]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_trans_buf.c
xfs: decouple log and transaction headers
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_trans_buf.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_ialloc_btree.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_buf_item.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_error.h"
35 #include "xfs_trace.h"
36
37 /*
38 * Check to see if a buffer matching the given parameters is already
39 * a part of the given transaction.
40 */
41 STATIC struct xfs_buf *
42 xfs_trans_buf_item_match(
43 struct xfs_trans *tp,
44 struct xfs_buftarg *target,
45 struct xfs_buf_map *map,
46 int nmaps)
47 {
48 struct xfs_log_item_desc *lidp;
49 struct xfs_buf_log_item *blip;
50 int len = 0;
51 int i;
52
53 for (i = 0; i < nmaps; i++)
54 len += map[i].bm_len;
55
56 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
57 blip = (struct xfs_buf_log_item *)lidp->lid_item;
58 if (blip->bli_item.li_type == XFS_LI_BUF &&
59 blip->bli_buf->b_target == target &&
60 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
61 blip->bli_buf->b_length == len) {
62 ASSERT(blip->bli_buf->b_map_count == nmaps);
63 return blip->bli_buf;
64 }
65 }
66
67 return NULL;
68 }
69
70 /*
71 * Add the locked buffer to the transaction.
72 *
73 * The buffer must be locked, and it cannot be associated with any
74 * transaction.
75 *
76 * If the buffer does not yet have a buf log item associated with it,
77 * then allocate one for it. Then add the buf item to the transaction.
78 */
79 STATIC void
80 _xfs_trans_bjoin(
81 struct xfs_trans *tp,
82 struct xfs_buf *bp,
83 int reset_recur)
84 {
85 struct xfs_buf_log_item *bip;
86
87 ASSERT(bp->b_transp == NULL);
88
89 /*
90 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
91 * it doesn't have one yet, then allocate one and initialize it.
92 * The checks to see if one is there are in xfs_buf_item_init().
93 */
94 xfs_buf_item_init(bp, tp->t_mountp);
95 bip = bp->b_fspriv;
96 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
97 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
98 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
99 if (reset_recur)
100 bip->bli_recur = 0;
101
102 /*
103 * Take a reference for this transaction on the buf item.
104 */
105 atomic_inc(&bip->bli_refcount);
106
107 /*
108 * Get a log_item_desc to point at the new item.
109 */
110 xfs_trans_add_item(tp, &bip->bli_item);
111
112 /*
113 * Initialize b_fsprivate2 so we can find it with incore_match()
114 * in xfs_trans_get_buf() and friends above.
115 */
116 bp->b_transp = tp;
117
118 }
119
120 void
121 xfs_trans_bjoin(
122 struct xfs_trans *tp,
123 struct xfs_buf *bp)
124 {
125 _xfs_trans_bjoin(tp, bp, 0);
126 trace_xfs_trans_bjoin(bp->b_fspriv);
127 }
128
129 /*
130 * Get and lock the buffer for the caller if it is not already
131 * locked within the given transaction. If it is already locked
132 * within the transaction, just increment its lock recursion count
133 * and return a pointer to it.
134 *
135 * If the transaction pointer is NULL, make this just a normal
136 * get_buf() call.
137 */
138 struct xfs_buf *
139 xfs_trans_get_buf_map(
140 struct xfs_trans *tp,
141 struct xfs_buftarg *target,
142 struct xfs_buf_map *map,
143 int nmaps,
144 xfs_buf_flags_t flags)
145 {
146 xfs_buf_t *bp;
147 xfs_buf_log_item_t *bip;
148
149 if (!tp)
150 return xfs_buf_get_map(target, map, nmaps, flags);
151
152 /*
153 * If we find the buffer in the cache with this transaction
154 * pointer in its b_fsprivate2 field, then we know we already
155 * have it locked. In this case we just increment the lock
156 * recursion count and return the buffer to the caller.
