb_rextslog = from->sb_rextslog;
555 to->sb_inprogress = from->sb_inprogress;
556 to->sb_imax_pct = from->sb_imax_pct;
557 to->sb_icount = be64_to_cpu(from->sb_icount);
558 to->sb_ifree = be64_to_cpu(from->sb_ifree);
559 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
560 to->sb_frextents = be64_to_cpu(from->sb_frextents);
561 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
562 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
563 to->sb_qflags = be16_to_cpu(from->sb_qflags);
564 to->sb_flags = from->sb_flags;
565 to->sb_shared_vn = from->sb_shared_vn;
566 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
567 to->sb_unit = be32_to_cpu(from->sb_unit);
568 to->sb_width = be32_to_cpu(from->sb_width);
569 to->sb_dirblklog = from->sb_dirblklog;
570 to->sb_logsectlog = from->sb_logsectlog;
571 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
572 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
573 to->sb_features2 = be32_to_cpu(from->sb_features2);
574 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
575 }
576
577 /*
578 * Copy in core superblock to ondisk one.
579 *
580 * The fields argument is mask of superblock fields to copy.
581 */
582 void
583 xfs_sb_to_disk(
584 xfs_dsb_t *to,
585 xfs_sb_t *from,
586 __int64_t fields)
587 {
588 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
589 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
590 xfs_sb_field_t f;
591 int first;
592 int size;
593
594 ASSERT(fields);
595 if (!fields)
596 return;
597
598 while (fields) {
599 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
600 first = xfs_sb_info[f].offset;
601 size = xfs_sb_info[f + 1].offset - first;
602
603 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
604
605 if (size == 1 || xfs_sb_info[f].type == 1) {
606 memcpy(to_ptr + first, from_ptr + first, size);
607 } else {
608 switch (size) {
609 case 2:
610 *(__be16 *)(to_ptr + first) =
611 cpu_to_be16(*(__u16 *)(from_ptr + first));
612 break;
613 case 4:
614 *(__be32 *)(to_ptr + first) =
615 cpu_to_be32(*(__u32 *)(from_ptr + first));
616 break;
617 case 8:
618 *(__be64 *)(to_ptr + first) =
619 cpu_to_be64(*(__u64 *)(from_ptr + first));
620 break;
621 default:
622 ASSERT(0);
623 }
624 }
625
626 fields &= ~(1LL << f);
627 }
628 }
629
630 /*
631 * xfs_readsb
632 *
633 * Does the initial read of the superblock.
634 */
635 int
636 xfs_readsb(xfs_mount_t *mp, int flags)
637 {
638 unsigned int sector_size;
639 xfs_buf_t *bp;
640 int error;
641 int loud = !(flags & XFS_MFSI_QUIET);
642
643 ASSERT(mp->m_sb_bp == NULL);
644 ASSERT(mp->m_ddev_targp != NULL);
645
646 /*
647 * Allocate a (locked) buffer to hold the superblock.
648 * This will be kept around at all times to optimize
649 * access to the superblock.
650 */
651 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
652
653 reread:
654 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
655 BTOBB(sector_size), 0, NULL);
656 if (!bp) {
657 if (loud)
658 xfs_warn(mp, "SB buffer read failed");
659 return EIO;
660 }
661
662 /*
663 * Initialize the mount structure from the superblock.
664 * But first do some basic consistency checking.
665 */
666 xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp));
667 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
668 if (error) {
669 if (loud)
670 xfs_warn(mp, "SB validate failed");
671 goto release_buf;
672 }
673
674 /*
675 * We must be able to do sector-sized and sector-aligned IO.
676 */
677 if (sector_size > mp->m_sb.sb_sectsize) {
678 if (loud)
679 xfs_warn(mp, "device supports %u byte sectors (not %u)",
680 sector_size, mp->m_sb.sb_sectsize);
681 error = ENOSYS;
682 goto release_buf;
683 }
684
685 /*
686 * If device sector size is smaller than the superblock size,
687 * re-read the superblock so the buffer is correctly sized.
688 */
689 if (sector_size < mp->m_sb.sb_sectsize) {
690 xfs_buf_relse(bp);
691 sector_size = mp->m_sb.sb_sectsize;
692 goto reread;
693 }
694
695 /* Initialize per-cpu counters */
696 xfs_icsb_reinit_counters(mp);
697
698 mp->m_sb_bp = bp;
699 xfs_buf_unlock(bp);
700 return 0;
701
702 release_buf:
703 xfs_buf_relse(bp);
704 return error;
705 }
706
707
708 /*
709 * xfs_mount_common
710 *
711 * Mount initialization code establishing various mount
712 * fields from the superblock associated with the given
713 * mount structure
714 */
715 STATIC void
716 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
717 {
718 mp->m_agfrotor = mp->m_agirotor = 0;
719 spin_lock_init(&mp->m_agirotor_lock);
720 mp->m_maxagi = mp->m_sb.sb_agcount;
721 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
722 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
723 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
724 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
725 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
726 mp->m_blockmask = sbp->sb_blocksize - 1;
727 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
728 mp->m_blockwmask = mp->m_blockwsize - 1;
729
730 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
731 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
732 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
733 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
734
735 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
736 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
737 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
738 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
739
740 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
741 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
742 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
743 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
744
745 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
746 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
747 sbp->sb_inopblock);
748 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
749 }
750
751 /*
752 * xfs_initialize_perag_data
753 *
754 * Read in each per-ag structure so we can count up the number of
755 * allocated inodes, free inodes and used filesystem blocks as this
756 * information is no longer persistent in the superblock. Once we have
757 * this information, write it into the in-core superblock structure.
758 */
759 STATIC int
760 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
761 {
762 xfs_agnumber_t index;
763 xfs_perag_t *pag;
764 xfs_sb_t *sbp = &mp->m_sb;
765 uint64_t ifree = 0;
766 uint64_t ialloc = 0;
767 uint64_t bfree = 0;
768 uint64_t bfreelst = 0;
769 uint64_t btree = 0;
770 int error;
771
772 for (index = 0; index < agcount; index++) {
773 /*
774 * read the agf, then the agi. This gets us
775 * all the information we need and populates the
776 * per-ag structures for us.
777 */
778 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
779 if (error)
780 return error;
781
782 error = xfs_ialloc_pagi_init(mp, NULL, index);
783 if (error)
784 return error;
785 pag = xfs_perag_get(mp, index);
786 ifree += pag->pagi_freecount;
787 ialloc += pag->pagi_count;
788 bfree += pag->pagf_freeblks;
789 bfreelst += pag->pagf_flcount;
790 btree += pag->pagf_btreeblks;
791 xfs_perag_put(pag);
792 }
793 /*
794 * Overwrite incore superblock counters with just-read data
795 */
796 spin_lock(&mp->m_sb_lock);
797 sbp->sb_ifree = ifree;
798 sbp->sb_icount = ialloc;
799 sbp->sb_fdblocks = bfree + bfreelst + btree;
800 spin_unlock(&mp->m_sb_lock);
801
802 /* Fixup the per-cpu counters as well. */
803 xfs_icsb_reinit_counters(mp);
804
805 return 0;
806 }
807
808 /*
809 * Update alignment values based on mount options and sb values
810 */
811 STATIC int
812 xfs_update_alignment(xfs_mount_t *mp)
813 {
814 xfs_sb_t *sbp = &(mp->m_sb);
815
816 if (mp->m_dalign) {
817 /*
818 * If stripe unit and stripe width are not multiples
819 * of the fs blocksize turn off alignment.
