]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_trans.c
xfs: separate dquot on disk format definitions out of xfs_quota.h
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_trans.c
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * Copyright (C) 2010 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_format.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_extent_busy.h"
38 #include "xfs_bmap.h"
39 #include "xfs_quota.h"
40 #include "xfs_qm.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_trans_space.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_log_priv.h"
45 #include "xfs_buf_item.h"
46 #include "xfs_trace.h"
47
48 kmem_zone_t *xfs_trans_zone;
49 kmem_zone_t *xfs_log_item_desc_zone;
50
51 /*
52 * A buffer has a format structure overhead in the log in addition
53 * to the data, so we need to take this into account when reserving
54 * space in a transaction for a buffer. Round the space required up
55 * to a multiple of 128 bytes so that we don't change the historical
56 * reservation that has been used for this overhead.
57 */
58 STATIC uint
59 xfs_buf_log_overhead(void)
60 {
61 return round_up(sizeof(struct xlog_op_header) +
62 sizeof(struct xfs_buf_log_format), 128);
63 }
64
65 /*
66 * Calculate out transaction log reservation per item in bytes.
67 *
68 * The nbufs argument is used to indicate the number of items that
69 * will be changed in a transaction. size is used to tell how many
70 * bytes should be reserved per item.
71 */
72 STATIC uint
73 xfs_calc_buf_res(
74 uint nbufs,
75 uint size)
76 {
77 return nbufs * (size + xfs_buf_log_overhead());
78 }
79
80 /*
81 * Various log reservation values.
82 *
83 * These are based on the size of the file system block because that is what
84 * most transactions manipulate. Each adds in an additional 128 bytes per
85 * item logged to try to account for the overhead of the transaction mechanism.
86 *
87 * Note: Most of the reservations underestimate the number of allocation
88 * groups into which they could free extents in the xfs_bmap_finish() call.
89 * This is because the number in the worst case is quite high and quite
90 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
91 * extents in only a single AG at a time. This will require changes to the
92 * EFI code as well, however, so that the EFI for the extents not freed is
93 * logged again in each transaction. See SGI PV #261917.
94 *
95 * Reservation functions here avoid a huge stack in xfs_trans_init due to
96 * register overflow from temporaries in the calculations.
97 */
98
99
100 /*
101 * In a write transaction we can allocate a maximum of 2
102 * extents. This gives:
103 * the inode getting the new extents: inode size
104 * the inode's bmap btree: max depth * block size
105 * the agfs of the ags from which the extents are allocated: 2 * sector
106 * the superblock free block counter: sector size
107 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
108 * And the bmap_finish transaction can free bmap blocks in a join:
109 * the agfs of the ags containing the blocks: 2 * sector size
110 * the agfls of the ags containing the blocks: 2 * sector size
111 * the super block free block counter: sector size
112 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
113 */
114 STATIC uint
115 xfs_calc_write_reservation(
116 struct xfs_mount *mp)
117 {
118 return XFS_DQUOT_LOGRES(mp) +
119 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
120 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
121 XFS_FSB_TO_B(mp, 1)) +
122 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
123 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
124 XFS_FSB_TO_B(mp, 1))),
125 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
126 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
127 XFS_FSB_TO_B(mp, 1))));
128 }
129
130 /*
131 * In truncating a file we free up to two extents at once. We can modify:
132 * the inode being truncated: inode size
133 * the inode's bmap btree: (max depth + 1) * block size
134 * And the bmap_finish transaction can free the blocks and bmap blocks:
135 * the agf for each of the ags: 4 * sector size
136 * the agfl for each of the ags: 4 * sector size
137 * the super block to reflect the freed blocks: sector size
138 * worst case split in allocation btrees per extent assuming 4 extents:
139 * 4 exts * 2 trees * (2 * max depth - 1) * block size
140 * the inode btree: max depth * blocksize
141 * the allocation btrees: 2 trees * (max depth - 1) * block size
142 */
143 STATIC uint
144 xfs_calc_itruncate_reservation(
145 struct xfs_mount *mp)
146 {
147 return XFS_DQUOT_LOGRES(mp) +
148 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
149 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1,
150 XFS_FSB_TO_B(mp, 1))),
151 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
152 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
153 XFS_FSB_TO_B(mp, 1)) +
154 xfs_calc_buf_res(5, 0) +
155 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
156 XFS_FSB_TO_B(mp, 1)) +
157 xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
158 mp->m_in_maxlevels, 0)));
159 }
160
161 /*
162 * In renaming a files we can modify:
163 * the four inodes involved: 4 * inode size
164 * the two directory btrees: 2 * (max depth + v2) * dir block size
165 * the two directory bmap btrees: 2 * max depth * block size
166 * And the bmap_finish transaction can free dir and bmap blocks (two sets
167 * of bmap blocks) giving:
168 * the agf for the ags in which the blocks live: 3 * sector size
169 * the agfl for the ags in which the blocks live: 3 * sector size
170 * the superblock for the free block count: sector size
171 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
172 */
173 STATIC uint
174 xfs_calc_rename_reservation(
175 struct xfs_mount *mp)
176 {
177 return XFS_DQUOT_LOGRES(mp) +
178 MAX((xfs_calc_buf_res(4, mp->m_sb.sb_inodesize) +
179 xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
180 XFS_FSB_TO_B(mp, 1))),
181 (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
182 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 3),
183 XFS_FSB_TO_B(mp, 1))));
184 }
185
186 /*
187 * For creating a link to an inode:
188 * the parent directory inode: inode size
189 * the linked inode: inode size
190 * the directory btree could split: (max depth + v2) * dir block size
191 * the directory bmap btree could join or split: (max depth + v2) * blocksize
192 * And the bmap_finish transaction can free some bmap blocks giving:
193 * the agf for the ag in which the blocks live: sector size
194 * the agfl for the ag in which the blocks live: sector size
195 * the superblock for the free block count: sector size
196 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
197 */
198 STATIC uint
199 xfs_calc_link_reservation(
200 struct xfs_mount *mp)
201 {
202 return XFS_DQUOT_LOGRES(mp) +
203 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
204 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
205 XFS_FSB_TO_B(mp, 1))),
206 (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
207 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
208 XFS_FSB_TO_B(mp, 1))));
209 }
210
211 /*
212 * For removing a directory entry we can modify:
213 * the parent directory inode: inode size
214 * the removed inode: inode size
215 * the directory btree could join: (max depth + v2) * dir block size
216 * the directory bmap btree could join or split: (max depth + v2) * blocksize
217 * And the bmap_finish transaction can free the dir and bmap blocks giving:
218 * the agf for the ag in which the blocks live: 2 * sector size
219 * the agfl for the ag in which the blocks live: 2 * sector size
220 * the superblock for the free block count: sector size
221 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
222 */
223 STATIC uint
224 xfs_calc_remove_reservation(
225 struct xfs_mount *mp)
226 {
227 return XFS_DQUOT_LOGRES(mp) +
228 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
229 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
230 XFS_FSB_TO_B(mp, 1))),
231 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
232 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
233 XFS_FSB_TO_B(mp, 1))));
234 }
235
236 /*
237 * For create, break it in to the two cases that the transaction
238 * covers. We start with the modify case - allocation done by modification
239 * of the state of existing inodes - and the allocation case.
