]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_mount.c
ipc,shm: correct error return value in shmctl (SHM_UNLOCK)
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44
45
46 #ifdef HAVE_PERCPU_SB
47 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
48 int);
49 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
50 int);
51 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
52 #else
53
54 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
55 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
56 #endif
57
58 static DEFINE_MUTEX(xfs_uuid_table_mutex);
59 static int xfs_uuid_table_size;
60 static uuid_t *xfs_uuid_table;
61
62 /*
63 * See if the UUID is unique among mounted XFS filesystems.
64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
65 */
66 STATIC int
67 xfs_uuid_mount(
68 struct xfs_mount *mp)
69 {
70 uuid_t *uuid = &mp->m_sb.sb_uuid;
71 int hole, i;
72
73 if (mp->m_flags & XFS_MOUNT_NOUUID)
74 return 0;
75
76 if (uuid_is_nil(uuid)) {
77 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
78 return XFS_ERROR(EINVAL);
79 }
80
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_nil(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
86 }
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
89 }
90
91 if (hole < 0) {
92 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
95 KM_SLEEP);
96 hole = xfs_uuid_table_size++;
97 }
98 xfs_uuid_table[hole] = *uuid;
99 mutex_unlock(&xfs_uuid_table_mutex);
100
101 return 0;
102
103 out_duplicate:
104 mutex_unlock(&xfs_uuid_table_mutex);
105 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
106 return XFS_ERROR(EINVAL);
107 }
108
109 STATIC void
110 xfs_uuid_unmount(
111 struct xfs_mount *mp)
112 {
113 uuid_t *uuid = &mp->m_sb.sb_uuid;
114 int i;
115
116 if (mp->m_flags & XFS_MOUNT_NOUUID)
117 return;
118
119 mutex_lock(&xfs_uuid_table_mutex);
120 for (i = 0; i < xfs_uuid_table_size; i++) {
121 if (uuid_is_nil(&xfs_uuid_table[i]))
122 continue;
123 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
124 continue;
125 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
126 break;
127 }
128 ASSERT(i < xfs_uuid_table_size);
129 mutex_unlock(&xfs_uuid_table_mutex);
130 }
131
132
133 STATIC void
134 __xfs_free_perag(
135 struct rcu_head *head)
136 {
137 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
138
139 ASSERT(atomic_read(&pag->pag_ref) == 0);
140 kmem_free(pag);
141 }
142
143 /*
144 * Free up the per-ag resources associated with the mount structure.
145 */
146 STATIC void
147 xfs_free_perag(
148 xfs_mount_t *mp)
149 {
150 xfs_agnumber_t agno;
151 struct xfs_perag *pag;
152
153 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
154 spin_lock(&mp->m_perag_lock);
155 pag = radix_tree_delete(&mp->m_perag_tree, agno);
156 spin_unlock(&mp->m_perag_lock);
157 ASSERT(pag);
158 ASSERT(atomic_read(&pag->pag_ref) == 0);
159 call_rcu(&pag->rcu_head, __xfs_free_perag);
160 }
161 }
162
163 /*
164 * Check size of device based on the (data/realtime) block count.
165 * Note: this check is used by the growfs code as well as mount.
166 */
167 int
168 xfs_sb_validate_fsb_count(
169 xfs_sb_t *sbp,
170 __uint64_t nblocks)
171 {
172 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
173 ASSERT(sbp->sb_blocklog >= BBSHIFT);
174
175 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
176 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
177 return EFBIG;
178 #else /* Limited by UINT_MAX of sectors */
179 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
180 return EFBIG;
181 #endif
182 return 0;
183 }
184
185 int
186 xfs_initialize_perag(
187 xfs_mount_t *mp,
188 xfs_agnumber_t agcount,
189 xfs_agnumber_t *maxagi)
190 {
191 xfs_agnumber_t index;
192 xfs_agnumber_t first_initialised = 0;
193 xfs_perag_t *pag;
194 xfs_agino_t agino;
195 xfs_ino_t ino;
196 xfs_sb_t *sbp = &mp->m_sb;
197 int error = -ENOMEM;
198
199 /*
200 * Walk the current per-ag tree so we don't try to initialise AGs
201 * that already exist (growfs case). Allocate and insert all the
202 * AGs we don't find ready for initialisation.
203 */
204 for (index = 0; index < agcount; index++) {
205 pag = xfs_perag_get(mp, index);
206 if (pag) {
207 xfs_perag_put(pag);
208 continue;
209 }
210 if (!first_initialised)
211 first_initialised = index;
212
213 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
214 if (!pag)
215 goto out_unwind;
216 pag->pag_agno = index;
217 pag->pag_mount = mp;
218 spin_lock_init(&pag->pag_ici_lock);
219 mutex_init(&pag->pag_ici_reclaim_lock);
220 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
221 spin_lock_init(&pag->pag_buf_lock);
222 pag->pag_buf_tree = RB_ROOT;
223
224 if (radix_tree_preload(GFP_NOFS))
225 goto out_unwind;
226
227 spin_lock(&mp->m_perag_lock);
228 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
229 BUG();
230 spin_unlock(&mp->m_perag_lock);
231 radix_tree_preload_end();
232 error = -EEXIST;
233 goto out_unwind;
234 }
235 spin_unlock(&mp->m_perag_lock);
236 radix_tree_preload_end();
237 }
238
239 /*
240 * If we mount with the inode64 option, or no inode overflows
241 * the legacy 32-bit address space clear the inode32 option.
242 */
243 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
244 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
245
246 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
247 mp->m_flags |= XFS_MOUNT_32BITINODES;
248 else
249 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
250
251 if (mp->m_flags & XFS_MOUNT_32BITINODES)
252 index = xfs_set_inode32(mp);
253 else
254 index = xfs_set_inode64(mp);
255
256 if (maxagi)
257 *maxagi = index;
258 return 0;
259
260 out_unwind:
261 kmem_free(pag);
262 for (; index > first_initialised; index--) {
263 pag = radix_tree_delete(&mp->m_perag_tree, index);
264 kmem_free(pag);
265 }
266 return error;
267 }
268
269 /*
270 * xfs_readsb
271 *
272 * Does the initial read of the superblock.
273 */
274 int
275 xfs_readsb(
276 struct xfs_mount *mp,
277 int flags)
278 {
279 unsigned int sector_size;
280 struct xfs_buf *bp;
281 struct xfs_sb *sbp = &mp->m_sb;
282 int error;
283 int loud = !(flags & XFS_MFSI_QUIET);
284
285 ASSERT(mp->m_sb_bp == NULL);
286 ASSERT(mp->m_ddev_targp != NULL);
287
288 /*
289 * Allocate a (locked) buffer to hold the superblock.
290 * This will be kept around at all times to optimize
291 * access to the superblock.
292 */
293 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
294
295 reread:
296 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
297 BTOBB(sector_size), 0,
298 loud ? &xfs_sb_buf_ops
299 : &xfs_sb_quiet_buf_ops);
300 if (!bp) {
301 if (loud)
302 xfs_warn(mp, "SB buffer read failed");
303 return EIO;
304 }
305 if (bp->b_error) {
306 error = bp->b_error;
307 if (loud)
308 xfs_warn(mp, "SB validate failed with error %d.", error);
309 goto release_buf;
310 }
311
312 /*
313 * Initialize the mount structure from the superblock.
314 */
315 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
316 xfs_sb_quota_from_disk(&mp->m_sb);
317
318 /*
319 * We must be able to do sector-sized and sector-aligned IO.