820 */
821 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
822 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
823 if (mp->m_flags & XFS_MOUNT_RETERR) {
824 xfs_warn(mp, "alignment check failed: "
825 "(sunit/swidth vs. blocksize)");
826 return XFS_ERROR(EINVAL);
827 }
828 mp->m_dalign = mp->m_swidth = 0;
829 } else {
830 /*
831 * Convert the stripe unit and width to FSBs.
832 */
833 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
834 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
835 if (mp->m_flags & XFS_MOUNT_RETERR) {
836 xfs_warn(mp, "alignment check failed: "
837 "(sunit/swidth vs. ag size)");
838 return XFS_ERROR(EINVAL);
839 }
840 xfs_warn(mp,
841 "stripe alignment turned off: sunit(%d)/swidth(%d) "
842 "incompatible with agsize(%d)",
843 mp->m_dalign, mp->m_swidth,
844 sbp->sb_agblocks);
845
846 mp->m_dalign = 0;
847 mp->m_swidth = 0;
848 } else if (mp->m_dalign) {
849 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
850 } else {
851 if (mp->m_flags & XFS_MOUNT_RETERR) {
852 xfs_warn(mp, "alignment check failed: "
853 "sunit(%d) less than bsize(%d)",
854 mp->m_dalign,
855 mp->m_blockmask +1);
856 return XFS_ERROR(EINVAL);
857 }
858 mp->m_swidth = 0;
859 }
860 }
861
862 /*
863 * Update superblock with new values
864 * and log changes
865 */
866 if (xfs_sb_version_hasdalign(sbp)) {
867 if (sbp->sb_unit != mp->m_dalign) {
868 sbp->sb_unit = mp->m_dalign;
869 mp->m_update_flags |= XFS_SB_UNIT;
870 }
871 if (sbp->sb_width != mp->m_swidth) {
872 sbp->sb_width = mp->m_swidth;
873 mp->m_update_flags |= XFS_SB_WIDTH;
874 }
875 }
876 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
877 xfs_sb_version_hasdalign(&mp->m_sb)) {
878 mp->m_dalign = sbp->sb_unit;
879 mp->m_swidth = sbp->sb_width;
880 }
881
882 return 0;
883 }
884
885 /*
886 * Set the maximum inode count for this filesystem
887 */
888 STATIC void
889 xfs_set_maxicount(xfs_mount_t *mp)
890 {
891 xfs_sb_t *sbp = &(mp->m_sb);
892 __uint64_t icount;
893
894 if (sbp->sb_imax_pct) {
895 /*
896 * Make sure the maximum inode count is a multiple
897 * of the units we allocate inodes in.
898 */
899 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
900 do_div(icount, 100);
901 do_div(icount, mp->m_ialloc_blks);
902 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
903 sbp->sb_inopblog;
904 } else {
905 mp->m_maxicount = 0;
906 }
907 }
908
909 /*
910 * Set the default minimum read and write sizes unless
911 * already specified in a mount option.
912 * We use smaller I/O sizes when the file system
913 * is being used for NFS service (wsync mount option).
914 */
915 STATIC void
916 xfs_set_rw_sizes(xfs_mount_t *mp)
917 {
918 xfs_sb_t *sbp = &(mp->m_sb);
919 int readio_log, writeio_log;
920
921 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
922 if (mp->m_flags & XFS_MOUNT_WSYNC) {
923 readio_log = XFS_WSYNC_READIO_LOG;
924 writeio_log = XFS_WSYNC_WRITEIO_LOG;
925 } else {
926 readio_log = XFS_READIO_LOG_LARGE;
927 writeio_log = XFS_WRITEIO_LOG_LARGE;
928 }
929 } else {
930 readio_log = mp->m_readio_log;
931 writeio_log = mp->m_writeio_log;
932 }
933
934 if (sbp->sb_blocklog > readio_log) {
935 mp->m_readio_log = sbp->sb_blocklog;
936 } else {
937 mp->m_readio_log = readio_log;
938 }
939 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
940 if (sbp->sb_blocklog > writeio_log) {
941 mp->m_writeio_log = sbp->sb_blocklog;
942 } else {
943 mp->m_writeio_log = writeio_log;
944 }
945 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
946 }
947
948 /*
949 * precalculate the low space thresholds for dynamic speculative preallocation.
950 */
951 void
952 xfs_set_low_space_thresholds(
953 struct xfs_mount *mp)
954 {
955 int i;
956
957 for (i = 0; i < XFS_LOWSP_MAX; i++) {
958 __uint64_t space = mp->m_sb.sb_dblocks;
959
960 do_div(space, 100);
961 mp->m_low_space[i] = space * (i + 1);
962 }
963 }
964
965
966 /*
967 * Set whether we're using inode alignment.
968 */
969 STATIC void
970 xfs_set_inoalignment(xfs_mount_t *mp)
971 {
972 if (xfs_sb_version_hasalign(&mp->m_sb) &&
973 mp->m_sb.sb_inoalignmt >=
974 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
975 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
976 else
977 mp->m_inoalign_mask = 0;
978 /*
979 * If we are using stripe alignment, check whether
980 * the stripe unit is a multiple of the inode alignment
981 */
982 if (mp->m_dalign && mp->m_inoalign_mask &&
983 !(mp->m_dalign & mp->m_inoalign_mask))
984 mp->m_sinoalign = mp->m_dalign;
985 else
986 mp->m_sinoalign = 0;
987 }
988
989 /*
990 * Check that the data (and log if separate) are an ok size.
991 */
992 STATIC int
993 xfs_check_sizes(xfs_mount_t *mp)
994 {
995 xfs_buf_t *bp;
996 xfs_daddr_t d;
997
998 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
999 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1000 xfs_warn(mp, "filesystem size mismatch detected");
1001 return XFS_ERROR(EFBIG);
1002 }
1003 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1004 d - XFS_FSS_TO_BB(mp, 1),
1005 XFS_FSS_TO_BB(mp, 1), 0, NULL);
1006 if (!bp) {
1007 xfs_warn(mp, "last sector read failed");
1008 return EIO;
1009 }
1010 xfs_buf_relse(bp);
1011
1012 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1013 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1014 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1015 xfs_warn(mp, "log size mismatch detected");
1016 return XFS_ERROR(EFBIG);
1017 }
1018 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1019 d - XFS_FSB_TO_BB(mp, 1),
1020 XFS_FSB_TO_BB(mp, 1), 0, NULL);
1021 if (!bp) {
1022 xfs_warn(mp, "log device read failed");
1023 return EIO;
1024 }
1025 xfs_buf_relse(bp);
1026 }
1027 return 0;
1028 }
1029
1030 /*
1031 * Clear the quotaflags in memory and in the superblock.
1032 */
1033 int
1034 xfs_mount_reset_sbqflags(
1035 struct xfs_mount *mp)
1036 {
1037 int error;
1038 struct xfs_trans *tp;
1039
1040 mp->m_qflags = 0;
1041
1042 /*
1043 * It is OK to look at sb_qflags here in mount path,
1044 * without m_sb_lock.