240 */
241
242 /*
243 * For create we can modify:
244 * the parent directory inode: inode size
245 * the new inode: inode size
246 * the inode btree entry: block size
247 * the superblock for the nlink flag: sector size
248 * the directory btree: (max depth + v2) * dir block size
249 * the directory inode's bmap btree: (max depth + v2) * block size
250 */
251 STATIC uint
252 xfs_calc_create_resv_modify(
253 struct xfs_mount *mp)
254 {
255 return xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
256 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
257 (uint)XFS_FSB_TO_B(mp, 1) +
258 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1));
259 }
260
261 /*
262 * For create we can allocate some inodes giving:
263 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
264 * the superblock for the nlink flag: sector size
265 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
266 * the inode btree: max depth * blocksize
267 * the allocation btrees: 2 trees * (max depth - 1) * block size
268 */
269 STATIC uint
270 xfs_calc_create_resv_alloc(
271 struct xfs_mount *mp)
272 {
273 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
274 mp->m_sb.sb_sectsize +
275 xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp), XFS_FSB_TO_B(mp, 1)) +
276 xfs_calc_buf_res(mp->m_in_maxlevels, XFS_FSB_TO_B(mp, 1)) +
277 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
278 XFS_FSB_TO_B(mp, 1));
279 }
280
281 STATIC uint
282 __xfs_calc_create_reservation(
283 struct xfs_mount *mp)
284 {
285 return XFS_DQUOT_LOGRES(mp) +
286 MAX(xfs_calc_create_resv_alloc(mp),
287 xfs_calc_create_resv_modify(mp));
288 }
289
290 /*
291 * For icreate we can allocate some inodes giving:
292 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
293 * the superblock for the nlink flag: sector size
294 * the inode btree: max depth * blocksize
295 * the allocation btrees: 2 trees * (max depth - 1) * block size
296 */
297 STATIC uint
298 xfs_calc_icreate_resv_alloc(
299 struct xfs_mount *mp)
300 {
301 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
302 mp->m_sb.sb_sectsize +
303 xfs_calc_buf_res(mp->m_in_maxlevels, XFS_FSB_TO_B(mp, 1)) +
304 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
305 XFS_FSB_TO_B(mp, 1));
306 }
307
308 STATIC uint
309 xfs_calc_icreate_reservation(xfs_mount_t *mp)
310 {
311 return XFS_DQUOT_LOGRES(mp) +
312 MAX(xfs_calc_icreate_resv_alloc(mp),
313 xfs_calc_create_resv_modify(mp));
314 }
315
316 STATIC uint
317 xfs_calc_create_reservation(
318 struct xfs_mount *mp)
319 {
320 if (xfs_sb_version_hascrc(&mp->m_sb))
321 return xfs_calc_icreate_reservation(mp);
322 return __xfs_calc_create_reservation(mp);
323
324 }
325
326 /*
327 * Making a new directory is the same as creating a new file.
328 */
329 STATIC uint
330 xfs_calc_mkdir_reservation(
331 struct xfs_mount *mp)
332 {
333 return xfs_calc_create_reservation(mp);
334 }
335
336
337 /*
338 * Making a new symplink is the same as creating a new file, but
339 * with the added blocks for remote symlink data which can be up to 1kB in
340 * length (MAXPATHLEN).
341 */
342 STATIC uint
343 xfs_calc_symlink_reservation(
344 struct xfs_mount *mp)
345 {
346 return xfs_calc_create_reservation(mp) +
347 xfs_calc_buf_res(1, MAXPATHLEN);
348 }
349
350 /*
351 * In freeing an inode we can modify:
352 * the inode being freed: inode size
353 * the super block free inode counter: sector size
354 * the agi hash list and counters: sector size
355 * the inode btree entry: block size
356 * the on disk inode before ours in the agi hash list: inode cluster size
357 * the inode btree: max depth * blocksize
358 * the allocation btrees: 2 trees * (max depth - 1) * block size
359 */
360 STATIC uint
361 xfs_calc_ifree_reservation(
362 struct xfs_mount *mp)
363 {
364 return XFS_DQUOT_LOGRES(mp) +
365 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
366 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
367 xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) +
368 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
369 XFS_INODE_CLUSTER_SIZE(mp)) +
370 xfs_calc_buf_res(1, 0) +
371 xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
372 mp->m_in_maxlevels, 0) +
373 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
374 XFS_FSB_TO_B(mp, 1));
375 }
376
377 /*
378 * When only changing the inode we log the inode and possibly the superblock
379 * We also add a bit of slop for the transaction stuff.
380 */
381 STATIC uint
382 xfs_calc_ichange_reservation(
383 struct xfs_mount *mp)
384 {
385 return XFS_DQUOT_LOGRES(mp) +
386 mp->m_sb.sb_inodesize +
387 mp->m_sb.sb_sectsize +
388 512;
389
390 }
391
392 /*
393 * Growing the data section of the filesystem.
394 * superblock
395 * agi and agf
396 * allocation btrees
397 */
398 STATIC uint
399 xfs_calc_growdata_reservation(
400 struct xfs_mount *mp)
401 {
402 return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
403 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
404 XFS_FSB_TO_B(mp, 1));
405 }
406
407 /*
408 * Growing the rt section of the filesystem.
409 * In the first set of transactions (ALLOC) we allocate space to the
410 * bitmap or summary files.
411 * superblock: sector size
412 * agf of the ag from which the extent is allocated: sector size
413 * bmap btree for bitmap/summary inode: max depth * blocksize
414 * bitmap/summary inode: inode size
415 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
416 */
417 STATIC uint
418 xfs_calc_growrtalloc_reservation(
419 struct xfs_mount *mp)
420 {
421 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
422 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
423 XFS_FSB_TO_B(mp, 1)) +
424 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
425 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
426 XFS_FSB_TO_B(mp, 1));
427 }
428
429 /*
430 * Growing the rt section of the filesystem.
431 * In the second set of transactions (ZERO) we zero the new metadata blocks.
