]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/xfs/xfs_mount.c
Merge tag 'xfs-6.1-for-linus' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-kernels.git] / fs / xfs / xfs_mount.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37
38 static DEFINE_MUTEX(xfs_uuid_table_mutex);
39 static int xfs_uuid_table_size;
40 static uuid_t *xfs_uuid_table;
41
42 void
43 xfs_uuid_table_free(void)
44 {
45 if (xfs_uuid_table_size == 0)
46 return;
47 kmem_free(xfs_uuid_table);
48 xfs_uuid_table = NULL;
49 xfs_uuid_table_size = 0;
50 }
51
52 /*
53 * See if the UUID is unique among mounted XFS filesystems.
54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55 */
56 STATIC int
57 xfs_uuid_mount(
58 struct xfs_mount *mp)
59 {
60 uuid_t *uuid = &mp->m_sb.sb_uuid;
61 int hole, i;
62
63 /* Publish UUID in struct super_block */
64 uuid_copy(&mp->m_super->s_uuid, uuid);
65
66 if (xfs_has_nouuid(mp))
67 return 0;
68
69 if (uuid_is_null(uuid)) {
70 xfs_warn(mp, "Filesystem has null UUID - can't mount");
71 return -EINVAL;
72 }
73
74 mutex_lock(&xfs_uuid_table_mutex);
75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 if (uuid_is_null(&xfs_uuid_table[i])) {
77 hole = i;
78 continue;
79 }
80 if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 goto out_duplicate;
82 }
83
84 if (hole < 0) {
85 xfs_uuid_table = krealloc(xfs_uuid_table,
86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 GFP_KERNEL | __GFP_NOFAIL);
88 hole = xfs_uuid_table_size++;
89 }
90 xfs_uuid_table[hole] = *uuid;
91 mutex_unlock(&xfs_uuid_table_mutex);
92
93 return 0;
94
95 out_duplicate:
96 mutex_unlock(&xfs_uuid_table_mutex);
97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
98 return -EINVAL;
99 }
100
101 STATIC void
102 xfs_uuid_unmount(
103 struct xfs_mount *mp)
104 {
105 uuid_t *uuid = &mp->m_sb.sb_uuid;
106 int i;
107
108 if (xfs_has_nouuid(mp))
109 return;
110
111 mutex_lock(&xfs_uuid_table_mutex);
112 for (i = 0; i < xfs_uuid_table_size; i++) {
113 if (uuid_is_null(&xfs_uuid_table[i]))
114 continue;
115 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 continue;
117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 break;
119 }
120 ASSERT(i < xfs_uuid_table_size);
121 mutex_unlock(&xfs_uuid_table_mutex);
122 }
123
124 /*
125 * Check size of device based on the (data/realtime) block count.
126 * Note: this check is used by the growfs code as well as mount.
127 */
128 int
129 xfs_sb_validate_fsb_count(
130 xfs_sb_t *sbp,
131 uint64_t nblocks)
132 {
133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 ASSERT(sbp->sb_blocklog >= BBSHIFT);
135
136 /* Limited by ULONG_MAX of page cache index */
137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
138 return -EFBIG;
139 return 0;
140 }
141
142 /*
143 * xfs_readsb
144 *
145 * Does the initial read of the superblock.
146 */
147 int
148 xfs_readsb(
149 struct xfs_mount *mp,
150 int flags)
151 {
152 unsigned int sector_size;
153 struct xfs_buf *bp;
154 struct xfs_sb *sbp = &mp->m_sb;
155 int error;
156 int loud = !(flags & XFS_MFSI_QUIET);
157 const struct xfs_buf_ops *buf_ops;
158
159 ASSERT(mp->m_sb_bp == NULL);
160 ASSERT(mp->m_ddev_targp != NULL);
161
162 /*
163 * For the initial read, we must guess at the sector
164 * size based on the block device. It's enough to
165 * get the sb_sectsize out of the superblock and
166 * then reread with the proper length.
167 * We don't verify it yet, because it may not be complete.
168 */
169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 buf_ops = NULL;
171
172 /*
173 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 * around at all times to optimize access to the superblock. Therefore,
175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 * elevated.
177 */
178 reread:
179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 buf_ops);
182 if (error) {
183 if (loud)
184 xfs_warn(mp, "SB validate failed with error %d.", error);
185 /* bad CRC means corrupted metadata */
186 if (error == -EFSBADCRC)
187 error = -EFSCORRUPTED;
188 return error;
189 }
190
191 /*
192 * Initialize the mount structure from the superblock.
193 */
194 xfs_sb_from_disk(sbp, bp->b_addr);
195
196 /*
197 * If we haven't validated the superblock, do so now before we try
198 * to check the sector size and reread the superblock appropriately.
199 */
200 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 if (loud)
202 xfs_warn(mp, "Invalid superblock magic number");
203 error = -EINVAL;
204 goto release_buf;
205 }
206
207 /*
208 * We must be able to do sector-sized and sector-aligned IO.
209 */
210 if (sector_size > sbp->sb_sectsize) {
211 if (loud)
212 xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 sector_size, sbp->sb_sectsize);
214 error = -ENOSYS;
215 goto release_buf;
216 }
217
218 if (buf_ops == NULL) {
219 /*
220 * Re-read the superblock so the buffer is correctly sized,
221 * and properly verified.
