]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_mount.c
xfs: define the on-disk refcount btree format
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47
48
49 static DEFINE_MUTEX(xfs_uuid_table_mutex);
50 static int xfs_uuid_table_size;
51 static uuid_t *xfs_uuid_table;
52
53 void
54 xfs_uuid_table_free(void)
55 {
56 if (xfs_uuid_table_size == 0)
57 return;
58 kmem_free(xfs_uuid_table);
59 xfs_uuid_table = NULL;
60 xfs_uuid_table_size = 0;
61 }
62
63 /*
64 * See if the UUID is unique among mounted XFS filesystems.
65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 */
67 STATIC int
68 xfs_uuid_mount(
69 struct xfs_mount *mp)
70 {
71 uuid_t *uuid = &mp->m_sb.sb_uuid;
72 int hole, i;
73
74 if (mp->m_flags & XFS_MOUNT_NOUUID)
75 return 0;
76
77 if (uuid_is_nil(uuid)) {
78 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 return -EINVAL;
80 }
81
82 mutex_lock(&xfs_uuid_table_mutex);
83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 if (uuid_is_nil(&xfs_uuid_table[i])) {
85 hole = i;
86 continue;
87 }
88 if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 goto out_duplicate;
90 }
91
92 if (hole < 0) {
93 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 KM_SLEEP);
96 hole = xfs_uuid_table_size++;
97 }
98 xfs_uuid_table[hole] = *uuid;
99 mutex_unlock(&xfs_uuid_table_mutex);
100
101 return 0;
102
103 out_duplicate:
104 mutex_unlock(&xfs_uuid_table_mutex);
105 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
106 return -EINVAL;
107 }
108
109 STATIC void
110 xfs_uuid_unmount(
111 struct xfs_mount *mp)
112 {
113 uuid_t *uuid = &mp->m_sb.sb_uuid;
114 int i;
115
116 if (mp->m_flags & XFS_MOUNT_NOUUID)
117 return;
118
119 mutex_lock(&xfs_uuid_table_mutex);
120 for (i = 0; i < xfs_uuid_table_size; i++) {
121 if (uuid_is_nil(&xfs_uuid_table[i]))
122 continue;
123 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
124 continue;
125 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
126 break;
127 }
128 ASSERT(i < xfs_uuid_table_size);
129 mutex_unlock(&xfs_uuid_table_mutex);
130 }
131
132
133 STATIC void
134 __xfs_free_perag(
135 struct rcu_head *head)
136 {
137 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
138
139 ASSERT(atomic_read(&pag->pag_ref) == 0);
140 kmem_free(pag);
141 }
142
143 /*
144 * Free up the per-ag resources associated with the mount structure.
145 */
146 STATIC void
147 xfs_free_perag(
148 xfs_mount_t *mp)
149 {
150 xfs_agnumber_t agno;
151 struct xfs_perag *pag;
152
153 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
154 spin_lock(&mp->m_perag_lock);
155 pag = radix_tree_delete(&mp->m_perag_tree, agno);
156 spin_unlock(&mp->m_perag_lock);
157 ASSERT(pag);
158 ASSERT(atomic_read(&pag->pag_ref) == 0);
159 call_rcu(&pag->rcu_head, __xfs_free_perag);
160 }
161 }
162
163 /*
164 * Check size of device based on the (data/realtime) block count.
165 * Note: this check is used by the growfs code as well as mount.
166 */
167 int
168 xfs_sb_validate_fsb_count(
169 xfs_sb_t *sbp,
170 __uint64_t nblocks)
171 {
172 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
173 ASSERT(sbp->sb_blocklog >= BBSHIFT);
174
175 /* Limited by ULONG_MAX of page cache index */
176 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
177 return -EFBIG;
178 return 0;
179 }
180
181 int
182 xfs_initialize_perag(
183 xfs_mount_t *mp,
184 xfs_agnumber_t agcount,
185 xfs_agnumber_t *maxagi)
186 {
187 xfs_agnumber_t index;
188 xfs_agnumber_t first_initialised = 0;
189 xfs_perag_t *pag;
190 int error = -ENOMEM;
191
192 /*
193 * Walk the current per-ag tree so we don't try to initialise AGs
194 * that already exist (growfs case). Allocate and insert all the
195 * AGs we don't find ready for initialisation.
