]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/xfs/xfs_rmap_item.c
Merge tag 'devicetree-fixes-for-5.6-2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / xfs / xfs_rmap_item.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_rmap_item.h"
18 #include "xfs_log.h"
19 #include "xfs_rmap.h"
20 #include "xfs_error.h"
21
22 kmem_zone_t *xfs_rui_zone;
23 kmem_zone_t *xfs_rud_zone;
24
25 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
26 {
27 return container_of(lip, struct xfs_rui_log_item, rui_item);
28 }
29
30 void
31 xfs_rui_item_free(
32 struct xfs_rui_log_item *ruip)
33 {
34 if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
35 kmem_free(ruip);
36 else
37 kmem_cache_free(xfs_rui_zone, ruip);
38 }
39
40 /*
41 * Freeing the RUI requires that we remove it from the AIL if it has already
42 * been placed there. However, the RUI may not yet have been placed in the AIL
43 * when called by xfs_rui_release() from RUD processing due to the ordering of
44 * committed vs unpin operations in bulk insert operations. Hence the reference
45 * count to ensure only the last caller frees the RUI.
46 */
47 void
48 xfs_rui_release(
49 struct xfs_rui_log_item *ruip)
50 {
51 ASSERT(atomic_read(&ruip->rui_refcount) > 0);
52 if (atomic_dec_and_test(&ruip->rui_refcount)) {
53 xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
54 xfs_rui_item_free(ruip);
55 }
56 }
57
58 STATIC void
59 xfs_rui_item_size(
60 struct xfs_log_item *lip,
61 int *nvecs,
62 int *nbytes)
63 {
64 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
65
66 *nvecs += 1;
67 *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
68 }
69
70 /*
71 * This is called to fill in the vector of log iovecs for the
72 * given rui log item. We use only 1 iovec, and we point that
73 * at the rui_log_format structure embedded in the rui item.
74 * It is at this point that we assert that all of the extent
75 * slots in the rui item have been filled.
76 */
77 STATIC void
78 xfs_rui_item_format(
79 struct xfs_log_item *lip,
80 struct xfs_log_vec *lv)
81 {
82 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
83 struct xfs_log_iovec *vecp = NULL;
84
85 ASSERT(atomic_read(&ruip->rui_next_extent) ==
86 ruip->rui_format.rui_nextents);
87
88 ruip->rui_format.rui_type = XFS_LI_RUI;
89 ruip->rui_format.rui_size = 1;
90
91 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
92 xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
93 }
94
95 /*
96 * The unpin operation is the last place an RUI is manipulated in the log. It is
97 * either inserted in the AIL or aborted in the event of a log I/O error. In
98 * either case, the RUI transaction has been successfully committed to make it
99 * this far. Therefore, we expect whoever committed the RUI to either construct
100 * and commit the RUD or drop the RUD's reference in the event of error. Simply
101 * drop the log's RUI reference now that the log is done with it.
102 */
103 STATIC void
104 xfs_rui_item_unpin(
105 struct xfs_log_item *lip,
106 int remove)
107 {
108 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
109
110 xfs_rui_release(ruip);
111 }
112
113 /*
114 * The RUI has been either committed or aborted if the transaction has been
115 * cancelled. If the transaction was cancelled, an RUD isn't going to be
116 * constructed and thus we free the RUI here directly.
117 */
118 STATIC void
119 xfs_rui_item_release(
120 struct xfs_log_item *lip)
121 {
122 xfs_rui_release(RUI_ITEM(lip));
123 }
124
125 static const struct xfs_item_ops xfs_rui_item_ops = {
126 .iop_size = xfs_rui_item_size,
127 .iop_format = xfs_rui_item_format,
128 .iop_unpin = xfs_rui_item_unpin,
129 .iop_release = xfs_rui_item_release,
130 };
131
132 /*
133 * Allocate and initialize an rui item with the given number of extents.