222 */
223 xfs_buf_relse(bp);
224 sector_size = sbp->sb_sectsize;
225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
226 goto reread;
227 }
228
229 mp->m_features |= xfs_sb_version_to_features(sbp);
230 xfs_reinit_percpu_counters(mp);
231
232 /* no need to be quiet anymore, so reset the buf ops */
233 bp->b_ops = &xfs_sb_buf_ops;
234
235 mp->m_sb_bp = bp;
236 xfs_buf_unlock(bp);
237 return 0;
238
239 release_buf:
240 xfs_buf_relse(bp);
241 return error;
242 }
243
244 /*
245 * If the sunit/swidth change would move the precomputed root inode value, we
246 * must reject the ondisk change because repair will stumble over that.
247 * However, we allow the mount to proceed because we never rejected this
248 * combination before. Returns true to update the sb, false otherwise.
249 */
250 static inline int
251 xfs_check_new_dalign(
252 struct xfs_mount *mp,
253 int new_dalign,
254 bool *update_sb)
255 {
256 struct xfs_sb *sbp = &mp->m_sb;
257 xfs_ino_t calc_ino;
258
259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261
262 if (sbp->sb_rootino == calc_ino) {
263 *update_sb = true;
264 return 0;
265 }
266
267 xfs_warn(mp,
268 "Cannot change stripe alignment; would require moving root inode.");
269
270 /*
271 * XXX: Next time we add a new incompat feature, this should start
272 * returning -EINVAL to fail the mount. Until then, spit out a warning
273 * that we're ignoring the administrator's instructions.
274 */
275 xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 *update_sb = false;
277 return 0;
278 }
279
280 /*
281 * If we were provided with new sunit/swidth values as mount options, make sure
282 * that they pass basic alignment and superblock feature checks, and convert
283 * them into the same units (FSB) that everything else expects. This step
284 * /must/ be done before computing the inode geometry.
285 */
286 STATIC int
287 xfs_validate_new_dalign(
288 struct xfs_mount *mp)
289 {
290 if (mp->m_dalign == 0)
291 return 0;
292
293 /*
294 * If stripe unit and stripe width are not multiples
295 * of the fs blocksize turn off alignment.
296 */
297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 xfs_warn(mp,
300 "alignment check failed: sunit/swidth vs. blocksize(%d)",
301 mp->m_sb.sb_blocksize);
302 return -EINVAL;
303 }
304
305 /*
306 * Convert the stripe unit and width to FSBs.
307 */
308 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
309 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
310 xfs_warn(mp,
311 "alignment check failed: sunit/swidth vs. agsize(%d)",
312 mp->m_sb.sb_agblocks);
313 return -EINVAL;
314 }
315
316 if (!mp->m_dalign) {
317 xfs_warn(mp,
318 "alignment check failed: sunit(%d) less than bsize(%d)",
319 mp->m_dalign, mp->m_sb.sb_blocksize);
320 return -EINVAL;
321 }
322
323 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
324
325 if (!xfs_has_dalign(mp)) {
326 xfs_warn(mp,
327 "cannot change alignment: superblock does not support data alignment");
328 return -EINVAL;
329 }
330
331 return 0;
332 }
333
334 /* Update alignment values based on mount options and sb values. */
335 STATIC int
336 xfs_update_alignment(
337 struct xfs_mount *mp)
338 {
339 struct xfs_sb *sbp = &mp->m_sb;
340
341 if (mp->m_dalign) {
342 bool update_sb;
343 int error;
344
345 if (sbp->sb_unit == mp->m_dalign &&
346 sbp->sb_width == mp->m_swidth)
347 return 0;
348
349 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
350 if (error || !update_sb)
351 return error;
352
353 sbp->sb_unit = mp->m_dalign;
354 sbp->sb_width = mp->m_swidth;
355 mp->m_update_sb = true;
356 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
357 mp->m_dalign = sbp->sb_unit;
358 mp->m_swidth = sbp->sb_width;
359 }
360
361 return 0;
362 }
363
364 /*
365 * precalculate the low space thresholds for dynamic speculative preallocation.
366 */
367 void
368 xfs_set_low_space_thresholds(
369 struct xfs_mount *mp)
370 {
371 uint64_t dblocks = mp->m_sb.sb_dblocks;
372 uint64_t rtexts = mp->m_sb.sb_rextents;
373 int i;
374
375 do_div(dblocks, 100);
376 do_div(rtexts, 100);
377
378 for (i = 0; i < XFS_LOWSP_MAX; i++) {
379 mp->m_low_space[i] = dblocks * (i + 1);
380 mp->m_low_rtexts[i] = rtexts * (i + 1);
381 }
382 }
383
384 /*
385 * Check that the data (and log if separate) is an ok size.
386 */
387 STATIC int
388 xfs_check_sizes(
389 struct xfs_mount *mp)
390 {
391 struct xfs_buf *bp;
392 xfs_daddr_t d;
393 int error;
394
395 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
396 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
397 xfs_warn(mp, "filesystem size mismatch detected");
398 return -EFBIG;
399 }
400 error = xfs_buf_read_uncached(mp->m_ddev_targp,
401 d - XFS_FSS_TO_BB(mp, 1),
402 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
403 if (error) {
404 xfs_warn(mp, "last sector read failed");
405 return error;
406 }
407 xfs_buf_relse(bp);
408
409 if (mp->m_logdev_targp == mp->m_ddev_targp)
410 return 0;
411
412 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
413 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
414 xfs_warn(mp, "log size mismatch detected");
415 return -EFBIG;
416 }
417 error = xfs_buf_read_uncached(mp->m_logdev_targp,
418 d - XFS_FSB_TO_BB(mp, 1),
419 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
420 if (error) {
421 xfs_warn(mp, "log device read failed");
422 return error;
423 }
424 xfs_buf_relse(bp);
425 return 0;
426 }
427
428 /*
429 * Clear the quotaflags in memory and in the superblock.