1045 */
1046 if (mp->m_sb.sb_qflags == 0)
1047 return 0;
1048 spin_lock(&mp->m_sb_lock);
1049 mp->m_sb.sb_qflags = 0;
1050 spin_unlock(&mp->m_sb_lock);
1051
1052 /*
1053 * If the fs is readonly, let the incore superblock run
1054 * with quotas off but don't flush the update out to disk
1055 */
1056 if (mp->m_flags & XFS_MOUNT_RDONLY)
1057 return 0;
1058
1059 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1060 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1061 XFS_DEFAULT_LOG_COUNT);
1062 if (error) {
1063 xfs_trans_cancel(tp, 0);
1064 xfs_alert(mp, "%s: Superblock update failed!", __func__);
1065 return error;
1066 }
1067
1068 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1069 return xfs_trans_commit(tp, 0);
1070 }
1071
1072 __uint64_t
1073 xfs_default_resblks(xfs_mount_t *mp)
1074 {
1075 __uint64_t resblks;
1076
1077 /*
1078 * We default to 5% or 8192 fsbs of space reserved, whichever is
1079 * smaller. This is intended to cover concurrent allocation
1080 * transactions when we initially hit enospc. These each require a 4
1081 * block reservation. Hence by default we cover roughly 2000 concurrent
1082 * allocation reservations.
1083 */
1084 resblks = mp->m_sb.sb_dblocks;
1085 do_div(resblks, 20);
1086 resblks = min_t(__uint64_t, resblks, 8192);
1087 return resblks;
1088 }
1089
1090 /*
1091 * This function does the following on an initial mount of a file system:
1092 * - reads the superblock from disk and init the mount struct
1093 * - if we're a 32-bit kernel, do a size check on the superblock
1094 * so we don't mount terabyte filesystems
1095 * - init mount struct realtime fields
1096 * - allocate inode hash table for fs
1097 * - init directory manager
1098 * - perform recovery and init the log manager
1099 */
1100 int
1101 xfs_mountfs(
1102 xfs_mount_t *mp)
1103 {
1104 xfs_sb_t *sbp = &(mp->m_sb);
1105 xfs_inode_t *rip;
1106 __uint64_t resblks;
1107 uint quotamount = 0;
1108 uint quotaflags = 0;
1109 int error = 0;
1110
1111 xfs_mount_common(mp, sbp);
1112
1113 /*
1114 * Check for a mismatched features2 values. Older kernels
1115 * read & wrote into the wrong sb offset for sb_features2
1116 * on some platforms due to xfs_sb_t not being 64bit size aligned
1117 * when sb_features2 was added, which made older superblock
1118 * reading/writing routines swap it as a 64-bit value.
1119 *
1120 * For backwards compatibility, we make both slots equal.
1121 *
1122 * If we detect a mismatched field, we OR the set bits into the
1123 * existing features2 field in case it has already been modified; we
1124 * don't want to lose any features. We then update the bad location
1125 * with the ORed value so that older kernels will see any features2
1126 * flags, and mark the two fields as needing updates once the
1127 * transaction subsystem is online.
1128 */
1129 if (xfs_sb_has_mismatched_features2(sbp)) {
1130 xfs_warn(mp, "correcting sb_features alignment problem");
1131 sbp->sb_features2 |= sbp->sb_bad_features2;
1132 sbp->sb_bad_features2 = sbp->sb_features2;
1133 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1134
1135 /*
1136 * Re-check for ATTR2 in case it was found in bad_features2
1137 * slot.
1138 */
1139 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1140 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1141 mp->m_flags |= XFS_MOUNT_ATTR2;
1142 }
1143
1144 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1145 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1146 xfs_sb_version_removeattr2(&mp->m_sb);
1147 mp->m_update_flags |= XFS_SB_FEATURES2;
1148
1149 /* update sb_versionnum for the clearing of the morebits */
1150 if (!sbp->sb_features2)
1151 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1152 }
1153
1154 /*
1155 * Check if sb_agblocks is aligned at stripe boundary
1156 * If sb_agblocks is NOT aligned turn off m_dalign since
1157 * allocator alignment is within an ag, therefore ag has
1158 * to be aligned at stripe boundary.
1159 */
1160 error = xfs_update_alignment(mp);
1161 if (error)
1162 goto out;
1163
1164 xfs_alloc_compute_maxlevels(mp);
1165 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1166 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1167 xfs_ialloc_compute_maxlevels(mp);
1168
1169 xfs_set_maxicount(mp);
1170
1171 error = xfs_uuid_mount(mp);
1172 if (error)
1173 goto out;
1174
1175 /*
1176 * Set the minimum read and write sizes
1177 */
1178 xfs_set_rw_sizes(mp);
1179
1180 /* set the low space thresholds for dynamic preallocation */
1181 xfs_set_low_space_thresholds(mp);
1182
1183 /*
1184 * Set the inode cluster size.
1185 * This may still be overridden by the file system
1186 * block size if it is larger than the chosen cluster size.
1187 */
1188 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1189
1190 /*
1191 * Set inode alignment fields
1192 */
1193 xfs_set_inoalignment(mp);
1194
1195 /*
1196 * Check that the data (and log if separate) are an ok size.
1197 */
1198 error = xfs_check_sizes(mp);
1199 if (error)
1200 goto out_remove_uuid;
1201
1202 /*
1203 * Initialize realtime fields in the mount structure
1204 */
1205 error = xfs_rtmount_init(mp);
1206 if (error) {
1207 xfs_warn(mp, "RT mount failed");
1208 goto out_remove_uuid;
1209 }
1210
1211 /*
1212 * Copies the low order bits of the timestamp and the randomly
1213 * set "sequence" number out of a UUID.
1214 */
1215 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1216
1217 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1218
1219 xfs_dir_mount(mp);
1220
1221 /*
1222 * Initialize the attribute manager's entries.
1223 */
1224 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1225
1226 /*
1227 * Initialize the precomputed transaction reservations values.
1228 */
1229 xfs_trans_init(mp);
1230
1231 /*
1232 * Allocate and initialize the per-ag data.
1233 */
1234 spin_lock_init(&mp->m_perag_lock);
1235 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1236 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1237 if (error) {
1238 xfs_warn(mp, "Failed per-ag init: %d", error);
1239 goto out_remove_uuid;
1240 }
1241
1242 if (!sbp->sb_logblocks) {
1243 xfs_warn(mp, "no log defined");
1244 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1245 error = XFS_ERROR(EFSCORRUPTED);
1246 goto out_free_perag;
1247 }
1248
1249 /*
1250 * log's mount-time initialization. Perform 1st part recovery if needed
1251 */
1252 error = xfs_log_mount(mp, mp->m_logdev_targp,
1253 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1254 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1255 if (error) {
1256 xfs_warn(mp, "log mount failed");
1257 goto out_fail_wait;
1258 }
1259
1260 /*
1261 * Now the log is mounted, we know if it was an unclean shutdown or
1262 * not. If it was, with the first phase of recovery has completed, we
1263 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1264 * but they are recovered transactionally in the second recovery phase
1265 * later.
1266 *
1267 * Hence we can safely re-initialise incore superblock counters from
1268 * the per-ag data. These may not be correct if the filesystem was not
1269 * cleanly unmounted, so we need to wait for recovery to finish before
1270 * doing this.
1271 *
1272 * If the filesystem was cleanly unmounted, then we can trust the
1273 * values in the superblock to be correct and we don't need to do
1274 * anything here.
1275 *
1276 * If we are currently making the filesystem, the initialisation will
1277 * fail as the perag data is in an undefined state.
1278 */
1279 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1280 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1281 !mp->m_sb.sb_inprogress) {
1282 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1283 if (error)
1284 goto out_fail_wait;
1285 }
1286
1287 /*
1288 * Get and sanity-check the root inode.
1289 * Save the pointer to it in the mount structure.