134 */
135 struct xfs_rui_log_item *
136 xfs_rui_init(
137 struct xfs_mount *mp,
138 uint nextents)
139
140 {
141 struct xfs_rui_log_item *ruip;
142
143 ASSERT(nextents > 0);
144 if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
145 ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), 0);
146 else
147 ruip = kmem_zone_zalloc(xfs_rui_zone, 0);
148
149 xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
150 ruip->rui_format.rui_nextents = nextents;
151 ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
152 atomic_set(&ruip->rui_next_extent, 0);
153 atomic_set(&ruip->rui_refcount, 2);
154
155 return ruip;
156 }
157
158 /*
159 * Copy an RUI format buffer from the given buf, and into the destination
160 * RUI format structure. The RUI/RUD items were designed not to need any
161 * special alignment handling.
162 */
163 int
164 xfs_rui_copy_format(
165 struct xfs_log_iovec *buf,
166 struct xfs_rui_log_format *dst_rui_fmt)
167 {
168 struct xfs_rui_log_format *src_rui_fmt;
169 uint len;
170
171 src_rui_fmt = buf->i_addr;
172 len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents);
173
174 if (buf->i_len != len) {
175 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
176 return -EFSCORRUPTED;
177 }
178
179 memcpy(dst_rui_fmt, src_rui_fmt, len);
180 return 0;
181 }
182
183 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
184 {
185 return container_of(lip, struct xfs_rud_log_item, rud_item);
186 }
187
188 STATIC void
189 xfs_rud_item_size(
190 struct xfs_log_item *lip,
191 int *nvecs,
192 int *nbytes)
193 {
194 *nvecs += 1;
195 *nbytes += sizeof(struct xfs_rud_log_format);
196 }
197
198 /*
199 * This is called to fill in the vector of log iovecs for the
200 * given rud log item. We use only 1 iovec, and we point that
201 * at the rud_log_format structure embedded in the rud item.
202 * It is at this point that we assert that all of the extent
203 * slots in the rud item have been filled.
204 */
205 STATIC void
206 xfs_rud_item_format(
207 struct xfs_log_item *lip,
208 struct xfs_log_vec *lv)
209 {
210 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
211 struct xfs_log_iovec *vecp = NULL;
212
213 rudp->rud_format.rud_type = XFS_LI_RUD;
214 rudp->rud_format.rud_size = 1;
215
216 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
217 sizeof(struct xfs_rud_log_format));
218 }
219
220 /*
221 * The RUD is either committed or aborted if the transaction is cancelled. If
222 * the transaction is cancelled, drop our reference to the RUI and free the
223 * RUD.
224 */
225 STATIC void
226 xfs_rud_item_release(
227 struct xfs_log_item *lip)
228 {
229 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
230
231 xfs_rui_release(rudp->rud_ruip);
232 kmem_cache_free(xfs_rud_zone, rudp);
233 }
234
235 static const struct xfs_item_ops xfs_rud_item_ops = {
236 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED,
237 .iop_size = xfs_rud_item_size,
238 .iop_format = xfs_rud_item_format,
239 .iop_release = xfs_rud_item_release,
240 };
241
242 static struct xfs_rud_log_item *
243 xfs_trans_get_rud(
244 struct xfs_trans *tp,
245 struct xfs_rui_log_item *ruip)
246 {
247 struct xfs_rud_log_item *rudp;
248
249 rudp = kmem_zone_zalloc(xfs_rud_zone, 0);
250 xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD,
251 &xfs_rud_item_ops);