320 */
321 if (sector_size > sbp->sb_sectsize) {
322 if (loud)
323 xfs_warn(mp, "device supports %u byte sectors (not %u)",
324 sector_size, sbp->sb_sectsize);
325 error = ENOSYS;
326 goto release_buf;
327 }
328
329 /*
330 * If device sector size is smaller than the superblock size,
331 * re-read the superblock so the buffer is correctly sized.
332 */
333 if (sector_size < sbp->sb_sectsize) {
334 xfs_buf_relse(bp);
335 sector_size = sbp->sb_sectsize;
336 goto reread;
337 }
338
339 /* Initialize per-cpu counters */
340 xfs_icsb_reinit_counters(mp);
341
342 /* no need to be quiet anymore, so reset the buf ops */
343 bp->b_ops = &xfs_sb_buf_ops;
344
345 mp->m_sb_bp = bp;
346 xfs_buf_unlock(bp);
347 return 0;
348
349 release_buf:
350 xfs_buf_relse(bp);
351 return error;
352 }
353
354 /*
355 * Update alignment values based on mount options and sb values
356 */
357 STATIC int
358 xfs_update_alignment(xfs_mount_t *mp)
359 {
360 xfs_sb_t *sbp = &(mp->m_sb);
361
362 if (mp->m_dalign) {
363 /*
364 * If stripe unit and stripe width are not multiples
365 * of the fs blocksize turn off alignment.
366 */
367 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
368 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
369 xfs_warn(mp,
370 "alignment check failed: sunit/swidth vs. blocksize(%d)",
371 sbp->sb_blocksize);
372 return XFS_ERROR(EINVAL);
373 } else {
374 /*
375 * Convert the stripe unit and width to FSBs.
376 */
377 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
378 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
379 xfs_warn(mp,
380 "alignment check failed: sunit/swidth vs. agsize(%d)",
381 sbp->sb_agblocks);
382 return XFS_ERROR(EINVAL);
383 } else if (mp->m_dalign) {
384 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
385 } else {
386 xfs_warn(mp,
387 "alignment check failed: sunit(%d) less than bsize(%d)",
388 mp->m_dalign, sbp->sb_blocksize);
389 return XFS_ERROR(EINVAL);
390 }
391 }
392
393 /*
394 * Update superblock with new values
395 * and log changes
396 */
397 if (xfs_sb_version_hasdalign(sbp)) {
398 if (sbp->sb_unit != mp->m_dalign) {
399 sbp->sb_unit = mp->m_dalign;
400 mp->m_update_flags |= XFS_SB_UNIT;
401 }
402 if (sbp->sb_width != mp->m_swidth) {
403 sbp->sb_width = mp->m_swidth;
404 mp->m_update_flags |= XFS_SB_WIDTH;
405 }
406 } else {
407 xfs_warn(mp,
408 "cannot change alignment: superblock does not support data alignment");
409 return XFS_ERROR(EINVAL);
410 }
411 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
412 xfs_sb_version_hasdalign(&mp->m_sb)) {
413 mp->m_dalign = sbp->sb_unit;
414 mp->m_swidth = sbp->sb_width;
415 }
416
417 return 0;
418 }
419
420 /*
421 * Set the maximum inode count for this filesystem
422 */
423 STATIC void
424 xfs_set_maxicount(xfs_mount_t *mp)
425 {
426 xfs_sb_t *sbp = &(mp->m_sb);
427 __uint64_t icount;
428
429 if (sbp->sb_imax_pct) {
430 /*
431 * Make sure the maximum inode count is a multiple
432 * of the units we allocate inodes in.
433 */
434 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
435 do_div(icount, 100);
436 do_div(icount, mp->m_ialloc_blks);
437 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
438 sbp->sb_inopblog;
439 } else {
440 mp->m_maxicount = 0;
441 }
442 }
443
444 /*
445 * Set the default minimum read and write sizes unless
446 * already specified in a mount option.
447 * We use smaller I/O sizes when the file system
448 * is being used for NFS service (wsync mount option).
449 */
450 STATIC void
451 xfs_set_rw_sizes(xfs_mount_t *mp)
452 {
453 xfs_sb_t *sbp = &(mp->m_sb);
454 int readio_log, writeio_log;
455
456 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
457 if (mp->m_flags & XFS_MOUNT_WSYNC) {
458 readio_log = XFS_WSYNC_READIO_LOG;
459 writeio_log = XFS_WSYNC_WRITEIO_LOG;
460 } else {
461 readio_log = XFS_READIO_LOG_LARGE;
462 writeio_log = XFS_WRITEIO_LOG_LARGE;
463 }
464 } else {
465 readio_log = mp->m_readio_log;
466 writeio_log = mp->m_writeio_log;
467 }
468
469 if (sbp->sb_blocklog > readio_log) {
470 mp->m_readio_log = sbp->sb_blocklog;
471 } else {
472 mp->m_readio_log = readio_log;
473 }
474 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
475 if (sbp->sb_blocklog > writeio_log) {
476 mp->m_writeio_log = sbp->sb_blocklog;
477 } else {
478 mp->m_writeio_log = writeio_log;
479 }
480 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
481 }
482
483 /*
484 * precalculate the low space thresholds for dynamic speculative preallocation.
485 */
486 void
487 xfs_set_low_space_thresholds(
488 struct xfs_mount *mp)
489 {
490 int i;
491
492 for (i = 0; i < XFS_LOWSP_MAX; i++) {
493 __uint64_t space = mp->m_sb.sb_dblocks;
494
495 do_div(space, 100);
496 mp->m_low_space[i] = space * (i + 1);
497 }
498 }
499
500
501 /*
502 * Set whether we're using inode alignment.
503 */
504 STATIC void
505 xfs_set_inoalignment(xfs_mount_t *mp)
506 {
507 if (xfs_sb_version_hasalign(&mp->m_sb) &&
508 mp->m_sb.sb_inoalignmt >=
509 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
510 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
511 else
512 mp->m_inoalign_mask = 0;
513 /*
514 * If we are using stripe alignment, check whether
515 * the stripe unit is a multiple of the inode alignment
516 */
517 if (mp->m_dalign && mp->m_inoalign_mask &&
518 !(mp->m_dalign & mp->m_inoalign_mask))
519 mp->m_sinoalign = mp->m_dalign;
520 else
521 mp->m_sinoalign = 0;
522 }
523
524 /*
525 * Check that the data (and log if separate) is an ok size.
526 */
527 STATIC int
528 xfs_check_sizes(xfs_mount_t *mp)
529 {
530 xfs_buf_t *bp;
531 xfs_daddr_t d;
532
533 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
534 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
535 xfs_warn(mp, "filesystem size mismatch detected");
536 return XFS_ERROR(EFBIG);
537 }
538 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
539 d - XFS_FSS_TO_BB(mp, 1),
540 XFS_FSS_TO_BB(mp, 1), 0, NULL);
541 if (!bp) {
542 xfs_warn(mp, "last sector read failed");
543 return EIO;
544 }
545 xfs_buf_relse(bp);
546
547 if (mp->m_logdev_targp != mp->m_ddev_targp) {
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
550 xfs_warn(mp, "log size mismatch detected");
551 return XFS_ERROR(EFBIG);
552 }
553 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
554 d - XFS_FSB_TO_BB(mp, 1),
555 XFS_FSB_TO_BB(mp, 1), 0, NULL);
556 if (!bp) {
557 xfs_warn(mp, "log device read failed");
558 return EIO;
559 }
560 xfs_buf_relse(bp);
561 }
562 return 0;
563 }
564
565 /*
566 * Clear the quotaflags in memory and in the superblock.