1290 */
1291 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1292 if (error) {
1293 xfs_warn(mp, "failed to read root inode");
1294 goto out_log_dealloc;
1295 }
1296
1297 ASSERT(rip != NULL);
1298
1299 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1300 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1301 (unsigned long long)rip->i_ino);
1302 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1303 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1304 mp);
1305 error = XFS_ERROR(EFSCORRUPTED);
1306 goto out_rele_rip;
1307 }
1308 mp->m_rootip = rip; /* save it */
1309
1310 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1311
1312 /*
1313 * Initialize realtime inode pointers in the mount structure
1314 */
1315 error = xfs_rtmount_inodes(mp);
1316 if (error) {
1317 /*
1318 * Free up the root inode.
1319 */
1320 xfs_warn(mp, "failed to read RT inodes");
1321 goto out_rele_rip;
1322 }
1323
1324 /*
1325 * If this is a read-only mount defer the superblock updates until
1326 * the next remount into writeable mode. Otherwise we would never
1327 * perform the update e.g. for the root filesystem.
1328 */
1329 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1330 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1331 if (error) {
1332 xfs_warn(mp, "failed to write sb changes");
1333 goto out_rtunmount;
1334 }
1335 }
1336
1337 /*
1338 * Initialise the XFS quota management subsystem for this mount
1339 */
1340 if (XFS_IS_QUOTA_RUNNING(mp)) {
1341 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1342 if (error)
1343 goto out_rtunmount;
1344 } else {
1345 ASSERT(!XFS_IS_QUOTA_ON(mp));
1346
1347 /*
1348 * If a file system had quotas running earlier, but decided to
1349 * mount without -o uquota/pquota/gquota options, revoke the
1350 * quotachecked license.
1351 */
1352 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1353 xfs_notice(mp, "resetting quota flags");
1354 error = xfs_mount_reset_sbqflags(mp);
1355 if (error)
1356 return error;
1357 }
1358 }
1359
1360 /*
1361 * Finish recovering the file system. This part needed to be
1362 * delayed until after the root and real-time bitmap inodes
1363 * were consistently read in.
1364 */
1365 error = xfs_log_mount_finish(mp);
1366 if (error) {
1367 xfs_warn(mp, "log mount finish failed");
1368 goto out_rtunmount;
1369 }
1370
1371 /*
1372 * Complete the quota initialisation, post-log-replay component.
1373 */
1374 if (quotamount) {
1375 ASSERT(mp->m_qflags == 0);
1376 mp->m_qflags = quotaflags;
1377
1378 xfs_qm_mount_quotas(mp);
1379 }
1380
1381 /*
1382 * Now we are mounted, reserve a small amount of unused space for
1383 * privileged transactions. This is needed so that transaction
1384 * space required for critical operations can dip into this pool
1385 * when at ENOSPC. This is needed for operations like create with
1386 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1387 * are not allowed to use this reserved space.
1388 *
1389 * This may drive us straight to ENOSPC on mount, but that implies
1390 * we were already there on the last unmount. Warn if this occurs.
1391 */
1392 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1393 resblks = xfs_default_resblks(mp);
1394 error = xfs_reserve_blocks(mp, &resblks, NULL);
1395 if (error)
1396 xfs_warn(mp,
1397 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1398 }
1399
1400 return 0;
1401
1402 out_rtunmount:
1403 xfs_rtunmount_inodes(mp);
1404 out_rele_rip:
1405 IRELE(rip);
1406 out_log_dealloc:
1407 xfs_log_unmount(mp);
1408 out_fail_wait:
1409 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1410 xfs_wait_buftarg(mp->m_logdev_targp);
1411 xfs_wait_buftarg(mp->m_ddev_targp);
1412 out_free_perag:
1413 xfs_free_perag(mp);
1414 out_remove_uuid:
1415 xfs_uuid_unmount(mp);
1416 out:
1417 return error;
1418 }
1419
1420 /*
1421 * This flushes out the inodes,dquots and the superblock, unmounts the
1422 * log and makes sure that incore structures are freed.
1423 */
1424 void
1425 xfs_unmountfs(
1426 struct xfs_mount *mp)
1427 {
1428 __uint64_t resblks;
1429 int error;
1430
1431 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1432
1433 xfs_qm_unmount_quotas(mp);
1434 xfs_rtunmount_inodes(mp);
1435 IRELE(mp->m_rootip);
1436
1437 /*
1438 * We can potentially deadlock here if we have an inode cluster
1439 * that has been freed has its buffer still pinned in memory because
1440 * the transaction is still sitting in a iclog. The stale inodes
1441 * on that buffer will have their flush locks held until the
1442 * transaction hits the disk and the callbacks run. the inode
1443 * flush takes the flush lock unconditionally and with nothing to
1444 * push out the iclog we will never get that unlocked. hence we
1445 * need to force the log first.
1446 */
1447 xfs_log_force(mp, XFS_LOG_SYNC);
1448
1449 /*
1450 * Flush all pending changes from the AIL.
1451 */
1452 xfs_ail_push_all_sync(mp->m_ail);
1453
1454 /*
1455 * And reclaim all inodes. At this point there should be no dirty
1456 * inodes and none should be pinned or locked, but use synchronous
1457 * reclaim just to be sure. We can stop background inode reclaim
1458 * here as well if it is still running.
1459 */
1460 cancel_delayed_work_sync(&mp->m_reclaim_work);
1461 xfs_reclaim_inodes(mp, SYNC_WAIT);
1462
1463 xfs_qm_unmount(mp);
1464
1465 /*
1466 * Unreserve any blocks we have so that when we unmount we don't account
1467 * the reserved free space as used. This is really only necessary for
1468 * lazy superblock counting because it trusts the incore superblock
1469 * counters to be absolutely correct on clean unmount.
1470 *
1471 * We don't bother correcting this elsewhere for lazy superblock
1472 * counting because on mount of an unclean filesystem we reconstruct the
1473 * correct counter value and this is irrelevant.
1474 *
1475 * For non-lazy counter filesystems, this doesn't matter at all because
1476 * we only every apply deltas to the superblock and hence the incore
1477 * value does not matter....
1478 */
1479 resblks = 0;
1480 error = xfs_reserve_blocks(mp, &resblks, NULL);
1481 if (error)
1482 xfs_warn(mp, "Unable to free reserved block pool. "
1483 "Freespace may not be correct on next mount.");
1484
1485 error = xfs_log_sbcount(mp);
1486 if (error)
1487 xfs_warn(mp, "Unable to update superblock counters. "
1488 "Freespace may not be correct on next mount.");
1489
1490 xfs_log_unmount(mp);
1491 xfs_uuid_unmount(mp);
1492
1493 #if defined(DEBUG)
1494 xfs_errortag_clearall(mp, 0);
1495 #endif
1496 xfs_free_perag(mp);
1497 }
1498
1499 int
1500 xfs_fs_writable(xfs_mount_t *mp)
1501 {
1502 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1503 (mp->m_flags & XFS_MOUNT_RDONLY));
1504 }
1505
1506 /*
1507 * xfs_log_sbcount
1508 *
1509 * Sync the superblock counters to disk.
1510 *
1511 * Note this code can be called during the process of freezing, so
1512 * we may need to use the transaction allocator which does not
1513 * block when the transaction subsystem is in its frozen state.
1514 */
1515 int
1516 xfs_log_sbcount(xfs_mount_t *mp)
1517 {
1518 xfs_trans_t *tp;
1519 int error;
1520
1521 if (!xfs_fs_writable(mp))
1522 return 0;
1523
1524 xfs_icsb_sync_counters(mp, 0);
1525
1526 /*
1527 * we don't need to do this if we are updating the superblock
1528 * counters on every modification.
