]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_mount.c
Merge tag 'iio-fixes-for-4.4a' of ssh://ra.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44
45
46 static DEFINE_MUTEX(xfs_uuid_table_mutex);
47 static int xfs_uuid_table_size;
48 static uuid_t *xfs_uuid_table;
49
50 void
51 xfs_uuid_table_free(void)
52 {
53 if (xfs_uuid_table_size == 0)
54 return;
55 kmem_free(xfs_uuid_table);
56 xfs_uuid_table = NULL;
57 xfs_uuid_table_size = 0;
58 }
59
60 /*
61 * See if the UUID is unique among mounted XFS filesystems.
62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
63 */
64 STATIC int
65 xfs_uuid_mount(
66 struct xfs_mount *mp)
67 {
68 uuid_t *uuid = &mp->m_sb.sb_uuid;
69 int hole, i;
70
71 if (mp->m_flags & XFS_MOUNT_NOUUID)
72 return 0;
73
74 if (uuid_is_nil(uuid)) {
75 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
76 return -EINVAL;
77 }
78
79 mutex_lock(&xfs_uuid_table_mutex);
80 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
81 if (uuid_is_nil(&xfs_uuid_table[i])) {
82 hole = i;
83 continue;
84 }
85 if (uuid_equal(uuid, &xfs_uuid_table[i]))
86 goto out_duplicate;
87 }
88
89 if (hole < 0) {
90 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
91 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
92 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
93 KM_SLEEP);
94 hole = xfs_uuid_table_size++;
95 }
96 xfs_uuid_table[hole] = *uuid;
97 mutex_unlock(&xfs_uuid_table_mutex);
98
99 return 0;
100
101 out_duplicate:
102 mutex_unlock(&xfs_uuid_table_mutex);
103 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
104 return -EINVAL;
105 }
106
107 STATIC void
108 xfs_uuid_unmount(
109 struct xfs_mount *mp)
110 {
111 uuid_t *uuid = &mp->m_sb.sb_uuid;
112 int i;
113
114 if (mp->m_flags & XFS_MOUNT_NOUUID)
115 return;
116
117 mutex_lock(&xfs_uuid_table_mutex);
118 for (i = 0; i < xfs_uuid_table_size; i++) {
119 if (uuid_is_nil(&xfs_uuid_table[i]))
120 continue;
121 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
122 continue;
123 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
124 break;
125 }
126 ASSERT(i < xfs_uuid_table_size);
127 mutex_unlock(&xfs_uuid_table_mutex);
128 }
129
130
131 STATIC void
132 __xfs_free_perag(
133 struct rcu_head *head)
134 {
135 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
136
137 ASSERT(atomic_read(&pag->pag_ref) == 0);
138 kmem_free(pag);
139 }
140
141 /*
142 * Free up the per-ag resources associated with the mount structure.
143 */
144 STATIC void
145 xfs_free_perag(
146 xfs_mount_t *mp)
147 {
148 xfs_agnumber_t agno;
149 struct xfs_perag *pag;
150
151 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
152 spin_lock(&mp->m_perag_lock);
153 pag = radix_tree_delete(&mp->m_perag_tree, agno);
154 spin_unlock(&mp->m_perag_lock);
155 ASSERT(pag);
156 ASSERT(atomic_read(&pag->pag_ref) == 0);
157 call_rcu(&pag->rcu_head, __xfs_free_perag);
158 }
159 }
160
161 /*
162 * Check size of device based on the (data/realtime) block count.
163 * Note: this check is used by the growfs code as well as mount.
164 */
165 int
166 xfs_sb_validate_fsb_count(
167 xfs_sb_t *sbp,
168 __uint64_t nblocks)
169 {
170 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
171 ASSERT(sbp->sb_blocklog >= BBSHIFT);
172
173 /* Limited by ULONG_MAX of page cache index */
174 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
175 return -EFBIG;
176 return 0;
177 }
178
179 int
180 xfs_initialize_perag(
181 xfs_mount_t *mp,
182 xfs_agnumber_t agcount,
183 xfs_agnumber_t *maxagi)
184 {
185 xfs_agnumber_t index;
186 xfs_agnumber_t first_initialised = 0;
187 xfs_perag_t *pag;
188 xfs_agino_t agino;
189 xfs_ino_t ino;
190 xfs_sb_t *sbp = &mp->m_sb;
191 int error = -ENOMEM;
192
193 /*
194 * Walk the current per-ag tree so we don't try to initialise AGs
195 * that already exist (growfs case). Allocate and insert all the
196 * AGs we don't find ready for initialisation.