432 * one bitmap/summary block: blocksize
433 */
434 STATIC uint
435 xfs_calc_growrtzero_reservation(
436 struct xfs_mount *mp)
437 {
438 return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
439 }
440
441 /*
442 * Growing the rt section of the filesystem.
443 * In the third set of transactions (FREE) we update metadata without
444 * allocating any new blocks.
445 * superblock: sector size
446 * bitmap inode: inode size
447 * summary inode: inode size
448 * one bitmap block: blocksize
449 * summary blocks: new summary size
450 */
451 STATIC uint
452 xfs_calc_growrtfree_reservation(
453 struct xfs_mount *mp)
454 {
455 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
456 xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
457 xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
458 xfs_calc_buf_res(1, mp->m_rsumsize);
459 }
460
461 /*
462 * Logging the inode modification timestamp on a synchronous write.
463 * inode
464 */
465 STATIC uint
466 xfs_calc_swrite_reservation(
467 struct xfs_mount *mp)
468 {
469 return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
470 }
471
472 /*
473 * Logging the inode mode bits when writing a setuid/setgid file
474 * inode
475 */
476 STATIC uint
477 xfs_calc_writeid_reservation(xfs_mount_t *mp)
478 {
479 return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
480 }
481
482 /*
483 * Converting the inode from non-attributed to attributed.
484 * the inode being converted: inode size
485 * agf block and superblock (for block allocation)
486 * the new block (directory sized)
487 * bmap blocks for the new directory block
488 * allocation btrees
489 */
490 STATIC uint
491 xfs_calc_addafork_reservation(
492 struct xfs_mount *mp)
493 {
494 return XFS_DQUOT_LOGRES(mp) +
495 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
496 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
497 xfs_calc_buf_res(1, mp->m_dirblksize) +
498 xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
499 XFS_FSB_TO_B(mp, 1)) +
500 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
501 XFS_FSB_TO_B(mp, 1));
502 }
503
504 /*
505 * Removing the attribute fork of a file
506 * the inode being truncated: inode size
507 * the inode's bmap btree: max depth * block size
508 * And the bmap_finish transaction can free the blocks and bmap blocks:
509 * the agf for each of the ags: 4 * sector size
510 * the agfl for each of the ags: 4 * sector size
511 * the super block to reflect the freed blocks: sector size
512 * worst case split in allocation btrees per extent assuming 4 extents:
513 * 4 exts * 2 trees * (2 * max depth - 1) * block size
514 */
515 STATIC uint
516 xfs_calc_attrinval_reservation(
517 struct xfs_mount *mp)
518 {
519 return MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
520 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
521 XFS_FSB_TO_B(mp, 1))),
522 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
523 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
524 XFS_FSB_TO_B(mp, 1))));
525 }
526
527 /*
528 * Setting an attribute at mount time.
529 * the inode getting the attribute
530 * the superblock for allocations
531 * the agfs extents are allocated from
532 * the attribute btree * max depth
533 * the inode allocation btree
534 * Since attribute transaction space is dependent on the size of the attribute,
535 * the calculation is done partially at mount time and partially at runtime(see
536 * below).
537 */
538 STATIC uint
539 xfs_calc_attrsetm_reservation(
540 struct xfs_mount *mp)
541 {
542 return XFS_DQUOT_LOGRES(mp) +
543 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
544 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
545 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
546 }
547
548 /*
549 * Setting an attribute at runtime, transaction space unit per block.
550 * the superblock for allocations: sector size
551 * the inode bmap btree could join or split: max depth * block size
552 * Since the runtime attribute transaction space is dependent on the total
553 * blocks needed for the 1st bmap, here we calculate out the space unit for
554 * one block so that the caller could figure out the total space according
555 * to the attibute extent length in blocks by: ext * XFS_ATTRSETRT_LOG_RES(mp).
556 */
557 STATIC uint
558 xfs_calc_attrsetrt_reservation(
559 struct xfs_mount *mp)
560 {
561 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
562 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
563 XFS_FSB_TO_B(mp, 1));
564 }
565
566 /*
567 * Removing an attribute.
568 * the inode: inode size
569 * the attribute btree could join: max depth * block size
570 * the inode bmap btree could join or split: max depth * block size
571 * And the bmap_finish transaction can free the attr blocks freed giving:
572 * the agf for the ag in which the blocks live: 2 * sector size
573 * the agfl for the ag in which the blocks live: 2 * sector size
574 * the superblock for the free block count: sector size
575 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
576 */
577 STATIC uint
578 xfs_calc_attrrm_reservation(
579 struct xfs_mount *mp)
580 {
581 return XFS_DQUOT_LOGRES(mp) +
582 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
583 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
584 XFS_FSB_TO_B(mp, 1)) +
585 (uint)XFS_FSB_TO_B(mp,
586 XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
587 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
588 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
589 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
590 XFS_FSB_TO_B(mp, 1))));
591 }
592
593 /*
594 * Clearing a bad agino number in an agi hash bucket.
595 */
596 STATIC uint
597 xfs_calc_clear_agi_bucket_reservation(
598 struct xfs_mount *mp)
599 {
600 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
601 }
602
603 /*
604 * Clearing the quotaflags in the superblock.
605 * the super block for changing quota flags: sector size
606 */
607 STATIC uint
608 xfs_calc_qm_sbchange_reservation(
609 struct xfs_mount *mp)
610 {
611 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
612 }
613
614 /*
615 * Adjusting quota limits.
616 * the xfs_disk_dquot_t: sizeof(struct xfs_disk_dquot)
617 */
618 STATIC uint
619 xfs_calc_qm_setqlim_reservation(
620 struct xfs_mount *mp)
621 {
622 return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
623 }
624
625 /*
626 * Allocating quota on disk if needed.
627 * the write transaction log space: XFS_WRITE_LOG_RES(mp)
628 * the unit of quota allocation: one system block size
629 */
630 STATIC uint
631 xfs_calc_qm_dqalloc_reservation(
632 struct xfs_mount *mp)
633 {
634 return XFS_WRITE_LOG_RES(mp) +
635 xfs_calc_buf_res(1,
636 XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
637 }
638
639 /*
640 * Turning off quotas.
641 * the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
642 * the superblock for the quota flags: sector size
643 */
644 STATIC uint
645 xfs_calc_qm_quotaoff_reservation(
646 struct xfs_mount *mp)
647 {
648 return sizeof(struct xfs_qoff_logitem) * 2 +
649 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
650 }
651
652 /*
653 * End of turning off quotas.
654 * the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
655 */
656 STATIC uint
657 xfs_calc_qm_quotaoff_end_reservation(
658 struct xfs_mount *mp)
659 {
660 return sizeof(struct xfs_qoff_logitem) * 2;
661 }
662
663 /*
664 * Syncing the incore super block changes to disk.
