]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_mount.c
Merge tag 'dlm-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/linux-dlm
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45
46
47 #ifdef HAVE_PERCPU_SB
48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 int);
50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 int);
52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
57 #endif
58
59 static DEFINE_MUTEX(xfs_uuid_table_mutex);
60 static int xfs_uuid_table_size;
61 static uuid_t *xfs_uuid_table;
62
63 /*
64 * See if the UUID is unique among mounted XFS filesystems.
65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 */
67 STATIC int
68 xfs_uuid_mount(
69 struct xfs_mount *mp)
70 {
71 uuid_t *uuid = &mp->m_sb.sb_uuid;
72 int hole, i;
73
74 if (mp->m_flags & XFS_MOUNT_NOUUID)
75 return 0;
76
77 if (uuid_is_nil(uuid)) {
78 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 return XFS_ERROR(EINVAL);
80 }
81
82 mutex_lock(&xfs_uuid_table_mutex);
83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 if (uuid_is_nil(&xfs_uuid_table[i])) {
85 hole = i;
86 continue;
87 }
88 if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 goto out_duplicate;
90 }
91
92 if (hole < 0) {
93 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return XFS_ERROR(EINVAL);
108 }
109
110 STATIC void
111 xfs_uuid_unmount(
112 struct xfs_mount *mp)
113 {
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131 }
132
133
134 STATIC void
135 __xfs_free_perag(
136 struct rcu_head *head)
137 {
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142 }
143
144 /*
145 * Free up the per-ag resources associated with the mount structure.
146 */
147 STATIC void
148 xfs_free_perag(
149 xfs_mount_t *mp)
150 {
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 call_rcu(&pag->rcu_head, __xfs_free_perag);
161 }
162 }
163
164 /*
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
167 */
168 int
169 xfs_sb_validate_fsb_count(
170 xfs_sb_t *sbp,
171 __uint64_t nblocks)
172 {
173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 ASSERT(sbp->sb_blocklog >= BBSHIFT);
175
176 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
177 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 return EFBIG;
179 #else /* Limited by UINT_MAX of sectors */
180 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 return EFBIG;
182 #endif
183 return 0;
184 }
185
186 int
187 xfs_initialize_perag(
188 xfs_mount_t *mp,
189 xfs_agnumber_t agcount,
190 xfs_agnumber_t *maxagi)
191 {
192 xfs_agnumber_t index;
193 xfs_agnumber_t first_initialised = 0;
194 xfs_perag_t *pag;
195 xfs_agino_t agino;
196 xfs_ino_t ino;
197 xfs_sb_t *sbp = &mp->m_sb;
198 int error = -ENOMEM;
199
200 /*
201 * Walk the current per-ag tree so we don't try to initialise AGs
202 * that already exist (growfs case). Allocate and insert all the
203 * AGs we don't find ready for initialisation.
204 */
205 for (index = 0; index < agcount; index++) {
206 pag = xfs_perag_get(mp, index);
207 if (pag) {
208 xfs_perag_put(pag);
209 continue;
210 }
211 if (!first_initialised)
212 first_initialised = index;
213
214 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 if (!pag)
216 goto out_unwind;
217 pag->pag_agno = index;
218 pag->pag_mount = mp;
219 spin_lock_init(&pag->pag_ici_lock);
220 mutex_init(&pag->pag_ici_reclaim_lock);
221 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 spin_lock_init(&pag->pag_buf_lock);
223 pag->pag_buf_tree = RB_ROOT;
224
225 if (radix_tree_preload(GFP_NOFS))
226 goto out_unwind;
227
228 spin_lock(&mp->m_perag_lock);
229 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 BUG();
231 spin_unlock(&mp->m_perag_lock);
232 radix_tree_preload_end();
233 error = -EEXIST;
234 goto out_unwind;
235 }
236 spin_unlock(&mp->m_perag_lock);
237 radix_tree_preload_end();
238 }
239
240 /*
241 * If we mount with the inode64 option, or no inode overflows
242 * the legacy 32-bit address space clear the inode32 option.
243 */
244 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246
247 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 mp->m_flags |= XFS_MOUNT_32BITINODES;
249 else
250 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251
252 if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 index = xfs_set_inode32(mp);
254 else
255 index = xfs_set_inode64(mp);
256
257 if (maxagi)
258 *maxagi = index;
259 return 0;
260
261 out_unwind:
262 kmem_free(pag);
263 for (; index > first_initialised; index--) {
264 pag = radix_tree_delete(&mp->m_perag_tree, index);
265 kmem_free(pag);
266 }
267 return error;
268 }
269
270 /*
271 * xfs_readsb
272 *
273 * Does the initial read of the superblock.
274 */
275 int
276 xfs_readsb(
277 struct xfs_mount *mp,
278 int flags)
279 {
280 unsigned int sector_size;
281 struct xfs_buf *bp;
282 struct xfs_sb *sbp = &mp->m_sb;
283 int error;
284 int loud = !(flags & XFS_MFSI_QUIET);
285 const struct xfs_buf_ops *buf_ops;
286
287 ASSERT(mp->m_sb_bp == NULL);
288 ASSERT(mp->m_ddev_targp != NULL);
289
290 /*
291 * For the initial read, we must guess at the sector
292 * size based on the block device. It's enough to
293 * get the sb_sectsize out of the superblock and
294 * then reread with the proper length.
295 * We don't verify it yet, because it may not be complete.
296 */
297 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
298 buf_ops = NULL;
299
300 /*
301 * Allocate a (locked) buffer to hold the superblock.
302 * This will be kept around at all times to optimize
303 * access to the superblock.
304 */
305 reread:
306 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
307 BTOBB(sector_size), 0, buf_ops);
308 if (!bp) {
309 if (loud)
310 xfs_warn(mp, "SB buffer read failed");
311 return EIO;
312 }
313 if (bp->b_error) {
314 error = bp->b_error;
315 if (loud)
316 xfs_warn(mp, "SB validate failed with error %d.", error);
317 goto release_buf;
318 }
319
320 /*
321 * Initialize the mount structure from the superblock.
322 */
323 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
324 xfs_sb_quota_from_disk(&mp->m_sb);
325
326 /*
327 * We must be able to do sector-sized and sector-aligned IO.
328 */
329 if (sector_size > sbp->sb_sectsize) {
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
333 error = ENOSYS;
334 goto release_buf;
335 }
336
337 /*
338 * Re-read the superblock so the buffer is correctly sized,
339 * and properly verified.
340 */
341 if (buf_ops == NULL) {
342 xfs_buf_relse(bp);
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 goto reread;
346 }
347
348 /* Initialize per-cpu counters */
349 xfs_icsb_reinit_counters(mp);
350
351 /* no need to be quiet anymore, so reset the buf ops */
352 bp->b_ops = &xfs_sb_buf_ops;
353
354 mp->m_sb_bp = bp;
355 xfs_buf_unlock(bp);
356 return 0;
357
358 release_buf:
359 xfs_buf_relse(bp);
360 return error;
361 }
362
363 /*
364 * Update alignment values based on mount options and sb values
365 */
366 STATIC int
367 xfs_update_alignment(xfs_mount_t *mp)
368 {
369 xfs_sb_t *sbp = &(mp->m_sb);
370
371 if (mp->m_dalign) {
372 /*
373 * If stripe unit and stripe width are not multiples
374 * of the fs blocksize turn off alignment.