157 */
158 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
159 if (bp != NULL) {
160 ASSERT(xfs_buf_islocked(bp));
161 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
162 xfs_buf_stale(bp);
163 XFS_BUF_DONE(bp);
164 }
165
166 ASSERT(bp->b_transp == tp);
167 bip = bp->b_fspriv;
168 ASSERT(bip != NULL);
169 ASSERT(atomic_read(&bip->bli_refcount) > 0);
170 bip->bli_recur++;
171 trace_xfs_trans_get_buf_recur(bip);
172 return (bp);
173 }
174
175 bp = xfs_buf_get_map(target, map, nmaps, flags);
176 if (bp == NULL) {
177 return NULL;
178 }
179
180 ASSERT(!bp->b_error);
181
182 _xfs_trans_bjoin(tp, bp, 1);
183 trace_xfs_trans_get_buf(bp->b_fspriv);
184 return (bp);
185 }
186
187 /*
188 * Get and lock the superblock buffer of this file system for the
189 * given transaction.
190 *
191 * We don't need to use incore_match() here, because the superblock
192 * buffer is a private buffer which we keep a pointer to in the
193 * mount structure.
194 */
195 xfs_buf_t *
196 xfs_trans_getsb(xfs_trans_t *tp,
197 struct xfs_mount *mp,
198 int flags)
199 {
200 xfs_buf_t *bp;
201 xfs_buf_log_item_t *bip;
202
203 /*
204 * Default to just trying to lock the superblock buffer
205 * if tp is NULL.
206 */
207 if (tp == NULL) {
208 return (xfs_getsb(mp, flags));
209 }
210
211 /*
212 * If the superblock buffer already has this transaction
213 * pointer in its b_fsprivate2 field, then we know we already
214 * have it locked. In this case we just increment the lock
215 * recursion count and return the buffer to the caller.
216 */
217 bp = mp->m_sb_bp;
218 if (bp->b_transp == tp) {
219 bip = bp->b_fspriv;
220 ASSERT(bip != NULL);
221 ASSERT(atomic_read(&bip->bli_refcount) > 0);
222 bip->bli_recur++;
223 trace_xfs_trans_getsb_recur(bip);
224 return (bp);
225 }
226
227 bp = xfs_getsb(mp, flags);
228 if (bp == NULL)
229 return NULL;
230
231 _xfs_trans_bjoin(tp, bp, 1);
232 trace_xfs_trans_getsb(bp->b_fspriv);
233 return (bp);
234 }
235
236 #ifdef DEBUG
237 xfs_buftarg_t *xfs_error_target;
238 int xfs_do_error;
239 int xfs_req_num;
240 int xfs_error_mod = 33;
241 #endif
242
243 /*
244 * Get and lock the buffer for the caller if it is not already
245 * locked within the given transaction. If it has not yet been
246 * read in, read it from disk. If it is already locked
247 * within the transaction and already read in, just increment its
248 * lock recursion count and return a pointer to it.
249 *
250 * If the transaction pointer is NULL, make this just a normal
251 * read_buf() call.
252 */
253 int
254 xfs_trans_read_buf_map(
255 struct xfs_mount *mp,
256 struct xfs_trans *tp,
257 struct xfs_buftarg *target,
258 struct xfs_buf_map *map,
259 int nmaps,
260 xfs_buf_flags_t flags,
261 struct xfs_buf **bpp,
262 const struct xfs_buf_ops *ops)
263 {
264 xfs_buf_t *bp;
265 xfs_buf_log_item_t *bip;
266 int error;
267
268 *bpp = NULL;
269 if (!tp) {
270 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
271 if (!bp)
272 return (flags & XBF_TRYLOCK) ?
273 EAGAIN : XFS_ERROR(ENOMEM);
274
275 if (bp->b_error) {
276 error = bp->b_error;
277 xfs_buf_ioerror_alert(bp, __func__);
278 XFS_BUF_UNDONE(bp);
279 xfs_buf_stale(bp);
280 xfs_buf_relse(bp);
281 return error;
282 }
283 #ifdef DEBUG
284 if (xfs_do_error) {
285 if (xfs_error_target == target) {
286 if (((xfs_req_num++) % xfs_error_mod) == 0) {
287 xfs_buf_relse(bp);
288 xfs_debug(mp, "Returning error!");
289 return XFS_ERROR(EIO);
290 }
291 }
292 }
293 #endif
294 if (XFS_FORCED_SHUTDOWN(mp))
295 goto shutdown_abort;
296 *bpp = bp;
297 return 0;
298 }
299
300 /*
301 * If we find the buffer in the cache with this transaction
302 * pointer in its b_fsprivate2 field, then we know we already
303 * have it locked. If it is already read in we just increment
304 * the lock recursion count and return the buffer to the caller.