430 */
431 int
432 xfs_mount_reset_sbqflags(
433 struct xfs_mount *mp)
434 {
435 mp->m_qflags = 0;
436
437 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
438 if (mp->m_sb.sb_qflags == 0)
439 return 0;
440 spin_lock(&mp->m_sb_lock);
441 mp->m_sb.sb_qflags = 0;
442 spin_unlock(&mp->m_sb_lock);
443
444 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
445 return 0;
446
447 return xfs_sync_sb(mp, false);
448 }
449
450 uint64_t
451 xfs_default_resblks(xfs_mount_t *mp)
452 {
453 uint64_t resblks;
454
455 /*
456 * We default to 5% or 8192 fsbs of space reserved, whichever is
457 * smaller. This is intended to cover concurrent allocation
458 * transactions when we initially hit enospc. These each require a 4
459 * block reservation. Hence by default we cover roughly 2000 concurrent
460 * allocation reservations.
461 */
462 resblks = mp->m_sb.sb_dblocks;
463 do_div(resblks, 20);
464 resblks = min_t(uint64_t, resblks, 8192);
465 return resblks;
466 }
467
468 /* Ensure the summary counts are correct. */
469 STATIC int
470 xfs_check_summary_counts(
471 struct xfs_mount *mp)
472 {
473 int error = 0;
474
475 /*
476 * The AG0 superblock verifier rejects in-progress filesystems,
477 * so we should never see the flag set this far into mounting.
478 */
479 if (mp->m_sb.sb_inprogress) {
480 xfs_err(mp, "sb_inprogress set after log recovery??");
481 WARN_ON(1);
482 return -EFSCORRUPTED;
483 }
484
485 /*
486 * Now the log is mounted, we know if it was an unclean shutdown or
487 * not. If it was, with the first phase of recovery has completed, we
488 * have consistent AG blocks on disk. We have not recovered EFIs yet,
489 * but they are recovered transactionally in the second recovery phase
490 * later.
491 *
492 * If the log was clean when we mounted, we can check the summary
493 * counters. If any of them are obviously incorrect, we can recompute
494 * them from the AGF headers in the next step.
495 */
496 if (xfs_is_clean(mp) &&
497 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
498 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
499 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
500 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
501
502 /*
503 * We can safely re-initialise incore superblock counters from the
504 * per-ag data. These may not be correct if the filesystem was not
505 * cleanly unmounted, so we waited for recovery to finish before doing
506 * this.
507 *
508 * If the filesystem was cleanly unmounted or the previous check did
509 * not flag anything weird, then we can trust the values in the
510 * superblock to be correct and we don't need to do anything here.
511 * Otherwise, recalculate the summary counters.
512 */
513 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
514 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
515 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
516 if (error)
517 return error;
518 }
519
520 /*
521 * Older kernels misused sb_frextents to reflect both incore
522 * reservations made by running transactions and the actual count of
523 * free rt extents in the ondisk metadata. Transactions committed
524 * during runtime can therefore contain a superblock update that
525 * undercounts the number of free rt extents tracked in the rt bitmap.
526 * A clean unmount record will have the correct frextents value since
527 * there can be no other transactions running at that point.
528 *
529 * If we're mounting the rt volume after recovering the log, recompute
530 * frextents from the rtbitmap file to fix the inconsistency.
531 */
532 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
533 error = xfs_rtalloc_reinit_frextents(mp);
534 if (error)
535 return error;
536 }
537
538 return 0;
539 }
540
541 /*
542 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
543 * internal inode structures can be sitting in the CIL and AIL at this point,
544 * so we need to unpin them, write them back and/or reclaim them before unmount
545 * can proceed. In other words, callers are required to have inactivated all
546 * inodes.
547 *
548 * An inode cluster that has been freed can have its buffer still pinned in
549 * memory because the transaction is still sitting in a iclog. The stale inodes
550 * on that buffer will be pinned to the buffer until the transaction hits the
551 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
552 * may never see the pinned buffer, so nothing will push out the iclog and
553 * unpin the buffer.
554 *
555 * Hence we need to force the log to unpin everything first. However, log
556 * forces don't wait for the discards they issue to complete, so we have to
557 * explicitly wait for them to complete here as well.
558 *
559 * Then we can tell the world we are unmounting so that error handling knows
560 * that the filesystem is going away and we should error out anything that we
561 * have been retrying in the background. This will prevent never-ending
562 * retries in AIL pushing from hanging the unmount.
563 *
564 * Finally, we can push the AIL to clean all the remaining dirty objects, then
565 * reclaim the remaining inodes that are still in memory at this point in time.