197 */
198 for (index = 0; index < agcount; index++) {
199 pag = xfs_perag_get(mp, index);
200 if (pag) {
201 xfs_perag_put(pag);
202 continue;
203 }
204 if (!first_initialised)
205 first_initialised = index;
206
207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 if (!pag)
209 goto out_unwind;
210 pag->pag_agno = index;
211 pag->pag_mount = mp;
212 spin_lock_init(&pag->pag_ici_lock);
213 mutex_init(&pag->pag_ici_reclaim_lock);
214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 spin_lock_init(&pag->pag_buf_lock);
216 pag->pag_buf_tree = RB_ROOT;
217
218 if (radix_tree_preload(GFP_NOFS))
219 goto out_unwind;
220
221 spin_lock(&mp->m_perag_lock);
222 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
223 BUG();
224 spin_unlock(&mp->m_perag_lock);
225 radix_tree_preload_end();
226 error = -EEXIST;
227 goto out_unwind;
228 }
229 spin_unlock(&mp->m_perag_lock);
230 radix_tree_preload_end();
231 }
232
233 /*
234 * If we mount with the inode64 option, or no inode overflows
235 * the legacy 32-bit address space clear the inode32 option.
236 */
237 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
238 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
239
240 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
241 mp->m_flags |= XFS_MOUNT_32BITINODES;
242 else
243 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
244
245 if (mp->m_flags & XFS_MOUNT_32BITINODES)
246 index = xfs_set_inode32(mp, agcount);
247 else
248 index = xfs_set_inode64(mp, agcount);
249
250 if (maxagi)
251 *maxagi = index;
252 return 0;
253
254 out_unwind:
255 kmem_free(pag);
256 for (; index > first_initialised; index--) {
257 pag = radix_tree_delete(&mp->m_perag_tree, index);
258 kmem_free(pag);
259 }
260 return error;
261 }
262
263 /*
264 * xfs_readsb
265 *
266 * Does the initial read of the superblock.
267 */
268 int
269 xfs_readsb(
270 struct xfs_mount *mp,
271 int flags)
272 {
273 unsigned int sector_size;
274 struct xfs_buf *bp;
275 struct xfs_sb *sbp = &mp->m_sb;
276 int error;
277 int loud = !(flags & XFS_MFSI_QUIET);
278 const struct xfs_buf_ops *buf_ops;
279
280 ASSERT(mp->m_sb_bp == NULL);
281 ASSERT(mp->m_ddev_targp != NULL);
282
283 /*
284 * For the initial read, we must guess at the sector
285 * size based on the block device. It's enough to
286 * get the sb_sectsize out of the superblock and
287 * then reread with the proper length.
288 * We don't verify it yet, because it may not be complete.
289 */
290 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
291 buf_ops = NULL;
292
293 /*
294 * Allocate a (locked) buffer to hold the superblock.
295 * This will be kept around at all times to optimize
296 * access to the superblock.
297 */
298 reread:
299 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
300 BTOBB(sector_size), 0, &bp, buf_ops);
301 if (error) {
302 if (loud)
303 xfs_warn(mp, "SB validate failed with error %d.", error);
304 /* bad CRC means corrupted metadata */
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
307 return error;
308 }
309
310 /*
311 * Initialize the mount structure from the superblock.
312 */
313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314
315 /*
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
318 */
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
322 error = -EINVAL;
323 goto release_buf;
324 }
325
326 /*
327 * We must be able to do sector-sized and sector-aligned IO.
328 */
329 if (sector_size > sbp->sb_sectsize) {
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
333 error = -ENOSYS;
334 goto release_buf;
335 }
336
337 if (buf_ops == NULL) {
338 /*
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
341 */
342 xfs_buf_relse(bp);
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 goto reread;
346 }
347
348 xfs_reinit_percpu_counters(mp);
349
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
352
353 mp->m_sb_bp = bp;
354 xfs_buf_unlock(bp);
355 return 0;
356
357 release_buf:
358 xfs_buf_relse(bp);
359 return error;
360 }
361
362 /*
363 * Update alignment values based on mount options and sb values
364 */
365 STATIC int
366 xfs_update_alignment(xfs_mount_t *mp)
367 {
368 xfs_sb_t *sbp = &(mp->m_sb);
369
370 if (mp->m_dalign) {
371 /*
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
374 */
375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 xfs_warn(mp,
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
379 sbp->sb_blocksize);
380 return -EINVAL;
381 } else {
382 /*
383 * Convert the stripe unit and width to FSBs.