567 */
568 int
569 xfs_mount_reset_sbqflags(
570 struct xfs_mount *mp)
571 {
572 int error;
573 struct xfs_trans *tp;
574
575 mp->m_qflags = 0;
576
577 /*
578 * It is OK to look at sb_qflags here in mount path,
579 * without m_sb_lock.
580 */
581 if (mp->m_sb.sb_qflags == 0)
582 return 0;
583 spin_lock(&mp->m_sb_lock);
584 mp->m_sb.sb_qflags = 0;
585 spin_unlock(&mp->m_sb_lock);
586
587 /*
588 * If the fs is readonly, let the incore superblock run
589 * with quotas off but don't flush the update out to disk
590 */
591 if (mp->m_flags & XFS_MOUNT_RDONLY)
592 return 0;
593
594 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
595 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
596 if (error) {
597 xfs_trans_cancel(tp, 0);
598 xfs_alert(mp, "%s: Superblock update failed!", __func__);
599 return error;
600 }
601
602 xfs_mod_sb(tp, XFS_SB_QFLAGS);
603 return xfs_trans_commit(tp, 0);
604 }
605
606 __uint64_t
607 xfs_default_resblks(xfs_mount_t *mp)
608 {
609 __uint64_t resblks;
610
611 /*
612 * We default to 5% or 8192 fsbs of space reserved, whichever is
613 * smaller. This is intended to cover concurrent allocation
614 * transactions when we initially hit enospc. These each require a 4
615 * block reservation. Hence by default we cover roughly 2000 concurrent
616 * allocation reservations.
617 */
618 resblks = mp->m_sb.sb_dblocks;
619 do_div(resblks, 20);
620 resblks = min_t(__uint64_t, resblks, 8192);
621 return resblks;
622 }
623
624 /*
625 * This function does the following on an initial mount of a file system:
626 * - reads the superblock from disk and init the mount struct
627 * - if we're a 32-bit kernel, do a size check on the superblock
628 * so we don't mount terabyte filesystems
629 * - init mount struct realtime fields
630 * - allocate inode hash table for fs
631 * - init directory manager
632 * - perform recovery and init the log manager
633 */
634 int
635 xfs_mountfs(
636 xfs_mount_t *mp)
637 {
638 xfs_sb_t *sbp = &(mp->m_sb);
639 xfs_inode_t *rip;
640 __uint64_t resblks;
641 uint quotamount = 0;
642 uint quotaflags = 0;
643 int error = 0;
644
645 xfs_sb_mount_common(mp, sbp);
646
647 /*
648 * Check for a mismatched features2 values. Older kernels
649 * read & wrote into the wrong sb offset for sb_features2
650 * on some platforms due to xfs_sb_t not being 64bit size aligned
651 * when sb_features2 was added, which made older superblock
652 * reading/writing routines swap it as a 64-bit value.
653 *
654 * For backwards compatibility, we make both slots equal.
655 *
656 * If we detect a mismatched field, we OR the set bits into the
657 * existing features2 field in case it has already been modified; we
658 * don't want to lose any features. We then update the bad location
659 * with the ORed value so that older kernels will see any features2
660 * flags, and mark the two fields as needing updates once the
661 * transaction subsystem is online.
662 */
663 if (xfs_sb_has_mismatched_features2(sbp)) {
664 xfs_warn(mp, "correcting sb_features alignment problem");
665 sbp->sb_features2 |= sbp->sb_bad_features2;
666 sbp->sb_bad_features2 = sbp->sb_features2;
667 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
668
669 /*
670 * Re-check for ATTR2 in case it was found in bad_features2
671 * slot.
672 */
673 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
674 !(mp->m_flags & XFS_MOUNT_NOATTR2))
675 mp->m_flags |= XFS_MOUNT_ATTR2;
676 }
677
678 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
679 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
680 xfs_sb_version_removeattr2(&mp->m_sb);
681 mp->m_update_flags |= XFS_SB_FEATURES2;
682
683 /* update sb_versionnum for the clearing of the morebits */
684 if (!sbp->sb_features2)
685 mp->m_update_flags |= XFS_SB_VERSIONNUM;
686 }
687
688 /*
689 * Check if sb_agblocks is aligned at stripe boundary
690 * If sb_agblocks is NOT aligned turn off m_dalign since
691 * allocator alignment is within an ag, therefore ag has
692 * to be aligned at stripe boundary.
693 */
694 error = xfs_update_alignment(mp);
695 if (error)
696 goto out;
697
698 xfs_alloc_compute_maxlevels(mp);
699 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701 xfs_ialloc_compute_maxlevels(mp);
702
703 xfs_set_maxicount(mp);
704
705 error = xfs_uuid_mount(mp);
706 if (error)
707 goto out;
708
709 /*
710 * Set the minimum read and write sizes
711 */
712 xfs_set_rw_sizes(mp);
713
714 /* set the low space thresholds for dynamic preallocation */
715 xfs_set_low_space_thresholds(mp);
716
717 /*
718 * Set the inode cluster size.
719 * This may still be overridden by the file system
720 * block size if it is larger than the chosen cluster size.
721 */
722 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
723
724 /*
725 * Set inode alignment fields
726 */
727 xfs_set_inoalignment(mp);
728
729 /*
730 * Check that the data (and log if separate) is an ok size.
731 */
732 error = xfs_check_sizes(mp);
733 if (error)
734 goto out_remove_uuid;
735
736 /*
737 * Initialize realtime fields in the mount structure
738 */
739 error = xfs_rtmount_init(mp);
740 if (error) {
741 xfs_warn(mp, "RT mount failed");
742 goto out_remove_uuid;
743 }
744
745 /*
746 * Copies the low order bits of the timestamp and the randomly
747 * set "sequence" number out of a UUID.
748 */
749 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
750
751 mp->m_dmevmask = 0; /* not persistent; set after each mount */
752
753 xfs_dir_mount(mp);
754
755 /*
756 * Initialize the attribute manager's entries.
757 */
758 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
759
760 /*
761 * Initialize the precomputed transaction reservations values.
762 */
763 xfs_trans_init(mp);
764
765 /*
766 * Allocate and initialize the per-ag data.
767 */
768 spin_lock_init(&mp->m_perag_lock);
769 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
770 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
771 if (error) {
772 xfs_warn(mp, "Failed per-ag init: %d", error);
773 goto out_remove_uuid;
774 }
775
776 if (!sbp->sb_logblocks) {
777 xfs_warn(mp, "no log defined");
778 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
779 error = XFS_ERROR(EFSCORRUPTED);
780 goto out_free_perag;
781 }
782
783 /*
784 * log's mount-time initialization. Perform 1st part recovery if needed
785 */
786 error = xfs_log_mount(mp, mp->m_logdev_targp,
787 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
788 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
789 if (error) {
790 xfs_warn(mp, "log mount failed");
791 goto out_fail_wait;
792 }
793
794 /*
795 * Now the log is mounted, we know if it was an unclean shutdown or
796 * not. If it was, with the first phase of recovery has completed, we
797 * have consistent AG blocks on disk. We have not recovered EFIs yet,
798 * but they are recovered transactionally in the second recovery phase
799 * later.
800 *
801 * Hence we can safely re-initialise incore superblock counters from
802 * the per-ag data. These may not be correct if the filesystem was not
803 * cleanly unmounted, so we need to wait for recovery to finish before
804 * doing this.