375 */
376 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
377 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
378 xfs_warn(mp,
379 "alignment check failed: sunit/swidth vs. blocksize(%d)",
380 sbp->sb_blocksize);
381 return XFS_ERROR(EINVAL);
382 } else {
383 /*
384 * Convert the stripe unit and width to FSBs.
385 */
386 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
387 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
388 xfs_warn(mp,
389 "alignment check failed: sunit/swidth vs. agsize(%d)",
390 sbp->sb_agblocks);
391 return XFS_ERROR(EINVAL);
392 } else if (mp->m_dalign) {
393 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
394 } else {
395 xfs_warn(mp,
396 "alignment check failed: sunit(%d) less than bsize(%d)",
397 mp->m_dalign, sbp->sb_blocksize);
398 return XFS_ERROR(EINVAL);
399 }
400 }
401
402 /*
403 * Update superblock with new values
404 * and log changes
405 */
406 if (xfs_sb_version_hasdalign(sbp)) {
407 if (sbp->sb_unit != mp->m_dalign) {
408 sbp->sb_unit = mp->m_dalign;
409 mp->m_update_flags |= XFS_SB_UNIT;
410 }
411 if (sbp->sb_width != mp->m_swidth) {
412 sbp->sb_width = mp->m_swidth;
413 mp->m_update_flags |= XFS_SB_WIDTH;
414 }
415 } else {
416 xfs_warn(mp,
417 "cannot change alignment: superblock does not support data alignment");
418 return XFS_ERROR(EINVAL);
419 }
420 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
421 xfs_sb_version_hasdalign(&mp->m_sb)) {
422 mp->m_dalign = sbp->sb_unit;
423 mp->m_swidth = sbp->sb_width;
424 }
425
426 return 0;
427 }
428
429 /*
430 * Set the maximum inode count for this filesystem
431 */
432 STATIC void
433 xfs_set_maxicount(xfs_mount_t *mp)
434 {
435 xfs_sb_t *sbp = &(mp->m_sb);
436 __uint64_t icount;
437
438 if (sbp->sb_imax_pct) {
439 /*
440 * Make sure the maximum inode count is a multiple
441 * of the units we allocate inodes in.
442 */
443 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
444 do_div(icount, 100);
445 do_div(icount, mp->m_ialloc_blks);
446 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
447 sbp->sb_inopblog;
448 } else {
449 mp->m_maxicount = 0;
450 }
451 }
452
453 /*
454 * Set the default minimum read and write sizes unless
455 * already specified in a mount option.
456 * We use smaller I/O sizes when the file system
457 * is being used for NFS service (wsync mount option).
458 */
459 STATIC void
460 xfs_set_rw_sizes(xfs_mount_t *mp)
461 {
462 xfs_sb_t *sbp = &(mp->m_sb);
463 int readio_log, writeio_log;
464
465 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
466 if (mp->m_flags & XFS_MOUNT_WSYNC) {
467 readio_log = XFS_WSYNC_READIO_LOG;
468 writeio_log = XFS_WSYNC_WRITEIO_LOG;
469 } else {
470 readio_log = XFS_READIO_LOG_LARGE;
471 writeio_log = XFS_WRITEIO_LOG_LARGE;
472 }
473 } else {
474 readio_log = mp->m_readio_log;
475 writeio_log = mp->m_writeio_log;
476 }
477
478 if (sbp->sb_blocklog > readio_log) {
479 mp->m_readio_log = sbp->sb_blocklog;
480 } else {
481 mp->m_readio_log = readio_log;
482 }
483 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
484 if (sbp->sb_blocklog > writeio_log) {
485 mp->m_writeio_log = sbp->sb_blocklog;
486 } else {
487 mp->m_writeio_log = writeio_log;
488 }
489 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
490 }
491
492 /*
493 * precalculate the low space thresholds for dynamic speculative preallocation.
494 */
495 void
496 xfs_set_low_space_thresholds(
497 struct xfs_mount *mp)
498 {
499 int i;
500
501 for (i = 0; i < XFS_LOWSP_MAX; i++) {
502 __uint64_t space = mp->m_sb.sb_dblocks;
503
504 do_div(space, 100);
505 mp->m_low_space[i] = space * (i + 1);
506 }
507 }
508
509
510 /*
511 * Set whether we're using inode alignment.
512 */
513 STATIC void
514 xfs_set_inoalignment(xfs_mount_t *mp)
515 {
516 if (xfs_sb_version_hasalign(&mp->m_sb) &&
517 mp->m_sb.sb_inoalignmt >=
518 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
519 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
520 else
521 mp->m_inoalign_mask = 0;
522 /*
523 * If we are using stripe alignment, check whether
524 * the stripe unit is a multiple of the inode alignment
525 */
526 if (mp->m_dalign && mp->m_inoalign_mask &&
527 !(mp->m_dalign & mp->m_inoalign_mask))
528 mp->m_sinoalign = mp->m_dalign;
529 else
530 mp->m_sinoalign = 0;
531 }
532
533 /*
534 * Check that the data (and log if separate) is an ok size.
535 */
536 STATIC int
537 xfs_check_sizes(xfs_mount_t *mp)
538 {
539 xfs_buf_t *bp;
540 xfs_daddr_t d;
541
542 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
543 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
544 xfs_warn(mp, "filesystem size mismatch detected");
545 return XFS_ERROR(EFBIG);
546 }
547 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
548 d - XFS_FSS_TO_BB(mp, 1),
549 XFS_FSS_TO_BB(mp, 1), 0, NULL);
550 if (!bp) {
551 xfs_warn(mp, "last sector read failed");
552 return EIO;
553 }
554 xfs_buf_relse(bp);
555
556 if (mp->m_logdev_targp != mp->m_ddev_targp) {
557 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
558 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
559 xfs_warn(mp, "log size mismatch detected");
560 return XFS_ERROR(EFBIG);
561 }
562 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
563 d - XFS_FSB_TO_BB(mp, 1),
564 XFS_FSB_TO_BB(mp, 1), 0, NULL);
565 if (!bp) {
566 xfs_warn(mp, "log device read failed");
567 return EIO;
568 }
569 xfs_buf_relse(bp);
570 }
571 return 0;
572 }
573
574 /*
575 * Clear the quotaflags in memory and in the superblock.
576 */
577 int
578 xfs_mount_reset_sbqflags(
579 struct xfs_mount *mp)
580 {
581 int error;
582 struct xfs_trans *tp;
583
584 mp->m_qflags = 0;
585
586 /*
587 * It is OK to look at sb_qflags here in mount path,
588 * without m_sb_lock.
589 */
590 if (mp->m_sb.sb_qflags == 0)
591 return 0;
592 spin_lock(&mp->m_sb_lock);
593 mp->m_sb.sb_qflags = 0;
594 spin_unlock(&mp->m_sb_lock);
595
596 /*
597 * If the fs is readonly, let the incore superblock run
598 * with quotas off but don't flush the update out to disk
599 */
600 if (mp->m_flags & XFS_MOUNT_RDONLY)
601 return 0;
602
603 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
604 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
605 if (error) {
606 xfs_trans_cancel(tp, 0);
607 xfs_alert(mp, "%s: Superblock update failed!", __func__);
608 return error;
609 }
610
611 xfs_mod_sb(tp, XFS_SB_QFLAGS);
612 return xfs_trans_commit(tp, 0);
613 }
614
615 __uint64_t
616 xfs_default_resblks(xfs_mount_t *mp)
617 {
618 __uint64_t resblks;
619
620 /*
621 * We default to 5% or 8192 fsbs of space reserved, whichever is
622 * smaller. This is intended to cover concurrent allocation
623 * transactions when we initially hit enospc. These each require a 4
624 * block reservation. Hence by default we cover roughly 2000 concurrent
625 * allocation reservations.