566 */
567 static void
568 xfs_unmount_flush_inodes(
569 struct xfs_mount *mp)
570 {
571 xfs_log_force(mp, XFS_LOG_SYNC);
572 xfs_extent_busy_wait_all(mp);
573 flush_workqueue(xfs_discard_wq);
574
575 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
576
577 xfs_ail_push_all_sync(mp->m_ail);
578 xfs_inodegc_stop(mp);
579 cancel_delayed_work_sync(&mp->m_reclaim_work);
580 xfs_reclaim_inodes(mp);
581 xfs_health_unmount(mp);
582 }
583
584 static void
585 xfs_mount_setup_inode_geom(
586 struct xfs_mount *mp)
587 {
588 struct xfs_ino_geometry *igeo = M_IGEO(mp);
589
590 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
591 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
592
593 xfs_ialloc_setup_geometry(mp);
594 }
595
596 /* Compute maximum possible height for per-AG btree types for this fs. */
597 static inline void
598 xfs_agbtree_compute_maxlevels(
599 struct xfs_mount *mp)
600 {
601 unsigned int levels;
602
603 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
604 levels = max(levels, mp->m_rmap_maxlevels);
605 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
606 }
607
608 /*
609 * This function does the following on an initial mount of a file system:
610 * - reads the superblock from disk and init the mount struct
611 * - if we're a 32-bit kernel, do a size check on the superblock
612 * so we don't mount terabyte filesystems
613 * - init mount struct realtime fields
614 * - allocate inode hash table for fs
615 * - init directory manager
616 * - perform recovery and init the log manager
617 */
618 int
619 xfs_mountfs(
620 struct xfs_mount *mp)
621 {
622 struct xfs_sb *sbp = &(mp->m_sb);
623 struct xfs_inode *rip;
624 struct xfs_ino_geometry *igeo = M_IGEO(mp);
625 uint64_t resblks;
626 uint quotamount = 0;
627 uint quotaflags = 0;
628 int error = 0;
629
630 xfs_sb_mount_common(mp, sbp);
631
632 /*
633 * Check for a mismatched features2 values. Older kernels read & wrote
634 * into the wrong sb offset for sb_features2 on some platforms due to
635 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
636 * which made older superblock reading/writing routines swap it as a
637 * 64-bit value.
638 *
639 * For backwards compatibility, we make both slots equal.
640 *
641 * If we detect a mismatched field, we OR the set bits into the existing
642 * features2 field in case it has already been modified; we don't want
643 * to lose any features. We then update the bad location with the ORed
644 * value so that older kernels will see any features2 flags. The
645 * superblock writeback code ensures the new sb_features2 is copied to
646 * sb_bad_features2 before it is logged or written to disk.
647 */
648 if (xfs_sb_has_mismatched_features2(sbp)) {
649 xfs_warn(mp, "correcting sb_features alignment problem");
650 sbp->sb_features2 |= sbp->sb_bad_features2;
651 mp->m_update_sb = true;
652 }
653
654
655 /* always use v2 inodes by default now */
656 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
657 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
658 mp->m_features |= XFS_FEAT_NLINK;
659 mp->m_update_sb = true;
660 }
661
662 /*
663 * If we were given new sunit/swidth options, do some basic validation
664 * checks and convert the incore dalign and swidth values to the
665 * same units (FSB) that everything else uses. This /must/ happen
666 * before computing the inode geometry.
667 */
668 error = xfs_validate_new_dalign(mp);
669 if (error)
670 goto out;
671
672 xfs_alloc_compute_maxlevels(mp);
673 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
674 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
675 xfs_mount_setup_inode_geom(mp);
676 xfs_rmapbt_compute_maxlevels(mp);
677 xfs_refcountbt_compute_maxlevels(mp);
678
679 xfs_agbtree_compute_maxlevels(mp);
680
681 /*
682 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
683 * is NOT aligned turn off m_dalign since allocator alignment is within
684 * an ag, therefore ag has to be aligned at stripe boundary. Note that
685 * we must compute the free space and rmap btree geometry before doing
686 * this.
687 */
688 error = xfs_update_alignment(mp);
689 if (error)
690 goto out;
691
692 /* enable fail_at_unmount as default */
693 mp->m_fail_unmount = true;
694
695 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
696 NULL, mp->m_super->s_id);
697 if (error)
698 goto out;
699
700 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
701 &mp->m_kobj, "stats");
702 if (error)
703 goto out_remove_sysfs;
704
705 error = xfs_error_sysfs_init(mp);
706 if (error)
707 goto out_del_stats;
708
709 error = xfs_errortag_init(mp);
710 if (error)
711 goto out_remove_error_sysfs;
712
713 error = xfs_uuid_mount(mp);
714 if (error)
715 goto out_remove_errortag;
716
717 /*
718 * Update the preferred write size based on the information from the
719 * on-disk superblock.
720 */
721 mp->m_allocsize_log =
722 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
723 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
724
725 /* set the low space thresholds for dynamic preallocation */
726 xfs_set_low_space_thresholds(mp);
727
728 /*
729 * If enabled, sparse inode chunk alignment is expected to match the
730 * cluster size. Full inode chunk alignment must match the chunk size,
731 * but that is checked on sb read verification...
732 */
733 if (xfs_has_sparseinodes(mp) &&
734 mp->m_sb.sb_spino_align !=
735 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
736 xfs_warn(mp,
737 "Sparse inode block alignment (%u) must match cluster size (%llu).",
738 mp->m_sb.sb_spino_align,
739 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
740 error = -EINVAL;
741 goto out_remove_uuid;
742 }
743
744 /*
745 * Check that the data (and log if separate) is an ok size.