805 *
806 * If the filesystem was cleanly unmounted, then we can trust the
807 * values in the superblock to be correct and we don't need to do
808 * anything here.
809 *
810 * If we are currently making the filesystem, the initialisation will
811 * fail as the perag data is in an undefined state.
812 */
813 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
814 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
815 !mp->m_sb.sb_inprogress) {
816 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
817 if (error)
818 goto out_fail_wait;
819 }
820
821 /*
822 * Get and sanity-check the root inode.
823 * Save the pointer to it in the mount structure.
824 */
825 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
826 if (error) {
827 xfs_warn(mp, "failed to read root inode");
828 goto out_log_dealloc;
829 }
830
831 ASSERT(rip != NULL);
832
833 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
834 xfs_warn(mp, "corrupted root inode %llu: not a directory",
835 (unsigned long long)rip->i_ino);
836 xfs_iunlock(rip, XFS_ILOCK_EXCL);
837 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
838 mp);
839 error = XFS_ERROR(EFSCORRUPTED);
840 goto out_rele_rip;
841 }
842 mp->m_rootip = rip; /* save it */
843
844 xfs_iunlock(rip, XFS_ILOCK_EXCL);
845
846 /*
847 * Initialize realtime inode pointers in the mount structure
848 */
849 error = xfs_rtmount_inodes(mp);
850 if (error) {
851 /*
852 * Free up the root inode.
853 */
854 xfs_warn(mp, "failed to read RT inodes");
855 goto out_rele_rip;
856 }
857
858 /*
859 * If this is a read-only mount defer the superblock updates until
860 * the next remount into writeable mode. Otherwise we would never
861 * perform the update e.g. for the root filesystem.
862 */
863 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
864 error = xfs_mount_log_sb(mp, mp->m_update_flags);
865 if (error) {
866 xfs_warn(mp, "failed to write sb changes");
867 goto out_rtunmount;
868 }
869 }
870
871 /*
872 * Initialise the XFS quota management subsystem for this mount
873 */
874 if (XFS_IS_QUOTA_RUNNING(mp)) {
875 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
876 if (error)
877 goto out_rtunmount;
878 } else {
879 ASSERT(!XFS_IS_QUOTA_ON(mp));
880
881 /*
882 * If a file system had quotas running earlier, but decided to
883 * mount without -o uquota/pquota/gquota options, revoke the
884 * quotachecked license.
885 */
886 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
887 xfs_notice(mp, "resetting quota flags");
888 error = xfs_mount_reset_sbqflags(mp);
889 if (error)
890 return error;
891 }
892 }
893
894 /*
895 * Finish recovering the file system. This part needed to be
896 * delayed until after the root and real-time bitmap inodes
897 * were consistently read in.
898 */
899 error = xfs_log_mount_finish(mp);
900 if (error) {
901 xfs_warn(mp, "log mount finish failed");
902 goto out_rtunmount;
903 }
904
905 /*
906 * Complete the quota initialisation, post-log-replay component.
907 */
908 if (quotamount) {
909 ASSERT(mp->m_qflags == 0);
910 mp->m_qflags = quotaflags;
911
912 xfs_qm_mount_quotas(mp);
913 }
914
915 /*
916 * Now we are mounted, reserve a small amount of unused space for
917 * privileged transactions. This is needed so that transaction
918 * space required for critical operations can dip into this pool
919 * when at ENOSPC. This is needed for operations like create with
920 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
921 * are not allowed to use this reserved space.
922 *
923 * This may drive us straight to ENOSPC on mount, but that implies
924 * we were already there on the last unmount. Warn if this occurs.
925 */
926 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
927 resblks = xfs_default_resblks(mp);
928 error = xfs_reserve_blocks(mp, &resblks, NULL);
929 if (error)
930 xfs_warn(mp,
931 "Unable to allocate reserve blocks. Continuing without reserve pool.");
932 }
933
934 return 0;
935
936 out_rtunmount:
937 xfs_rtunmount_inodes(mp);
938 out_rele_rip:
939 IRELE(rip);
940 out_log_dealloc:
941 xfs_log_unmount(mp);
942 out_fail_wait:
943 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
944 xfs_wait_buftarg(mp->m_logdev_targp);
945 xfs_wait_buftarg(mp->m_ddev_targp);
946 out_free_perag:
947 xfs_free_perag(mp);
948 out_remove_uuid:
949 xfs_uuid_unmount(mp);
950 out:
951 return error;
952 }
953
954 /*
955 * This flushes out the inodes,dquots and the superblock, unmounts the
956 * log and makes sure that incore structures are freed.
957 */
958 void
959 xfs_unmountfs(
960 struct xfs_mount *mp)
961 {
962 __uint64_t resblks;
963 int error;
964
965 cancel_delayed_work_sync(&mp->m_eofblocks_work);
966
967 xfs_qm_unmount_quotas(mp);
968 xfs_rtunmount_inodes(mp);
969 IRELE(mp->m_rootip);
970
971 /*
972 * We can potentially deadlock here if we have an inode cluster
973 * that has been freed has its buffer still pinned in memory because
974 * the transaction is still sitting in a iclog. The stale inodes
975 * on that buffer will have their flush locks held until the
976 * transaction hits the disk and the callbacks run. the inode
977 * flush takes the flush lock unconditionally and with nothing to
978 * push out the iclog we will never get that unlocked. hence we
979 * need to force the log first.
980 */
981 xfs_log_force(mp, XFS_LOG_SYNC);
982
983 /*
984 * Flush all pending changes from the AIL.
985 */
986 xfs_ail_push_all_sync(mp->m_ail);
987
988 /*
989 * And reclaim all inodes. At this point there should be no dirty
990 * inodes and none should be pinned or locked, but use synchronous
991 * reclaim just to be sure. We can stop background inode reclaim
992 * here as well if it is still running.
993 */
994 cancel_delayed_work_sync(&mp->m_reclaim_work);
995 xfs_reclaim_inodes(mp, SYNC_WAIT);
996
997 xfs_qm_unmount(mp);
998
999 /*
1000 * Unreserve any blocks we have so that when we unmount we don't account
1001 * the reserved free space as used. This is really only necessary for
1002 * lazy superblock counting because it trusts the incore superblock
1003 * counters to be absolutely correct on clean unmount.
1004 *
1005 * We don't bother correcting this elsewhere for lazy superblock
1006 * counting because on mount of an unclean filesystem we reconstruct the
1007 * correct counter value and this is irrelevant.
1008 *
1009 * For non-lazy counter filesystems, this doesn't matter at all because
1010 * we only every apply deltas to the superblock and hence the incore
1011 * value does not matter....
1012 */
1013 resblks = 0;
1014 error = xfs_reserve_blocks(mp, &resblks, NULL);
1015 if (error)
1016 xfs_warn(mp, "Unable to free reserved block pool. "
1017 "Freespace may not be correct on next mount.");
1018
1019 error = xfs_log_sbcount(mp);
1020 if (error)
1021 xfs_warn(mp, "Unable to update superblock counters. "
1022 "Freespace may not be correct on next mount.");
1023
1024 xfs_log_unmount(mp);
1025 xfs_uuid_unmount(mp);
1026
1027 #if defined(DEBUG)
1028 xfs_errortag_clearall(mp, 0);
1029 #endif
1030 xfs_free_perag(mp);
1031 }
1032
1033 int
1034 xfs_fs_writable(xfs_mount_t *mp)
1035 {
1036 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1037 (mp->m_flags & XFS_MOUNT_RDONLY));
1038 }
1039
1040 /*
1041 * xfs_log_sbcount
1042 *
1043 * Sync the superblock counters to disk.