1529 */
1530 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1531 return 0;
1532
1533 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1534 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1535 XFS_DEFAULT_LOG_COUNT);
1536 if (error) {
1537 xfs_trans_cancel(tp, 0);
1538 return error;
1539 }
1540
1541 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1542 xfs_trans_set_sync(tp);
1543 error = xfs_trans_commit(tp, 0);
1544 return error;
1545 }
1546
1547 /*
1548 * xfs_mod_sb() can be used to copy arbitrary changes to the
1549 * in-core superblock into the superblock buffer to be logged.
1550 * It does not provide the higher level of locking that is
1551 * needed to protect the in-core superblock from concurrent
1552 * access.
1553 */
1554 void
1555 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1556 {
1557 xfs_buf_t *bp;
1558 int first;
1559 int last;
1560 xfs_mount_t *mp;
1561 xfs_sb_field_t f;
1562
1563 ASSERT(fields);
1564 if (!fields)
1565 return;
1566 mp = tp->t_mountp;
1567 bp = xfs_trans_getsb(tp, mp, 0);
1568 first = sizeof(xfs_sb_t);
1569 last = 0;
1570
1571 /* translate/copy */
1572
1573 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1574
1575 /* find modified range */
1576 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1577 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1578 last = xfs_sb_info[f + 1].offset - 1;
1579
1580 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1581 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1582 first = xfs_sb_info[f].offset;
1583
1584 xfs_trans_log_buf(tp, bp, first, last);
1585 }
1586
1587
1588 /*
1589 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1590 * a delta to a specified field in the in-core superblock. Simply
1591 * switch on the field indicated and apply the delta to that field.
1592 * Fields are not allowed to dip below zero, so if the delta would
1593 * do this do not apply it and return EINVAL.
1594 *
1595 * The m_sb_lock must be held when this routine is called.
1596 */
1597 STATIC int
1598 xfs_mod_incore_sb_unlocked(
1599 xfs_mount_t *mp,
1600 xfs_sb_field_t field,
1601 int64_t delta,
1602 int rsvd)
1603 {
1604 int scounter; /* short counter for 32 bit fields */
1605 long long lcounter; /* long counter for 64 bit fields */
1606 long long res_used, rem;
1607
1608 /*
1609 * With the in-core superblock spin lock held, switch
1610 * on the indicated field. Apply the delta to the
1611 * proper field. If the fields value would dip below
1612 * 0, then do not apply the delta and return EINVAL.
1613 */
1614 switch (field) {
1615 case XFS_SBS_ICOUNT:
1616 lcounter = (long long)mp->m_sb.sb_icount;
1617 lcounter += delta;
1618 if (lcounter < 0) {
1619 ASSERT(0);
1620 return XFS_ERROR(EINVAL);
1621 }
1622 mp->m_sb.sb_icount = lcounter;
1623 return 0;
1624 case XFS_SBS_IFREE:
1625 lcounter = (long long)mp->m_sb.sb_ifree;
1626 lcounter += delta;
1627 if (lcounter < 0) {
1628 ASSERT(0);
1629 return XFS_ERROR(EINVAL);
1630 }
1631 mp->m_sb.sb_ifree = lcounter;
1632 return 0;
1633 case XFS_SBS_FDBLOCKS:
1634 lcounter = (long long)
1635 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1636 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1637
1638 if (delta > 0) { /* Putting blocks back */
1639 if (res_used > delta) {
1640 mp->m_resblks_avail += delta;
1641 } else {
1642 rem = delta - res_used;
1643 mp->m_resblks_avail = mp->m_resblks;
1644 lcounter += rem;
1645 }
1646 } else { /* Taking blocks away */
1647 lcounter += delta;
1648 if (lcounter >= 0) {
1649 mp->m_sb.sb_fdblocks = lcounter +
1650 XFS_ALLOC_SET_ASIDE(mp);
1651 return 0;
1652 }
1653
1654 /*
1655 * We are out of blocks, use any available reserved
1656 * blocks if were allowed to.
1657 */
1658 if (!rsvd)
1659 return XFS_ERROR(ENOSPC);
1660
1661 lcounter = (long long)mp->m_resblks_avail + delta;
1662 if (lcounter >= 0) {
1663 mp->m_resblks_avail = lcounter;
1664 return 0;
1665 }
1666 printk_once(KERN_WARNING
1667 "Filesystem \"%s\": reserve blocks depleted! "
1668 "Consider increasing reserve pool size.",
1669 mp->m_fsname);
1670 return XFS_ERROR(ENOSPC);
1671 }
1672
1673 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1674 return 0;
1675 case XFS_SBS_FREXTENTS:
1676 lcounter = (long long)mp->m_sb.sb_frextents;
1677 lcounter += delta;
1678 if (lcounter < 0) {
1679 return XFS_ERROR(ENOSPC);
1680 }
1681 mp->m_sb.sb_frextents = lcounter;
1682 return 0;
1683 case XFS_SBS_DBLOCKS:
1684 lcounter = (long long)mp->m_sb.sb_dblocks;
1685 lcounter += delta;
1686 if (lcounter < 0) {
1687 ASSERT(0);
1688 return XFS_ERROR(EINVAL);
1689 }
1690 mp->m_sb.sb_dblocks = lcounter;
1691 return 0;
1692 case XFS_SBS_AGCOUNT:
1693 scounter = mp->m_sb.sb_agcount;
1694 scounter += delta;
1695 if (scounter < 0) {
1696 ASSERT(0);
1697 return XFS_ERROR(EINVAL);
1698 }
1699 mp->m_sb.sb_agcount = scounter;
1700 return 0;
1701 case XFS_SBS_IMAX_PCT:
1702 scounter = mp->m_sb.sb_imax_pct;
1703 scounter += delta;
1704 if (scounter < 0) {
1705 ASSERT(0);
1706 return XFS_ERROR(EINVAL);
1707 }
1708 mp->m_sb.sb_imax_pct = scounter;
1709 return 0;
1710 case XFS_SBS_REXTSIZE:
1711 scounter = mp->m_sb.sb_rextsize;
1712 scounter += delta;
1713 if (scounter < 0) {
1714 ASSERT(0);
1715 return XFS_ERROR(EINVAL);
1716 }
1717 mp->m_sb.sb_rextsize = scounter;
1718 return 0;
1719 case XFS_SBS_RBMBLOCKS:
1720 scounter = mp->m_sb.sb_rbmblocks;
1721 scounter += delta;
1722 if (scounter < 0) {
1723 ASSERT(0);
1724 return XFS_ERROR(EINVAL);
1725 }
1726 mp->m_sb.sb_rbmblocks = scounter;
1727 return 0;
1728 case XFS_SBS_RBLOCKS:
1729 lcounter = (long long)mp->m_sb.sb_rblocks;
1730 lcounter += delta;
1731 if (lcounter < 0) {
1732 ASSERT(0);
1733 return XFS_ERROR(EINVAL);
1734 }
1735 mp->m_sb.sb_rblocks = lcounter;
1736 return 0;
1737 case XFS_SBS_REXTENTS:
1738 lcounter = (long long)mp->m_sb.sb_rextents;
1739 lcounter += delta;
1740 if (lcounter < 0) {
1741 ASSERT(0);
1742 return XFS_ERROR(EINVAL);
1743 }
1744 mp->m_sb.sb_rextents = lcounter;
1745 return 0;
1746 case XFS_SBS_REXTSLOG:
1747 scounter = mp->m_sb.sb_rextslog;
1748 scounter += delta;
1749 if (scounter < 0) {
1750 ASSERT(0);
1751 return XFS_ERROR(EINVAL);
1752 }
1753 mp->m_sb.sb_rextslog = scounter;
1754 return 0;
1755 default:
1756 ASSERT(0);
1757 return XFS_ERROR(EINVAL);
1758 }
1759 }
1760
1761 /*
1762 * xfs_mod_incore_sb() is used to change a field in the in-core
1763 * superblock structure by the specified delta. This modification
1764 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1765 * routine to do the work.