746 */
747 error = xfs_check_sizes(mp);
748 if (error)
749 goto out_remove_uuid;
750
751 /*
752 * Initialize realtime fields in the mount structure
753 */
754 error = xfs_rtmount_init(mp);
755 if (error) {
756 xfs_warn(mp, "RT mount failed");
757 goto out_remove_uuid;
758 }
759
760 /*
761 * Copies the low order bits of the timestamp and the randomly
762 * set "sequence" number out of a UUID.
763 */
764 mp->m_fixedfsid[0] =
765 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
766 get_unaligned_be16(&sbp->sb_uuid.b[4]);
767 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
768
769 error = xfs_da_mount(mp);
770 if (error) {
771 xfs_warn(mp, "Failed dir/attr init: %d", error);
772 goto out_remove_uuid;
773 }
774
775 /*
776 * Initialize the precomputed transaction reservations values.
777 */
778 xfs_trans_init(mp);
779
780 /*
781 * Allocate and initialize the per-ag data.
782 */
783 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
784 &mp->m_maxagi);
785 if (error) {
786 xfs_warn(mp, "Failed per-ag init: %d", error);
787 goto out_free_dir;
788 }
789
790 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
791 xfs_warn(mp, "no log defined");
792 error = -EFSCORRUPTED;
793 goto out_free_perag;
794 }
795
796 error = xfs_inodegc_register_shrinker(mp);
797 if (error)
798 goto out_fail_wait;
799
800 /*
801 * Log's mount-time initialization. The first part of recovery can place
802 * some items on the AIL, to be handled when recovery is finished or
803 * cancelled.
804 */
805 error = xfs_log_mount(mp, mp->m_logdev_targp,
806 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
807 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
808 if (error) {
809 xfs_warn(mp, "log mount failed");
810 goto out_inodegc_shrinker;
811 }
812
813 /* Enable background inode inactivation workers. */
814 xfs_inodegc_start(mp);
815 xfs_blockgc_start(mp);
816
817 /*
818 * Now that we've recovered any pending superblock feature bit
819 * additions, we can finish setting up the attr2 behaviour for the
820 * mount. The noattr2 option overrides the superblock flag, so only
821 * check the superblock feature flag if the mount option is not set.
822 */
823 if (xfs_has_noattr2(mp)) {
824 mp->m_features &= ~XFS_FEAT_ATTR2;
825 } else if (!xfs_has_attr2(mp) &&
826 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
827 mp->m_features |= XFS_FEAT_ATTR2;
828 }
829
830 /*
831 * Get and sanity-check the root inode.
832 * Save the pointer to it in the mount structure.
833 */
834 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
835 XFS_ILOCK_EXCL, &rip);
836 if (error) {
837 xfs_warn(mp,
838 "Failed to read root inode 0x%llx, error %d",
839 sbp->sb_rootino, -error);
840 goto out_log_dealloc;
841 }
842
843 ASSERT(rip != NULL);
844
845 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
846 xfs_warn(mp, "corrupted root inode %llu: not a directory",
847 (unsigned long long)rip->i_ino);
848 xfs_iunlock(rip, XFS_ILOCK_EXCL);
849 error = -EFSCORRUPTED;
850 goto out_rele_rip;
851 }
852 mp->m_rootip = rip; /* save it */
853
854 xfs_iunlock(rip, XFS_ILOCK_EXCL);
855
856 /*
857 * Initialize realtime inode pointers in the mount structure
858 */
859 error = xfs_rtmount_inodes(mp);
860 if (error) {
861 /*
862 * Free up the root inode.
863 */
864 xfs_warn(mp, "failed to read RT inodes");
865 goto out_rele_rip;
866 }
867
868 /* Make sure the summary counts are ok. */
869 error = xfs_check_summary_counts(mp);
870 if (error)
871 goto out_rtunmount;
872
873 /*
874 * If this is a read-only mount defer the superblock updates until
875 * the next remount into writeable mode. Otherwise we would never
876 * perform the update e.g. for the root filesystem.
877 */
878 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
879 error = xfs_sync_sb(mp, false);
880 if (error) {
881 xfs_warn(mp, "failed to write sb changes");
882 goto out_rtunmount;
883 }
884 }
885
886 /*
887 * Initialise the XFS quota management subsystem for this mount
888 */
889 if (XFS_IS_QUOTA_ON(mp)) {
890 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
891 if (error)
892 goto out_rtunmount;
893 } else {
894 /*
895 * If a file system had quotas running earlier, but decided to
896 * mount without -o uquota/pquota/gquota options, revoke the
897 * quotachecked license.
898 */
899 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
900 xfs_notice(mp, "resetting quota flags");
901 error = xfs_mount_reset_sbqflags(mp);
902 if (error)
903 goto out_rtunmount;
904 }
905 }
906
907 /*
908 * Finish recovering the file system. This part needed to be delayed
909 * until after the root and real-time bitmap inodes were consistently
910 * read in. Temporarily create per-AG space reservations for metadata
911 * btree shape changes because space freeing transactions (for inode
912 * inactivation) require the per-AG reservation in lieu of reserving
913 * blocks.