384 */
385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 xfs_warn(mp,
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
389 sbp->sb_agblocks);
390 return -EINVAL;
391 } else if (mp->m_dalign) {
392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 } else {
394 xfs_warn(mp,
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp->m_dalign, sbp->sb_blocksize);
397 return -EINVAL;
398 }
399 }
400
401 /*
402 * Update superblock with new values
403 * and log changes
404 */
405 if (xfs_sb_version_hasdalign(sbp)) {
406 if (sbp->sb_unit != mp->m_dalign) {
407 sbp->sb_unit = mp->m_dalign;
408 mp->m_update_sb = true;
409 }
410 if (sbp->sb_width != mp->m_swidth) {
411 sbp->sb_width = mp->m_swidth;
412 mp->m_update_sb = true;
413 }
414 } else {
415 xfs_warn(mp,
416 "cannot change alignment: superblock does not support data alignment");
417 return -EINVAL;
418 }
419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 xfs_sb_version_hasdalign(&mp->m_sb)) {
421 mp->m_dalign = sbp->sb_unit;
422 mp->m_swidth = sbp->sb_width;
423 }
424
425 return 0;
426 }
427
428 /*
429 * Set the maximum inode count for this filesystem
430 */
431 STATIC void
432 xfs_set_maxicount(xfs_mount_t *mp)
433 {
434 xfs_sb_t *sbp = &(mp->m_sb);
435 __uint64_t icount;
436
437 if (sbp->sb_imax_pct) {
438 /*
439 * Make sure the maximum inode count is a multiple
440 * of the units we allocate inodes in.
441 */
442 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
443 do_div(icount, 100);
444 do_div(icount, mp->m_ialloc_blks);
445 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
446 sbp->sb_inopblog;
447 } else {
448 mp->m_maxicount = 0;
449 }
450 }
451
452 /*
453 * Set the default minimum read and write sizes unless
454 * already specified in a mount option.
455 * We use smaller I/O sizes when the file system
456 * is being used for NFS service (wsync mount option).
457 */
458 STATIC void
459 xfs_set_rw_sizes(xfs_mount_t *mp)
460 {
461 xfs_sb_t *sbp = &(mp->m_sb);
462 int readio_log, writeio_log;
463
464 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
465 if (mp->m_flags & XFS_MOUNT_WSYNC) {
466 readio_log = XFS_WSYNC_READIO_LOG;
467 writeio_log = XFS_WSYNC_WRITEIO_LOG;
468 } else {
469 readio_log = XFS_READIO_LOG_LARGE;
470 writeio_log = XFS_WRITEIO_LOG_LARGE;
471 }
472 } else {
473 readio_log = mp->m_readio_log;
474 writeio_log = mp->m_writeio_log;
475 }
476
477 if (sbp->sb_blocklog > readio_log) {
478 mp->m_readio_log = sbp->sb_blocklog;
479 } else {
480 mp->m_readio_log = readio_log;
481 }
482 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
483 if (sbp->sb_blocklog > writeio_log) {
484 mp->m_writeio_log = sbp->sb_blocklog;
485 } else {
486 mp->m_writeio_log = writeio_log;
487 }
488 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
489 }
490
491 /*
492 * precalculate the low space thresholds for dynamic speculative preallocation.
493 */
494 void
495 xfs_set_low_space_thresholds(
496 struct xfs_mount *mp)
497 {
498 int i;
499
500 for (i = 0; i < XFS_LOWSP_MAX; i++) {
501 __uint64_t space = mp->m_sb.sb_dblocks;
502
503 do_div(space, 100);
504 mp->m_low_space[i] = space * (i + 1);
505 }
506 }
507
508
509 /*
510 * Set whether we're using inode alignment.
511 */
512 STATIC void
513 xfs_set_inoalignment(xfs_mount_t *mp)
514 {
515 if (xfs_sb_version_hasalign(&mp->m_sb) &&
516 mp->m_sb.sb_inoalignmt >=
517 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
518 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
519 else
520 mp->m_inoalign_mask = 0;
521 /*
522 * If we are using stripe alignment, check whether
523 * the stripe unit is a multiple of the inode alignment
524 */
525 if (mp->m_dalign && mp->m_inoalign_mask &&
526 !(mp->m_dalign & mp->m_inoalign_mask))
527 mp->m_sinoalign = mp->m_dalign;
528 else
529 mp->m_sinoalign = 0;
530 }
531
532 /*
533 * Check that the data (and log if separate) is an ok size.
534 */
535 STATIC int
536 xfs_check_sizes(
537 struct xfs_mount *mp)
538 {
539 struct xfs_buf *bp;
540 xfs_daddr_t d;
541 int error;
542
543 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
544 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
545 xfs_warn(mp, "filesystem size mismatch detected");
546 return -EFBIG;
547 }
548 error = xfs_buf_read_uncached(mp->m_ddev_targp,
549 d - XFS_FSS_TO_BB(mp, 1),
550 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
551 if (error) {
552 xfs_warn(mp, "last sector read failed");
553 return error;
554 }
555 xfs_buf_relse(bp);
556
557 if (mp->m_logdev_targp == mp->m_ddev_targp)
558 return 0;
559
560 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
561 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
562 xfs_warn(mp, "log size mismatch detected");
563 return -EFBIG;
564 }
565 error = xfs_buf_read_uncached(mp->m_logdev_targp,
566 d - XFS_FSB_TO_BB(mp, 1),
567 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
568 if (error) {
569 xfs_warn(mp, "log device read failed");
570 return error;
571 }
572 xfs_buf_relse(bp);
573 return 0;
574 }
575
576 /*
577 * Clear the quotaflags in memory and in the superblock.