196 */
197 for (index = 0; index < agcount; index++) {
198 pag = xfs_perag_get(mp, index);
199 if (pag) {
200 xfs_perag_put(pag);
201 continue;
202 }
203 if (!first_initialised)
204 first_initialised = index;
205
206 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
207 if (!pag)
208 goto out_unwind;
209 pag->pag_agno = index;
210 pag->pag_mount = mp;
211 spin_lock_init(&pag->pag_ici_lock);
212 mutex_init(&pag->pag_ici_reclaim_lock);
213 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
214 spin_lock_init(&pag->pag_buf_lock);
215 pag->pag_buf_tree = RB_ROOT;
216
217 if (radix_tree_preload(GFP_NOFS))
218 goto out_unwind;
219
220 spin_lock(&mp->m_perag_lock);
221 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
222 BUG();
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 error = -EEXIST;
226 goto out_unwind;
227 }
228 spin_unlock(&mp->m_perag_lock);
229 radix_tree_preload_end();
230 }
231
232 index = xfs_set_inode_alloc(mp, agcount);
233
234 if (maxagi)
235 *maxagi = index;
236
237 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
238 return 0;
239
240 out_unwind:
241 kmem_free(pag);
242 for (; index > first_initialised; index--) {
243 pag = radix_tree_delete(&mp->m_perag_tree, index);
244 kmem_free(pag);
245 }
246 return error;
247 }
248
249 /*
250 * xfs_readsb
251 *
252 * Does the initial read of the superblock.
253 */
254 int
255 xfs_readsb(
256 struct xfs_mount *mp,
257 int flags)
258 {
259 unsigned int sector_size;
260 struct xfs_buf *bp;
261 struct xfs_sb *sbp = &mp->m_sb;
262 int error;
263 int loud = !(flags & XFS_MFSI_QUIET);
264 const struct xfs_buf_ops *buf_ops;
265
266 ASSERT(mp->m_sb_bp == NULL);
267 ASSERT(mp->m_ddev_targp != NULL);
268
269 /*
270 * For the initial read, we must guess at the sector
271 * size based on the block device. It's enough to
272 * get the sb_sectsize out of the superblock and
273 * then reread with the proper length.
274 * We don't verify it yet, because it may not be complete.
275 */
276 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
277 buf_ops = NULL;
278
279 /*
280 * Allocate a (locked) buffer to hold the superblock. This will be kept
281 * around at all times to optimize access to the superblock. Therefore,
282 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
283 * elevated.
284 */
285 reread:
286 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
287 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
288 buf_ops);
289 if (error) {
290 if (loud)
291 xfs_warn(mp, "SB validate failed with error %d.", error);
292 /* bad CRC means corrupted metadata */
293 if (error == -EFSBADCRC)
294 error = -EFSCORRUPTED;
295 return error;
296 }
297
298 /*
299 * Initialize the mount structure from the superblock.
300 */
301 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
302
303 /*
304 * If we haven't validated the superblock, do so now before we try
305 * to check the sector size and reread the superblock appropriately.
306 */
307 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
308 if (loud)
309 xfs_warn(mp, "Invalid superblock magic number");
310 error = -EINVAL;
311 goto release_buf;
312 }
313
314 /*
315 * We must be able to do sector-sized and sector-aligned IO.
316 */
317 if (sector_size > sbp->sb_sectsize) {
318 if (loud)
319 xfs_warn(mp, "device supports %u byte sectors (not %u)",
320 sector_size, sbp->sb_sectsize);
321 error = -ENOSYS;
322 goto release_buf;
323 }
324
325 if (buf_ops == NULL) {
326 /*
327 * Re-read the superblock so the buffer is correctly sized,
328 * and properly verified.
329 */
330 xfs_buf_relse(bp);
331 sector_size = sbp->sb_sectsize;
332 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
333 goto reread;
334 }
335
336 xfs_reinit_percpu_counters(mp);
337
338 /* no need to be quiet anymore, so reset the buf ops */
339 bp->b_ops = &xfs_sb_buf_ops;
340
341 mp->m_sb_bp = bp;
342 xfs_buf_unlock(bp);
343 return 0;
344
345 release_buf:
346 xfs_buf_relse(bp);
347 return error;
348 }
349
350 /*
351 * Update alignment values based on mount options and sb values
352 */
353 STATIC int
354 xfs_update_alignment(xfs_mount_t *mp)
355 {
356 xfs_sb_t *sbp = &(mp->m_sb);
357
358 if (mp->m_dalign) {
359 /*
360 * If stripe unit and stripe width are not multiples
361 * of the fs blocksize turn off alignment.
362 */
363 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
364 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
365 xfs_warn(mp,
366 "alignment check failed: sunit/swidth vs. blocksize(%d)",
367 sbp->sb_blocksize);
368 return -EINVAL;
369 } else {
370 /*
371 * Convert the stripe unit and width to FSBs.