665 * the super block to reflect the changes: sector size
666 */
667 STATIC uint
668 xfs_calc_sb_reservation(
669 struct xfs_mount *mp)
670 {
671 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
672 }
673
674 /*
675 * Initialize the precomputed transaction reservation values
676 * in the mount structure.
677 */
678 void
679 xfs_trans_init(
680 struct xfs_mount *mp)
681 {
682 struct xfs_trans_reservations *resp = &mp->m_reservations;
683
684 resp->tr_write = xfs_calc_write_reservation(mp);
685 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
686 resp->tr_rename = xfs_calc_rename_reservation(mp);
687 resp->tr_link = xfs_calc_link_reservation(mp);
688 resp->tr_remove = xfs_calc_remove_reservation(mp);
689 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
690 resp->tr_create = xfs_calc_create_reservation(mp);
691 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
692 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
693 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
694 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
695 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
696 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
697 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
698 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
699 resp->tr_attrsetm = xfs_calc_attrsetm_reservation(mp);
700 resp->tr_attrsetrt = xfs_calc_attrsetrt_reservation(mp);
701 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
702 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
703 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
704 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
705 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
706 resp->tr_qm_sbchange = xfs_calc_qm_sbchange_reservation(mp);
707 resp->tr_qm_setqlim = xfs_calc_qm_setqlim_reservation(mp);
708 resp->tr_qm_dqalloc = xfs_calc_qm_dqalloc_reservation(mp);
709 resp->tr_qm_quotaoff = xfs_calc_qm_quotaoff_reservation(mp);
710 resp->tr_qm_equotaoff = xfs_calc_qm_quotaoff_end_reservation(mp);
711 resp->tr_sb = xfs_calc_sb_reservation(mp);
712 }
713
714 /*
715 * This routine is called to allocate a transaction structure.
716 * The type parameter indicates the type of the transaction. These
717 * are enumerated in xfs_trans.h.
718 *
719 * Dynamically allocate the transaction structure from the transaction
720 * zone, initialize it, and return it to the caller.
721 */
722 xfs_trans_t *
723 xfs_trans_alloc(
724 xfs_mount_t *mp,
725 uint type)
726 {
727 xfs_trans_t *tp;
728
729 sb_start_intwrite(mp->m_super);
730 tp = _xfs_trans_alloc(mp, type, KM_SLEEP);
731 tp->t_flags |= XFS_TRANS_FREEZE_PROT;
732 return tp;
733 }
734
735 xfs_trans_t *
736 _xfs_trans_alloc(
737 xfs_mount_t *mp,
738 uint type,
739 xfs_km_flags_t memflags)
740 {
741 xfs_trans_t *tp;
742
743 WARN_ON(mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
744 atomic_inc(&mp->m_active_trans);
745
746 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
747 tp->t_magic = XFS_TRANS_MAGIC;
748 tp->t_type = type;
749 tp->t_mountp = mp;
750 INIT_LIST_HEAD(&tp->t_items);
751 INIT_LIST_HEAD(&tp->t_busy);
752 return tp;
753 }
754
755 /*
756 * Free the transaction structure. If there is more clean up
757 * to do when the structure is freed, add it here.
758 */
759 STATIC void
760 xfs_trans_free(
761 struct xfs_trans *tp)
762 {
763 xfs_extent_busy_sort(&tp->t_busy);
764 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
765
766 atomic_dec(&tp->t_mountp->m_active_trans);
767 if (tp->t_flags & XFS_TRANS_FREEZE_PROT)
768 sb_end_intwrite(tp->t_mountp->m_super);
769 xfs_trans_free_dqinfo(tp);
770 kmem_zone_free(xfs_trans_zone, tp);
771 }
772
773 /*
774 * This is called to create a new transaction which will share the
775 * permanent log reservation of the given transaction. The remaining
776 * unused block and rt extent reservations are also inherited. This
777 * implies that the original transaction is no longer allowed to allocate
778 * blocks. Locks and log items, however, are no inherited. They must
779 * be added to the new transaction explicitly.
780 */
781 xfs_trans_t *
782 xfs_trans_dup(
783 xfs_trans_t *tp)
784 {
785 xfs_trans_t *ntp;
786
787 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
788
789 /*
790 * Initialize the new transaction structure.
791 */
792 ntp->t_magic = XFS_TRANS_MAGIC;
793 ntp->t_type = tp->t_type;
794 ntp->t_mountp = tp->t_mountp;
795 INIT_LIST_HEAD(&ntp->t_items);
796 INIT_LIST_HEAD(&ntp->t_busy);
797
798 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
799 ASSERT(tp->t_ticket != NULL);
800
801 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
802 (tp->t_flags & XFS_TRANS_RESERVE) |
803 (tp->t_flags & XFS_TRANS_FREEZE_PROT);
804 /* We gave our writer reference to the new transaction */
805 tp->t_flags &= ~XFS_TRANS_FREEZE_PROT;
806 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
807 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
808 tp->t_blk_res = tp->t_blk_res_used;
809 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
810 tp->t_rtx_res = tp->t_rtx_res_used;
811 ntp->t_pflags = tp->t_pflags;
812
813 xfs_trans_dup_dqinfo(tp, ntp);
814
815 atomic_inc(&tp->t_mountp->m_active_trans);
816 return ntp;
817 }
818
819 /*
820 * This is called to reserve free disk blocks and log space for the
821 * given transaction. This must be done before allocating any resources
822 * within the transaction.
823 *
824 * This will return ENOSPC if there are not enough blocks available.
825 * It will sleep waiting for available log space.
826 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
827 * is used by long running transactions. If any one of the reservations
828 * fails then they will all be backed out.
829 *
830 * This does not do quota reservations. That typically is done by the
831 * caller afterwards.
832 */
833 int
834 xfs_trans_reserve(
835 xfs_trans_t *tp,
836 uint blocks,
837 uint logspace,
838 uint rtextents,
839 uint flags,
840 uint logcount)
841 {
842 int error = 0;
843 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
844
845 /* Mark this thread as being in a transaction */
846 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
847
848 /*
849 * Attempt to reserve the needed disk blocks by decrementing
850 * the number needed from the number available. This will
851 * fail if the count would go below zero.
852 */
853 if (blocks > 0) {
854 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
855 -((int64_t)blocks), rsvd);
856 if (error != 0) {
857 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
858 return (XFS_ERROR(ENOSPC));
859 }
860 tp->t_blk_res += blocks;
861 }
862
863 /*
864 * Reserve the log space needed for this transaction.