914 */
915 error = xfs_fs_reserve_ag_blocks(mp);
916 if (error && error == -ENOSPC)
917 xfs_warn(mp,
918 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
919 error = xfs_log_mount_finish(mp);
920 xfs_fs_unreserve_ag_blocks(mp);
921 if (error) {
922 xfs_warn(mp, "log mount finish failed");
923 goto out_rtunmount;
924 }
925
926 /*
927 * Now the log is fully replayed, we can transition to full read-only
928 * mode for read-only mounts. This will sync all the metadata and clean
929 * the log so that the recovery we just performed does not have to be
930 * replayed again on the next mount.
931 *
932 * We use the same quiesce mechanism as the rw->ro remount, as they are
933 * semantically identical operations.
934 */
935 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
936 xfs_log_clean(mp);
937
938 /*
939 * Complete the quota initialisation, post-log-replay component.
940 */
941 if (quotamount) {
942 ASSERT(mp->m_qflags == 0);
943 mp->m_qflags = quotaflags;
944
945 xfs_qm_mount_quotas(mp);
946 }
947
948 /*
949 * Now we are mounted, reserve a small amount of unused space for
950 * privileged transactions. This is needed so that transaction
951 * space required for critical operations can dip into this pool
952 * when at ENOSPC. This is needed for operations like create with
953 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
954 * are not allowed to use this reserved space.
955 *
956 * This may drive us straight to ENOSPC on mount, but that implies
957 * we were already there on the last unmount. Warn if this occurs.
958 */
959 if (!xfs_is_readonly(mp)) {
960 resblks = xfs_default_resblks(mp);
961 error = xfs_reserve_blocks(mp, &resblks, NULL);
962 if (error)
963 xfs_warn(mp,
964 "Unable to allocate reserve blocks. Continuing without reserve pool.");
965
966 /* Reserve AG blocks for future btree expansion. */
967 error = xfs_fs_reserve_ag_blocks(mp);
968 if (error && error != -ENOSPC)
969 goto out_agresv;
970 }
971
972 return 0;
973
974 out_agresv:
975 xfs_fs_unreserve_ag_blocks(mp);
976 xfs_qm_unmount_quotas(mp);
977 out_rtunmount:
978 xfs_rtunmount_inodes(mp);
979 out_rele_rip:
980 xfs_irele(rip);
981 /* Clean out dquots that might be in memory after quotacheck. */
982 xfs_qm_unmount(mp);
983
984 /*
985 * Inactivate all inodes that might still be in memory after a log
986 * intent recovery failure so that reclaim can free them. Metadata
987 * inodes and the root directory shouldn't need inactivation, but the
988 * mount failed for some reason, so pull down all the state and flee.
989 */
990 xfs_inodegc_flush(mp);
991
992 /*
993 * Flush all inode reclamation work and flush the log.
994 * We have to do this /after/ rtunmount and qm_unmount because those
995 * two will have scheduled delayed reclaim for the rt/quota inodes.
996 *
997 * This is slightly different from the unmountfs call sequence
998 * because we could be tearing down a partially set up mount. In
999 * particular, if log_mount_finish fails we bail out without calling
1000 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1001 * quota inodes.
1002 */
1003 xfs_unmount_flush_inodes(mp);
1004 out_log_dealloc:
1005 xfs_log_mount_cancel(mp);
1006 out_inodegc_shrinker:
1007 unregister_shrinker(&mp->m_inodegc_shrinker);
1008 out_fail_wait:
1009 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1010 xfs_buftarg_drain(mp->m_logdev_targp);
1011 xfs_buftarg_drain(mp->m_ddev_targp);
1012 out_free_perag:
1013 xfs_free_perag(mp);
1014 out_free_dir:
1015 xfs_da_unmount(mp);
1016 out_remove_uuid:
1017 xfs_uuid_unmount(mp);
1018 out_remove_errortag:
1019 xfs_errortag_del(mp);
1020 out_remove_error_sysfs:
1021 xfs_error_sysfs_del(mp);
1022 out_del_stats:
1023 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1024 out_remove_sysfs:
1025 xfs_sysfs_del(&mp->m_kobj);
1026 out:
1027 return error;
1028 }
1029
1030 /*
1031 * This flushes out the inodes,dquots and the superblock, unmounts the
1032 * log and makes sure that incore structures are freed.
1033 */
1034 void
1035 xfs_unmountfs(
1036 struct xfs_mount *mp)
1037 {
1038 uint64_t resblks;
1039 int error;
1040
1041 /*
1042 * Perform all on-disk metadata updates required to inactivate inodes
1043 * that the VFS evicted earlier in the unmount process. Freeing inodes
1044 * and discarding CoW fork preallocations can cause shape changes to
1045 * the free inode and refcount btrees, respectively, so we must finish
1046 * this before we discard the metadata space reservations. Metadata
1047 * inodes and the root directory do not require inactivation.
1048 */
1049 xfs_inodegc_flush(mp);
1050
1051 xfs_blockgc_stop(mp);
1052 xfs_fs_unreserve_ag_blocks(mp);
1053 xfs_qm_unmount_quotas(mp);
1054 xfs_rtunmount_inodes(mp);
1055 xfs_irele(mp->m_rootip);
1056
1057 xfs_unmount_flush_inodes(mp);
1058
1059 xfs_qm_unmount(mp);
1060
1061 /*
1062 * Unreserve any blocks we have so that when we unmount we don't account
1063 * the reserved free space as used. This is really only necessary for
1064 * lazy superblock counting because it trusts the incore superblock
1065 * counters to be absolutely correct on clean unmount.