1766 */
1767 int
1768 xfs_mod_incore_sb(
1769 struct xfs_mount *mp,
1770 xfs_sb_field_t field,
1771 int64_t delta,
1772 int rsvd)
1773 {
1774 int status;
1775
1776 #ifdef HAVE_PERCPU_SB
1777 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1778 #endif
1779 spin_lock(&mp->m_sb_lock);
1780 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1781 spin_unlock(&mp->m_sb_lock);
1782
1783 return status;
1784 }
1785
1786 /*
1787 * Change more than one field in the in-core superblock structure at a time.
1788 *
1789 * The fields and changes to those fields are specified in the array of
1790 * xfs_mod_sb structures passed in. Either all of the specified deltas
1791 * will be applied or none of them will. If any modified field dips below 0,
1792 * then all modifications will be backed out and EINVAL will be returned.
1793 *
1794 * Note that this function may not be used for the superblock values that
1795 * are tracked with the in-memory per-cpu counters - a direct call to
1796 * xfs_icsb_modify_counters is required for these.
1797 */
1798 int
1799 xfs_mod_incore_sb_batch(
1800 struct xfs_mount *mp,
1801 xfs_mod_sb_t *msb,
1802 uint nmsb,
1803 int rsvd)
1804 {
1805 xfs_mod_sb_t *msbp;
1806 int error = 0;
1807
1808 /*
1809 * Loop through the array of mod structures and apply each individually.
1810 * If any fail, then back out all those which have already been applied.
1811 * Do all of this within the scope of the m_sb_lock so that all of the
1812 * changes will be atomic.
1813 */
1814 spin_lock(&mp->m_sb_lock);
1815 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1816 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1817 msbp->msb_field > XFS_SBS_FDBLOCKS);
1818
1819 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1820 msbp->msb_delta, rsvd);
1821 if (error)
1822 goto unwind;
1823 }
1824 spin_unlock(&mp->m_sb_lock);
1825 return 0;
1826
1827 unwind:
1828 while (--msbp >= msb) {
1829 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1830 -msbp->msb_delta, rsvd);
1831 ASSERT(error == 0);
1832 }
1833 spin_unlock(&mp->m_sb_lock);
1834 return error;
1835 }
1836
1837 /*
1838 * xfs_getsb() is called to obtain the buffer for the superblock.
1839 * The buffer is returned locked and read in from disk.
1840 * The buffer should be released with a call to xfs_brelse().
1841 *
1842 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1843 * the superblock buffer if it can be locked without sleeping.
1844 * If it can't then we'll return NULL.
1845 */
1846 struct xfs_buf *
1847 xfs_getsb(
1848 struct xfs_mount *mp,
1849 int flags)
1850 {
1851 struct xfs_buf *bp = mp->m_sb_bp;
1852
1853 if (!xfs_buf_trylock(bp)) {
1854 if (flags & XBF_TRYLOCK)
1855 return NULL;
1856 xfs_buf_lock(bp);
1857 }
1858
1859 xfs_buf_hold(bp);
1860 ASSERT(XFS_BUF_ISDONE(bp));
1861 return bp;
1862 }
1863
1864 /*
1865 * Used to free the superblock along various error paths.
1866 */
1867 void
1868 xfs_freesb(
1869 struct xfs_mount *mp)
1870 {
1871 struct xfs_buf *bp = mp->m_sb_bp;
1872
1873 xfs_buf_lock(bp);
1874 mp->m_sb_bp = NULL;
1875 xfs_buf_relse(bp);
1876 }
1877
1878 /*
1879 * Used to log changes to the superblock unit and width fields which could
1880 * be altered by the mount options, as well as any potential sb_features2
1881 * fixup. Only the first superblock is updated.
1882 */
1883 int
1884 xfs_mount_log_sb(
1885 xfs_mount_t *mp,
1886 __int64_t fields)
1887 {
1888 xfs_trans_t *tp;
1889 int error;
1890
1891 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1892 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1893 XFS_SB_VERSIONNUM));
1894
1895 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1896 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1897 XFS_DEFAULT_LOG_COUNT);
1898 if (error) {
1899 xfs_trans_cancel(tp, 0);
1900 return error;
1901 }
1902 xfs_mod_sb(tp, fields);
1903 error = xfs_trans_commit(tp, 0);
1904 return error;
1905 }
1906
1907 /*
1908 * If the underlying (data/log/rt) device is readonly, there are some
1909 * operations that cannot proceed.
1910 */
1911 int
1912 xfs_dev_is_read_only(
1913 struct xfs_mount *mp,
1914 char *message)
1915 {
1916 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1917 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1918 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1919 xfs_notice(mp, "%s required on read-only device.", message);
1920 xfs_notice(mp, "write access unavailable, cannot proceed.");
1921 return EROFS;
1922 }
1923 return 0;
1924 }
1925
1926 #ifdef HAVE_PERCPU_SB
1927 /*
1928 * Per-cpu incore superblock counters
1929 *
1930 * Simple concept, difficult implementation
1931 *
1932 * Basically, replace the incore superblock counters with a distributed per cpu
1933 * counter for contended fields (e.g. free block count).
1934 *
1935 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1936 * hence needs to be accurately read when we are running low on space. Hence
1937 * there is a method to enable and disable the per-cpu counters based on how
1938 * much "stuff" is available in them.
1939 *
1940 * Basically, a counter is enabled if there is enough free resource to justify
1941 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1942 * ENOSPC), then we disable the counters to synchronise all callers and
1943 * re-distribute the available resources.
1944 *
1945 * If, once we redistributed the available resources, we still get a failure,
1946 * we disable the per-cpu counter and go through the slow path.
1947 *
1948 * The slow path is the current xfs_mod_incore_sb() function. This means that
1949 * when we disable a per-cpu counter, we need to drain its resources back to
1950 * the global superblock. We do this after disabling the counter to prevent
1951 * more threads from queueing up on the counter.
1952 *
1953 * Essentially, this means that we still need a lock in the fast path to enable
1954 * synchronisation between the global counters and the per-cpu counters. This
1955 * is not a problem because the lock will be local to a CPU almost all the time
1956 * and have little contention except when we get to ENOSPC conditions.
1957 *
1958 * Basically, this lock becomes a barrier that enables us to lock out the fast
1959 * path while we do things like enabling and disabling counters and
1960 * synchronising the counters.
1961 *
1962 * Locking rules:
1963 *
1964 * 1. m_sb_lock before picking up per-cpu locks
1965 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1966 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1967 * 4. modifying per-cpu counters requires holding per-cpu lock
1968 * 5. modifying global counters requires holding m_sb_lock
1969 * 6. enabling or disabling a counter requires holding the m_sb_lock
1970 * and _none_ of the per-cpu locks.
1971 *
1972 * Disabled counters are only ever re-enabled by a balance operation
1973 * that results in more free resources per CPU than a given threshold.
1974 * To ensure counters don't remain disabled, they are rebalanced when
1975 * the global resource goes above a higher threshold (i.e. some hysteresis
1976 * is present to prevent thrashing).
1977 */
1978
1979 #ifdef CONFIG_HOTPLUG_CPU
1980 /*
1981 * hot-plug CPU notifier support.