865 */
866 if (logspace > 0) {
867 bool permanent = false;
868
869 ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
870 ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
871
872 if (flags & XFS_TRANS_PERM_LOG_RES) {
873 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
874 permanent = true;
875 } else {
876 ASSERT(tp->t_ticket == NULL);
877 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
878 }
879
880 if (tp->t_ticket != NULL) {
881 ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
882 error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
883 } else {
884 error = xfs_log_reserve(tp->t_mountp, logspace,
885 logcount, &tp->t_ticket,
886 XFS_TRANSACTION, permanent,
887 tp->t_type);
888 }
889
890 if (error)
891 goto undo_blocks;
892
893 tp->t_log_res = logspace;
894 tp->t_log_count = logcount;
895 }
896
897 /*
898 * Attempt to reserve the needed realtime extents by decrementing
899 * the number needed from the number available. This will
900 * fail if the count would go below zero.
901 */
902 if (rtextents > 0) {
903 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
904 -((int64_t)rtextents), rsvd);
905 if (error) {
906 error = XFS_ERROR(ENOSPC);
907 goto undo_log;
908 }
909 tp->t_rtx_res += rtextents;
910 }
911
912 return 0;
913
914 /*
915 * Error cases jump to one of these labels to undo any
916 * reservations which have already been performed.
917 */
918 undo_log:
919 if (logspace > 0) {
920 int log_flags;
921
922 if (flags & XFS_TRANS_PERM_LOG_RES) {
923 log_flags = XFS_LOG_REL_PERM_RESERV;
924 } else {
925 log_flags = 0;
926 }
927 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
928 tp->t_ticket = NULL;
929 tp->t_log_res = 0;
930 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
931 }
932
933 undo_blocks:
934 if (blocks > 0) {
935 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
936 (int64_t)blocks, rsvd);
937 tp->t_blk_res = 0;
938 }
939
940 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
941
942 return error;
943 }
944
945 /*
946 * Record the indicated change to the given field for application
947 * to the file system's superblock when the transaction commits.
948 * For now, just store the change in the transaction structure.
949 *
950 * Mark the transaction structure to indicate that the superblock
951 * needs to be updated before committing.
952 *
953 * Because we may not be keeping track of allocated/free inodes and
954 * used filesystem blocks in the superblock, we do not mark the
955 * superblock dirty in this transaction if we modify these fields.
956 * We still need to update the transaction deltas so that they get
957 * applied to the incore superblock, but we don't want them to
958 * cause the superblock to get locked and logged if these are the
959 * only fields in the superblock that the transaction modifies.
960 */
961 void
962 xfs_trans_mod_sb(
963 xfs_trans_t *tp,
964 uint field,
965 int64_t delta)
966 {
967 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
968 xfs_mount_t *mp = tp->t_mountp;
969
970 switch (field) {
971 case XFS_TRANS_SB_ICOUNT:
972 tp->t_icount_delta += delta;
973 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
974 flags &= ~XFS_TRANS_SB_DIRTY;
975 break;
976 case XFS_TRANS_SB_IFREE:
977 tp->t_ifree_delta += delta;
978 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
979 flags &= ~XFS_TRANS_SB_DIRTY;
980 break;
981 case XFS_TRANS_SB_FDBLOCKS:
982 /*
983 * Track the number of blocks allocated in the
984 * transaction. Make sure it does not exceed the
985 * number reserved.
986 */
987 if (delta < 0) {
988 tp->t_blk_res_used += (uint)-delta;
989 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
990 }
991 tp->t_fdblocks_delta += delta;
992 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
993 flags &= ~XFS_TRANS_SB_DIRTY;
994 break;
995 case XFS_TRANS_SB_RES_FDBLOCKS:
996 /*
997 * The allocation has already been applied to the
998 * in-core superblock's counter. This should only
999 * be applied to the on-disk superblock.
1000 */
1001 ASSERT(delta < 0);
1002 tp->t_res_fdblocks_delta += delta;
1003 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
1004 flags &= ~XFS_TRANS_SB_DIRTY;
1005 break;
1006 case XFS_TRANS_SB_FREXTENTS:
1007 /*
1008 * Track the number of blocks allocated in the
1009 * transaction. Make sure it does not exceed the
1010 * number reserved.
1011 */
1012 if (delta < 0) {
1013 tp->t_rtx_res_used += (uint)-delta;
1014 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
1015 }
1016 tp->t_frextents_delta += delta;
1017 break;
1018 case XFS_TRANS_SB_RES_FREXTENTS:
1019 /*
1020 * The allocation has already been applied to the
1021 * in-core superblock's counter. This should only
1022 * be applied to the on-disk superblock.
1023 */
1024 ASSERT(delta < 0);
1025 tp->t_res_frextents_delta += delta;
1026 break;
1027 case XFS_TRANS_SB_DBLOCKS:
1028 ASSERT(delta > 0);
1029 tp->t_dblocks_delta += delta;
1030 break;
1031 case XFS_TRANS_SB_AGCOUNT:
1032 ASSERT(delta > 0);
1033 tp->t_agcount_delta += delta;
1034 break;
1035 case XFS_TRANS_SB_IMAXPCT:
1036 tp->t_imaxpct_delta += delta;
1037 break;
1038 case XFS_TRANS_SB_REXTSIZE:
1039 tp->t_rextsize_delta += delta;
1040 break;
1041 case XFS_TRANS_SB_RBMBLOCKS:
1042 tp->t_rbmblocks_delta += delta;
1043 break;
1044 case XFS_TRANS_SB_RBLOCKS:
1045 tp->t_rblocks_delta += delta;
1046 break;
1047 case XFS_TRANS_SB_REXTENTS:
1048 tp->t_rextents_delta += delta;
1049 break;
1050 case XFS_TRANS_SB_REXTSLOG:
1051 tp->t_rextslog_delta += delta;
1052 break;
1053 default:
1054 ASSERT(0);
1055 return;
1056 }
1057
1058 tp->t_flags |= flags;
1059 }
1060
1061 /*
1062 * xfs_trans_apply_sb_deltas() is called from the commit code
1063 * to bring the superblock buffer into the current transaction
1064 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
1065 *
1066 * For now we just look at each field allowed to change and change
1067 * it if necessary.
1068 */
1069 STATIC void
1070 xfs_trans_apply_sb_deltas(
1071 xfs_trans_t *tp)
1072 {
1073 xfs_dsb_t *sbp;
1074 xfs_buf_t *bp;
1075 int whole = 0;
1076
1077 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
1078 sbp = XFS_BUF_TO_SBP(bp);
1079
1080 /*
1081 * Check that superblock mods match the mods made to AGF counters.