1066 *
1067 * We don't bother correcting this elsewhere for lazy superblock
1068 * counting because on mount of an unclean filesystem we reconstruct the
1069 * correct counter value and this is irrelevant.
1070 *
1071 * For non-lazy counter filesystems, this doesn't matter at all because
1072 * we only every apply deltas to the superblock and hence the incore
1073 * value does not matter....
1074 */
1075 resblks = 0;
1076 error = xfs_reserve_blocks(mp, &resblks, NULL);
1077 if (error)
1078 xfs_warn(mp, "Unable to free reserved block pool. "
1079 "Freespace may not be correct on next mount.");
1080
1081 xfs_log_unmount(mp);
1082 xfs_da_unmount(mp);
1083 xfs_uuid_unmount(mp);
1084
1085 #if defined(DEBUG)
1086 xfs_errortag_clearall(mp);
1087 #endif
1088 unregister_shrinker(&mp->m_inodegc_shrinker);
1089 xfs_free_perag(mp);
1090
1091 xfs_errortag_del(mp);
1092 xfs_error_sysfs_del(mp);
1093 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1094 xfs_sysfs_del(&mp->m_kobj);
1095 }
1096
1097 /*
1098 * Determine whether modifications can proceed. The caller specifies the minimum
1099 * freeze level for which modifications should not be allowed. This allows
1100 * certain operations to proceed while the freeze sequence is in progress, if
1101 * necessary.
1102 */
1103 bool
1104 xfs_fs_writable(
1105 struct xfs_mount *mp,
1106 int level)
1107 {
1108 ASSERT(level > SB_UNFROZEN);
1109 if ((mp->m_super->s_writers.frozen >= level) ||
1110 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1111 return false;
1112
1113 return true;
1114 }
1115
1116 /* Adjust m_fdblocks or m_frextents. */
1117 int
1118 xfs_mod_freecounter(
1119 struct xfs_mount *mp,
1120 struct percpu_counter *counter,
1121 int64_t delta,
1122 bool rsvd)
1123 {
1124 int64_t lcounter;
1125 long long res_used;
1126 uint64_t set_aside = 0;
1127 s32 batch;
1128 bool has_resv_pool;
1129
1130 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1131 has_resv_pool = (counter == &mp->m_fdblocks);
1132 if (rsvd)
1133 ASSERT(has_resv_pool);
1134
1135 if (delta > 0) {
1136 /*
1137 * If the reserve pool is depleted, put blocks back into it
1138 * first. Most of the time the pool is full.
1139 */
1140 if (likely(!has_resv_pool ||
1141 mp->m_resblks == mp->m_resblks_avail)) {
1142 percpu_counter_add(counter, delta);
1143 return 0;
1144 }
1145
1146 spin_lock(&mp->m_sb_lock);
1147 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1148
1149 if (res_used > delta) {
1150 mp->m_resblks_avail += delta;
1151 } else {
1152 delta -= res_used;
1153 mp->m_resblks_avail = mp->m_resblks;
1154 percpu_counter_add(counter, delta);
1155 }
1156 spin_unlock(&mp->m_sb_lock);
1157 return 0;
1158 }
1159
1160 /*
1161 * Taking blocks away, need to be more accurate the closer we
1162 * are to zero.
1163 *
1164 * If the counter has a value of less than 2 * max batch size,
1165 * then make everything serialise as we are real close to
1166 * ENOSPC.
1167 */
1168 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1169 XFS_FDBLOCKS_BATCH) < 0)
1170 batch = 1;
1171 else
1172 batch = XFS_FDBLOCKS_BATCH;
1173
1174 /*
1175 * Set aside allocbt blocks because these blocks are tracked as free
1176 * space but not available for allocation. Technically this means that a
1177 * single reservation cannot consume all remaining free space, but the
1178 * ratio of allocbt blocks to usable free blocks should be rather small.
1179 * The tradeoff without this is that filesystems that maintain high
1180 * perag block reservations can over reserve physical block availability
1181 * and fail physical allocation, which leads to much more serious
1182 * problems (i.e. transaction abort, pagecache discards, etc.) than
1183 * slightly premature -ENOSPC.
1184 */
1185 if (has_resv_pool)
1186 set_aside = xfs_fdblocks_unavailable(mp);
1187 percpu_counter_add_batch(counter, delta, batch);
1188 if (__percpu_counter_compare(counter, set_aside,
1189 XFS_FDBLOCKS_BATCH) >= 0) {
1190 /* we had space! */
1191 return 0;
1192 }
1193
1194 /*
1195 * lock up the sb for dipping into reserves before releasing the space
1196 * that took us to ENOSPC.
1197 */
1198 spin_lock(&mp->m_sb_lock);
1199 percpu_counter_add(counter, -delta);
1200 if (!has_resv_pool || !rsvd)
1201 goto fdblocks_enospc;
1202
1203 lcounter = (long long)mp->m_resblks_avail + delta;
1204 if (lcounter >= 0) {
1205 mp->m_resblks_avail = lcounter;
1206 spin_unlock(&mp->m_sb_lock);
1207 return 0;
1208 }
1209 xfs_warn_once(mp,
1210 "Reserve blocks depleted! Consider increasing reserve pool size.");
1211
1212 fdblocks_enospc:
1213 spin_unlock(&mp->m_sb_lock);
1214 return -ENOSPC;
1215 }
1216
1217 /*
1218 * Used to free the superblock along various error paths.