252 rudp->rud_ruip = ruip;
253 rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
254
255 xfs_trans_add_item(tp, &rudp->rud_item);
256 return rudp;
257 }
258
259 /* Set the map extent flags for this reverse mapping. */
260 static void
261 xfs_trans_set_rmap_flags(
262 struct xfs_map_extent *rmap,
263 enum xfs_rmap_intent_type type,
264 int whichfork,
265 xfs_exntst_t state)
266 {
267 rmap->me_flags = 0;
268 if (state == XFS_EXT_UNWRITTEN)
269 rmap->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN;
270 if (whichfork == XFS_ATTR_FORK)
271 rmap->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK;
272 switch (type) {
273 case XFS_RMAP_MAP:
274 rmap->me_flags |= XFS_RMAP_EXTENT_MAP;
275 break;
276 case XFS_RMAP_MAP_SHARED:
277 rmap->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED;
278 break;
279 case XFS_RMAP_UNMAP:
280 rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP;
281 break;
282 case XFS_RMAP_UNMAP_SHARED:
283 rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED;
284 break;
285 case XFS_RMAP_CONVERT:
286 rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT;
287 break;
288 case XFS_RMAP_CONVERT_SHARED:
289 rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED;
290 break;
291 case XFS_RMAP_ALLOC:
292 rmap->me_flags |= XFS_RMAP_EXTENT_ALLOC;
293 break;
294 case XFS_RMAP_FREE:
295 rmap->me_flags |= XFS_RMAP_EXTENT_FREE;
296 break;
297 default:
298 ASSERT(0);
299 }
300 }
301
302 /*
303 * Finish an rmap update and log it to the RUD. Note that the transaction is
304 * marked dirty regardless of whether the rmap update succeeds or fails to
305 * support the RUI/RUD lifecycle rules.
306 */
307 static int
308 xfs_trans_log_finish_rmap_update(
309 struct xfs_trans *tp,
310 struct xfs_rud_log_item *rudp,
311 enum xfs_rmap_intent_type type,
312 uint64_t owner,
313 int whichfork,
314 xfs_fileoff_t startoff,
315 xfs_fsblock_t startblock,
316 xfs_filblks_t blockcount,
317 xfs_exntst_t state,
318 struct xfs_btree_cur **pcur)
319 {
320 int error;
321
322 error = xfs_rmap_finish_one(tp, type, owner, whichfork, startoff,
323 startblock, blockcount, state, pcur);
324
325 /*
326 * Mark the transaction dirty, even on error. This ensures the
327 * transaction is aborted, which:
328 *
329 * 1.) releases the RUI and frees the RUD
330 * 2.) shuts down the filesystem
331 */
332 tp->t_flags |= XFS_TRANS_DIRTY;
333 set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags);
334
335 return error;
336 }
337
338 /* Sort rmap intents by AG. */
339 static int
340 xfs_rmap_update_diff_items(
341 void *priv,
342 struct list_head *a,
343 struct list_head *b)
344 {
345 struct xfs_mount *mp = priv;
346 struct xfs_rmap_intent *ra;
347 struct xfs_rmap_intent *rb;
348
349 ra = container_of(a, struct xfs_rmap_intent, ri_list);
350 rb = container_of(b, struct xfs_rmap_intent, ri_list);
351 return XFS_FSB_TO_AGNO(mp, ra->ri_bmap.br_startblock) -
352 XFS_FSB_TO_AGNO(mp, rb->ri_bmap.br_startblock);
353 }
354
355 /* Get an RUI. */
356 STATIC void *
357 xfs_rmap_update_create_intent(
358 struct xfs_trans *tp,
359 unsigned int count)
360 {
361 struct xfs_rui_log_item *ruip;
362
363 ASSERT(tp != NULL);
364 ASSERT(count > 0);
365
366 ruip = xfs_rui_init(tp->t_mountp, count);
367 ASSERT(ruip != NULL);
368
369 /*
370 * Get a log_item_desc to point at the new item.