305 * If the buffer is not yet read in, then we read it in, increment
306 * the lock recursion count, and return it to the caller.
307 */
308 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
309 if (bp != NULL) {
310 ASSERT(xfs_buf_islocked(bp));
311 ASSERT(bp->b_transp == tp);
312 ASSERT(bp->b_fspriv != NULL);
313 ASSERT(!bp->b_error);
314 if (!(XFS_BUF_ISDONE(bp))) {
315 trace_xfs_trans_read_buf_io(bp, _RET_IP_);
316 ASSERT(!XFS_BUF_ISASYNC(bp));
317 ASSERT(bp->b_iodone == NULL);
318 XFS_BUF_READ(bp);
319 bp->b_ops = ops;
320 xfsbdstrat(tp->t_mountp, bp);
321 error = xfs_buf_iowait(bp);
322 if (error) {
323 xfs_buf_ioerror_alert(bp, __func__);
324 xfs_buf_relse(bp);
325 /*
326 * We can gracefully recover from most read
327 * errors. Ones we can't are those that happen
328 * after the transaction's already dirty.
329 */
330 if (tp->t_flags & XFS_TRANS_DIRTY)
331 xfs_force_shutdown(tp->t_mountp,
332 SHUTDOWN_META_IO_ERROR);
333 return error;
334 }
335 }
336 /*
337 * We never locked this buf ourselves, so we shouldn't
338 * brelse it either. Just get out.
339 */
340 if (XFS_FORCED_SHUTDOWN(mp)) {
341 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
342 *bpp = NULL;
343 return XFS_ERROR(EIO);
344 }
345
346
347 bip = bp->b_fspriv;
348 bip->bli_recur++;
349
350 ASSERT(atomic_read(&bip->bli_refcount) > 0);
351 trace_xfs_trans_read_buf_recur(bip);
352 *bpp = bp;
353 return 0;
354 }
355
356 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
357 if (bp == NULL) {
358 *bpp = NULL;
359 return (flags & XBF_TRYLOCK) ?
360 0 : XFS_ERROR(ENOMEM);
361 }
362 if (bp->b_error) {
363 error = bp->b_error;
364 xfs_buf_stale(bp);
365 XFS_BUF_DONE(bp);
366 xfs_buf_ioerror_alert(bp, __func__);
367 if (tp->t_flags & XFS_TRANS_DIRTY)
368 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
369 xfs_buf_relse(bp);
370 return error;
371 }
372 #ifdef DEBUG
373 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
374 if (xfs_error_target == target) {
375 if (((xfs_req_num++) % xfs_error_mod) == 0) {
376 xfs_force_shutdown(tp->t_mountp,
377 SHUTDOWN_META_IO_ERROR);
378 xfs_buf_relse(bp);
379 xfs_debug(mp, "Returning trans error!");
380 return XFS_ERROR(EIO);
381 }
382 }
383 }
384 #endif
385 if (XFS_FORCED_SHUTDOWN(mp))
386 goto shutdown_abort;
387
388 _xfs_trans_bjoin(tp, bp, 1);
389 trace_xfs_trans_read_buf(bp->b_fspriv);
390
391 *bpp = bp;
392 return 0;
393
394 shutdown_abort:
395 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
396 xfs_buf_relse(bp);
397 *bpp = NULL;
398 return XFS_ERROR(EIO);
399 }
400
401 /*
402 * Release the buffer bp which was previously acquired with one of the
403 * xfs_trans_... buffer allocation routines if the buffer has not
404 * been modified within this transaction. If the buffer is modified
405 * within this transaction, do decrement the recursion count but do
406 * not release the buffer even if the count goes to 0. If the buffer is not
407 * modified within the transaction, decrement the recursion count and
408 * release the buffer if the recursion count goes to 0.
409 *
410 * If the buffer is to be released and it was not modified before
411 * this transaction began, then free the buf_log_item associated with it.
412 *
413 * If the transaction pointer is NULL, make this just a normal
414 * brelse() call.
415 */
416 void
417 xfs_trans_brelse(xfs_trans_t *tp,
418 xfs_buf_t *bp)
419 {
420 xfs_buf_log_item_t *bip;
421
422 /*
423 * Default to a normal brelse() call if the tp is NULL.