1219 */
1220 void
1221 xfs_freesb(
1222 struct xfs_mount *mp)
1223 {
1224 struct xfs_buf *bp = mp->m_sb_bp;
1225
1226 xfs_buf_lock(bp);
1227 mp->m_sb_bp = NULL;
1228 xfs_buf_relse(bp);
1229 }
1230
1231 /*
1232 * If the underlying (data/log/rt) device is readonly, there are some
1233 * operations that cannot proceed.
1234 */
1235 int
1236 xfs_dev_is_read_only(
1237 struct xfs_mount *mp,
1238 char *message)
1239 {
1240 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1241 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1242 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1243 xfs_notice(mp, "%s required on read-only device.", message);
1244 xfs_notice(mp, "write access unavailable, cannot proceed.");
1245 return -EROFS;
1246 }
1247 return 0;
1248 }
1249
1250 /* Force the summary counters to be recalculated at next mount. */
1251 void
1252 xfs_force_summary_recalc(
1253 struct xfs_mount *mp)
1254 {
1255 if (!xfs_has_lazysbcount(mp))
1256 return;
1257
1258 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1259 }
1260
1261 /*
1262 * Enable a log incompat feature flag in the primary superblock. The caller
1263 * cannot have any other transactions in progress.
1264 */
1265 int
1266 xfs_add_incompat_log_feature(
1267 struct xfs_mount *mp,
1268 uint32_t feature)
1269 {
1270 struct xfs_dsb *dsb;
1271 int error;
1272
1273 ASSERT(hweight32(feature) == 1);
1274 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1275
1276 /*
1277 * Force the log to disk and kick the background AIL thread to reduce
1278 * the chances that the bwrite will stall waiting for the AIL to unpin
1279 * the primary superblock buffer. This isn't a data integrity
1280 * operation, so we don't need a synchronous push.
1281 */
1282 error = xfs_log_force(mp, XFS_LOG_SYNC);
1283 if (error)
1284 return error;
1285 xfs_ail_push_all(mp->m_ail);
1286
1287 /*
1288 * Lock the primary superblock buffer to serialize all callers that
1289 * are trying to set feature bits.
1290 */
1291 xfs_buf_lock(mp->m_sb_bp);
1292 xfs_buf_hold(mp->m_sb_bp);
1293
1294 if (xfs_is_shutdown(mp)) {
1295 error = -EIO;
1296 goto rele;
1297 }
1298
1299 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1300 goto rele;
1301
1302 /*
1303 * Write the primary superblock to disk immediately, because we need
1304 * the log_incompat bit to be set in the primary super now to protect
1305 * the log items that we're going to commit later.
1306 */
1307 dsb = mp->m_sb_bp->b_addr;
1308 xfs_sb_to_disk(dsb, &mp->m_sb);
1309 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1310 error = xfs_bwrite(mp->m_sb_bp);
1311 if (error)
1312 goto shutdown;
1313
1314 /*
1315 * Add the feature bits to the incore superblock before we unlock the
1316 * buffer.
1317 */
1318 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1319 xfs_buf_relse(mp->m_sb_bp);
1320
1321 /* Log the superblock to disk. */
1322 return xfs_sync_sb(mp, false);
1323 shutdown:
1324 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1325 rele:
1326 xfs_buf_relse(mp->m_sb_bp);
1327 return error;
1328 }
1329
1330 /*
1331 * Clear all the log incompat flags from the superblock.
1332 *
1333 * The caller cannot be in a transaction, must ensure that the log does not
1334 * contain any log items protected by any log incompat bit, and must ensure
1335 * that there are no other threads that depend on the state of the log incompat
1336 * feature flags in the primary super.
1337 *
1338 * Returns true if the superblock is dirty.
1339 */
1340 bool
1341 xfs_clear_incompat_log_features(
1342 struct xfs_mount *mp)
1343 {
1344 bool ret = false;
1345
1346 if (!xfs_has_crc(mp) ||
1347 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1348 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1349 xfs_is_shutdown(mp))
1350 return false;
1351
1352 /*
1353 * Update the incore superblock. We synchronize on the primary super
1354 * buffer lock to be consistent with the add function, though at least
1355 * in theory this shouldn't be necessary.
1356 */
1357 xfs_buf_lock(mp->m_sb_bp);
1358 xfs_buf_hold(mp->m_sb_bp);
1359
1360 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1361 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1362 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1363 ret = true;
1364 }
1365
1366 xfs_buf_relse(mp->m_sb_bp);
1367 return ret;
1368 }
1369
1370 /*
1371 * Update the in-core delayed block counter.
1372 *
1373 * We prefer to update the counter without having to take a spinlock for every
1374 * counter update (i.e. batching). Each change to delayed allocation
1375 * reservations can change can easily exceed the default percpu counter
1376 * batching, so we use a larger batch factor here.
1377 *
1378 * Note that we don't currently have any callers requiring fast summation
1379 * (e.g. percpu_counter_read) so we can use a big batch value here.
1380 */
1381 #define XFS_DELALLOC_BATCH (4096)
1382 void
1383 xfs_mod_delalloc(
1384 struct xfs_mount *mp,
1385 int64_t delta)
1386 {
1387 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1388 XFS_DELALLOC_BATCH);
1389 }