1982 *
1983 * We need a notifier per filesystem as we need to be able to identify
1984 * the filesystem to balance the counters out. This is achieved by
1985 * having a notifier block embedded in the xfs_mount_t and doing pointer
1986 * magic to get the mount pointer from the notifier block address.
1987 */
1988 STATIC int
1989 xfs_icsb_cpu_notify(
1990 struct notifier_block *nfb,
1991 unsigned long action,
1992 void *hcpu)
1993 {
1994 xfs_icsb_cnts_t *cntp;
1995 xfs_mount_t *mp;
1996
1997 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1998 cntp = (xfs_icsb_cnts_t *)
1999 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2000 switch (action) {
2001 case CPU_UP_PREPARE:
2002 case CPU_UP_PREPARE_FROZEN:
2003 /* Easy Case - initialize the area and locks, and
2004 * then rebalance when online does everything else for us. */
2005 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2006 break;
2007 case CPU_ONLINE:
2008 case CPU_ONLINE_FROZEN:
2009 xfs_icsb_lock(mp);
2010 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2011 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2012 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2013 xfs_icsb_unlock(mp);
2014 break;
2015 case CPU_DEAD:
2016 case CPU_DEAD_FROZEN:
2017 /* Disable all the counters, then fold the dead cpu's
2018 * count into the total on the global superblock and
2019 * re-enable the counters. */
2020 xfs_icsb_lock(mp);
2021 spin_lock(&mp->m_sb_lock);
2022 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2023 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2024 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2025
2026 mp->m_sb.sb_icount += cntp->icsb_icount;
2027 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2028 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2029
2030 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2031
2032 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2033 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2034 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2035 spin_unlock(&mp->m_sb_lock);
2036 xfs_icsb_unlock(mp);
2037 break;
2038 }
2039
2040 return NOTIFY_OK;
2041 }
2042 #endif /* CONFIG_HOTPLUG_CPU */
2043
2044 int
2045 xfs_icsb_init_counters(
2046 xfs_mount_t *mp)
2047 {
2048 xfs_icsb_cnts_t *cntp;
2049 int i;
2050
2051 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2052 if (mp->m_sb_cnts == NULL)
2053 return -ENOMEM;
2054
2055 #ifdef CONFIG_HOTPLUG_CPU
2056 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2057 mp->m_icsb_notifier.priority = 0;
2058 register_hotcpu_notifier(&mp->m_icsb_notifier);
2059 #endif /* CONFIG_HOTPLUG_CPU */
2060
2061 for_each_online_cpu(i) {
2062 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2063 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2064 }
2065
2066 mutex_init(&mp->m_icsb_mutex);
2067
2068 /*
2069 * start with all counters disabled so that the
2070 * initial balance kicks us off correctly
2071 */
2072 mp->m_icsb_counters = -1;
2073 return 0;
2074 }
2075
2076 void
2077 xfs_icsb_reinit_counters(
2078 xfs_mount_t *mp)
2079 {
2080 xfs_icsb_lock(mp);
2081 /*
2082 * start with all counters disabled so that the
2083 * initial balance kicks us off correctly
2084 */
2085 mp->m_icsb_counters = -1;
2086 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2087 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2088 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2089 xfs_icsb_unlock(mp);
2090 }
2091
2092 void
2093 xfs_icsb_destroy_counters(
2094 xfs_mount_t *mp)
2095 {
2096 if (mp->m_sb_cnts) {
2097 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2098 free_percpu(mp->m_sb_cnts);
2099 }
2100 mutex_destroy(&mp->m_icsb_mutex);
2101 }
2102
2103 STATIC void
2104 xfs_icsb_lock_cntr(
2105 xfs_icsb_cnts_t *icsbp)
2106 {
2107 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2108 ndelay(1000);
2109 }
2110 }
2111
2112 STATIC void
2113 xfs_icsb_unlock_cntr(
2114 xfs_icsb_cnts_t *icsbp)
2115 {
2116 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2117 }
2118
2119
2120 STATIC void
2121 xfs_icsb_lock_all_counters(
2122 xfs_mount_t *mp)
2123 {
2124 xfs_icsb_cnts_t *cntp;
2125 int i;
2126
2127 for_each_online_cpu(i) {
2128 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2129 xfs_icsb_lock_cntr(cntp);
2130 }
2131 }
2132
2133 STATIC void
2134 xfs_icsb_unlock_all_counters(
2135 xfs_mount_t *mp)
2136 {
2137 xfs_icsb_cnts_t *cntp;
2138 int i;
2139
2140 for_each_online_cpu(i) {
2141 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2142 xfs_icsb_unlock_cntr(cntp);
2143 }
2144 }
2145
2146 STATIC void
2147 xfs_icsb_count(
2148 xfs_mount_t *mp,
2149 xfs_icsb_cnts_t *cnt,
2150 int flags)
2151 {
2152 xfs_icsb_cnts_t *cntp;
2153 int i;
2154
2155 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2156
2157 if (!(flags & XFS_ICSB_LAZY_COUNT))
2158 xfs_icsb_lock_all_counters(mp);
2159
2160 for_each_online_cpu(i) {
2161 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2162 cnt->icsb_icount += cntp->icsb_icount;
2163 cnt->icsb_ifree += cntp->icsb_ifree;
2164 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2165 }
2166
2167 if (!(flags & XFS_ICSB_LAZY_COUNT))
2168 xfs_icsb_unlock_all_counters(mp);
2169 }
2170
2171 STATIC int
2172 xfs_icsb_counter_disabled(
2173 xfs_mount_t *mp,
2174 xfs_sb_field_t field)
2175 {
2176 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2177 return test_bit(field, &mp->m_icsb_counters);
2178 }
2179
2180 STATIC void
2181 xfs_icsb_disable_counter(
2182 xfs_mount_t *mp,
2183 xfs_sb_field_t field)
2184 {
2185 xfs_icsb_cnts_t cnt;
2186
2187 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2188
2189 /*
2190 * If we are already disabled, then there is nothing to do
2191 * here. We check before locking all the counters to avoid
2192 * the expensive lock operation when being called in the
2193 * slow path and the counter is already disabled. This is
2194 * safe because the only time we set or clear this state is under
2195 * the m_icsb_mutex.
2196 */
2197 if (xfs_icsb_counter_disabled(mp, field))
2198 return;
2199
2200 xfs_icsb_lock_all_counters(mp);
2201 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2202 /* drain back to superblock */
2203
2204 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2205 switch(field) {
2206 case XFS_SBS_ICOUNT:
2207 mp->m_sb.sb_icount = cnt.icsb_icount;
2208 break;
2209 case XFS_SBS_IFREE:
2210 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2211 break;
2212 case XFS_SBS_FDBLOCKS:
2213 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2214 break;
2215 default:
2216 BUG();
2217 }
2218 }
2219
2220 xfs_icsb_unlock_all_counters(mp);
2221 }
2222
2223 STATIC void
2224 xfs_icsb_enable_counter(
2225 xfs_mount_t *mp,
2226 xfs_sb_field_t field,
2227 uint64_t count,
2228 uint64_t resid)
2229 {
2230 xfs_icsb_cnts_t *cntp;
2231 int i;
2232
2233 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2234
2235 xfs_icsb_lock_all_counters(mp);
2236 for_each_online_cpu(i) {
2237 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2238 switch (field) {
2239 case XFS_SBS_ICOUNT:
2240 cntp->icsb_icount = count + resid;
2241 break;
2242 case XFS_SBS_IFREE:
2243 cntp->icsb_ifree = count + resid;
2244 break;
2245 case XFS_SBS_FDBLOCKS:
2246 cntp->icsb_fdblocks = count + resid;
2247 break;
2248 default:
2249 BUG();
2250 break;
2251 }
2252 resid = 0;
2253 }
2254 clear_bit(field, &mp->m_icsb_counters);
2255 xfs_icsb_unlock_all_counters(mp);
2256 }
2257
2258 void
2259 xfs_icsb_sync_counters_locked(
2260 xfs_mount_t *mp,
2261 int flags)
2262 {
2263 xfs_icsb_cnts_t cnt;
2264
2265 xfs_icsb_count(mp, &cnt, flags);
2266
2267 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2268 mp->m_sb.sb_icount = cnt.icsb_icount;
2269 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2270 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2271 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2272 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2273 }
2274
2275 /*
2276 * Accurate update of per-cpu counters to incore superblock
2277 */
2278 void
2279 xfs_icsb_sync_counters(
2280 xfs_mount_t *mp,
2281 int flags)
2282 {
2283 spin_lock(&mp->m_sb_lock);
2284 xfs_icsb_sync_counters_locked(mp, flags);
2285 spin_unlock(&mp->m_sb_lock);
2286 }
2287
2288 /*
2289 * Balance and enable/disable counters as necessary.