372 */
373 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
374 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
375 xfs_warn(mp,
376 "alignment check failed: sunit/swidth vs. agsize(%d)",
377 sbp->sb_agblocks);
378 return -EINVAL;
379 } else if (mp->m_dalign) {
380 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
381 } else {
382 xfs_warn(mp,
383 "alignment check failed: sunit(%d) less than bsize(%d)",
384 mp->m_dalign, sbp->sb_blocksize);
385 return -EINVAL;
386 }
387 }
388
389 /*
390 * Update superblock with new values
391 * and log changes
392 */
393 if (xfs_sb_version_hasdalign(sbp)) {
394 if (sbp->sb_unit != mp->m_dalign) {
395 sbp->sb_unit = mp->m_dalign;
396 mp->m_update_sb = true;
397 }
398 if (sbp->sb_width != mp->m_swidth) {
399 sbp->sb_width = mp->m_swidth;
400 mp->m_update_sb = true;
401 }
402 } else {
403 xfs_warn(mp,
404 "cannot change alignment: superblock does not support data alignment");
405 return -EINVAL;
406 }
407 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
408 xfs_sb_version_hasdalign(&mp->m_sb)) {
409 mp->m_dalign = sbp->sb_unit;
410 mp->m_swidth = sbp->sb_width;
411 }
412
413 return 0;
414 }
415
416 /*
417 * Set the maximum inode count for this filesystem
418 */
419 STATIC void
420 xfs_set_maxicount(xfs_mount_t *mp)
421 {
422 xfs_sb_t *sbp = &(mp->m_sb);
423 __uint64_t icount;
424
425 if (sbp->sb_imax_pct) {
426 /*
427 * Make sure the maximum inode count is a multiple
428 * of the units we allocate inodes in.
429 */
430 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
431 do_div(icount, 100);
432 do_div(icount, mp->m_ialloc_blks);
433 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
434 sbp->sb_inopblog;
435 } else {
436 mp->m_maxicount = 0;
437 }
438 }
439
440 /*
441 * Set the default minimum read and write sizes unless
442 * already specified in a mount option.
443 * We use smaller I/O sizes when the file system
444 * is being used for NFS service (wsync mount option).
445 */
446 STATIC void
447 xfs_set_rw_sizes(xfs_mount_t *mp)
448 {
449 xfs_sb_t *sbp = &(mp->m_sb);
450 int readio_log, writeio_log;
451
452 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
453 if (mp->m_flags & XFS_MOUNT_WSYNC) {
454 readio_log = XFS_WSYNC_READIO_LOG;
455 writeio_log = XFS_WSYNC_WRITEIO_LOG;
456 } else {
457 readio_log = XFS_READIO_LOG_LARGE;
458 writeio_log = XFS_WRITEIO_LOG_LARGE;
459 }
460 } else {
461 readio_log = mp->m_readio_log;
462 writeio_log = mp->m_writeio_log;
463 }
464
465 if (sbp->sb_blocklog > readio_log) {
466 mp->m_readio_log = sbp->sb_blocklog;
467 } else {
468 mp->m_readio_log = readio_log;
469 }
470 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
471 if (sbp->sb_blocklog > writeio_log) {
472 mp->m_writeio_log = sbp->sb_blocklog;
473 } else {
474 mp->m_writeio_log = writeio_log;
475 }
476 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
477 }
478
479 /*
480 * precalculate the low space thresholds for dynamic speculative preallocation.
481 */
482 void
483 xfs_set_low_space_thresholds(
484 struct xfs_mount *mp)
485 {
486 int i;
487
488 for (i = 0; i < XFS_LOWSP_MAX; i++) {
489 __uint64_t space = mp->m_sb.sb_dblocks;
490
491 do_div(space, 100);
492 mp->m_low_space[i] = space * (i + 1);
493 }
494 }
495
496
497 /*
498 * Set whether we're using inode alignment.
499 */
500 STATIC void
501 xfs_set_inoalignment(xfs_mount_t *mp)
502 {
503 if (xfs_sb_version_hasalign(&mp->m_sb) &&
504 mp->m_sb.sb_inoalignmt >=
505 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
506 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
507 else
508 mp->m_inoalign_mask = 0;
509 /*
510 * If we are using stripe alignment, check whether
511 * the stripe unit is a multiple of the inode alignment
512 */
513 if (mp->m_dalign && mp->m_inoalign_mask &&
514 !(mp->m_dalign & mp->m_inoalign_mask))
515 mp->m_sinoalign = mp->m_dalign;
516 else
517 mp->m_sinoalign = 0;
518 }
519
520 /*
521 * Check that the data (and log if separate) is an ok size.
522 */
523 STATIC int
524 xfs_check_sizes(
525 struct xfs_mount *mp)
526 {
527 struct xfs_buf *bp;
528 xfs_daddr_t d;
529 int error;
530
531 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
532 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
533 xfs_warn(mp, "filesystem size mismatch detected");
534 return -EFBIG;
535 }
536 error = xfs_buf_read_uncached(mp->m_ddev_targp,
537 d - XFS_FSS_TO_BB(mp, 1),
538 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
539 if (error) {
540 xfs_warn(mp, "last sector read failed");
541 return error;
542 }
543 xfs_buf_relse(bp);
544
545 if (mp->m_logdev_targp == mp->m_ddev_targp)
546 return 0;
547
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
550 xfs_warn(mp, "log size mismatch detected");
551 return -EFBIG;
552 }
553 error = xfs_buf_read_uncached(mp->m_logdev_targp,
554 d - XFS_FSB_TO_BB(mp, 1),
555 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
557 xfs_warn(mp, "log device read failed");
558 return error;
559 }
560 xfs_buf_relse(bp);
561 return 0;
562 }
563
564 /*
565 * Clear the quotaflags in memory and in the superblock.