371 */
372 xfs_trans_add_item(tp, &ruip->rui_item);
373 return ruip;
374 }
375
376 /* Log rmap updates in the intent item. */
377 STATIC void
378 xfs_rmap_update_log_item(
379 struct xfs_trans *tp,
380 void *intent,
381 struct list_head *item)
382 {
383 struct xfs_rui_log_item *ruip = intent;
384 struct xfs_rmap_intent *rmap;
385 uint next_extent;
386 struct xfs_map_extent *map;
387
388 rmap = container_of(item, struct xfs_rmap_intent, ri_list);
389
390 tp->t_flags |= XFS_TRANS_DIRTY;
391 set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags);
392
393 /*
394 * atomic_inc_return gives us the value after the increment;
395 * we want to use it as an array index so we need to subtract 1 from
396 * it.
397 */
398 next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1;
399 ASSERT(next_extent < ruip->rui_format.rui_nextents);
400 map = &ruip->rui_format.rui_extents[next_extent];
401 map->me_owner = rmap->ri_owner;
402 map->me_startblock = rmap->ri_bmap.br_startblock;
403 map->me_startoff = rmap->ri_bmap.br_startoff;
404 map->me_len = rmap->ri_bmap.br_blockcount;
405 xfs_trans_set_rmap_flags(map, rmap->ri_type, rmap->ri_whichfork,
406 rmap->ri_bmap.br_state);
407 }
408
409 /* Get an RUD so we can process all the deferred rmap updates. */
410 STATIC void *
411 xfs_rmap_update_create_done(
412 struct xfs_trans *tp,
413 void *intent,
414 unsigned int count)
415 {
416 return xfs_trans_get_rud(tp, intent);
417 }
418
419 /* Process a deferred rmap update. */
420 STATIC int
421 xfs_rmap_update_finish_item(
422 struct xfs_trans *tp,
423 struct list_head *item,
424 void *done_item,
425 void **state)
426 {
427 struct xfs_rmap_intent *rmap;
428 int error;
429
430 rmap = container_of(item, struct xfs_rmap_intent, ri_list);
431 error = xfs_trans_log_finish_rmap_update(tp, done_item,
432 rmap->ri_type,
433 rmap->ri_owner, rmap->ri_whichfork,
434 rmap->ri_bmap.br_startoff,
435 rmap->ri_bmap.br_startblock,
436 rmap->ri_bmap.br_blockcount,
437 rmap->ri_bmap.br_state,
438 (struct xfs_btree_cur **)state);
439 kmem_free(rmap);
440 return error;
441 }
442
443 /* Clean up after processing deferred rmaps. */
444 STATIC void
445 xfs_rmap_update_finish_cleanup(
446 struct xfs_trans *tp,
447 void *state,
448 int error)
449 {
450 struct xfs_btree_cur *rcur = state;
451
452 xfs_rmap_finish_one_cleanup(tp, rcur, error);
453 }
454
455 /* Abort all pending RUIs. */
456 STATIC void
457 xfs_rmap_update_abort_intent(
458 void *intent)
459 {
460 xfs_rui_release(intent);
461 }
462
463 /* Cancel a deferred rmap update. */
464 STATIC void
465 xfs_rmap_update_cancel_item(
466 struct list_head *item)
467 {
468 struct xfs_rmap_intent *rmap;
469
470 rmap = container_of(item, struct xfs_rmap_intent, ri_list);
471 kmem_free(rmap);
472 }
473
474 const struct xfs_defer_op_type xfs_rmap_update_defer_type = {
475 .max_items = XFS_RUI_MAX_FAST_EXTENTS,
476 .diff_items = xfs_rmap_update_diff_items,
477 .create_intent = xfs_rmap_update_create_intent,
478 .abort_intent = xfs_rmap_update_abort_intent,
479 .log_item = xfs_rmap_update_log_item,
480 .create_done = xfs_rmap_update_create_done,
481 .finish_item = xfs_rmap_update_finish_item,
482 .finish_cleanup = xfs_rmap_update_finish_cleanup,
483 .cancel_item = xfs_rmap_update_cancel_item,
484 };
485
486 /*
487 * Process an rmap update intent item that was recovered from the log.
488 * We need to update the rmapbt.