2290 *
2291 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2292 * chosen to be the same number as single on disk allocation chunk per CPU, and
2293 * free blocks is something far enough zero that we aren't going thrash when we
2294 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2295 * prevent looping endlessly when xfs_alloc_space asks for more than will
2296 * be distributed to a single CPU but each CPU has enough blocks to be
2297 * reenabled.
2298 *
2299 * Note that we can be called when counters are already disabled.
2300 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2301 * prevent locking every per-cpu counter needlessly.
2302 */
2303
2304 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2305 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2306 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2307 STATIC void
2308 xfs_icsb_balance_counter_locked(
2309 xfs_mount_t *mp,
2310 xfs_sb_field_t field,
2311 int min_per_cpu)
2312 {
2313 uint64_t count, resid;
2314 int weight = num_online_cpus();
2315 uint64_t min = (uint64_t)min_per_cpu;
2316
2317 /* disable counter and sync counter */
2318 xfs_icsb_disable_counter(mp, field);
2319
2320 /* update counters - first CPU gets residual*/
2321 switch (field) {
2322 case XFS_SBS_ICOUNT:
2323 count = mp->m_sb.sb_icount;
2324 resid = do_div(count, weight);
2325 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2326 return;
2327 break;
2328 case XFS_SBS_IFREE:
2329 count = mp->m_sb.sb_ifree;
2330 resid = do_div(count, weight);
2331 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2332 return;
2333 break;
2334 case XFS_SBS_FDBLOCKS:
2335 count = mp->m_sb.sb_fdblocks;
2336 resid = do_div(count, weight);
2337 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2338 return;
2339 break;
2340 default:
2341 BUG();
2342 count = resid = 0; /* quiet, gcc */
2343 break;
2344 }
2345
2346 xfs_icsb_enable_counter(mp, field, count, resid);
2347 }
2348
2349 STATIC void
2350 xfs_icsb_balance_counter(
2351 xfs_mount_t *mp,
2352 xfs_sb_field_t fields,
2353 int min_per_cpu)
2354 {
2355 spin_lock(&mp->m_sb_lock);
2356 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2357 spin_unlock(&mp->m_sb_lock);
2358 }
2359
2360 int
2361 xfs_icsb_modify_counters(
2362 xfs_mount_t *mp,
2363 xfs_sb_field_t field,
2364 int64_t delta,
2365 int rsvd)
2366 {
2367 xfs_icsb_cnts_t *icsbp;
2368 long long lcounter; /* long counter for 64 bit fields */
2369 int ret = 0;
2370
2371 might_sleep();
2372 again:
2373 preempt_disable();
2374 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2375
2376 /*
2377 * if the counter is disabled, go to slow path
2378 */
2379 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2380 goto slow_path;
2381 xfs_icsb_lock_cntr(icsbp);
2382 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2383 xfs_icsb_unlock_cntr(icsbp);
2384 goto slow_path;
2385 }
2386
2387 switch (field) {
2388 case XFS_SBS_ICOUNT:
2389 lcounter = icsbp->icsb_icount;
2390 lcounter += delta;
2391 if (unlikely(lcounter < 0))
2392 goto balance_counter;
2393 icsbp->icsb_icount = lcounter;
2394 break;
2395
2396 case XFS_SBS_IFREE:
2397 lcounter = icsbp->icsb_ifree;
2398 lcounter += delta;
2399 if (unlikely(lcounter < 0))
2400 goto balance_counter;
2401 icsbp->icsb_ifree = lcounter;
2402 break;
2403
2404 case XFS_SBS_FDBLOCKS:
2405 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2406
2407 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2408 lcounter += delta;
2409 if (unlikely(lcounter < 0))
2410 goto balance_counter;
2411 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2412 break;
2413 default:
2414 BUG();
2415 break;
2416 }
2417 xfs_icsb_unlock_cntr(icsbp);
2418 preempt_enable();
2419 return 0;
2420
2421 slow_path:
2422 preempt_enable();
2423
2424 /*
2425 * serialise with a mutex so we don't burn lots of cpu on
2426 * the superblock lock. We still need to hold the superblock
2427 * lock, however, when we modify the global structures.
2428 */
2429 xfs_icsb_lock(mp);
2430
2431 /*
2432 * Now running atomically.
2433 *
2434 * If the counter is enabled, someone has beaten us to rebalancing.
2435 * Drop the lock and try again in the fast path....
2436 */
2437 if (!(xfs_icsb_counter_disabled(mp, field))) {
2438 xfs_icsb_unlock(mp);
2439 goto again;
2440 }
2441
2442 /*
2443 * The counter is currently disabled. Because we are
2444 * running atomically here, we know a rebalance cannot
2445 * be in progress. Hence we can go straight to operating
2446 * on the global superblock. We do not call xfs_mod_incore_sb()
2447 * here even though we need to get the m_sb_lock. Doing so
2448 * will cause us to re-enter this function and deadlock.
2449 * Hence we get the m_sb_lock ourselves and then call
2450 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2451 * directly on the global counters.
2452 */
2453 spin_lock(&mp->m_sb_lock);
2454 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2455 spin_unlock(&mp->m_sb_lock);
2456
2457 /*
2458 * Now that we've modified the global superblock, we
2459 * may be able to re-enable the distributed counters
2460 * (e.g. lots of space just got freed). After that
2461 * we are done.
2462 */
2463 if (ret != ENOSPC)
2464 xfs_icsb_balance_counter(mp, field, 0);
2465 xfs_icsb_unlock(mp);
2466 return ret;
2467
2468 balance_counter:
2469 xfs_icsb_unlock_cntr(icsbp);
2470 preempt_enable();
2471
2472 /*
2473 * We may have multiple threads here if multiple per-cpu
2474 * counters run dry at the same time. This will mean we can
2475 * do more balances than strictly necessary but it is not
2476 * the common slowpath case.
2477 */
2478 xfs_icsb_lock(mp);
2479
2480 /*
2481 * running atomically.
2482 *
2483 * This will leave the counter in the correct state for future
2484 * accesses. After the rebalance, we simply try again and our retry
2485 * will either succeed through the fast path or slow path without
2486 * another balance operation being required.
2487 */
2488 xfs_icsb_balance_counter(mp, field, delta);
2489 xfs_icsb_unlock(mp);
2490 goto again;
2491 }
2492
2493 #endif