566 */
567 int
568 xfs_mount_reset_sbqflags(
569 struct xfs_mount *mp)
570 {
571 mp->m_qflags = 0;
572
573 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
574 if (mp->m_sb.sb_qflags == 0)
575 return 0;
576 spin_lock(&mp->m_sb_lock);
577 mp->m_sb.sb_qflags = 0;
578 spin_unlock(&mp->m_sb_lock);
579
580 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
581 return 0;
582
583 return xfs_sync_sb(mp, false);
584 }
585
586 __uint64_t
587 xfs_default_resblks(xfs_mount_t *mp)
588 {
589 __uint64_t resblks;
590
591 /*
592 * We default to 5% or 8192 fsbs of space reserved, whichever is
593 * smaller. This is intended to cover concurrent allocation
594 * transactions when we initially hit enospc. These each require a 4
595 * block reservation. Hence by default we cover roughly 2000 concurrent
596 * allocation reservations.
597 */
598 resblks = mp->m_sb.sb_dblocks;
599 do_div(resblks, 20);
600 resblks = min_t(__uint64_t, resblks, 8192);
601 return resblks;
602 }
603
604 /*
605 * This function does the following on an initial mount of a file system:
606 * - reads the superblock from disk and init the mount struct
607 * - if we're a 32-bit kernel, do a size check on the superblock
608 * so we don't mount terabyte filesystems
609 * - init mount struct realtime fields
610 * - allocate inode hash table for fs
611 * - init directory manager
612 * - perform recovery and init the log manager
613 */
614 int
615 xfs_mountfs(
616 struct xfs_mount *mp)
617 {
618 struct xfs_sb *sbp = &(mp->m_sb);
619 struct xfs_inode *rip;
620 __uint64_t resblks;
621 uint quotamount = 0;
622 uint quotaflags = 0;
623 int error = 0;
624
625 xfs_sb_mount_common(mp, sbp);
626
627 /*
628 * Check for a mismatched features2 values. Older kernels read & wrote
629 * into the wrong sb offset for sb_features2 on some platforms due to
630 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
631 * which made older superblock reading/writing routines swap it as a
632 * 64-bit value.
633 *
634 * For backwards compatibility, we make both slots equal.
635 *
636 * If we detect a mismatched field, we OR the set bits into the existing
637 * features2 field in case it has already been modified; we don't want
638 * to lose any features. We then update the bad location with the ORed
639 * value so that older kernels will see any features2 flags. The
640 * superblock writeback code ensures the new sb_features2 is copied to
641 * sb_bad_features2 before it is logged or written to disk.
642 */
643 if (xfs_sb_has_mismatched_features2(sbp)) {
644 xfs_warn(mp, "correcting sb_features alignment problem");
645 sbp->sb_features2 |= sbp->sb_bad_features2;
646 mp->m_update_sb = true;
647
648 /*
649 * Re-check for ATTR2 in case it was found in bad_features2
650 * slot.
651 */
652 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
653 !(mp->m_flags & XFS_MOUNT_NOATTR2))
654 mp->m_flags |= XFS_MOUNT_ATTR2;
655 }
656
657 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
658 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
659 xfs_sb_version_removeattr2(&mp->m_sb);
660 mp->m_update_sb = true;
661
662 /* update sb_versionnum for the clearing of the morebits */
663 if (!sbp->sb_features2)
664 mp->m_update_sb = true;
665 }
666
667 /* always use v2 inodes by default now */
668 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
669 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
670 mp->m_update_sb = true;
671 }
672
673 /*
674 * Check if sb_agblocks is aligned at stripe boundary
675 * If sb_agblocks is NOT aligned turn off m_dalign since
676 * allocator alignment is within an ag, therefore ag has
677 * to be aligned at stripe boundary.
678 */
679 error = xfs_update_alignment(mp);
680 if (error)
681 goto out;
682
683 xfs_alloc_compute_maxlevels(mp);
684 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
685 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
686 xfs_ialloc_compute_maxlevels(mp);
687 xfs_rmapbt_compute_maxlevels(mp);
688 xfs_refcountbt_compute_maxlevels(mp);
689
690 xfs_set_maxicount(mp);
691
692 /* enable fail_at_unmount as default */
693 mp->m_fail_unmount = 1;
694
695 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
696 if (error)
697 goto out;
698
699 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
700 &mp->m_kobj, "stats");
701 if (error)
702 goto out_remove_sysfs;
703
704 error = xfs_error_sysfs_init(mp);
705 if (error)
706 goto out_del_stats;
707
708
709 error = xfs_uuid_mount(mp);
710 if (error)
711 goto out_remove_error_sysfs;
712
713 /*
714 * Set the minimum read and write sizes
715 */
716 xfs_set_rw_sizes(mp);
717
718 /* set the low space thresholds for dynamic preallocation */
719 xfs_set_low_space_thresholds(mp);
720
721 /*
722 * Set the inode cluster size.