1082 */
1083 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
1084 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
1085 tp->t_ag_btree_delta));
1086
1087 /*
1088 * Only update the superblock counters if we are logging them
1089 */
1090 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
1091 if (tp->t_icount_delta)
1092 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
1093 if (tp->t_ifree_delta)
1094 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
1095 if (tp->t_fdblocks_delta)
1096 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
1097 if (tp->t_res_fdblocks_delta)
1098 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
1099 }
1100
1101 if (tp->t_frextents_delta)
1102 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
1103 if (tp->t_res_frextents_delta)
1104 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
1105
1106 if (tp->t_dblocks_delta) {
1107 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
1108 whole = 1;
1109 }
1110 if (tp->t_agcount_delta) {
1111 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
1112 whole = 1;
1113 }
1114 if (tp->t_imaxpct_delta) {
1115 sbp->sb_imax_pct += tp->t_imaxpct_delta;
1116 whole = 1;
1117 }
1118 if (tp->t_rextsize_delta) {
1119 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
1120 whole = 1;
1121 }
1122 if (tp->t_rbmblocks_delta) {
1123 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
1124 whole = 1;
1125 }
1126 if (tp->t_rblocks_delta) {
1127 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
1128 whole = 1;
1129 }
1130 if (tp->t_rextents_delta) {
1131 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
1132 whole = 1;
1133 }
1134 if (tp->t_rextslog_delta) {
1135 sbp->sb_rextslog += tp->t_rextslog_delta;
1136 whole = 1;
1137 }
1138
1139 if (whole)
1140 /*
1141 * Log the whole thing, the fields are noncontiguous.
1142 */
1143 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
1144 else
1145 /*
1146 * Since all the modifiable fields are contiguous, we
1147 * can get away with this.
1148 */
1149 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
1150 offsetof(xfs_dsb_t, sb_frextents) +
1151 sizeof(sbp->sb_frextents) - 1);
1152 }
1153
1154 /*
1155 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
1156 * and apply superblock counter changes to the in-core superblock. The
1157 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
1158 * applied to the in-core superblock. The idea is that that has already been
1159 * done.
1160 *
1161 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1162 * However, we have to ensure that we only modify each superblock field only
1163 * once because the application of the delta values may not be atomic. That can
1164 * lead to ENOSPC races occurring if we have two separate modifcations of the
1165 * free space counter to put back the entire reservation and then take away
1166 * what we used.
1167 *
1168 * If we are not logging superblock counters, then the inode allocated/free and
1169 * used block counts are not updated in the on disk superblock. In this case,
1170 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1171 * still need to update the incore superblock with the changes.
1172 */
1173 void
1174 xfs_trans_unreserve_and_mod_sb(
1175 xfs_trans_t *tp)
1176 {
1177 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
1178 xfs_mod_sb_t *msbp;
1179 xfs_mount_t *mp = tp->t_mountp;
1180 /* REFERENCED */
1181 int error;
1182 int rsvd;
1183 int64_t blkdelta = 0;
1184 int64_t rtxdelta = 0;
1185 int64_t idelta = 0;
1186 int64_t ifreedelta = 0;
1187
1188 msbp = msb;
1189 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1190
1191 /* calculate deltas */
1192 if (tp->t_blk_res > 0)
1193 blkdelta = tp->t_blk_res;
1194 if ((tp->t_fdblocks_delta != 0) &&
1195 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1196 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1197 blkdelta += tp->t_fdblocks_delta;
1198
1199 if (tp->t_rtx_res > 0)
1200 rtxdelta = tp->t_rtx_res;
1201 if ((tp->t_frextents_delta != 0) &&
1202 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1203 rtxdelta += tp->t_frextents_delta;
1204
1205 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1206 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1207 idelta = tp->t_icount_delta;
1208 ifreedelta = tp->t_ifree_delta;
1209 }
1210
1211 /* apply the per-cpu counters */
1212 if (blkdelta) {
1213 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1214 blkdelta, rsvd);
1215 if (error)
1216 goto out;
1217 }
1218
1219 if (idelta) {
1220 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1221 idelta, rsvd);
1222 if (error)
1223 goto out_undo_fdblocks;
1224 }
1225
1226 if (ifreedelta) {
1227 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1228 ifreedelta, rsvd);
1229 if (error)
1230 goto out_undo_icount;
1231 }
1232
1233 /* apply remaining deltas */
1234 if (rtxdelta != 0) {
1235 msbp->msb_field = XFS_SBS_FREXTENTS;
1236 msbp->msb_delta = rtxdelta;
1237 msbp++;
1238 }
1239
1240 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1241 if (tp->t_dblocks_delta != 0) {
1242 msbp->msb_field = XFS_SBS_DBLOCKS;
1243 msbp->msb_delta = tp->t_dblocks_delta;
1244 msbp++;
1245 }
1246 if (tp->t_agcount_delta != 0) {
1247 msbp->msb_field = XFS_SBS_AGCOUNT;
1248 msbp->msb_delta = tp->t_agcount_delta;
1249 msbp++;
1250 }
1251 if (tp->t_imaxpct_delta != 0) {
1252 msbp->msb_field = XFS_SBS_IMAX_PCT;
1253 msbp->msb_delta = tp->t_imaxpct_delta;
1254 msbp++;
1255 }
1256 if (tp->t_rextsize_delta != 0) {
1257 msbp->msb_field = XFS_SBS_REXTSIZE;
1258 msbp->msb_delta = tp->t_rextsize_delta;
1259 msbp++;
1260 }
1261 if (tp->t_rbmblocks_delta != 0) {
1262 msbp->msb_field = XFS_SBS_RBMBLOCKS;
1263 msbp->msb_delta = tp->t_rbmblocks_delta;
1264 msbp++;
1265 }
1266 if (tp->t_rblocks_delta != 0) {
1267 msbp->msb_field = XFS_SBS_RBLOCKS;
1268 msbp->msb_delta = tp->t_rblocks_delta;
1269 msbp++;
1270 }
1271 if (tp->t_rextents_delta != 0) {
1272 msbp->msb_field = XFS_SBS_REXTENTS;
1273 msbp->msb_delta = tp->t_rextents_delta;
1274 msbp++;
1275 }
1276 if (tp->t_rextslog_delta != 0) {
1277 msbp->msb_field = XFS_SBS_REXTSLOG;
1278 msbp->msb_delta = tp->t_rextslog_delta;
1279 msbp++;
1280 }
1281 }
1282
1283 /*
1284 * If we need to change anything, do it.
1285 */
1286 if (msbp > msb) {
1287 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1288 (uint)(msbp - msb), rsvd);
1289 if (error)
1290 goto out_undo_ifreecount;
1291 }
1292
1293 return;
1294
1295 out_undo_ifreecount:
1296 if (ifreedelta)
1297 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1298 out_undo_icount:
1299 if (idelta)
1300 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1301 out_undo_fdblocks:
1302 if (blkdelta)
1303 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1304 out:
1305 ASSERT(error == 0);
1306 return;
1307 }
1308
1309 /*
1310 * Add the given log item to the transaction's list of log items.