489 */
490 int
491 xfs_rui_recover(
492 struct xfs_mount *mp,
493 struct xfs_rui_log_item *ruip)
494 {
495 int i;
496 int error = 0;
497 struct xfs_map_extent *rmap;
498 xfs_fsblock_t startblock_fsb;
499 bool op_ok;
500 struct xfs_rud_log_item *rudp;
501 enum xfs_rmap_intent_type type;
502 int whichfork;
503 xfs_exntst_t state;
504 struct xfs_trans *tp;
505 struct xfs_btree_cur *rcur = NULL;
506
507 ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
508
509 /*
510 * First check the validity of the extents described by the
511 * RUI. If any are bad, then assume that all are bad and
512 * just toss the RUI.
513 */
514 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
515 rmap = &ruip->rui_format.rui_extents[i];
516 startblock_fsb = XFS_BB_TO_FSB(mp,
517 XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
518 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
519 case XFS_RMAP_EXTENT_MAP:
520 case XFS_RMAP_EXTENT_MAP_SHARED:
521 case XFS_RMAP_EXTENT_UNMAP:
522 case XFS_RMAP_EXTENT_UNMAP_SHARED:
523 case XFS_RMAP_EXTENT_CONVERT:
524 case XFS_RMAP_EXTENT_CONVERT_SHARED:
525 case XFS_RMAP_EXTENT_ALLOC:
526 case XFS_RMAP_EXTENT_FREE:
527 op_ok = true;
528 break;
529 default:
530 op_ok = false;
531 break;
532 }
533 if (!op_ok || startblock_fsb == 0 ||
534 rmap->me_len == 0 ||
535 startblock_fsb >= mp->m_sb.sb_dblocks ||
536 rmap->me_len >= mp->m_sb.sb_agblocks ||
537 (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
538 /*
539 * This will pull the RUI from the AIL and
540 * free the memory associated with it.
541 */
542 set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
543 xfs_rui_release(ruip);
544 return -EFSCORRUPTED;
545 }
546 }
547
548 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
549 mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp);
550 if (error)
551 return error;
552 rudp = xfs_trans_get_rud(tp, ruip);
553
554 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
555 rmap = &ruip->rui_format.rui_extents[i];
556 state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
557 XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
558 whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
559 XFS_ATTR_FORK : XFS_DATA_FORK;
560 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
561 case XFS_RMAP_EXTENT_MAP:
562 type = XFS_RMAP_MAP;
563 break;
564 case XFS_RMAP_EXTENT_MAP_SHARED:
565 type = XFS_RMAP_MAP_SHARED;
566 break;
567 case XFS_RMAP_EXTENT_UNMAP:
568 type = XFS_RMAP_UNMAP;
569 break;
570 case XFS_RMAP_EXTENT_UNMAP_SHARED:
571 type = XFS_RMAP_UNMAP_SHARED;
572 break;
573 case XFS_RMAP_EXTENT_CONVERT:
574 type = XFS_RMAP_CONVERT;
575 break;
576 case XFS_RMAP_EXTENT_CONVERT_SHARED:
577 type = XFS_RMAP_CONVERT_SHARED;
578 break;
579 case XFS_RMAP_EXTENT_ALLOC:
580 type = XFS_RMAP_ALLOC;
581 break;
582 case XFS_RMAP_EXTENT_FREE:
583 type = XFS_RMAP_FREE;
584 break;
585 default:
586 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
587 error = -EFSCORRUPTED;
588 goto abort_error;
589 }
590 error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
591 rmap->me_owner, whichfork,
592 rmap->me_startoff, rmap->me_startblock,
593 rmap->me_len, state, &rcur);
594 if (error)
595 goto abort_error;
596
597 }
598
599 xfs_rmap_finish_one_cleanup(tp, rcur, error);
600 set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
601 error = xfs_trans_commit(tp);
602 return error;
603
604 abort_error:
605 xfs_rmap_finish_one_cleanup(tp, rcur, error);
606 xfs_trans_cancel(tp);
607 return error;
608 }