723 * This may still be overridden by the file system
724 * block size if it is larger than the chosen cluster size.
725 *
726 * For v5 filesystems, scale the cluster size with the inode size to
727 * keep a constant ratio of inode per cluster buffer, but only if mkfs
728 * has set the inode alignment value appropriately for larger cluster
729 * sizes.
730 */
731 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
732 if (xfs_sb_version_hascrc(&mp->m_sb)) {
733 int new_size = mp->m_inode_cluster_size;
734
735 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
736 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
737 mp->m_inode_cluster_size = new_size;
738 }
739
740 /*
741 * If enabled, sparse inode chunk alignment is expected to match the
742 * cluster size. Full inode chunk alignment must match the chunk size,
743 * but that is checked on sb read verification...
744 */
745 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
746 mp->m_sb.sb_spino_align !=
747 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
748 xfs_warn(mp,
749 "Sparse inode block alignment (%u) must match cluster size (%llu).",
750 mp->m_sb.sb_spino_align,
751 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
752 error = -EINVAL;
753 goto out_remove_uuid;
754 }
755
756 /*
757 * Set inode alignment fields
758 */
759 xfs_set_inoalignment(mp);
760
761 /*
762 * Check that the data (and log if separate) is an ok size.
763 */
764 error = xfs_check_sizes(mp);
765 if (error)
766 goto out_remove_uuid;
767
768 /*
769 * Initialize realtime fields in the mount structure
770 */
771 error = xfs_rtmount_init(mp);
772 if (error) {
773 xfs_warn(mp, "RT mount failed");
774 goto out_remove_uuid;
775 }
776
777 /*
778 * Copies the low order bits of the timestamp and the randomly
779 * set "sequence" number out of a UUID.
780 */
781 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
782
783 mp->m_dmevmask = 0; /* not persistent; set after each mount */
784
785 error = xfs_da_mount(mp);
786 if (error) {
787 xfs_warn(mp, "Failed dir/attr init: %d", error);
788 goto out_remove_uuid;
789 }
790
791 /*
792 * Initialize the precomputed transaction reservations values.
793 */
794 xfs_trans_init(mp);
795
796 /*
797 * Allocate and initialize the per-ag data.
798 */
799 spin_lock_init(&mp->m_perag_lock);
800 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
801 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
802 if (error) {
803 xfs_warn(mp, "Failed per-ag init: %d", error);
804 goto out_free_dir;
805 }
806
807 if (!sbp->sb_logblocks) {
808 xfs_warn(mp, "no log defined");
809 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
810 error = -EFSCORRUPTED;
811 goto out_free_perag;
812 }
813
814 /*
815 * Log's mount-time initialization. The first part of recovery can place
816 * some items on the AIL, to be handled when recovery is finished or
817 * cancelled.
818 */
819 error = xfs_log_mount(mp, mp->m_logdev_targp,
820 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
821 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
822 if (error) {
823 xfs_warn(mp, "log mount failed");
824 goto out_fail_wait;
825 }
826
827 /*
828 * Now the log is mounted, we know if it was an unclean shutdown or
829 * not. If it was, with the first phase of recovery has completed, we
830 * have consistent AG blocks on disk. We have not recovered EFIs yet,
831 * but they are recovered transactionally in the second recovery phase
832 * later.
833 *
834 * Hence we can safely re-initialise incore superblock counters from
835 * the per-ag data. These may not be correct if the filesystem was not
836 * cleanly unmounted, so we need to wait for recovery to finish before
837 * doing this.
838 *
839 * If the filesystem was cleanly unmounted, then we can trust the
840 * values in the superblock to be correct and we don't need to do
841 * anything here.
842 *
843 * If we are currently making the filesystem, the initialisation will
844 * fail as the perag data is in an undefined state.
845 */
846 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
847 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
848 !mp->m_sb.sb_inprogress) {
849 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
850 if (error)
851 goto out_log_dealloc;
852 }
853
854 /*
855 * Get and sanity-check the root inode.
856 * Save the pointer to it in the mount structure.
857 */
858 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
859 if (error) {
860 xfs_warn(mp, "failed to read root inode");
861 goto out_log_dealloc;
862 }
863
864 ASSERT(rip != NULL);
865
866 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
867 xfs_warn(mp, "corrupted root inode %llu: not a directory",
868 (unsigned long long)rip->i_ino);
869 xfs_iunlock(rip, XFS_ILOCK_EXCL);
870 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
871 mp);
872 error = -EFSCORRUPTED;
873 goto out_rele_rip;
874 }
875 mp->m_rootip = rip; /* save it */
876
877 xfs_iunlock(rip, XFS_ILOCK_EXCL);
878
879 /*
880 * Initialize realtime inode pointers in the mount structure
881 */
882 error = xfs_rtmount_inodes(mp);
883 if (error) {
884 /*
885 * Free up the root inode.