626 */
627 resblks = mp->m_sb.sb_dblocks;
628 do_div(resblks, 20);
629 resblks = min_t(__uint64_t, resblks, 8192);
630 return resblks;
631 }
632
633 /*
634 * This function does the following on an initial mount of a file system:
635 * - reads the superblock from disk and init the mount struct
636 * - if we're a 32-bit kernel, do a size check on the superblock
637 * so we don't mount terabyte filesystems
638 * - init mount struct realtime fields
639 * - allocate inode hash table for fs
640 * - init directory manager
641 * - perform recovery and init the log manager
642 */
643 int
644 xfs_mountfs(
645 xfs_mount_t *mp)
646 {
647 xfs_sb_t *sbp = &(mp->m_sb);
648 xfs_inode_t *rip;
649 __uint64_t resblks;
650 uint quotamount = 0;
651 uint quotaflags = 0;
652 int error = 0;
653
654 xfs_sb_mount_common(mp, sbp);
655
656 /*
657 * Check for a mismatched features2 values. Older kernels
658 * read & wrote into the wrong sb offset for sb_features2
659 * on some platforms due to xfs_sb_t not being 64bit size aligned
660 * when sb_features2 was added, which made older superblock
661 * reading/writing routines swap it as a 64-bit value.
662 *
663 * For backwards compatibility, we make both slots equal.
664 *
665 * If we detect a mismatched field, we OR the set bits into the
666 * existing features2 field in case it has already been modified; we
667 * don't want to lose any features. We then update the bad location
668 * with the ORed value so that older kernels will see any features2
669 * flags, and mark the two fields as needing updates once the
670 * transaction subsystem is online.
671 */
672 if (xfs_sb_has_mismatched_features2(sbp)) {
673 xfs_warn(mp, "correcting sb_features alignment problem");
674 sbp->sb_features2 |= sbp->sb_bad_features2;
675 sbp->sb_bad_features2 = sbp->sb_features2;
676 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
677
678 /*
679 * Re-check for ATTR2 in case it was found in bad_features2
680 * slot.
681 */
682 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
683 !(mp->m_flags & XFS_MOUNT_NOATTR2))
684 mp->m_flags |= XFS_MOUNT_ATTR2;
685 }
686
687 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
688 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
689 xfs_sb_version_removeattr2(&mp->m_sb);
690 mp->m_update_flags |= XFS_SB_FEATURES2;
691
692 /* update sb_versionnum for the clearing of the morebits */
693 if (!sbp->sb_features2)
694 mp->m_update_flags |= XFS_SB_VERSIONNUM;
695 }
696
697 /*
698 * Check if sb_agblocks is aligned at stripe boundary
699 * If sb_agblocks is NOT aligned turn off m_dalign since
700 * allocator alignment is within an ag, therefore ag has
701 * to be aligned at stripe boundary.
702 */
703 error = xfs_update_alignment(mp);
704 if (error)
705 goto out;
706
707 xfs_alloc_compute_maxlevels(mp);
708 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
709 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
710 xfs_ialloc_compute_maxlevels(mp);
711
712 xfs_set_maxicount(mp);
713
714 error = xfs_uuid_mount(mp);
715 if (error)
716 goto out;
717
718 /*
719 * Set the minimum read and write sizes
720 */
721 xfs_set_rw_sizes(mp);
722
723 /* set the low space thresholds for dynamic preallocation */
724 xfs_set_low_space_thresholds(mp);
725
726 /*
727 * Set the inode cluster size.
728 * This may still be overridden by the file system
729 * block size if it is larger than the chosen cluster size.
730 *
731 * For v5 filesystems, scale the cluster size with the inode size to
732 * keep a constant ratio of inode per cluster buffer, but only if mkfs
733 * has set the inode alignment value appropriately for larger cluster
734 * sizes.
735 */
736 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
737 if (xfs_sb_version_hascrc(&mp->m_sb)) {
738 int new_size = mp->m_inode_cluster_size;
739
740 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
741 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
742 mp->m_inode_cluster_size = new_size;
743 xfs_info(mp, "Using inode cluster size of %d bytes",
744 mp->m_inode_cluster_size);
745 }
746
747 /*
748 * Set inode alignment fields
749 */
750 xfs_set_inoalignment(mp);
751
752 /*
753 * Check that the data (and log if separate) is an ok size.
754 */
755 error = xfs_check_sizes(mp);
756 if (error)
757 goto out_remove_uuid;
758
759 /*
760 * Initialize realtime fields in the mount structure
761 */
762 error = xfs_rtmount_init(mp);
763 if (error) {
764 xfs_warn(mp, "RT mount failed");
765 goto out_remove_uuid;
766 }
767
768 /*
769 * Copies the low order bits of the timestamp and the randomly
770 * set "sequence" number out of a UUID.
771 */
772 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
773
774 mp->m_dmevmask = 0; /* not persistent; set after each mount */
775
776 xfs_dir_mount(mp);
777
778 /*
779 * Initialize the attribute manager's entries.
780 */
781 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
782
783 /*
784 * Initialize the precomputed transaction reservations values.
785 */
786 xfs_trans_init(mp);
787
788 /*
789 * Allocate and initialize the per-ag data.
790 */
791 spin_lock_init(&mp->m_perag_lock);
792 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
793 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
794 if (error) {
795 xfs_warn(mp, "Failed per-ag init: %d", error);
796 goto out_remove_uuid;
797 }
798
799 if (!sbp->sb_logblocks) {
800 xfs_warn(mp, "no log defined");
801 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
802 error = XFS_ERROR(EFSCORRUPTED);
803 goto out_free_perag;
804 }
805
806 /*
807 * log's mount-time initialization. Perform 1st part recovery if needed
808 */
809 error = xfs_log_mount(mp, mp->m_logdev_targp,
810 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
811 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
812 if (error) {
813 xfs_warn(mp, "log mount failed");
814 goto out_fail_wait;
815 }
816
817 /*
818 * Now the log is mounted, we know if it was an unclean shutdown or
819 * not. If it was, with the first phase of recovery has completed, we
820 * have consistent AG blocks on disk. We have not recovered EFIs yet,
821 * but they are recovered transactionally in the second recovery phase
822 * later.
823 *
824 * Hence we can safely re-initialise incore superblock counters from
825 * the per-ag data. These may not be correct if the filesystem was not
826 * cleanly unmounted, so we need to wait for recovery to finish before
827 * doing this.
828 *
829 * If the filesystem was cleanly unmounted, then we can trust the
830 * values in the superblock to be correct and we don't need to do
831 * anything here.
832 *
833 * If we are currently making the filesystem, the initialisation will
834 * fail as the perag data is in an undefined state.
835 */
836 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
837 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
838 !mp->m_sb.sb_inprogress) {
839 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
840 if (error)
841 goto out_fail_wait;
842 }
843
844 /*
845 * Get and sanity-check the root inode.
846 * Save the pointer to it in the mount structure.