1311 *
1312 * The log item will now point to its new descriptor with its li_desc field.
1313 */
1314 void
1315 xfs_trans_add_item(
1316 struct xfs_trans *tp,
1317 struct xfs_log_item *lip)
1318 {
1319 struct xfs_log_item_desc *lidp;
1320
1321 ASSERT(lip->li_mountp == tp->t_mountp);
1322 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
1323
1324 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1325
1326 lidp->lid_item = lip;
1327 lidp->lid_flags = 0;
1328 list_add_tail(&lidp->lid_trans, &tp->t_items);
1329
1330 lip->li_desc = lidp;
1331 }
1332
1333 STATIC void
1334 xfs_trans_free_item_desc(
1335 struct xfs_log_item_desc *lidp)
1336 {
1337 list_del_init(&lidp->lid_trans);
1338 kmem_zone_free(xfs_log_item_desc_zone, lidp);
1339 }
1340
1341 /*
1342 * Unlink and free the given descriptor.
1343 */
1344 void
1345 xfs_trans_del_item(
1346 struct xfs_log_item *lip)
1347 {
1348 xfs_trans_free_item_desc(lip->li_desc);
1349 lip->li_desc = NULL;
1350 }
1351
1352 /*
1353 * Unlock all of the items of a transaction and free all the descriptors
1354 * of that transaction.
1355 */
1356 void
1357 xfs_trans_free_items(
1358 struct xfs_trans *tp,
1359 xfs_lsn_t commit_lsn,
1360 int flags)
1361 {
1362 struct xfs_log_item_desc *lidp, *next;
1363
1364 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1365 struct xfs_log_item *lip = lidp->lid_item;
1366
1367 lip->li_desc = NULL;
1368
1369 if (commit_lsn != NULLCOMMITLSN)
1370 IOP_COMMITTING(lip, commit_lsn);
1371 if (flags & XFS_TRANS_ABORT)
1372 lip->li_flags |= XFS_LI_ABORTED;
1373 IOP_UNLOCK(lip);
1374
1375 xfs_trans_free_item_desc(lidp);
1376 }
1377 }
1378
1379 static inline void
1380 xfs_log_item_batch_insert(
1381 struct xfs_ail *ailp,
1382 struct xfs_ail_cursor *cur,
1383 struct xfs_log_item **log_items,
1384 int nr_items,
1385 xfs_lsn_t commit_lsn)
1386 {
1387 int i;
1388
1389 spin_lock(&ailp->xa_lock);
1390 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1391 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1392
1393 for (i = 0; i < nr_items; i++)
1394 IOP_UNPIN(log_items[i], 0);
1395 }
1396
1397 /*
1398 * Bulk operation version of xfs_trans_committed that takes a log vector of
1399 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1400 * minimise lock traffic.
1401 *
1402 * If we are called with the aborted flag set, it is because a log write during
1403 * a CIL checkpoint commit has failed. In this case, all the items in the
1404 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1405 * means that checkpoint commit abort handling is treated exactly the same
1406 * as an iclog write error even though we haven't started any IO yet. Hence in
1407 * this case all we need to do is IOP_COMMITTED processing, followed by an
1408 * IOP_UNPIN(aborted) call.
1409 *
1410 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1411 * at the end of the AIL, the insert cursor avoids the need to walk
1412 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1413 * call. This saves a lot of needless list walking and is a net win, even
1414 * though it slightly increases that amount of AIL lock traffic to set it up
1415 * and tear it down.
1416 */
1417 void
1418 xfs_trans_committed_bulk(
1419 struct xfs_ail *ailp,
1420 struct xfs_log_vec *log_vector,
1421 xfs_lsn_t commit_lsn,
1422 int aborted)
1423 {
1424 #define LOG_ITEM_BATCH_SIZE 32
1425 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
1426 struct xfs_log_vec *lv;
1427 struct xfs_ail_cursor cur;
1428 int i = 0;
1429
1430 spin_lock(&ailp->xa_lock);
1431 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1432 spin_unlock(&ailp->xa_lock);
1433
1434 /* unpin all the log items */
1435 for (lv = log_vector; lv; lv = lv->lv_next ) {
1436 struct xfs_log_item *lip = lv->lv_item;
1437 xfs_lsn_t item_lsn;
1438
1439 if (aborted)
1440 lip->li_flags |= XFS_LI_ABORTED;
1441 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1442
1443 /* item_lsn of -1 means the item needs no further processing */
1444 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1445 continue;
1446
1447 /*
1448 * if we are aborting the operation, no point in inserting the
1449 * object into the AIL as we are in a shutdown situation.
1450 */
1451 if (aborted) {
1452 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1453 IOP_UNPIN(lip, 1);
1454 continue;
1455 }
1456
1457 if (item_lsn != commit_lsn) {
1458
1459 /*
1460 * Not a bulk update option due to unusual item_lsn.
1461 * Push into AIL immediately, rechecking the lsn once
1462 * we have the ail lock. Then unpin the item. This does
1463 * not affect the AIL cursor the bulk insert path is
1464 * using.
1465 */
1466 spin_lock(&ailp->xa_lock);
1467 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1468 xfs_trans_ail_update(ailp, lip, item_lsn);
1469 else
1470 spin_unlock(&ailp->xa_lock);
1471 IOP_UNPIN(lip, 0);
1472 continue;
1473 }
1474
1475 /* Item is a candidate for bulk AIL insert. */
1476 log_items[i++] = lv->lv_item;
1477 if (i >= LOG_ITEM_BATCH_SIZE) {
1478 xfs_log_item_batch_insert(ailp, &cur, log_items,
1479 LOG_ITEM_BATCH_SIZE, commit_lsn);
1480 i = 0;
1481 }
1482 }
1483
1484 /* make sure we insert the remainder! */
1485 if (i)
1486 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1487
1488 spin_lock(&ailp->xa_lock);
1489 xfs_trans_ail_cursor_done(ailp, &cur);
1490 spin_unlock(&ailp->xa_lock);
1491 }
1492
1493 /*
1494 * Commit the given transaction to the log.
1495 *
1496 * XFS disk error handling mechanism is not based on a typical
1497 * transaction abort mechanism. Logically after the filesystem
1498 * gets marked 'SHUTDOWN', we can't let any new transactions
1499 * be durable - ie. committed to disk - because some metadata might
1500 * be inconsistent. In such cases, this returns an error, and the
1501 * caller may assume that all locked objects joined to the transaction
1502 * have already been unlocked as if the commit had succeeded.