886 */
887 xfs_warn(mp, "failed to read RT inodes");
888 goto out_rele_rip;
889 }
890
891 /*
892 * If this is a read-only mount defer the superblock updates until
893 * the next remount into writeable mode. Otherwise we would never
894 * perform the update e.g. for the root filesystem.
895 */
896 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
897 error = xfs_sync_sb(mp, false);
898 if (error) {
899 xfs_warn(mp, "failed to write sb changes");
900 goto out_rtunmount;
901 }
902 }
903
904 /*
905 * Initialise the XFS quota management subsystem for this mount
906 */
907 if (XFS_IS_QUOTA_RUNNING(mp)) {
908 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
909 if (error)
910 goto out_rtunmount;
911 } else {
912 ASSERT(!XFS_IS_QUOTA_ON(mp));
913
914 /*
915 * If a file system had quotas running earlier, but decided to
916 * mount without -o uquota/pquota/gquota options, revoke the
917 * quotachecked license.
918 */
919 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
920 xfs_notice(mp, "resetting quota flags");
921 error = xfs_mount_reset_sbqflags(mp);
922 if (error)
923 goto out_rtunmount;
924 }
925 }
926
927 /*
928 * Finish recovering the file system. This part needed to be delayed
929 * until after the root and real-time bitmap inodes were consistently
930 * read in.
931 */
932 error = xfs_log_mount_finish(mp);
933 if (error) {
934 xfs_warn(mp, "log mount finish failed");
935 goto out_rtunmount;
936 }
937
938 /*
939 * Now the log is fully replayed, we can transition to full read-only
940 * mode for read-only mounts. This will sync all the metadata and clean
941 * the log so that the recovery we just performed does not have to be
942 * replayed again on the next mount.
943 *
944 * We use the same quiesce mechanism as the rw->ro remount, as they are
945 * semantically identical operations.
946 */
947 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
948 XFS_MOUNT_RDONLY) {
949 xfs_quiesce_attr(mp);
950 }
951
952 /*
953 * Complete the quota initialisation, post-log-replay component.
954 */
955 if (quotamount) {
956 ASSERT(mp->m_qflags == 0);
957 mp->m_qflags = quotaflags;
958
959 xfs_qm_mount_quotas(mp);
960 }
961
962 /*
963 * Now we are mounted, reserve a small amount of unused space for
964 * privileged transactions. This is needed so that transaction
965 * space required for critical operations can dip into this pool
966 * when at ENOSPC. This is needed for operations like create with
967 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
968 * are not allowed to use this reserved space.
969 *
970 * This may drive us straight to ENOSPC on mount, but that implies
971 * we were already there on the last unmount. Warn if this occurs.
972 */
973 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
974 resblks = xfs_default_resblks(mp);
975 error = xfs_reserve_blocks(mp, &resblks, NULL);
976 if (error)
977 xfs_warn(mp,
978 "Unable to allocate reserve blocks. Continuing without reserve pool.");
979 }
980
981 return 0;
982
983 out_rtunmount:
984 xfs_rtunmount_inodes(mp);
985 out_rele_rip:
986 IRELE(rip);
987 cancel_delayed_work_sync(&mp->m_reclaim_work);
988 xfs_reclaim_inodes(mp, SYNC_WAIT);
989 out_log_dealloc:
990 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
991 xfs_log_mount_cancel(mp);
992 out_fail_wait:
993 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
994 xfs_wait_buftarg(mp->m_logdev_targp);
995 xfs_wait_buftarg(mp->m_ddev_targp);
996 out_free_perag:
997 xfs_free_perag(mp);
998 out_free_dir:
999 xfs_da_unmount(mp);
1000 out_remove_uuid:
1001 xfs_uuid_unmount(mp);
1002 out_remove_error_sysfs:
1003 xfs_error_sysfs_del(mp);
1004 out_del_stats:
1005 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1006 out_remove_sysfs:
1007 xfs_sysfs_del(&mp->m_kobj);
1008 out:
1009 return error;
1010 }
1011
1012 /*
1013 * This flushes out the inodes,dquots and the superblock, unmounts the
1014 * log and makes sure that incore structures are freed.
1015 */
1016 void
1017 xfs_unmountfs(
1018 struct xfs_mount *mp)
1019 {
1020 __uint64_t resblks;
1021 int error;
1022
1023 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1024
1025 xfs_qm_unmount_quotas(mp);
1026 xfs_rtunmount_inodes(mp);
1027 IRELE(mp->m_rootip);
1028
1029 /*
1030 * We can potentially deadlock here if we have an inode cluster
1031 * that has been freed has its buffer still pinned in memory because
1032 * the transaction is still sitting in a iclog. The stale inodes
1033 * on that buffer will have their flush locks held until the
1034 * transaction hits the disk and the callbacks run. the inode
1035 * flush takes the flush lock unconditionally and with nothing to
1036 * push out the iclog we will never get that unlocked. hence we
1037 * need to force the log first.