847 */
848 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
849 if (error) {
850 xfs_warn(mp, "failed to read root inode");
851 goto out_log_dealloc;
852 }
853
854 ASSERT(rip != NULL);
855
856 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
857 xfs_warn(mp, "corrupted root inode %llu: not a directory",
858 (unsigned long long)rip->i_ino);
859 xfs_iunlock(rip, XFS_ILOCK_EXCL);
860 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
861 mp);
862 error = XFS_ERROR(EFSCORRUPTED);
863 goto out_rele_rip;
864 }
865 mp->m_rootip = rip; /* save it */
866
867 xfs_iunlock(rip, XFS_ILOCK_EXCL);
868
869 /*
870 * Initialize realtime inode pointers in the mount structure
871 */
872 error = xfs_rtmount_inodes(mp);
873 if (error) {
874 /*
875 * Free up the root inode.
876 */
877 xfs_warn(mp, "failed to read RT inodes");
878 goto out_rele_rip;
879 }
880
881 /*
882 * If this is a read-only mount defer the superblock updates until
883 * the next remount into writeable mode. Otherwise we would never
884 * perform the update e.g. for the root filesystem.
885 */
886 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
887 error = xfs_mount_log_sb(mp, mp->m_update_flags);
888 if (error) {
889 xfs_warn(mp, "failed to write sb changes");
890 goto out_rtunmount;
891 }
892 }
893
894 /*
895 * Initialise the XFS quota management subsystem for this mount
896 */
897 if (XFS_IS_QUOTA_RUNNING(mp)) {
898 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
899 if (error)
900 goto out_rtunmount;
901 } else {
902 ASSERT(!XFS_IS_QUOTA_ON(mp));
903
904 /*
905 * If a file system had quotas running earlier, but decided to
906 * mount without -o uquota/pquota/gquota options, revoke the
907 * quotachecked license.
908 */
909 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
910 xfs_notice(mp, "resetting quota flags");
911 error = xfs_mount_reset_sbqflags(mp);
912 if (error)
913 return error;
914 }
915 }
916
917 /*
918 * Finish recovering the file system. This part needed to be
919 * delayed until after the root and real-time bitmap inodes
920 * were consistently read in.
921 */
922 error = xfs_log_mount_finish(mp);
923 if (error) {
924 xfs_warn(mp, "log mount finish failed");
925 goto out_rtunmount;
926 }
927
928 /*
929 * Complete the quota initialisation, post-log-replay component.
930 */
931 if (quotamount) {
932 ASSERT(mp->m_qflags == 0);
933 mp->m_qflags = quotaflags;
934
935 xfs_qm_mount_quotas(mp);
936 }
937
938 /*
939 * Now we are mounted, reserve a small amount of unused space for
940 * privileged transactions. This is needed so that transaction
941 * space required for critical operations can dip into this pool
942 * when at ENOSPC. This is needed for operations like create with
943 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
944 * are not allowed to use this reserved space.
945 *
946 * This may drive us straight to ENOSPC on mount, but that implies
947 * we were already there on the last unmount. Warn if this occurs.
948 */
949 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
950 resblks = xfs_default_resblks(mp);
951 error = xfs_reserve_blocks(mp, &resblks, NULL);
952 if (error)
953 xfs_warn(mp,
954 "Unable to allocate reserve blocks. Continuing without reserve pool.");
955 }
956
957 return 0;
958
959 out_rtunmount:
960 xfs_rtunmount_inodes(mp);
961 out_rele_rip:
962 IRELE(rip);
963 out_log_dealloc:
964 xfs_log_unmount(mp);
965 out_fail_wait:
966 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
967 xfs_wait_buftarg(mp->m_logdev_targp);
968 xfs_wait_buftarg(mp->m_ddev_targp);
969 out_free_perag:
970 xfs_free_perag(mp);
971 out_remove_uuid:
972 xfs_uuid_unmount(mp);
973 out:
974 return error;
975 }
976
977 /*
978 * This flushes out the inodes,dquots and the superblock, unmounts the
979 * log and makes sure that incore structures are freed.
980 */
981 void
982 xfs_unmountfs(
983 struct xfs_mount *mp)
984 {
985 __uint64_t resblks;
986 int error;
987
988 cancel_delayed_work_sync(&mp->m_eofblocks_work);
989
990 xfs_qm_unmount_quotas(mp);
991 xfs_rtunmount_inodes(mp);
992 IRELE(mp->m_rootip);
993
994 /*
995 * We can potentially deadlock here if we have an inode cluster
996 * that has been freed has its buffer still pinned in memory because
997 * the transaction is still sitting in a iclog. The stale inodes
998 * on that buffer will have their flush locks held until the
999 * transaction hits the disk and the callbacks run. the inode
1000 * flush takes the flush lock unconditionally and with nothing to
1001 * push out the iclog we will never get that unlocked. hence we
1002 * need to force the log first.
1003 */
1004 xfs_log_force(mp, XFS_LOG_SYNC);
1005
1006 /*
1007 * Flush all pending changes from the AIL.
1008 */
1009 xfs_ail_push_all_sync(mp->m_ail);
1010
1011 /*
1012 * And reclaim all inodes. At this point there should be no dirty
1013 * inodes and none should be pinned or locked, but use synchronous
1014 * reclaim just to be sure. We can stop background inode reclaim
1015 * here as well if it is still running.
1016 */
1017 cancel_delayed_work_sync(&mp->m_reclaim_work);
1018 xfs_reclaim_inodes(mp, SYNC_WAIT);
1019
1020 xfs_qm_unmount(mp);
1021
1022 /*
1023 * Unreserve any blocks we have so that when we unmount we don't account
1024 * the reserved free space as used. This is really only necessary for
1025 * lazy superblock counting because it trusts the incore superblock
1026 * counters to be absolutely correct on clean unmount.
1027 *
1028 * We don't bother correcting this elsewhere for lazy superblock
1029 * counting because on mount of an unclean filesystem we reconstruct the
1030 * correct counter value and this is irrelevant.
1031 *
1032 * For non-lazy counter filesystems, this doesn't matter at all because
1033 * we only every apply deltas to the superblock and hence the incore
1034 * value does not matter....
1035 */
1036 resblks = 0;
1037 error = xfs_reserve_blocks(mp, &resblks, NULL);
1038 if (error)
1039 xfs_warn(mp, "Unable to free reserved block pool. "
1040 "Freespace may not be correct on next mount.");
1041
1042 error = xfs_log_sbcount(mp);
1043 if (error)
1044 xfs_warn(mp, "Unable to update superblock counters. "
1045 "Freespace may not be correct on next mount.");
1046
1047 xfs_log_unmount(mp);
1048 xfs_uuid_unmount(mp);
1049
1050 #if defined(DEBUG)
1051 xfs_errortag_clearall(mp, 0);
1052 #endif
1053 xfs_free_perag(mp);
1054 }
1055
1056 int
1057 xfs_fs_writable(xfs_mount_t *mp)
1058 {
1059 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1060 (mp->m_flags & XFS_MOUNT_RDONLY));
1061 }
1062
1063 /*
1064 * xfs_log_sbcount
1065 *
1066 * Sync the superblock counters to disk.
1067 *
1068 * Note this code can be called during the process of freezing, so
1069 * we may need to use the transaction allocator which does not
1070 * block when the transaction subsystem is in its frozen state.