424 */
425 if (tp == NULL) {
426 ASSERT(bp->b_transp == NULL);
427 xfs_buf_relse(bp);
428 return;
429 }
430
431 ASSERT(bp->b_transp == tp);
432 bip = bp->b_fspriv;
433 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
434 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
435 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
436 ASSERT(atomic_read(&bip->bli_refcount) > 0);
437
438 trace_xfs_trans_brelse(bip);
439
440 /*
441 * If the release is just for a recursive lock,
442 * then decrement the count and return.
443 */
444 if (bip->bli_recur > 0) {
445 bip->bli_recur--;
446 return;
447 }
448
449 /*
450 * If the buffer is dirty within this transaction, we can't
451 * release it until we commit.
452 */
453 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
454 return;
455
456 /*
457 * If the buffer has been invalidated, then we can't release
458 * it until the transaction commits to disk unless it is re-dirtied
459 * as part of this transaction. This prevents us from pulling
460 * the item from the AIL before we should.
461 */
462 if (bip->bli_flags & XFS_BLI_STALE)
463 return;
464
465 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
466
467 /*
468 * Free up the log item descriptor tracking the released item.
469 */
470 xfs_trans_del_item(&bip->bli_item);
471
472 /*
473 * Clear the hold flag in the buf log item if it is set.
474 * We wouldn't want the next user of the buffer to
475 * get confused.
476 */
477 if (bip->bli_flags & XFS_BLI_HOLD) {
478 bip->bli_flags &= ~XFS_BLI_HOLD;
479 }
480
481 /*
482 * Drop our reference to the buf log item.
483 */
484 atomic_dec(&bip->bli_refcount);
485
486 /*
487 * If the buf item is not tracking data in the log, then
488 * we must free it before releasing the buffer back to the
489 * free pool. Before releasing the buffer to the free pool,
490 * clear the transaction pointer in b_fsprivate2 to dissolve
491 * its relation to this transaction.
492 */
493 if (!xfs_buf_item_dirty(bip)) {
494 /***
495 ASSERT(bp->b_pincount == 0);
496 ***/
497 ASSERT(atomic_read(&bip->bli_refcount) == 0);
498 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
499 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
500 xfs_buf_item_relse(bp);
501 }
502
503 bp->b_transp = NULL;
504 xfs_buf_relse(bp);
505 }
506
507 /*
508 * Mark the buffer as not needing to be unlocked when the buf item's
509 * iop_unlock() routine is called. The buffer must already be locked
510 * and associated with the given transaction.
511 */
512 /* ARGSUSED */
513 void
514 xfs_trans_bhold(xfs_trans_t *tp,
515 xfs_buf_t *bp)
516 {
517 xfs_buf_log_item_t *bip = bp->b_fspriv;
518
519 ASSERT(bp->b_transp == tp);
520 ASSERT(bip != NULL);
521 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
522 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
523 ASSERT(atomic_read(&bip->bli_refcount) > 0);
524
525 bip->bli_flags |= XFS_BLI_HOLD;
526 trace_xfs_trans_bhold(bip);
527 }
528
529 /*
530 * Cancel the previous buffer hold request made on this buffer
531 * for this transaction.
532 */
533 void
534 xfs_trans_bhold_release(xfs_trans_t *tp,
535 xfs_buf_t *bp)
536 {
537 xfs_buf_log_item_t *bip = bp->b_fspriv;
538
539 ASSERT(bp->b_transp == tp);
540 ASSERT(bip != NULL);
541 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
542 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
543 ASSERT(atomic_read(&bip->bli_refcount) > 0);
544 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
545
546 bip->bli_flags &= ~XFS_BLI_HOLD;
547 trace_xfs_trans_bhold_release(bip);
548 }
549
550 /*
551 * This is called to mark bytes first through last inclusive of the given
552 * buffer as needing to be logged when the transaction is committed.
553 * The buffer must already be associated with the given transaction.
554 *
555 * First and last are numbers relative to the beginning of this buffer,
556 * so the first byte in the buffer is numbered 0 regardless of the
557 * value of b_blkno.