1038 */
1039 xfs_log_force(mp, XFS_LOG_SYNC);
1040
1041 /*
1042 * We now need to tell the world we are unmounting. This will allow
1043 * us to detect that the filesystem is going away and we should error
1044 * out anything that we have been retrying in the background. This will
1045 * prevent neverending retries in AIL pushing from hanging the unmount.
1046 */
1047 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1048
1049 /*
1050 * Flush all pending changes from the AIL.
1051 */
1052 xfs_ail_push_all_sync(mp->m_ail);
1053
1054 /*
1055 * And reclaim all inodes. At this point there should be no dirty
1056 * inodes and none should be pinned or locked, but use synchronous
1057 * reclaim just to be sure. We can stop background inode reclaim
1058 * here as well if it is still running.
1059 */
1060 cancel_delayed_work_sync(&mp->m_reclaim_work);
1061 xfs_reclaim_inodes(mp, SYNC_WAIT);
1062
1063 xfs_qm_unmount(mp);
1064
1065 /*
1066 * Unreserve any blocks we have so that when we unmount we don't account
1067 * the reserved free space as used. This is really only necessary for
1068 * lazy superblock counting because it trusts the incore superblock
1069 * counters to be absolutely correct on clean unmount.
1070 *
1071 * We don't bother correcting this elsewhere for lazy superblock
1072 * counting because on mount of an unclean filesystem we reconstruct the
1073 * correct counter value and this is irrelevant.
1074 *
1075 * For non-lazy counter filesystems, this doesn't matter at all because
1076 * we only every apply deltas to the superblock and hence the incore
1077 * value does not matter....
1078 */
1079 resblks = 0;
1080 error = xfs_reserve_blocks(mp, &resblks, NULL);
1081 if (error)
1082 xfs_warn(mp, "Unable to free reserved block pool. "
1083 "Freespace may not be correct on next mount.");
1084
1085 error = xfs_log_sbcount(mp);
1086 if (error)
1087 xfs_warn(mp, "Unable to update superblock counters. "
1088 "Freespace may not be correct on next mount.");
1089
1090
1091 xfs_log_unmount(mp);
1092 xfs_da_unmount(mp);
1093 xfs_uuid_unmount(mp);
1094
1095 #if defined(DEBUG)
1096 xfs_errortag_clearall(mp, 0);
1097 #endif
1098 xfs_free_perag(mp);
1099
1100 xfs_error_sysfs_del(mp);
1101 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1102 xfs_sysfs_del(&mp->m_kobj);
1103 }
1104
1105 /*
1106 * Determine whether modifications can proceed. The caller specifies the minimum
1107 * freeze level for which modifications should not be allowed. This allows
1108 * certain operations to proceed while the freeze sequence is in progress, if
1109 * necessary.
1110 */
1111 bool
1112 xfs_fs_writable(
1113 struct xfs_mount *mp,
1114 int level)
1115 {
1116 ASSERT(level > SB_UNFROZEN);
1117 if ((mp->m_super->s_writers.frozen >= level) ||
1118 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1119 return false;
1120
1121 return true;
1122 }
1123
1124 /*
1125 * xfs_log_sbcount
1126 *
1127 * Sync the superblock counters to disk.
1128 *
1129 * Note this code can be called during the process of freezing, so we use the
1130 * transaction allocator that does not block when the transaction subsystem is
1131 * in its frozen state.
1132 */
1133 int
1134 xfs_log_sbcount(xfs_mount_t *mp)
1135 {
1136 /* allow this to proceed during the freeze sequence... */
1137 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1138 return 0;
1139
1140 /*
1141 * we don't need to do this if we are updating the superblock
1142 * counters on every modification.
1143 */
1144 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1145 return 0;
1146
1147 return xfs_sync_sb(mp, true);
1148 }
1149
1150 /*
1151 * Deltas for the inode count are +/-64, hence we use a large batch size
1152 * of 128 so we don't need to take the counter lock on every update.
1153 */
1154 #define XFS_ICOUNT_BATCH 128
1155 int
1156 xfs_mod_icount(
1157 struct xfs_mount *mp,
1158 int64_t delta)
1159 {
1160 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1161 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1162 ASSERT(0);
1163 percpu_counter_add(&mp->m_icount, -delta);
1164 return -EINVAL;
1165 }
1166 return 0;
1167 }
1168
1169 int
1170 xfs_mod_ifree(
1171 struct xfs_mount *mp,
1172 int64_t delta)
1173 {
1174 percpu_counter_add(&mp->m_ifree, delta);
1175 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1176 ASSERT(0);
1177 percpu_counter_add(&mp->m_ifree, -delta);
1178 return -EINVAL;
1179 }
1180 return 0;
1181 }
1182
1183 /*
1184 * Deltas for the block count can vary from 1 to very large, but lock contention
1185 * only occurs on frequent small block count updates such as in the delayed
1186 * allocation path for buffered writes (page a time updates). Hence we set
1187 * a large batch count (1024) to minimise global counter updates except when
1188 * we get near to ENOSPC and we have to be very accurate with our updates.