1071 */
1072 int
1073 xfs_log_sbcount(xfs_mount_t *mp)
1074 {
1075 xfs_trans_t *tp;
1076 int error;
1077
1078 if (!xfs_fs_writable(mp))
1079 return 0;
1080
1081 xfs_icsb_sync_counters(mp, 0);
1082
1083 /*
1084 * we don't need to do this if we are updating the superblock
1085 * counters on every modification.
1086 */
1087 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1088 return 0;
1089
1090 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1091 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1092 if (error) {
1093 xfs_trans_cancel(tp, 0);
1094 return error;
1095 }
1096
1097 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1098 xfs_trans_set_sync(tp);
1099 error = xfs_trans_commit(tp, 0);
1100 return error;
1101 }
1102
1103 /*
1104 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1105 * a delta to a specified field in the in-core superblock. Simply
1106 * switch on the field indicated and apply the delta to that field.
1107 * Fields are not allowed to dip below zero, so if the delta would
1108 * do this do not apply it and return EINVAL.
1109 *
1110 * The m_sb_lock must be held when this routine is called.
1111 */
1112 STATIC int
1113 xfs_mod_incore_sb_unlocked(
1114 xfs_mount_t *mp,
1115 xfs_sb_field_t field,
1116 int64_t delta,
1117 int rsvd)
1118 {
1119 int scounter; /* short counter for 32 bit fields */
1120 long long lcounter; /* long counter for 64 bit fields */
1121 long long res_used, rem;
1122
1123 /*
1124 * With the in-core superblock spin lock held, switch
1125 * on the indicated field. Apply the delta to the
1126 * proper field. If the fields value would dip below
1127 * 0, then do not apply the delta and return EINVAL.
1128 */
1129 switch (field) {
1130 case XFS_SBS_ICOUNT:
1131 lcounter = (long long)mp->m_sb.sb_icount;
1132 lcounter += delta;
1133 if (lcounter < 0) {
1134 ASSERT(0);
1135 return XFS_ERROR(EINVAL);
1136 }
1137 mp->m_sb.sb_icount = lcounter;
1138 return 0;
1139 case XFS_SBS_IFREE:
1140 lcounter = (long long)mp->m_sb.sb_ifree;
1141 lcounter += delta;
1142 if (lcounter < 0) {
1143 ASSERT(0);
1144 return XFS_ERROR(EINVAL);
1145 }
1146 mp->m_sb.sb_ifree = lcounter;
1147 return 0;
1148 case XFS_SBS_FDBLOCKS:
1149 lcounter = (long long)
1150 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1151 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1152
1153 if (delta > 0) { /* Putting blocks back */
1154 if (res_used > delta) {
1155 mp->m_resblks_avail += delta;
1156 } else {
1157 rem = delta - res_used;
1158 mp->m_resblks_avail = mp->m_resblks;
1159 lcounter += rem;
1160 }
1161 } else { /* Taking blocks away */
1162 lcounter += delta;
1163 if (lcounter >= 0) {
1164 mp->m_sb.sb_fdblocks = lcounter +
1165 XFS_ALLOC_SET_ASIDE(mp);
1166 return 0;
1167 }
1168
1169 /*
1170 * We are out of blocks, use any available reserved
1171 * blocks if were allowed to.
1172 */
1173 if (!rsvd)
1174 return XFS_ERROR(ENOSPC);
1175
1176 lcounter = (long long)mp->m_resblks_avail + delta;
1177 if (lcounter >= 0) {
1178 mp->m_resblks_avail = lcounter;
1179 return 0;
1180 }
1181 printk_once(KERN_WARNING
1182 "Filesystem \"%s\": reserve blocks depleted! "
1183 "Consider increasing reserve pool size.",
1184 mp->m_fsname);
1185 return XFS_ERROR(ENOSPC);
1186 }
1187
1188 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1189 return 0;
1190 case XFS_SBS_FREXTENTS:
1191 lcounter = (long long)mp->m_sb.sb_frextents;
1192 lcounter += delta;
1193 if (lcounter < 0) {
1194 return XFS_ERROR(ENOSPC);
1195 }
1196 mp->m_sb.sb_frextents = lcounter;
1197 return 0;
1198 case XFS_SBS_DBLOCKS:
1199 lcounter = (long long)mp->m_sb.sb_dblocks;
1200 lcounter += delta;
1201 if (lcounter < 0) {
1202 ASSERT(0);
1203 return XFS_ERROR(EINVAL);
1204 }
1205 mp->m_sb.sb_dblocks = lcounter;
1206 return 0;
1207 case XFS_SBS_AGCOUNT:
1208 scounter = mp->m_sb.sb_agcount;
1209 scounter += delta;
1210 if (scounter < 0) {
1211 ASSERT(0);
1212 return XFS_ERROR(EINVAL);
1213 }
1214 mp->m_sb.sb_agcount = scounter;
1215 return 0;
1216 case XFS_SBS_IMAX_PCT:
1217 scounter = mp->m_sb.sb_imax_pct;
1218 scounter += delta;
1219 if (scounter < 0) {
1220 ASSERT(0);
1221 return XFS_ERROR(EINVAL);
1222 }
1223 mp->m_sb.sb_imax_pct = scounter;
1224 return 0;
1225 case XFS_SBS_REXTSIZE:
1226 scounter = mp->m_sb.sb_rextsize;
1227 scounter += delta;
1228 if (scounter < 0) {
1229 ASSERT(0);
1230 return XFS_ERROR(EINVAL);
1231 }
1232 mp->m_sb.sb_rextsize = scounter;
1233 return 0;
1234 case XFS_SBS_RBMBLOCKS:
1235 scounter = mp->m_sb.sb_rbmblocks;
1236 scounter += delta;
1237 if (scounter < 0) {
1238 ASSERT(0);
1239 return XFS_ERROR(EINVAL);
1240 }
1241 mp->m_sb.sb_rbmblocks = scounter;
1242 return 0;
1243 case XFS_SBS_RBLOCKS:
1244 lcounter = (long long)mp->m_sb.sb_rblocks;
1245 lcounter += delta;
1246 if (lcounter < 0) {
1247 ASSERT(0);
1248 return XFS_ERROR(EINVAL);
1249 }
1250 mp->m_sb.sb_rblocks = lcounter;
1251 return 0;
1252 case XFS_SBS_REXTENTS:
1253 lcounter = (long long)mp->m_sb.sb_rextents;
1254 lcounter += delta;
1255 if (lcounter < 0) {
1256 ASSERT(0);
1257 return XFS_ERROR(EINVAL);
1258 }
1259 mp->m_sb.sb_rextents = lcounter;
1260 return 0;
1261 case XFS_SBS_REXTSLOG:
1262 scounter = mp->m_sb.sb_rextslog;
1263 scounter += delta;
1264 if (scounter < 0) {
1265 ASSERT(0);
1266 return XFS_ERROR(EINVAL);
1267 }
1268 mp->m_sb.sb_rextslog = scounter;
1269 return 0;
1270 default:
1271 ASSERT(0);
1272 return XFS_ERROR(EINVAL);
1273 }
1274 }
1275
1276 /*
1277 * xfs_mod_incore_sb() is used to change a field in the in-core
1278 * superblock structure by the specified delta. This modification
1279 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1280 * routine to do the work.