1044 *
1045 * Note this code can be called during the process of freezing, so
1046 * we may need to use the transaction allocator which does not
1047 * block when the transaction subsystem is in its frozen state.
1048 */
1049 int
1050 xfs_log_sbcount(xfs_mount_t *mp)
1051 {
1052 xfs_trans_t *tp;
1053 int error;
1054
1055 if (!xfs_fs_writable(mp))
1056 return 0;
1057
1058 xfs_icsb_sync_counters(mp, 0);
1059
1060 /*
1061 * we don't need to do this if we are updating the superblock
1062 * counters on every modification.
1063 */
1064 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1065 return 0;
1066
1067 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1068 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1069 if (error) {
1070 xfs_trans_cancel(tp, 0);
1071 return error;
1072 }
1073
1074 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1075 xfs_trans_set_sync(tp);
1076 error = xfs_trans_commit(tp, 0);
1077 return error;
1078 }
1079
1080 /*
1081 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1082 * a delta to a specified field in the in-core superblock. Simply
1083 * switch on the field indicated and apply the delta to that field.
1084 * Fields are not allowed to dip below zero, so if the delta would
1085 * do this do not apply it and return EINVAL.
1086 *
1087 * The m_sb_lock must be held when this routine is called.
1088 */
1089 STATIC int
1090 xfs_mod_incore_sb_unlocked(
1091 xfs_mount_t *mp,
1092 xfs_sb_field_t field,
1093 int64_t delta,
1094 int rsvd)
1095 {
1096 int scounter; /* short counter for 32 bit fields */
1097 long long lcounter; /* long counter for 64 bit fields */
1098 long long res_used, rem;
1099
1100 /*
1101 * With the in-core superblock spin lock held, switch
1102 * on the indicated field. Apply the delta to the
1103 * proper field. If the fields value would dip below
1104 * 0, then do not apply the delta and return EINVAL.
1105 */
1106 switch (field) {
1107 case XFS_SBS_ICOUNT:
1108 lcounter = (long long)mp->m_sb.sb_icount;
1109 lcounter += delta;
1110 if (lcounter < 0) {
1111 ASSERT(0);
1112 return XFS_ERROR(EINVAL);
1113 }
1114 mp->m_sb.sb_icount = lcounter;
1115 return 0;
1116 case XFS_SBS_IFREE:
1117 lcounter = (long long)mp->m_sb.sb_ifree;
1118 lcounter += delta;
1119 if (lcounter < 0) {
1120 ASSERT(0);
1121 return XFS_ERROR(EINVAL);
1122 }
1123 mp->m_sb.sb_ifree = lcounter;
1124 return 0;
1125 case XFS_SBS_FDBLOCKS:
1126 lcounter = (long long)
1127 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1128 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1129
1130 if (delta > 0) { /* Putting blocks back */
1131 if (res_used > delta) {
1132 mp->m_resblks_avail += delta;
1133 } else {
1134 rem = delta - res_used;
1135 mp->m_resblks_avail = mp->m_resblks;
1136 lcounter += rem;
1137 }
1138 } else { /* Taking blocks away */
1139 lcounter += delta;
1140 if (lcounter >= 0) {
1141 mp->m_sb.sb_fdblocks = lcounter +
1142 XFS_ALLOC_SET_ASIDE(mp);
1143 return 0;
1144 }
1145
1146 /*
1147 * We are out of blocks, use any available reserved
1148 * blocks if were allowed to.
1149 */
1150 if (!rsvd)
1151 return XFS_ERROR(ENOSPC);
1152
1153 lcounter = (long long)mp->m_resblks_avail + delta;
1154 if (lcounter >= 0) {
1155 mp->m_resblks_avail = lcounter;
1156 return 0;
1157 }
1158 printk_once(KERN_WARNING
1159 "Filesystem \"%s\": reserve blocks depleted! "
1160 "Consider increasing reserve pool size.",
1161 mp->m_fsname);
1162 return XFS_ERROR(ENOSPC);
1163 }
1164
1165 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1166 return 0;
1167 case XFS_SBS_FREXTENTS:
1168 lcounter = (long long)mp->m_sb.sb_frextents;
1169 lcounter += delta;
1170 if (lcounter < 0) {
1171 return XFS_ERROR(ENOSPC);
1172 }
1173 mp->m_sb.sb_frextents = lcounter;
1174 return 0;
1175 case XFS_SBS_DBLOCKS:
1176 lcounter = (long long)mp->m_sb.sb_dblocks;
1177 lcounter += delta;
1178 if (lcounter < 0) {
1179 ASSERT(0);
1180 return XFS_ERROR(EINVAL);
1181 }
1182 mp->m_sb.sb_dblocks = lcounter;
1183 return 0;
1184 case XFS_SBS_AGCOUNT:
1185 scounter = mp->m_sb.sb_agcount;
1186 scounter += delta;
1187 if (scounter < 0) {
1188 ASSERT(0);
1189 return XFS_ERROR(EINVAL);
1190 }
1191 mp->m_sb.sb_agcount = scounter;
1192 return 0;
1193 case XFS_SBS_IMAX_PCT:
1194 scounter = mp->m_sb.sb_imax_pct;
1195 scounter += delta;
1196 if (scounter < 0) {
1197 ASSERT(0);
1198 return XFS_ERROR(EINVAL);
1199 }
1200 mp->m_sb.sb_imax_pct = scounter;
1201 return 0;
1202 case XFS_SBS_REXTSIZE:
1203 scounter = mp->m_sb.sb_rextsize;
1204 scounter += delta;
1205 if (scounter < 0) {
1206 ASSERT(0);
1207 return XFS_ERROR(EINVAL);
1208 }
1209 mp->m_sb.sb_rextsize = scounter;
1210 return 0;
1211 case XFS_SBS_RBMBLOCKS:
1212 scounter = mp->m_sb.sb_rbmblocks;
1213 scounter += delta;
1214 if (scounter < 0) {
1215 ASSERT(0);
1216 return XFS_ERROR(EINVAL);
1217 }
1218 mp->m_sb.sb_rbmblocks = scounter;
1219 return 0;
1220 case XFS_SBS_RBLOCKS:
1221 lcounter = (long long)mp->m_sb.sb_rblocks;
1222 lcounter += delta;
1223 if (lcounter < 0) {
1224 ASSERT(0);
1225 return XFS_ERROR(EINVAL);
1226 }
1227 mp->m_sb.sb_rblocks = lcounter;
1228 return 0;
1229 case XFS_SBS_REXTENTS:
1230 lcounter = (long long)mp->m_sb.sb_rextents;
1231 lcounter += delta;
1232 if (lcounter < 0) {
1233 ASSERT(0);
1234 return XFS_ERROR(EINVAL);
1235 }
1236 mp->m_sb.sb_rextents = lcounter;
1237 return 0;
1238 case XFS_SBS_REXTSLOG:
1239 scounter = mp->m_sb.sb_rextslog;
1240 scounter += delta;
1241 if (scounter < 0) {
1242 ASSERT(0);
1243 return XFS_ERROR(EINVAL);
1244 }
1245 mp->m_sb.sb_rextslog = scounter;
1246 return 0;
1247 default:
1248 ASSERT(0);
1249 return XFS_ERROR(EINVAL);
1250 }
1251 }
1252
1253 /*
1254 * xfs_mod_incore_sb() is used to change a field in the in-core
1255 * superblock structure by the specified delta. This modification
1256 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1257 * routine to do the work.