1503 * Do not reference the transaction structure after this call.
1504 */
1505 int
1506 xfs_trans_commit(
1507 struct xfs_trans *tp,
1508 uint flags)
1509 {
1510 struct xfs_mount *mp = tp->t_mountp;
1511 xfs_lsn_t commit_lsn = -1;
1512 int error = 0;
1513 int log_flags = 0;
1514 int sync = tp->t_flags & XFS_TRANS_SYNC;
1515
1516 /*
1517 * Determine whether this commit is releasing a permanent
1518 * log reservation or not.
1519 */
1520 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1521 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1522 log_flags = XFS_LOG_REL_PERM_RESERV;
1523 }
1524
1525 /*
1526 * If there is nothing to be logged by the transaction,
1527 * then unlock all of the items associated with the
1528 * transaction and free the transaction structure.
1529 * Also make sure to return any reserved blocks to
1530 * the free pool.
1531 */
1532 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1533 goto out_unreserve;
1534
1535 if (XFS_FORCED_SHUTDOWN(mp)) {
1536 error = XFS_ERROR(EIO);
1537 goto out_unreserve;
1538 }
1539
1540 ASSERT(tp->t_ticket != NULL);
1541
1542 /*
1543 * If we need to update the superblock, then do it now.
1544 */
1545 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1546 xfs_trans_apply_sb_deltas(tp);
1547 xfs_trans_apply_dquot_deltas(tp);
1548
1549 error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
1550 if (error == ENOMEM) {
1551 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1552 error = XFS_ERROR(EIO);
1553 goto out_unreserve;
1554 }
1555
1556 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1557 xfs_trans_free(tp);
1558
1559 /*
1560 * If the transaction needs to be synchronous, then force the
1561 * log out now and wait for it.
1562 */
1563 if (sync) {
1564 if (!error) {
1565 error = _xfs_log_force_lsn(mp, commit_lsn,
1566 XFS_LOG_SYNC, NULL);
1567 }
1568 XFS_STATS_INC(xs_trans_sync);
1569 } else {
1570 XFS_STATS_INC(xs_trans_async);
1571 }
1572
1573 return error;
1574
1575 out_unreserve:
1576 xfs_trans_unreserve_and_mod_sb(tp);
1577
1578 /*
1579 * It is indeed possible for the transaction to be not dirty but
1580 * the dqinfo portion to be. All that means is that we have some
1581 * (non-persistent) quota reservations that need to be unreserved.
1582 */
1583 xfs_trans_unreserve_and_mod_dquots(tp);
1584 if (tp->t_ticket) {
1585 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1586 if (commit_lsn == -1 && !error)
1587 error = XFS_ERROR(EIO);
1588 }
1589 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1590 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1591 xfs_trans_free(tp);
1592
1593 XFS_STATS_INC(xs_trans_empty);
1594 return error;
1595 }
1596
1597 /*
1598 * Unlock all of the transaction's items and free the transaction.
1599 * The transaction must not have modified any of its items, because
1600 * there is no way to restore them to their previous state.
1601 *
1602 * If the transaction has made a log reservation, make sure to release
1603 * it as well.
1604 */
1605 void
1606 xfs_trans_cancel(
1607 xfs_trans_t *tp,
1608 int flags)
1609 {
1610 int log_flags;
1611 xfs_mount_t *mp = tp->t_mountp;
1612
1613 /*
1614 * See if the caller is being too lazy to figure out if
1615 * the transaction really needs an abort.
1616 */
1617 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1618 flags &= ~XFS_TRANS_ABORT;
1619 /*
1620 * See if the caller is relying on us to shut down the
1621 * filesystem. This happens in paths where we detect
1622 * corruption and decide to give up.
1623 */
1624 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1625 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1626 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1627 }
1628 #ifdef DEBUG
1629 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1630 struct xfs_log_item_desc *lidp;
1631
1632 list_for_each_entry(lidp, &tp->t_items, lid_trans)
1633 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1634 }
1635 #endif
1636 xfs_trans_unreserve_and_mod_sb(tp);
1637 xfs_trans_unreserve_and_mod_dquots(tp);
1638
1639 if (tp->t_ticket) {
1640 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1641 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1642 log_flags = XFS_LOG_REL_PERM_RESERV;
1643 } else {
1644 log_flags = 0;
1645 }
1646 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1647 }
1648
1649 /* mark this thread as no longer being in a transaction */
1650 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1651
1652 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1653 xfs_trans_free(tp);
1654 }
1655
1656 /*
1657 * Roll from one trans in the sequence of PERMANENT transactions to
1658 * the next: permanent transactions are only flushed out when
1659 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1660 * as possible to let chunks of it go to the log. So we commit the
1661 * chunk we've been working on and get a new transaction to continue.
1662 */
1663 int
1664 xfs_trans_roll(
1665 struct xfs_trans **tpp,
1666 struct xfs_inode *dp)
1667 {
1668 struct xfs_trans *trans;
1669 unsigned int logres, count;
1670 int error;
1671
1672 /*
1673 * Ensure that the inode is always logged.
1674 */
1675 trans = *tpp;
1676 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1677
1678 /*
1679 * Copy the critical parameters from one trans to the next.
1680 */
1681 logres = trans->t_log_res;
1682 count = trans->t_log_count;
1683 *tpp = xfs_trans_dup(trans);
1684
1685 /*
1686 * Commit the current transaction.
1687 * If this commit failed, then it'd just unlock those items that
1688 * are not marked ihold. That also means that a filesystem shutdown
1689 * is in progress. The caller takes the responsibility to cancel
1690 * the duplicate transaction that gets returned.
1691 */
1692 error = xfs_trans_commit(trans, 0);
1693 if (error)
1694 return (error);
1695
1696 trans = *tpp;
1697
1698 /*
1699 * transaction commit worked ok so we can drop the extra ticket
1700 * reference that we gained in xfs_trans_dup()
1701 */
1702 xfs_log_ticket_put(trans->t_ticket);
1703
1704
1705 /*
1706 * Reserve space in the log for th next transaction.
1707 * This also pushes items in the "AIL", the list of logged items,
1708 * out to disk if they are taking up space at the tail of the log
1709 * that we want to use. This requires that either nothing be locked
1710 * across this call, or that anything that is locked be logged in
1711 * the prior and the next transactions.
1712 */
1713 error = xfs_trans_reserve(trans, 0, logres, 0,
1714 XFS_TRANS_PERM_LOG_RES, count);
1715 /*
1716 * Ensure that the inode is in the new transaction and locked.
1717 */
1718 if (error)
1719 return error;
1720
1721 xfs_trans_ijoin(trans, dp, 0);
1722 return 0;
1723 }