558 */
559 void
560 xfs_trans_log_buf(xfs_trans_t *tp,
561 xfs_buf_t *bp,
562 uint first,
563 uint last)
564 {
565 xfs_buf_log_item_t *bip = bp->b_fspriv;
566
567 ASSERT(bp->b_transp == tp);
568 ASSERT(bip != NULL);
569 ASSERT(first <= last && last < BBTOB(bp->b_length));
570 ASSERT(bp->b_iodone == NULL ||
571 bp->b_iodone == xfs_buf_iodone_callbacks);
572
573 /*
574 * Mark the buffer as needing to be written out eventually,
575 * and set its iodone function to remove the buffer's buf log
576 * item from the AIL and free it when the buffer is flushed
577 * to disk. See xfs_buf_attach_iodone() for more details
578 * on li_cb and xfs_buf_iodone_callbacks().
579 * If we end up aborting this transaction, we trap this buffer
580 * inside the b_bdstrat callback so that this won't get written to
581 * disk.
582 */
583 XFS_BUF_DONE(bp);
584
585 ASSERT(atomic_read(&bip->bli_refcount) > 0);
586 bp->b_iodone = xfs_buf_iodone_callbacks;
587 bip->bli_item.li_cb = xfs_buf_iodone;
588
589 trace_xfs_trans_log_buf(bip);
590
591 /*
592 * If we invalidated the buffer within this transaction, then
593 * cancel the invalidation now that we're dirtying the buffer
594 * again. There are no races with the code in xfs_buf_item_unpin(),
595 * because we have a reference to the buffer this entire time.
596 */
597 if (bip->bli_flags & XFS_BLI_STALE) {
598 bip->bli_flags &= ~XFS_BLI_STALE;
599 ASSERT(XFS_BUF_ISSTALE(bp));
600 XFS_BUF_UNSTALE(bp);
601 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
602 }
603
604 tp->t_flags |= XFS_TRANS_DIRTY;
605 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
606
607 /*
608 * If we have an ordered buffer we are not logging any dirty range but
609 * it still needs to be marked dirty and that it has been logged.
610 */
611 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
612 if (!(bip->bli_flags & XFS_BLI_ORDERED))
613 xfs_buf_item_log(bip, first, last);
614 }
615
616
617 /*
618 * Invalidate a buffer that is being used within a transaction.
619 *
620 * Typically this is because the blocks in the buffer are being freed, so we
621 * need to prevent it from being written out when we're done. Allowing it
622 * to be written again might overwrite data in the free blocks if they are
623 * reallocated to a file.
624 *
625 * We prevent the buffer from being written out by marking it stale. We can't
626 * get rid of the buf log item at this point because the buffer may still be
627 * pinned by another transaction. If that is the case, then we'll wait until
628 * the buffer is committed to disk for the last time (we can tell by the ref
629 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
630 * keep the buffer locked so that the buffer and buf log item are not reused.
631 *
632 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
633 * the buf item. This will be used at recovery time to determine that copies
634 * of the buffer in the log before this should not be replayed.
635 *
636 * We mark the item descriptor and the transaction dirty so that we'll hold
637 * the buffer until after the commit.
638 *
639 * Since we're invalidating the buffer, we also clear the state about which
640 * parts of the buffer have been logged. We also clear the flag indicating
641 * that this is an inode buffer since the data in the buffer will no longer
642 * be valid.
643 *
644 * We set the stale bit in the buffer as well since we're getting rid of it.
645 */
646 void
647 xfs_trans_binval(
648 xfs_trans_t *tp,
649 xfs_buf_t *bp)
650 {
651 xfs_buf_log_item_t *bip = bp->b_fspriv;
652 int i;
653
654 ASSERT(bp->b_transp == tp);
655 ASSERT(bip != NULL);
656 ASSERT(atomic_read(&bip->bli_refcount) > 0);
657
658 trace_xfs_trans_binval(bip);
659
660 if (bip->bli_flags & XFS_BLI_STALE) {
661 /*
662 * If the buffer is already invalidated, then
663 * just return.