1258 */
1259 int
1260 xfs_mod_incore_sb(
1261 struct xfs_mount *mp,
1262 xfs_sb_field_t field,
1263 int64_t delta,
1264 int rsvd)
1265 {
1266 int status;
1267
1268 #ifdef HAVE_PERCPU_SB
1269 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1270 #endif
1271 spin_lock(&mp->m_sb_lock);
1272 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1273 spin_unlock(&mp->m_sb_lock);
1274
1275 return status;
1276 }
1277
1278 /*
1279 * Change more than one field in the in-core superblock structure at a time.
1280 *
1281 * The fields and changes to those fields are specified in the array of
1282 * xfs_mod_sb structures passed in. Either all of the specified deltas
1283 * will be applied or none of them will. If any modified field dips below 0,
1284 * then all modifications will be backed out and EINVAL will be returned.
1285 *
1286 * Note that this function may not be used for the superblock values that
1287 * are tracked with the in-memory per-cpu counters - a direct call to
1288 * xfs_icsb_modify_counters is required for these.
1289 */
1290 int
1291 xfs_mod_incore_sb_batch(
1292 struct xfs_mount *mp,
1293 xfs_mod_sb_t *msb,
1294 uint nmsb,
1295 int rsvd)
1296 {
1297 xfs_mod_sb_t *msbp;
1298 int error = 0;
1299
1300 /*
1301 * Loop through the array of mod structures and apply each individually.
1302 * If any fail, then back out all those which have already been applied.
1303 * Do all of this within the scope of the m_sb_lock so that all of the
1304 * changes will be atomic.
1305 */
1306 spin_lock(&mp->m_sb_lock);
1307 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1308 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1309 msbp->msb_field > XFS_SBS_FDBLOCKS);
1310
1311 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1312 msbp->msb_delta, rsvd);
1313 if (error)
1314 goto unwind;
1315 }
1316 spin_unlock(&mp->m_sb_lock);
1317 return 0;
1318
1319 unwind:
1320 while (--msbp >= msb) {
1321 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1322 -msbp->msb_delta, rsvd);
1323 ASSERT(error == 0);
1324 }
1325 spin_unlock(&mp->m_sb_lock);
1326 return error;
1327 }
1328
1329 /*
1330 * xfs_getsb() is called to obtain the buffer for the superblock.
1331 * The buffer is returned locked and read in from disk.
1332 * The buffer should be released with a call to xfs_brelse().
1333 *
1334 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1335 * the superblock buffer if it can be locked without sleeping.
1336 * If it can't then we'll return NULL.
1337 */
1338 struct xfs_buf *
1339 xfs_getsb(
1340 struct xfs_mount *mp,
1341 int flags)
1342 {
1343 struct xfs_buf *bp = mp->m_sb_bp;
1344
1345 if (!xfs_buf_trylock(bp)) {
1346 if (flags & XBF_TRYLOCK)
1347 return NULL;
1348 xfs_buf_lock(bp);
1349 }
1350
1351 xfs_buf_hold(bp);
1352 ASSERT(XFS_BUF_ISDONE(bp));
1353 return bp;
1354 }
1355
1356 /*
1357 * Used to free the superblock along various error paths.
1358 */
1359 void
1360 xfs_freesb(
1361 struct xfs_mount *mp)
1362 {
1363 struct xfs_buf *bp = mp->m_sb_bp;
1364
1365 xfs_buf_lock(bp);
1366 mp->m_sb_bp = NULL;
1367 xfs_buf_relse(bp);
1368 }
1369
1370 /*
1371 * Used to log changes to the superblock unit and width fields which could
1372 * be altered by the mount options, as well as any potential sb_features2
1373 * fixup. Only the first superblock is updated.
1374 */
1375 int
1376 xfs_mount_log_sb(
1377 xfs_mount_t *mp,
1378 __int64_t fields)
1379 {
1380 xfs_trans_t *tp;
1381 int error;
1382
1383 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1384 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1385 XFS_SB_VERSIONNUM));
1386
1387 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1388 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1389 if (error) {
1390 xfs_trans_cancel(tp, 0);
1391 return error;
1392 }
1393 xfs_mod_sb(tp, fields);
1394 error = xfs_trans_commit(tp, 0);
1395 return error;
1396 }
1397
1398 /*
1399 * If the underlying (data/log/rt) device is readonly, there are some
1400 * operations that cannot proceed.
1401 */
1402 int
1403 xfs_dev_is_read_only(
1404 struct xfs_mount *mp,
1405 char *message)
1406 {
1407 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1408 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1409 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1410 xfs_notice(mp, "%s required on read-only device.", message);
1411 xfs_notice(mp, "write access unavailable, cannot proceed.");
1412 return EROFS;
1413 }
1414 return 0;
1415 }
1416
1417 #ifdef HAVE_PERCPU_SB
1418 /*
1419 * Per-cpu incore superblock counters
1420 *
1421 * Simple concept, difficult implementation
1422 *
1423 * Basically, replace the incore superblock counters with a distributed per cpu
1424 * counter for contended fields (e.g. free block count).
1425 *
1426 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1427 * hence needs to be accurately read when we are running low on space. Hence
1428 * there is a method to enable and disable the per-cpu counters based on how
1429 * much "stuff" is available in them.
1430 *
1431 * Basically, a counter is enabled if there is enough free resource to justify
1432 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1433 * ENOSPC), then we disable the counters to synchronise all callers and
1434 * re-distribute the available resources.
1435 *
1436 * If, once we redistributed the available resources, we still get a failure,
1437 * we disable the per-cpu counter and go through the slow path.
1438 *
1439 * The slow path is the current xfs_mod_incore_sb() function. This means that
1440 * when we disable a per-cpu counter, we need to drain its resources back to
1441 * the global superblock. We do this after disabling the counter to prevent
1442 * more threads from queueing up on the counter.
1443 *
1444 * Essentially, this means that we still need a lock in the fast path to enable
1445 * synchronisation between the global counters and the per-cpu counters. This
1446 * is not a problem because the lock will be local to a CPU almost all the time
1447 * and have little contention except when we get to ENOSPC conditions.
1448 *
1449 * Basically, this lock becomes a barrier that enables us to lock out the fast
1450 * path while we do things like enabling and disabling counters and
1451 * synchronising the counters.
1452 *
1453 * Locking rules:
1454 *
1455 * 1. m_sb_lock before picking up per-cpu locks
1456 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1457 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1458 * 4. modifying per-cpu counters requires holding per-cpu lock
1459 * 5. modifying global counters requires holding m_sb_lock
1460 * 6. enabling or disabling a counter requires holding the m_sb_lock
1461 * and _none_ of the per-cpu locks.
1462 *
1463 * Disabled counters are only ever re-enabled by a balance operation
1464 * that results in more free resources per CPU than a given threshold.
1465 * To ensure counters don't remain disabled, they are rebalanced when
1466 * the global resource goes above a higher threshold (i.e. some hysteresis
1467 * is present to prevent thrashing).
1468 */
1469
1470 #ifdef CONFIG_HOTPLUG_CPU
1471 /*
1472 * hot-plug CPU notifier support.
1473 *
1474 * We need a notifier per filesystem as we need to be able to identify
1475 * the filesystem to balance the counters out. This is achieved by
1476 * having a notifier block embedded in the xfs_mount_t and doing pointer
1477 * magic to get the mount pointer from the notifier block address.