578 */
579 int
580 xfs_mount_reset_sbqflags(
581 struct xfs_mount *mp)
582 {
583 mp->m_qflags = 0;
584
585 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
586 if (mp->m_sb.sb_qflags == 0)
587 return 0;
588 spin_lock(&mp->m_sb_lock);
589 mp->m_sb.sb_qflags = 0;
590 spin_unlock(&mp->m_sb_lock);
591
592 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
593 return 0;
594
595 return xfs_sync_sb(mp, false);
596 }
597
598 __uint64_t
599 xfs_default_resblks(xfs_mount_t *mp)
600 {
601 __uint64_t resblks;
602
603 /*
604 * We default to 5% or 8192 fsbs of space reserved, whichever is
605 * smaller. This is intended to cover concurrent allocation
606 * transactions when we initially hit enospc. These each require a 4
607 * block reservation. Hence by default we cover roughly 2000 concurrent
608 * allocation reservations.
609 */
610 resblks = mp->m_sb.sb_dblocks;
611 do_div(resblks, 20);
612 resblks = min_t(__uint64_t, resblks, 8192);
613 return resblks;
614 }
615
616 /*
617 * This function does the following on an initial mount of a file system:
618 * - reads the superblock from disk and init the mount struct
619 * - if we're a 32-bit kernel, do a size check on the superblock
620 * so we don't mount terabyte filesystems
621 * - init mount struct realtime fields
622 * - allocate inode hash table for fs
623 * - init directory manager
624 * - perform recovery and init the log manager
625 */
626 int
627 xfs_mountfs(
628 struct xfs_mount *mp)
629 {
630 struct xfs_sb *sbp = &(mp->m_sb);
631 struct xfs_inode *rip;
632 __uint64_t resblks;
633 uint quotamount = 0;
634 uint quotaflags = 0;
635 int error = 0;
636
637 xfs_sb_mount_common(mp, sbp);
638
639 /*
640 * Check for a mismatched features2 values. Older kernels read & wrote
641 * into the wrong sb offset for sb_features2 on some platforms due to
642 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
643 * which made older superblock reading/writing routines swap it as a
644 * 64-bit value.
645 *
646 * For backwards compatibility, we make both slots equal.
647 *
648 * If we detect a mismatched field, we OR the set bits into the existing
649 * features2 field in case it has already been modified; we don't want
650 * to lose any features. We then update the bad location with the ORed
651 * value so that older kernels will see any features2 flags. The
652 * superblock writeback code ensures the new sb_features2 is copied to
653 * sb_bad_features2 before it is logged or written to disk.
654 */
655 if (xfs_sb_has_mismatched_features2(sbp)) {
656 xfs_warn(mp, "correcting sb_features alignment problem");
657 sbp->sb_features2 |= sbp->sb_bad_features2;
658 mp->m_update_sb = true;
659
660 /*
661 * Re-check for ATTR2 in case it was found in bad_features2
662 * slot.
663 */
664 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
665 !(mp->m_flags & XFS_MOUNT_NOATTR2))
666 mp->m_flags |= XFS_MOUNT_ATTR2;
667 }
668
669 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
671 xfs_sb_version_removeattr2(&mp->m_sb);
672 mp->m_update_sb = true;
673
674 /* update sb_versionnum for the clearing of the morebits */
675 if (!sbp->sb_features2)
676 mp->m_update_sb = true;
677 }
678
679 /* always use v2 inodes by default now */
680 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
681 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
682 mp->m_update_sb = true;
683 }
684
685 /*
686 * Check if sb_agblocks is aligned at stripe boundary
687 * If sb_agblocks is NOT aligned turn off m_dalign since
688 * allocator alignment is within an ag, therefore ag has
689 * to be aligned at stripe boundary.
690 */
691 error = xfs_update_alignment(mp);
692 if (error)
693 goto out;
694
695 xfs_alloc_compute_maxlevels(mp);
696 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
697 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
698 xfs_ialloc_compute_maxlevels(mp);
699
700 xfs_set_maxicount(mp);
701
702 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
703 if (error)
704 goto out;
705
706 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
707 &mp->m_kobj, "stats");
708 if (error)
709 goto out_remove_sysfs;
710
711 error = xfs_uuid_mount(mp);
712 if (error)
713 goto out_del_stats;
714
715 /*
716 * Set the minimum read and write sizes
717 */
718 xfs_set_rw_sizes(mp);
719
720 /* set the low space thresholds for dynamic preallocation */
721 xfs_set_low_space_thresholds(mp);
722
723 /*
724 * Set the inode cluster size.