1281 */
1282 int
1283 xfs_mod_incore_sb(
1284 struct xfs_mount *mp,
1285 xfs_sb_field_t field,
1286 int64_t delta,
1287 int rsvd)
1288 {
1289 int status;
1290
1291 #ifdef HAVE_PERCPU_SB
1292 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1293 #endif
1294 spin_lock(&mp->m_sb_lock);
1295 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1296 spin_unlock(&mp->m_sb_lock);
1297
1298 return status;
1299 }
1300
1301 /*
1302 * Change more than one field in the in-core superblock structure at a time.
1303 *
1304 * The fields and changes to those fields are specified in the array of
1305 * xfs_mod_sb structures passed in. Either all of the specified deltas
1306 * will be applied or none of them will. If any modified field dips below 0,
1307 * then all modifications will be backed out and EINVAL will be returned.
1308 *
1309 * Note that this function may not be used for the superblock values that
1310 * are tracked with the in-memory per-cpu counters - a direct call to
1311 * xfs_icsb_modify_counters is required for these.
1312 */
1313 int
1314 xfs_mod_incore_sb_batch(
1315 struct xfs_mount *mp,
1316 xfs_mod_sb_t *msb,
1317 uint nmsb,
1318 int rsvd)
1319 {
1320 xfs_mod_sb_t *msbp;
1321 int error = 0;
1322
1323 /*
1324 * Loop through the array of mod structures and apply each individually.
1325 * If any fail, then back out all those which have already been applied.
1326 * Do all of this within the scope of the m_sb_lock so that all of the
1327 * changes will be atomic.
1328 */
1329 spin_lock(&mp->m_sb_lock);
1330 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1331 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1332 msbp->msb_field > XFS_SBS_FDBLOCKS);
1333
1334 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1335 msbp->msb_delta, rsvd);
1336 if (error)
1337 goto unwind;
1338 }
1339 spin_unlock(&mp->m_sb_lock);
1340 return 0;
1341
1342 unwind:
1343 while (--msbp >= msb) {
1344 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1345 -msbp->msb_delta, rsvd);
1346 ASSERT(error == 0);
1347 }
1348 spin_unlock(&mp->m_sb_lock);
1349 return error;
1350 }
1351
1352 /*
1353 * xfs_getsb() is called to obtain the buffer for the superblock.
1354 * The buffer is returned locked and read in from disk.
1355 * The buffer should be released with a call to xfs_brelse().
1356 *
1357 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1358 * the superblock buffer if it can be locked without sleeping.
1359 * If it can't then we'll return NULL.
1360 */
1361 struct xfs_buf *
1362 xfs_getsb(
1363 struct xfs_mount *mp,
1364 int flags)
1365 {
1366 struct xfs_buf *bp = mp->m_sb_bp;
1367
1368 if (!xfs_buf_trylock(bp)) {
1369 if (flags & XBF_TRYLOCK)
1370 return NULL;
1371 xfs_buf_lock(bp);
1372 }
1373
1374 xfs_buf_hold(bp);
1375 ASSERT(XFS_BUF_ISDONE(bp));
1376 return bp;
1377 }
1378
1379 /*
1380 * Used to free the superblock along various error paths.
1381 */
1382 void
1383 xfs_freesb(
1384 struct xfs_mount *mp)
1385 {
1386 struct xfs_buf *bp = mp->m_sb_bp;
1387
1388 xfs_buf_lock(bp);
1389 mp->m_sb_bp = NULL;
1390 xfs_buf_relse(bp);
1391 }
1392
1393 /*
1394 * Used to log changes to the superblock unit and width fields which could
1395 * be altered by the mount options, as well as any potential sb_features2
1396 * fixup. Only the first superblock is updated.
1397 */
1398 int
1399 xfs_mount_log_sb(
1400 xfs_mount_t *mp,
1401 __int64_t fields)
1402 {
1403 xfs_trans_t *tp;
1404 int error;
1405
1406 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1407 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1408 XFS_SB_VERSIONNUM));
1409
1410 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1411 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1412 if (error) {
1413 xfs_trans_cancel(tp, 0);
1414 return error;
1415 }
1416 xfs_mod_sb(tp, fields);
1417 error = xfs_trans_commit(tp, 0);
1418 return error;
1419 }
1420
1421 /*
1422 * If the underlying (data/log/rt) device is readonly, there are some
1423 * operations that cannot proceed.
1424 */
1425 int
1426 xfs_dev_is_read_only(
1427 struct xfs_mount *mp,
1428 char *message)
1429 {
1430 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1431 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1432 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1433 xfs_notice(mp, "%s required on read-only device.", message);
1434 xfs_notice(mp, "write access unavailable, cannot proceed.");
1435 return EROFS;
1436 }
1437 return 0;
1438 }
1439
1440 #ifdef HAVE_PERCPU_SB
1441 /*
1442 * Per-cpu incore superblock counters
1443 *
1444 * Simple concept, difficult implementation
1445 *
1446 * Basically, replace the incore superblock counters with a distributed per cpu
1447 * counter for contended fields (e.g. free block count).
1448 *
1449 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1450 * hence needs to be accurately read when we are running low on space. Hence
1451 * there is a method to enable and disable the per-cpu counters based on how
1452 * much "stuff" is available in them.
1453 *
1454 * Basically, a counter is enabled if there is enough free resource to justify
1455 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1456 * ENOSPC), then we disable the counters to synchronise all callers and
1457 * re-distribute the available resources.
1458 *
1459 * If, once we redistributed the available resources, we still get a failure,
1460 * we disable the per-cpu counter and go through the slow path.
1461 *
1462 * The slow path is the current xfs_mod_incore_sb() function. This means that
1463 * when we disable a per-cpu counter, we need to drain its resources back to
1464 * the global superblock. We do this after disabling the counter to prevent
1465 * more threads from queueing up on the counter.
1466 *
1467 * Essentially, this means that we still need a lock in the fast path to enable
1468 * synchronisation between the global counters and the per-cpu counters. This
1469 * is not a problem because the lock will be local to a CPU almost all the time
1470 * and have little contention except when we get to ENOSPC conditions.
1471 *
1472 * Basically, this lock becomes a barrier that enables us to lock out the fast
1473 * path while we do things like enabling and disabling counters and
1474 * synchronising the counters.
1475 *
1476 * Locking rules:
1477 *
1478 * 1. m_sb_lock before picking up per-cpu locks
1479 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1480 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1481 * 4. modifying per-cpu counters requires holding per-cpu lock
1482 * 5. modifying global counters requires holding m_sb_lock
1483 * 6. enabling or disabling a counter requires holding the m_sb_lock
1484 * and _none_ of the per-cpu locks.
1485 *
1486 * Disabled counters are only ever re-enabled by a balance operation
1487 * that results in more free resources per CPU than a given threshold.
1488 * To ensure counters don't remain disabled, they are rebalanced when
1489 * the global resource goes above a higher threshold (i.e. some hysteresis
1490 * is present to prevent thrashing).
1491 */
1492
1493 #ifdef CONFIG_HOTPLUG_CPU
1494 /*
1495 * hot-plug CPU notifier support.
1496 *
1497 * We need a notifier per filesystem as we need to be able to identify
1498 * the filesystem to balance the counters out. This is achieved by
1499 * having a notifier block embedded in the xfs_mount_t and doing pointer
1500 * magic to get the mount pointer from the notifier block address.