1478 */
1479 STATIC int
1480 xfs_icsb_cpu_notify(
1481 struct notifier_block *nfb,
1482 unsigned long action,
1483 void *hcpu)
1484 {
1485 xfs_icsb_cnts_t *cntp;
1486 xfs_mount_t *mp;
1487
1488 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1489 cntp = (xfs_icsb_cnts_t *)
1490 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1491 switch (action) {
1492 case CPU_UP_PREPARE:
1493 case CPU_UP_PREPARE_FROZEN:
1494 /* Easy Case - initialize the area and locks, and
1495 * then rebalance when online does everything else for us. */
1496 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1497 break;
1498 case CPU_ONLINE:
1499 case CPU_ONLINE_FROZEN:
1500 xfs_icsb_lock(mp);
1501 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1502 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1503 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1504 xfs_icsb_unlock(mp);
1505 break;
1506 case CPU_DEAD:
1507 case CPU_DEAD_FROZEN:
1508 /* Disable all the counters, then fold the dead cpu's
1509 * count into the total on the global superblock and
1510 * re-enable the counters. */
1511 xfs_icsb_lock(mp);
1512 spin_lock(&mp->m_sb_lock);
1513 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1514 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1515 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1516
1517 mp->m_sb.sb_icount += cntp->icsb_icount;
1518 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1519 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1520
1521 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1522
1523 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1524 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1525 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1526 spin_unlock(&mp->m_sb_lock);
1527 xfs_icsb_unlock(mp);
1528 break;
1529 }
1530
1531 return NOTIFY_OK;
1532 }
1533 #endif /* CONFIG_HOTPLUG_CPU */
1534
1535 int
1536 xfs_icsb_init_counters(
1537 xfs_mount_t *mp)
1538 {
1539 xfs_icsb_cnts_t *cntp;
1540 int i;
1541
1542 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1543 if (mp->m_sb_cnts == NULL)
1544 return -ENOMEM;
1545
1546 for_each_online_cpu(i) {
1547 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1548 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1549 }
1550
1551 mutex_init(&mp->m_icsb_mutex);
1552
1553 /*
1554 * start with all counters disabled so that the
1555 * initial balance kicks us off correctly
1556 */
1557 mp->m_icsb_counters = -1;
1558
1559 #ifdef CONFIG_HOTPLUG_CPU
1560 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1561 mp->m_icsb_notifier.priority = 0;
1562 register_hotcpu_notifier(&mp->m_icsb_notifier);
1563 #endif /* CONFIG_HOTPLUG_CPU */
1564
1565 return 0;
1566 }
1567
1568 void
1569 xfs_icsb_reinit_counters(
1570 xfs_mount_t *mp)
1571 {
1572 xfs_icsb_lock(mp);
1573 /*
1574 * start with all counters disabled so that the
1575 * initial balance kicks us off correctly
1576 */
1577 mp->m_icsb_counters = -1;
1578 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1579 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1580 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1581 xfs_icsb_unlock(mp);
1582 }
1583
1584 void
1585 xfs_icsb_destroy_counters(
1586 xfs_mount_t *mp)
1587 {
1588 if (mp->m_sb_cnts) {
1589 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1590 free_percpu(mp->m_sb_cnts);
1591 }
1592 mutex_destroy(&mp->m_icsb_mutex);
1593 }
1594
1595 STATIC void
1596 xfs_icsb_lock_cntr(
1597 xfs_icsb_cnts_t *icsbp)
1598 {
1599 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1600 ndelay(1000);
1601 }
1602 }
1603
1604 STATIC void
1605 xfs_icsb_unlock_cntr(
1606 xfs_icsb_cnts_t *icsbp)
1607 {
1608 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1609 }
1610
1611
1612 STATIC void
1613 xfs_icsb_lock_all_counters(
1614 xfs_mount_t *mp)
1615 {
1616 xfs_icsb_cnts_t *cntp;
1617 int i;
1618
1619 for_each_online_cpu(i) {
1620 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1621 xfs_icsb_lock_cntr(cntp);
1622 }
1623 }
1624
1625 STATIC void
1626 xfs_icsb_unlock_all_counters(
1627 xfs_mount_t *mp)
1628 {
1629 xfs_icsb_cnts_t *cntp;
1630 int i;
1631
1632 for_each_online_cpu(i) {
1633 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1634 xfs_icsb_unlock_cntr(cntp);
1635 }
1636 }
1637
1638 STATIC void
1639 xfs_icsb_count(
1640 xfs_mount_t *mp,
1641 xfs_icsb_cnts_t *cnt,
1642 int flags)
1643 {
1644 xfs_icsb_cnts_t *cntp;
1645 int i;
1646
1647 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1648
1649 if (!(flags & XFS_ICSB_LAZY_COUNT))
1650 xfs_icsb_lock_all_counters(mp);
1651
1652 for_each_online_cpu(i) {
1653 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1654 cnt->icsb_icount += cntp->icsb_icount;
1655 cnt->icsb_ifree += cntp->icsb_ifree;
1656 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1657 }
1658
1659 if (!(flags & XFS_ICSB_LAZY_COUNT))
1660 xfs_icsb_unlock_all_counters(mp);
1661 }
1662
1663 STATIC int
1664 xfs_icsb_counter_disabled(
1665 xfs_mount_t *mp,
1666 xfs_sb_field_t field)
1667 {
1668 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1669 return test_bit(field, &mp->m_icsb_counters);
1670 }
1671
1672 STATIC void
1673 xfs_icsb_disable_counter(
1674 xfs_mount_t *mp,
1675 xfs_sb_field_t field)
1676 {
1677 xfs_icsb_cnts_t cnt;
1678
1679 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1680
1681 /*
1682 * If we are already disabled, then there is nothing to do
1683 * here. We check before locking all the counters to avoid
1684 * the expensive lock operation when being called in the
1685 * slow path and the counter is already disabled. This is
1686 * safe because the only time we set or clear this state is under
1687 * the m_icsb_mutex.
1688 */
1689 if (xfs_icsb_counter_disabled(mp, field))
1690 return;
1691
1692 xfs_icsb_lock_all_counters(mp);
1693 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1694 /* drain back to superblock */
1695
1696 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1697 switch(field) {
1698 case XFS_SBS_ICOUNT:
1699 mp->m_sb.sb_icount = cnt.icsb_icount;
1700 break;
1701 case XFS_SBS_IFREE:
1702 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1703 break;
1704 case XFS_SBS_FDBLOCKS:
1705 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1706 break;
1707 default:
1708 BUG();
1709 }
1710 }
1711
1712 xfs_icsb_unlock_all_counters(mp);
1713 }
1714
1715 STATIC void
1716 xfs_icsb_enable_counter(
1717 xfs_mount_t *mp,
1718 xfs_sb_field_t field,
1719 uint64_t count,
1720 uint64_t resid)
1721 {
1722 xfs_icsb_cnts_t *cntp;
1723 int i;
1724
1725 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1726
1727 xfs_icsb_lock_all_counters(mp);
1728 for_each_online_cpu(i) {
1729 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1730 switch (field) {
1731 case XFS_SBS_ICOUNT:
1732 cntp->icsb_icount = count + resid;
1733 break;
1734 case XFS_SBS_IFREE:
1735 cntp->icsb_ifree = count + resid;
1736 break;
1737 case XFS_SBS_FDBLOCKS:
1738 cntp->icsb_fdblocks = count + resid;
1739 break;
1740 default:
1741 BUG();
1742 break;
1743 }
1744 resid = 0;
1745 }
1746 clear_bit(field, &mp->m_icsb_counters);
1747 xfs_icsb_unlock_all_counters(mp);
1748 }
1749
1750 void
1751 xfs_icsb_sync_counters_locked(
1752 xfs_mount_t *mp,
1753 int flags)
1754 {
1755 xfs_icsb_cnts_t cnt;
1756
1757 xfs_icsb_count(mp, &cnt, flags);
1758
1759 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1760 mp->m_sb.sb_icount = cnt.icsb_icount;
1761 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1762 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1763 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1764 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1765 }
1766
1767 /*
1768 * Accurate update of per-cpu counters to incore superblock
1769 */
1770 void
1771 xfs_icsb_sync_counters(
1772 xfs_mount_t *mp,
1773 int flags)
1774 {
1775 spin_lock(&mp->m_sb_lock);
1776 xfs_icsb_sync_counters_locked(mp, flags);
1777 spin_unlock(&mp->m_sb_lock);
1778 }
1779
1780 /*
1781 * Balance and enable/disable counters as necessary.