725 * This may still be overridden by the file system
726 * block size if it is larger than the chosen cluster size.
727 *
728 * For v5 filesystems, scale the cluster size with the inode size to
729 * keep a constant ratio of inode per cluster buffer, but only if mkfs
730 * has set the inode alignment value appropriately for larger cluster
731 * sizes.
732 */
733 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
734 if (xfs_sb_version_hascrc(&mp->m_sb)) {
735 int new_size = mp->m_inode_cluster_size;
736
737 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
738 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
739 mp->m_inode_cluster_size = new_size;
740 }
741
742 /*
743 * If enabled, sparse inode chunk alignment is expected to match the
744 * cluster size. Full inode chunk alignment must match the chunk size,
745 * but that is checked on sb read verification...
746 */
747 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
748 mp->m_sb.sb_spino_align !=
749 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
750 xfs_warn(mp,
751 "Sparse inode block alignment (%u) must match cluster size (%llu).",
752 mp->m_sb.sb_spino_align,
753 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
754 error = -EINVAL;
755 goto out_remove_uuid;
756 }
757
758 /*
759 * Set inode alignment fields
760 */
761 xfs_set_inoalignment(mp);
762
763 /*
764 * Check that the data (and log if separate) is an ok size.
765 */
766 error = xfs_check_sizes(mp);
767 if (error)
768 goto out_remove_uuid;
769
770 /*
771 * Initialize realtime fields in the mount structure
772 */
773 error = xfs_rtmount_init(mp);
774 if (error) {
775 xfs_warn(mp, "RT mount failed");
776 goto out_remove_uuid;
777 }
778
779 /*
780 * Copies the low order bits of the timestamp and the randomly
781 * set "sequence" number out of a UUID.
782 */
783 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
784
785 mp->m_dmevmask = 0; /* not persistent; set after each mount */
786
787 error = xfs_da_mount(mp);
788 if (error) {
789 xfs_warn(mp, "Failed dir/attr init: %d", error);
790 goto out_remove_uuid;
791 }
792
793 /*
794 * Initialize the precomputed transaction reservations values.
795 */
796 xfs_trans_init(mp);
797
798 /*
799 * Allocate and initialize the per-ag data.
800 */
801 spin_lock_init(&mp->m_perag_lock);
802 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
803 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
804 if (error) {
805 xfs_warn(mp, "Failed per-ag init: %d", error);
806 goto out_free_dir;
807 }
808
809 if (!sbp->sb_logblocks) {
810 xfs_warn(mp, "no log defined");
811 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
812 error = -EFSCORRUPTED;
813 goto out_free_perag;
814 }
815
816 /*
817 * Log's mount-time initialization. The first part of recovery can place
818 * some items on the AIL, to be handled when recovery is finished or
819 * cancelled.
820 */
821 error = xfs_log_mount(mp, mp->m_logdev_targp,
822 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
823 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
824 if (error) {
825 xfs_warn(mp, "log mount failed");
826 goto out_fail_wait;
827 }
828
829 /*
830 * Now the log is mounted, we know if it was an unclean shutdown or
831 * not. If it was, with the first phase of recovery has completed, we
832 * have consistent AG blocks on disk. We have not recovered EFIs yet,
833 * but they are recovered transactionally in the second recovery phase
834 * later.
835 *
836 * Hence we can safely re-initialise incore superblock counters from
837 * the per-ag data. These may not be correct if the filesystem was not
838 * cleanly unmounted, so we need to wait for recovery to finish before
839 * doing this.
840 *
841 * If the filesystem was cleanly unmounted, then we can trust the
842 * values in the superblock to be correct and we don't need to do
843 * anything here.
844 *
845 * If we are currently making the filesystem, the initialisation will
846 * fail as the perag data is in an undefined state.
847 */
848 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
849 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
850 !mp->m_sb.sb_inprogress) {
851 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
852 if (error)
853 goto out_log_dealloc;
854 }
855
856 /*
857 * Get and sanity-check the root inode.
858 * Save the pointer to it in the mount structure.
859 */
860 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
861 if (error) {
862 xfs_warn(mp, "failed to read root inode");
863 goto out_log_dealloc;
864 }
865
866 ASSERT(rip != NULL);
867
868 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
869 xfs_warn(mp, "corrupted root inode %llu: not a directory",
870 (unsigned long long)rip->i_ino);
871 xfs_iunlock(rip, XFS_ILOCK_EXCL);
872 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
873 mp);
874 error = -EFSCORRUPTED;
875 goto out_rele_rip;
876 }
877 mp->m_rootip = rip; /* save it */
878
879 xfs_iunlock(rip, XFS_ILOCK_EXCL);
880
881 /*
882 * Initialize realtime inode pointers in the mount structure
883 */
884 error = xfs_rtmount_inodes(mp);
885 if (error) {
886 /*
887 * Free up the root inode.