1501 */
1502 STATIC int
1503 xfs_icsb_cpu_notify(
1504 struct notifier_block *nfb,
1505 unsigned long action,
1506 void *hcpu)
1507 {
1508 xfs_icsb_cnts_t *cntp;
1509 xfs_mount_t *mp;
1510
1511 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1512 cntp = (xfs_icsb_cnts_t *)
1513 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1514 switch (action) {
1515 case CPU_UP_PREPARE:
1516 case CPU_UP_PREPARE_FROZEN:
1517 /* Easy Case - initialize the area and locks, and
1518 * then rebalance when online does everything else for us. */
1519 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1520 break;
1521 case CPU_ONLINE:
1522 case CPU_ONLINE_FROZEN:
1523 xfs_icsb_lock(mp);
1524 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1525 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1526 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1527 xfs_icsb_unlock(mp);
1528 break;
1529 case CPU_DEAD:
1530 case CPU_DEAD_FROZEN:
1531 /* Disable all the counters, then fold the dead cpu's
1532 * count into the total on the global superblock and
1533 * re-enable the counters. */
1534 xfs_icsb_lock(mp);
1535 spin_lock(&mp->m_sb_lock);
1536 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1537 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1538 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1539
1540 mp->m_sb.sb_icount += cntp->icsb_icount;
1541 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1542 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1543
1544 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1545
1546 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1547 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1548 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1549 spin_unlock(&mp->m_sb_lock);
1550 xfs_icsb_unlock(mp);
1551 break;
1552 }
1553
1554 return NOTIFY_OK;
1555 }
1556 #endif /* CONFIG_HOTPLUG_CPU */
1557
1558 int
1559 xfs_icsb_init_counters(
1560 xfs_mount_t *mp)
1561 {
1562 xfs_icsb_cnts_t *cntp;
1563 int i;
1564
1565 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1566 if (mp->m_sb_cnts == NULL)
1567 return -ENOMEM;
1568
1569 for_each_online_cpu(i) {
1570 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1571 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1572 }
1573
1574 mutex_init(&mp->m_icsb_mutex);
1575
1576 /*
1577 * start with all counters disabled so that the
1578 * initial balance kicks us off correctly
1579 */
1580 mp->m_icsb_counters = -1;
1581
1582 #ifdef CONFIG_HOTPLUG_CPU
1583 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1584 mp->m_icsb_notifier.priority = 0;
1585 register_hotcpu_notifier(&mp->m_icsb_notifier);
1586 #endif /* CONFIG_HOTPLUG_CPU */
1587
1588 return 0;
1589 }
1590
1591 void
1592 xfs_icsb_reinit_counters(
1593 xfs_mount_t *mp)
1594 {
1595 xfs_icsb_lock(mp);
1596 /*
1597 * start with all counters disabled so that the
1598 * initial balance kicks us off correctly
1599 */
1600 mp->m_icsb_counters = -1;
1601 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1602 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1603 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1604 xfs_icsb_unlock(mp);
1605 }
1606
1607 void
1608 xfs_icsb_destroy_counters(
1609 xfs_mount_t *mp)
1610 {
1611 if (mp->m_sb_cnts) {
1612 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1613 free_percpu(mp->m_sb_cnts);
1614 }
1615 mutex_destroy(&mp->m_icsb_mutex);
1616 }
1617
1618 STATIC void
1619 xfs_icsb_lock_cntr(
1620 xfs_icsb_cnts_t *icsbp)
1621 {
1622 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1623 ndelay(1000);
1624 }
1625 }
1626
1627 STATIC void
1628 xfs_icsb_unlock_cntr(
1629 xfs_icsb_cnts_t *icsbp)
1630 {
1631 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1632 }
1633
1634
1635 STATIC void
1636 xfs_icsb_lock_all_counters(
1637 xfs_mount_t *mp)
1638 {
1639 xfs_icsb_cnts_t *cntp;
1640 int i;
1641
1642 for_each_online_cpu(i) {
1643 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1644 xfs_icsb_lock_cntr(cntp);
1645 }
1646 }
1647
1648 STATIC void
1649 xfs_icsb_unlock_all_counters(
1650 xfs_mount_t *mp)
1651 {
1652 xfs_icsb_cnts_t *cntp;
1653 int i;
1654
1655 for_each_online_cpu(i) {
1656 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1657 xfs_icsb_unlock_cntr(cntp);
1658 }
1659 }
1660
1661 STATIC void
1662 xfs_icsb_count(
1663 xfs_mount_t *mp,
1664 xfs_icsb_cnts_t *cnt,
1665 int flags)
1666 {
1667 xfs_icsb_cnts_t *cntp;
1668 int i;
1669
1670 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1671
1672 if (!(flags & XFS_ICSB_LAZY_COUNT))
1673 xfs_icsb_lock_all_counters(mp);
1674
1675 for_each_online_cpu(i) {
1676 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1677 cnt->icsb_icount += cntp->icsb_icount;
1678 cnt->icsb_ifree += cntp->icsb_ifree;
1679 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1680 }
1681
1682 if (!(flags & XFS_ICSB_LAZY_COUNT))
1683 xfs_icsb_unlock_all_counters(mp);
1684 }
1685
1686 STATIC int
1687 xfs_icsb_counter_disabled(
1688 xfs_mount_t *mp,
1689 xfs_sb_field_t field)
1690 {
1691 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1692 return test_bit(field, &mp->m_icsb_counters);
1693 }
1694
1695 STATIC void
1696 xfs_icsb_disable_counter(
1697 xfs_mount_t *mp,
1698 xfs_sb_field_t field)
1699 {
1700 xfs_icsb_cnts_t cnt;
1701
1702 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1703
1704 /*
1705 * If we are already disabled, then there is nothing to do
1706 * here. We check before locking all the counters to avoid
1707 * the expensive lock operation when being called in the
1708 * slow path and the counter is already disabled. This is
1709 * safe because the only time we set or clear this state is under
1710 * the m_icsb_mutex.
1711 */
1712 if (xfs_icsb_counter_disabled(mp, field))
1713 return;
1714
1715 xfs_icsb_lock_all_counters(mp);
1716 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1717 /* drain back to superblock */
1718
1719 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1720 switch(field) {
1721 case XFS_SBS_ICOUNT:
1722 mp->m_sb.sb_icount = cnt.icsb_icount;
1723 break;
1724 case XFS_SBS_IFREE:
1725 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1726 break;
1727 case XFS_SBS_FDBLOCKS:
1728 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1729 break;
1730 default:
1731 BUG();
1732 }
1733 }
1734
1735 xfs_icsb_unlock_all_counters(mp);
1736 }
1737
1738 STATIC void
1739 xfs_icsb_enable_counter(
1740 xfs_mount_t *mp,
1741 xfs_sb_field_t field,
1742 uint64_t count,
1743 uint64_t resid)
1744 {
1745 xfs_icsb_cnts_t *cntp;
1746 int i;
1747
1748 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1749
1750 xfs_icsb_lock_all_counters(mp);
1751 for_each_online_cpu(i) {
1752 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1753 switch (field) {
1754 case XFS_SBS_ICOUNT:
1755 cntp->icsb_icount = count + resid;
1756 break;
1757 case XFS_SBS_IFREE:
1758 cntp->icsb_ifree = count + resid;
1759 break;
1760 case XFS_SBS_FDBLOCKS:
1761 cntp->icsb_fdblocks = count + resid;
1762 break;
1763 default:
1764 BUG();
1765 break;
1766 }
1767 resid = 0;
1768 }
1769 clear_bit(field, &mp->m_icsb_counters);
1770 xfs_icsb_unlock_all_counters(mp);
1771 }
1772
1773 void
1774 xfs_icsb_sync_counters_locked(
1775 xfs_mount_t *mp,
1776 int flags)
1777 {
1778 xfs_icsb_cnts_t cnt;
1779
1780 xfs_icsb_count(mp, &cnt, flags);
1781
1782 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1783 mp->m_sb.sb_icount = cnt.icsb_icount;
1784 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1785 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1786 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1787 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1788 }
1789
1790 /*
1791 * Accurate update of per-cpu counters to incore superblock
1792 */
1793 void
1794 xfs_icsb_sync_counters(
1795 xfs_mount_t *mp,
1796 int flags)
1797 {
1798 spin_lock(&mp->m_sb_lock);
1799 xfs_icsb_sync_counters_locked(mp, flags);
1800 spin_unlock(&mp->m_sb_lock);
1801 }
1802
1803 /*
1804 * Balance and enable/disable counters as necessary.