1782 *
1783 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1784 * chosen to be the same number as single on disk allocation chunk per CPU, and
1785 * free blocks is something far enough zero that we aren't going thrash when we
1786 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1787 * prevent looping endlessly when xfs_alloc_space asks for more than will
1788 * be distributed to a single CPU but each CPU has enough blocks to be
1789 * reenabled.
1790 *
1791 * Note that we can be called when counters are already disabled.
1792 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1793 * prevent locking every per-cpu counter needlessly.
1794 */
1795
1796 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1797 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1798 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1799 STATIC void
1800 xfs_icsb_balance_counter_locked(
1801 xfs_mount_t *mp,
1802 xfs_sb_field_t field,
1803 int min_per_cpu)
1804 {
1805 uint64_t count, resid;
1806 int weight = num_online_cpus();
1807 uint64_t min = (uint64_t)min_per_cpu;
1808
1809 /* disable counter and sync counter */
1810 xfs_icsb_disable_counter(mp, field);
1811
1812 /* update counters - first CPU gets residual*/
1813 switch (field) {
1814 case XFS_SBS_ICOUNT:
1815 count = mp->m_sb.sb_icount;
1816 resid = do_div(count, weight);
1817 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1818 return;
1819 break;
1820 case XFS_SBS_IFREE:
1821 count = mp->m_sb.sb_ifree;
1822 resid = do_div(count, weight);
1823 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1824 return;
1825 break;
1826 case XFS_SBS_FDBLOCKS:
1827 count = mp->m_sb.sb_fdblocks;
1828 resid = do_div(count, weight);
1829 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1830 return;
1831 break;
1832 default:
1833 BUG();
1834 count = resid = 0; /* quiet, gcc */
1835 break;
1836 }
1837
1838 xfs_icsb_enable_counter(mp, field, count, resid);
1839 }
1840
1841 STATIC void
1842 xfs_icsb_balance_counter(
1843 xfs_mount_t *mp,
1844 xfs_sb_field_t fields,
1845 int min_per_cpu)
1846 {
1847 spin_lock(&mp->m_sb_lock);
1848 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1849 spin_unlock(&mp->m_sb_lock);
1850 }
1851
1852 int
1853 xfs_icsb_modify_counters(
1854 xfs_mount_t *mp,
1855 xfs_sb_field_t field,
1856 int64_t delta,
1857 int rsvd)
1858 {
1859 xfs_icsb_cnts_t *icsbp;
1860 long long lcounter; /* long counter for 64 bit fields */
1861 int ret = 0;
1862
1863 might_sleep();
1864 again:
1865 preempt_disable();
1866 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1867
1868 /*
1869 * if the counter is disabled, go to slow path
1870 */
1871 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1872 goto slow_path;
1873 xfs_icsb_lock_cntr(icsbp);
1874 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1875 xfs_icsb_unlock_cntr(icsbp);
1876 goto slow_path;
1877 }
1878
1879 switch (field) {
1880 case XFS_SBS_ICOUNT:
1881 lcounter = icsbp->icsb_icount;
1882 lcounter += delta;
1883 if (unlikely(lcounter < 0))
1884 goto balance_counter;
1885 icsbp->icsb_icount = lcounter;
1886 break;
1887
1888 case XFS_SBS_IFREE:
1889 lcounter = icsbp->icsb_ifree;
1890 lcounter += delta;
1891 if (unlikely(lcounter < 0))
1892 goto balance_counter;
1893 icsbp->icsb_ifree = lcounter;
1894 break;
1895
1896 case XFS_SBS_FDBLOCKS:
1897 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1898
1899 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1900 lcounter += delta;
1901 if (unlikely(lcounter < 0))
1902 goto balance_counter;
1903 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1904 break;
1905 default:
1906 BUG();
1907 break;
1908 }
1909 xfs_icsb_unlock_cntr(icsbp);
1910 preempt_enable();
1911 return 0;
1912
1913 slow_path:
1914 preempt_enable();
1915
1916 /*
1917 * serialise with a mutex so we don't burn lots of cpu on
1918 * the superblock lock. We still need to hold the superblock
1919 * lock, however, when we modify the global structures.
1920 */
1921 xfs_icsb_lock(mp);
1922
1923 /*
1924 * Now running atomically.
1925 *
1926 * If the counter is enabled, someone has beaten us to rebalancing.
1927 * Drop the lock and try again in the fast path....
1928 */
1929 if (!(xfs_icsb_counter_disabled(mp, field))) {
1930 xfs_icsb_unlock(mp);
1931 goto again;
1932 }
1933
1934 /*
1935 * The counter is currently disabled. Because we are
1936 * running atomically here, we know a rebalance cannot
1937 * be in progress. Hence we can go straight to operating
1938 * on the global superblock. We do not call xfs_mod_incore_sb()
1939 * here even though we need to get the m_sb_lock. Doing so
1940 * will cause us to re-enter this function and deadlock.
1941 * Hence we get the m_sb_lock ourselves and then call
1942 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1943 * directly on the global counters.
1944 */
1945 spin_lock(&mp->m_sb_lock);
1946 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1947 spin_unlock(&mp->m_sb_lock);
1948
1949 /*
1950 * Now that we've modified the global superblock, we
1951 * may be able to re-enable the distributed counters
1952 * (e.g. lots of space just got freed). After that
1953 * we are done.
1954 */
1955 if (ret != ENOSPC)
1956 xfs_icsb_balance_counter(mp, field, 0);
1957 xfs_icsb_unlock(mp);
1958 return ret;
1959
1960 balance_counter:
1961 xfs_icsb_unlock_cntr(icsbp);
1962 preempt_enable();
1963
1964 /*
1965 * We may have multiple threads here if multiple per-cpu
1966 * counters run dry at the same time. This will mean we can
1967 * do more balances than strictly necessary but it is not
1968 * the common slowpath case.
1969 */
1970 xfs_icsb_lock(mp);
1971
1972 /*
1973 * running atomically.
1974 *
1975 * This will leave the counter in the correct state for future
1976 * accesses. After the rebalance, we simply try again and our retry
1977 * will either succeed through the fast path or slow path without
1978 * another balance operation being required.
1979 */
1980 xfs_icsb_balance_counter(mp, field, delta);
1981 xfs_icsb_unlock(mp);
1982 goto again;
1983 }
1984
1985 #endif