888 */
889 xfs_warn(mp, "failed to read RT inodes");
890 goto out_rele_rip;
891 }
892
893 /*
894 * If this is a read-only mount defer the superblock updates until
895 * the next remount into writeable mode. Otherwise we would never
896 * perform the update e.g. for the root filesystem.
897 */
898 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
899 error = xfs_sync_sb(mp, false);
900 if (error) {
901 xfs_warn(mp, "failed to write sb changes");
902 goto out_rtunmount;
903 }
904 }
905
906 /*
907 * Initialise the XFS quota management subsystem for this mount
908 */
909 if (XFS_IS_QUOTA_RUNNING(mp)) {
910 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
911 if (error)
912 goto out_rtunmount;
913 } else {
914 ASSERT(!XFS_IS_QUOTA_ON(mp));
915
916 /*
917 * If a file system had quotas running earlier, but decided to
918 * mount without -o uquota/pquota/gquota options, revoke the
919 * quotachecked license.
920 */
921 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
922 xfs_notice(mp, "resetting quota flags");
923 error = xfs_mount_reset_sbqflags(mp);
924 if (error)
925 goto out_rtunmount;
926 }
927 }
928
929 /*
930 * Finish recovering the file system. This part needed to be delayed
931 * until after the root and real-time bitmap inodes were consistently
932 * read in.
933 */
934 error = xfs_log_mount_finish(mp);
935 if (error) {
936 xfs_warn(mp, "log mount finish failed");
937 goto out_rtunmount;
938 }
939
940 /*
941 * Complete the quota initialisation, post-log-replay component.
942 */
943 if (quotamount) {
944 ASSERT(mp->m_qflags == 0);
945 mp->m_qflags = quotaflags;
946
947 xfs_qm_mount_quotas(mp);
948 }
949
950 /*
951 * Now we are mounted, reserve a small amount of unused space for
952 * privileged transactions. This is needed so that transaction
953 * space required for critical operations can dip into this pool
954 * when at ENOSPC. This is needed for operations like create with
955 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
956 * are not allowed to use this reserved space.
957 *
958 * This may drive us straight to ENOSPC on mount, but that implies
959 * we were already there on the last unmount. Warn if this occurs.
960 */
961 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
962 resblks = xfs_default_resblks(mp);
963 error = xfs_reserve_blocks(mp, &resblks, NULL);
964 if (error)
965 xfs_warn(mp,
966 "Unable to allocate reserve blocks. Continuing without reserve pool.");
967 }
968
969 return 0;
970
971 out_rtunmount:
972 xfs_rtunmount_inodes(mp);
973 out_rele_rip:
974 IRELE(rip);
975 cancel_delayed_work_sync(&mp->m_reclaim_work);
976 xfs_reclaim_inodes(mp, SYNC_WAIT);
977 out_log_dealloc:
978 xfs_log_mount_cancel(mp);
979 out_fail_wait:
980 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
981 xfs_wait_buftarg(mp->m_logdev_targp);
982 xfs_wait_buftarg(mp->m_ddev_targp);
983 out_free_perag:
984 xfs_free_perag(mp);
985 out_free_dir:
986 xfs_da_unmount(mp);
987 out_remove_uuid:
988 xfs_uuid_unmount(mp);
989 out_del_stats:
990 xfs_sysfs_del(&mp->m_stats.xs_kobj);
991 out_remove_sysfs:
992 xfs_sysfs_del(&mp->m_kobj);
993 out:
994 return error;
995 }
996
997 /*
998 * This flushes out the inodes,dquots and the superblock, unmounts the
999 * log and makes sure that incore structures are freed.
1000 */
1001 void
1002 xfs_unmountfs(
1003 struct xfs_mount *mp)
1004 {
1005 __uint64_t resblks;
1006 int error;
1007
1008 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1009
1010 xfs_qm_unmount_quotas(mp);
1011 xfs_rtunmount_inodes(mp);
1012 IRELE(mp->m_rootip);
1013
1014 /*
1015 * We can potentially deadlock here if we have an inode cluster
1016 * that has been freed has its buffer still pinned in memory because
1017 * the transaction is still sitting in a iclog. The stale inodes
1018 * on that buffer will have their flush locks held until the
1019 * transaction hits the disk and the callbacks run. the inode
1020 * flush takes the flush lock unconditionally and with nothing to
1021 * push out the iclog we will never get that unlocked. hence we
1022 * need to force the log first.
1023 */
1024 xfs_log_force(mp, XFS_LOG_SYNC);
1025
1026 /*
1027 * Flush all pending changes from the AIL.