1805 *
1806 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1807 * chosen to be the same number as single on disk allocation chunk per CPU, and
1808 * free blocks is something far enough zero that we aren't going thrash when we
1809 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1810 * prevent looping endlessly when xfs_alloc_space asks for more than will
1811 * be distributed to a single CPU but each CPU has enough blocks to be
1812 * reenabled.
1813 *
1814 * Note that we can be called when counters are already disabled.
1815 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1816 * prevent locking every per-cpu counter needlessly.
1817 */
1818
1819 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1820 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1821 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1822 STATIC void
1823 xfs_icsb_balance_counter_locked(
1824 xfs_mount_t *mp,
1825 xfs_sb_field_t field,
1826 int min_per_cpu)
1827 {
1828 uint64_t count, resid;
1829 int weight = num_online_cpus();
1830 uint64_t min = (uint64_t)min_per_cpu;
1831
1832 /* disable counter and sync counter */
1833 xfs_icsb_disable_counter(mp, field);
1834
1835 /* update counters - first CPU gets residual*/
1836 switch (field) {
1837 case XFS_SBS_ICOUNT:
1838 count = mp->m_sb.sb_icount;
1839 resid = do_div(count, weight);
1840 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1841 return;
1842 break;
1843 case XFS_SBS_IFREE:
1844 count = mp->m_sb.sb_ifree;
1845 resid = do_div(count, weight);
1846 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1847 return;
1848 break;
1849 case XFS_SBS_FDBLOCKS:
1850 count = mp->m_sb.sb_fdblocks;
1851 resid = do_div(count, weight);
1852 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1853 return;
1854 break;
1855 default:
1856 BUG();
1857 count = resid = 0; /* quiet, gcc */
1858 break;
1859 }
1860
1861 xfs_icsb_enable_counter(mp, field, count, resid);
1862 }
1863
1864 STATIC void
1865 xfs_icsb_balance_counter(
1866 xfs_mount_t *mp,
1867 xfs_sb_field_t fields,
1868 int min_per_cpu)
1869 {
1870 spin_lock(&mp->m_sb_lock);
1871 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1872 spin_unlock(&mp->m_sb_lock);
1873 }
1874
1875 int
1876 xfs_icsb_modify_counters(
1877 xfs_mount_t *mp,
1878 xfs_sb_field_t field,
1879 int64_t delta,
1880 int rsvd)
1881 {
1882 xfs_icsb_cnts_t *icsbp;
1883 long long lcounter; /* long counter for 64 bit fields */
1884 int ret = 0;
1885
1886 might_sleep();
1887 again:
1888 preempt_disable();
1889 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1890
1891 /*
1892 * if the counter is disabled, go to slow path
1893 */
1894 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1895 goto slow_path;
1896 xfs_icsb_lock_cntr(icsbp);
1897 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1898 xfs_icsb_unlock_cntr(icsbp);
1899 goto slow_path;
1900 }
1901
1902 switch (field) {
1903 case XFS_SBS_ICOUNT:
1904 lcounter = icsbp->icsb_icount;
1905 lcounter += delta;
1906 if (unlikely(lcounter < 0))
1907 goto balance_counter;
1908 icsbp->icsb_icount = lcounter;
1909 break;
1910
1911 case XFS_SBS_IFREE:
1912 lcounter = icsbp->icsb_ifree;
1913 lcounter += delta;
1914 if (unlikely(lcounter < 0))
1915 goto balance_counter;
1916 icsbp->icsb_ifree = lcounter;
1917 break;
1918
1919 case XFS_SBS_FDBLOCKS:
1920 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1921
1922 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1923 lcounter += delta;
1924 if (unlikely(lcounter < 0))
1925 goto balance_counter;
1926 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1927 break;
1928 default:
1929 BUG();
1930 break;
1931 }
1932 xfs_icsb_unlock_cntr(icsbp);
1933 preempt_enable();
1934 return 0;
1935
1936 slow_path:
1937 preempt_enable();
1938
1939 /*
1940 * serialise with a mutex so we don't burn lots of cpu on
1941 * the superblock lock. We still need to hold the superblock
1942 * lock, however, when we modify the global structures.
1943 */
1944 xfs_icsb_lock(mp);
1945
1946 /*
1947 * Now running atomically.
1948 *
1949 * If the counter is enabled, someone has beaten us to rebalancing.
1950 * Drop the lock and try again in the fast path....
1951 */
1952 if (!(xfs_icsb_counter_disabled(mp, field))) {
1953 xfs_icsb_unlock(mp);
1954 goto again;
1955 }
1956
1957 /*
1958 * The counter is currently disabled. Because we are
1959 * running atomically here, we know a rebalance cannot
1960 * be in progress. Hence we can go straight to operating
1961 * on the global superblock. We do not call xfs_mod_incore_sb()
1962 * here even though we need to get the m_sb_lock. Doing so
1963 * will cause us to re-enter this function and deadlock.
1964 * Hence we get the m_sb_lock ourselves and then call
1965 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1966 * directly on the global counters.
1967 */
1968 spin_lock(&mp->m_sb_lock);
1969 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1970 spin_unlock(&mp->m_sb_lock);
1971
1972 /*
1973 * Now that we've modified the global superblock, we
1974 * may be able to re-enable the distributed counters
1975 * (e.g. lots of space just got freed). After that
1976 * we are done.
1977 */
1978 if (ret != ENOSPC)
1979 xfs_icsb_balance_counter(mp, field, 0);
1980 xfs_icsb_unlock(mp);
1981 return ret;
1982
1983 balance_counter:
1984 xfs_icsb_unlock_cntr(icsbp);
1985 preempt_enable();
1986
1987 /*
1988 * We may have multiple threads here if multiple per-cpu
1989 * counters run dry at the same time. This will mean we can
1990 * do more balances than strictly necessary but it is not
1991 * the common slowpath case.
1992 */
1993 xfs_icsb_lock(mp);
1994
1995 /*
1996 * running atomically.
1997 *
1998 * This will leave the counter in the correct state for future
1999 * accesses. After the rebalance, we simply try again and our retry
2000 * will either succeed through the fast path or slow path without
2001 * another balance operation being required.
2002 */
2003 xfs_icsb_balance_counter(mp, field, delta);
2004 xfs_icsb_unlock(mp);
2005 goto again;
2006 }
2007
2008 #endif