1189 */
1190 #define XFS_FDBLOCKS_BATCH 1024
1191 int
1192 xfs_mod_fdblocks(
1193 struct xfs_mount *mp,
1194 int64_t delta,
1195 bool rsvd)
1196 {
1197 int64_t lcounter;
1198 long long res_used;
1199 s32 batch;
1200
1201 if (delta > 0) {
1202 /*
1203 * If the reserve pool is depleted, put blocks back into it
1204 * first. Most of the time the pool is full.
1205 */
1206 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1207 percpu_counter_add(&mp->m_fdblocks, delta);
1208 return 0;
1209 }
1210
1211 spin_lock(&mp->m_sb_lock);
1212 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1213
1214 if (res_used > delta) {
1215 mp->m_resblks_avail += delta;
1216 } else {
1217 delta -= res_used;
1218 mp->m_resblks_avail = mp->m_resblks;
1219 percpu_counter_add(&mp->m_fdblocks, delta);
1220 }
1221 spin_unlock(&mp->m_sb_lock);
1222 return 0;
1223 }
1224
1225 /*
1226 * Taking blocks away, need to be more accurate the closer we
1227 * are to zero.
1228 *
1229 * If the counter has a value of less than 2 * max batch size,
1230 * then make everything serialise as we are real close to
1231 * ENOSPC.
1232 */
1233 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1234 XFS_FDBLOCKS_BATCH) < 0)
1235 batch = 1;
1236 else
1237 batch = XFS_FDBLOCKS_BATCH;
1238
1239 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1240 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1241 XFS_FDBLOCKS_BATCH) >= 0) {
1242 /* we had space! */
1243 return 0;
1244 }
1245
1246 /*
1247 * lock up the sb for dipping into reserves before releasing the space
1248 * that took us to ENOSPC.
1249 */
1250 spin_lock(&mp->m_sb_lock);
1251 percpu_counter_add(&mp->m_fdblocks, -delta);
1252 if (!rsvd)
1253 goto fdblocks_enospc;
1254
1255 lcounter = (long long)mp->m_resblks_avail + delta;
1256 if (lcounter >= 0) {
1257 mp->m_resblks_avail = lcounter;
1258 spin_unlock(&mp->m_sb_lock);
1259 return 0;
1260 }
1261 printk_once(KERN_WARNING
1262 "Filesystem \"%s\": reserve blocks depleted! "
1263 "Consider increasing reserve pool size.",
1264 mp->m_fsname);
1265 fdblocks_enospc:
1266 spin_unlock(&mp->m_sb_lock);
1267 return -ENOSPC;
1268 }
1269
1270 int
1271 xfs_mod_frextents(
1272 struct xfs_mount *mp,
1273 int64_t delta)
1274 {
1275 int64_t lcounter;
1276 int ret = 0;
1277
1278 spin_lock(&mp->m_sb_lock);
1279 lcounter = mp->m_sb.sb_frextents + delta;
1280 if (lcounter < 0)
1281 ret = -ENOSPC;
1282 else
1283 mp->m_sb.sb_frextents = lcounter;
1284 spin_unlock(&mp->m_sb_lock);
1285 return ret;
1286 }
1287
1288 /*
1289 * xfs_getsb() is called to obtain the buffer for the superblock.
1290 * The buffer is returned locked and read in from disk.
1291 * The buffer should be released with a call to xfs_brelse().
1292 *
1293 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1294 * the superblock buffer if it can be locked without sleeping.
1295 * If it can't then we'll return NULL.
1296 */
1297 struct xfs_buf *
1298 xfs_getsb(
1299 struct xfs_mount *mp,
1300 int flags)
1301 {
1302 struct xfs_buf *bp = mp->m_sb_bp;
1303
1304 if (!xfs_buf_trylock(bp)) {
1305 if (flags & XBF_TRYLOCK)
1306 return NULL;
1307 xfs_buf_lock(bp);
1308 }
1309
1310 xfs_buf_hold(bp);
1311 ASSERT(bp->b_flags & XBF_DONE);
1312 return bp;
1313 }
1314
1315 /*
1316 * Used to free the superblock along various error paths.
1317 */
1318 void
1319 xfs_freesb(
1320 struct xfs_mount *mp)
1321 {
1322 struct xfs_buf *bp = mp->m_sb_bp;
1323
1324 xfs_buf_lock(bp);
1325 mp->m_sb_bp = NULL;
1326 xfs_buf_relse(bp);
1327 }
1328
1329 /*
1330 * If the underlying (data/log/rt) device is readonly, there are some
1331 * operations that cannot proceed.
1332 */
1333 int
1334 xfs_dev_is_read_only(
1335 struct xfs_mount *mp,
1336 char *message)
1337 {
1338 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1339 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1340 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1341 xfs_notice(mp, "%s required on read-only device.", message);
1342 xfs_notice(mp, "write access unavailable, cannot proceed.");
1343 return -EROFS;
1344 }
1345 return 0;
1346 }