1028 */
1029 xfs_ail_push_all_sync(mp->m_ail);
1030
1031 /*
1032 * And reclaim all inodes. At this point there should be no dirty
1033 * inodes and none should be pinned or locked, but use synchronous
1034 * reclaim just to be sure. We can stop background inode reclaim
1035 * here as well if it is still running.
1036 */
1037 cancel_delayed_work_sync(&mp->m_reclaim_work);
1038 xfs_reclaim_inodes(mp, SYNC_WAIT);
1039
1040 xfs_qm_unmount(mp);
1041
1042 /*
1043 * Unreserve any blocks we have so that when we unmount we don't account
1044 * the reserved free space as used. This is really only necessary for
1045 * lazy superblock counting because it trusts the incore superblock
1046 * counters to be absolutely correct on clean unmount.
1047 *
1048 * We don't bother correcting this elsewhere for lazy superblock
1049 * counting because on mount of an unclean filesystem we reconstruct the
1050 * correct counter value and this is irrelevant.
1051 *
1052 * For non-lazy counter filesystems, this doesn't matter at all because
1053 * we only every apply deltas to the superblock and hence the incore
1054 * value does not matter....
1055 */
1056 resblks = 0;
1057 error = xfs_reserve_blocks(mp, &resblks, NULL);
1058 if (error)
1059 xfs_warn(mp, "Unable to free reserved block pool. "
1060 "Freespace may not be correct on next mount.");
1061
1062 error = xfs_log_sbcount(mp);
1063 if (error)
1064 xfs_warn(mp, "Unable to update superblock counters. "
1065 "Freespace may not be correct on next mount.");
1066
1067
1068 xfs_log_unmount(mp);
1069 xfs_da_unmount(mp);
1070 xfs_uuid_unmount(mp);
1071
1072 #if defined(DEBUG)
1073 xfs_errortag_clearall(mp, 0);
1074 #endif
1075 xfs_free_perag(mp);
1076
1077 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1078 xfs_sysfs_del(&mp->m_kobj);
1079 }
1080
1081 /*
1082 * Determine whether modifications can proceed. The caller specifies the minimum
1083 * freeze level for which modifications should not be allowed. This allows
1084 * certain operations to proceed while the freeze sequence is in progress, if
1085 * necessary.
1086 */
1087 bool
1088 xfs_fs_writable(
1089 struct xfs_mount *mp,
1090 int level)
1091 {
1092 ASSERT(level > SB_UNFROZEN);
1093 if ((mp->m_super->s_writers.frozen >= level) ||
1094 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1095 return false;
1096
1097 return true;
1098 }
1099
1100 /*
1101 * xfs_log_sbcount
1102 *
1103 * Sync the superblock counters to disk.
1104 *
1105 * Note this code can be called during the process of freezing, so we use the
1106 * transaction allocator that does not block when the transaction subsystem is
1107 * in its frozen state.
1108 */
1109 int
1110 xfs_log_sbcount(xfs_mount_t *mp)
1111 {
1112 /* allow this to proceed during the freeze sequence... */
1113 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1114 return 0;
1115
1116 /*
1117 * we don't need to do this if we are updating the superblock
1118 * counters on every modification.
1119 */
1120 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1121 return 0;
1122
1123 return xfs_sync_sb(mp, true);
1124 }
1125
1126 /*
1127 * Deltas for the inode count are +/-64, hence we use a large batch size
1128 * of 128 so we don't need to take the counter lock on every update.
1129 */
1130 #define XFS_ICOUNT_BATCH 128
1131 int
1132 xfs_mod_icount(
1133 struct xfs_mount *mp,
1134 int64_t delta)
1135 {
1136 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1137 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1138 ASSERT(0);
1139 percpu_counter_add(&mp->m_icount, -delta);
1140 return -EINVAL;
1141 }
1142 return 0;
1143 }
1144
1145 int
1146 xfs_mod_ifree(
1147 struct xfs_mount *mp,
1148 int64_t delta)
1149 {
1150 percpu_counter_add(&mp->m_ifree, delta);
1151 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1152 ASSERT(0);
1153 percpu_counter_add(&mp->m_ifree, -delta);
1154 return -EINVAL;
1155 }
1156 return 0;
1157 }
1158
1159 /*
1160 * Deltas for the block count can vary from 1 to very large, but lock contention
1161 * only occurs on frequent small block count updates such as in the delayed
1162 * allocation path for buffered writes (page a time updates). Hence we set
1163 * a large batch count (1024) to minimise global counter updates except when
1164 * we get near to ENOSPC and we have to be very accurate with our updates.
1165 */
1166 #define XFS_FDBLOCKS_BATCH 1024
1167 int
1168 xfs_mod_fdblocks(
1169 struct xfs_mount *mp,
1170 int64_t delta,
1171 bool rsvd)
1172 {
1173 int64_t lcounter;
1174 long long res_used;
1175 s32 batch;
1176
1177 if (delta > 0) {
1178 /*
1179 * If the reserve pool is depleted, put blocks back into it
1180 * first. Most of the time the pool is full.
1181 */
1182 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1183 percpu_counter_add(&mp->m_fdblocks, delta);
1184 return 0;
1185 }
1186
1187 spin_lock(&mp->m_sb_lock);
1188 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1189
1190 if (res_used > delta) {
1191 mp->m_resblks_avail += delta;
1192 } else {
1193 delta -= res_used;
1194 mp->m_resblks_avail = mp->m_resblks;
1195 percpu_counter_add(&mp->m_fdblocks, delta);
1196 }
1197 spin_unlock(&mp->m_sb_lock);
1198 return 0;
1199 }
1200
1201 /*
1202 * Taking blocks away, need to be more accurate the closer we
1203 * are to zero.
1204 *
1205 * If the counter has a value of less than 2 * max batch size,
1206 * then make everything serialise as we are real close to
1207 * ENOSPC.
1208 */
1209 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1210 XFS_FDBLOCKS_BATCH) < 0)
1211 batch = 1;
1212 else
1213 batch = XFS_FDBLOCKS_BATCH;
1214
1215 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1216 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1217 XFS_FDBLOCKS_BATCH) >= 0) {
1218 /* we had space! */
1219 return 0;
1220 }
1221
1222 /*
1223 * lock up the sb for dipping into reserves before releasing the space
1224 * that took us to ENOSPC.
1225 */
1226 spin_lock(&mp->m_sb_lock);
1227 percpu_counter_add(&mp->m_fdblocks, -delta);
1228 if (!rsvd)
1229 goto fdblocks_enospc;
1230
1231 lcounter = (long long)mp->m_resblks_avail + delta;
1232 if (lcounter >= 0) {
1233 mp->m_resblks_avail = lcounter;
1234 spin_unlock(&mp->m_sb_lock);
1235 return 0;
1236 }
1237 printk_once(KERN_WARNING
1238 "Filesystem \"%s\": reserve blocks depleted! "
1239 "Consider increasing reserve pool size.",
1240 mp->m_fsname);
1241 fdblocks_enospc:
1242 spin_unlock(&mp->m_sb_lock);
1243 return -ENOSPC;
1244 }
1245
1246 int
1247 xfs_mod_frextents(
1248 struct xfs_mount *mp,
1249 int64_t delta)
1250 {
1251 int64_t lcounter;
1252 int ret = 0;
1253
1254 spin_lock(&mp->m_sb_lock);
1255 lcounter = mp->m_sb.sb_frextents + delta;
1256 if (lcounter < 0)
1257 ret = -ENOSPC;
1258 else
1259 mp->m_sb.sb_frextents = lcounter;
1260 spin_unlock(&mp->m_sb_lock);
1261 return ret;
1262 }
1263
1264 /*
1265 * xfs_getsb() is called to obtain the buffer for the superblock.
1266 * The buffer is returned locked and read in from disk.
1267 * The buffer should be released with a call to xfs_brelse().
1268 *
1269 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1270 * the superblock buffer if it can be locked without sleeping.
1271 * If it can't then we'll return NULL.
1272 */
1273 struct xfs_buf *
1274 xfs_getsb(
1275 struct xfs_mount *mp,
1276 int flags)
1277 {
1278 struct xfs_buf *bp = mp->m_sb_bp;
1279
1280 if (!xfs_buf_trylock(bp)) {
1281 if (flags & XBF_TRYLOCK)
1282 return NULL;
1283 xfs_buf_lock(bp);
1284 }
1285
1286 xfs_buf_hold(bp);
1287 ASSERT(XFS_BUF_ISDONE(bp));
1288 return bp;
1289 }
1290
1291 /*
1292 * Used to free the superblock along various error paths.
1293 */
1294 void
1295 xfs_freesb(
1296 struct xfs_mount *mp)
1297 {
1298 struct xfs_buf *bp = mp->m_sb_bp;
1299
1300 xfs_buf_lock(bp);
1301 mp->m_sb_bp = NULL;
1302 xfs_buf_relse(bp);
1303 }
1304
1305 /*
1306 * If the underlying (data/log/rt) device is readonly, there are some
1307 * operations that cannot proceed.
1308 */
1309 int
1310 xfs_dev_is_read_only(
1311 struct xfs_mount *mp,
1312 char *message)
1313 {
1314 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1315 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1316 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1317 xfs_notice(mp, "%s required on read-only device.", message);
1318 xfs_notice(mp, "write access unavailable, cannot proceed.");
1319 return -EROFS;
1320 }
1321 return 0;
1322 }