664 */
665 ASSERT(XFS_BUF_ISSTALE(bp));
666 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
667 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
668 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
669 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
670 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
671 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
672 return;
673 }
674
675 xfs_buf_stale(bp);
676
677 bip->bli_flags |= XFS_BLI_STALE;
678 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
679 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
680 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
681 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
682 for (i = 0; i < bip->bli_format_count; i++) {
683 memset(bip->bli_formats[i].blf_data_map, 0,
684 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
685 }
686 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
687 tp->t_flags |= XFS_TRANS_DIRTY;
688 }
689
690 /*
691 * This call is used to indicate that the buffer contains on-disk inodes which
692 * must be handled specially during recovery. They require special handling
693 * because only the di_next_unlinked from the inodes in the buffer should be
694 * recovered. The rest of the data in the buffer is logged via the inodes
695 * themselves.
696 *
697 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
698 * transferred to the buffer's log format structure so that we'll know what to
699 * do at recovery time.
700 */
701 void
702 xfs_trans_inode_buf(
703 xfs_trans_t *tp,
704 xfs_buf_t *bp)
705 {
706 xfs_buf_log_item_t *bip = bp->b_fspriv;
707
708 ASSERT(bp->b_transp == tp);
709 ASSERT(bip != NULL);
710 ASSERT(atomic_read(&bip->bli_refcount) > 0);
711
712 bip->bli_flags |= XFS_BLI_INODE_BUF;
713 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
714 }
715
716 /*
717 * This call is used to indicate that the buffer is going to
718 * be staled and was an inode buffer. This means it gets
719 * special processing during unpin - where any inodes
720 * associated with the buffer should be removed from ail.
721 * There is also special processing during recovery,
722 * any replay of the inodes in the buffer needs to be
723 * prevented as the buffer may have been reused.
724 */
725 void
726 xfs_trans_stale_inode_buf(
727 xfs_trans_t *tp,
728 xfs_buf_t *bp)
729 {
730 xfs_buf_log_item_t *bip = bp->b_fspriv;
731
732 ASSERT(bp->b_transp == tp);
733 ASSERT(bip != NULL);
734 ASSERT(atomic_read(&bip->bli_refcount) > 0);
735
736 bip->bli_flags |= XFS_BLI_STALE_INODE;
737 bip->bli_item.li_cb = xfs_buf_iodone;
738 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
739 }
740
741 /*
742 * Mark the buffer as being one which contains newly allocated
743 * inodes. We need to make sure that even if this buffer is
744 * relogged as an 'inode buf' we still recover all of the inode
745 * images in the face of a crash. This works in coordination with
746 * xfs_buf_item_committed() to ensure that the buffer remains in the
747 * AIL at its original location even after it has been relogged.
748 */
749 /* ARGSUSED */
750 void
751 xfs_trans_inode_alloc_buf(
752 xfs_trans_t *tp,
753 xfs_buf_t *bp)
754 {
755 xfs_buf_log_item_t *bip = bp->b_fspriv;
756
757 ASSERT(bp->b_transp == tp);
758 ASSERT(bip != NULL);
759 ASSERT(atomic_read(&bip->bli_refcount) > 0);
760
761 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
762 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
763 }
764
765 /*
766 * Mark the buffer as ordered for this transaction. This means
767 * that the contents of the buffer are not recorded in the transaction
768 * but it is tracked in the AIL as though it was. This allows us
769 * to record logical changes in transactions rather than the physical
770 * changes we make to the buffer without changing writeback ordering
771 * constraints of metadata buffers.
772 */
773 void
774 xfs_trans_ordered_buf(
775 struct xfs_trans *tp,
776 struct xfs_buf *bp)
777 {
778 struct xfs_buf_log_item *bip = bp->b_fspriv;
779
780 ASSERT(bp->b_transp == tp);
781 ASSERT(bip != NULL);
782 ASSERT(atomic_read(&bip->bli_refcount) > 0);
783
784 bip->bli_flags |= XFS_BLI_ORDERED;
785 trace_xfs_buf_item_ordered(bip);
786 }
787
788 /*
789 * Set the type of the buffer for log recovery so that it can correctly identify
790 * and hence attach the correct buffer ops to the buffer after replay.
791 */
792 void
793 xfs_trans_buf_set_type(
794 struct xfs_trans *tp,
795 struct xfs_buf *bp,
796 enum xfs_blft type)
797 {
798 struct xfs_buf_log_item *bip = bp->b_fspriv;
799
800 if (!tp)
801 return;
802
803 ASSERT(bp->b_transp == tp);
804 ASSERT(bip != NULL);
805 ASSERT(atomic_read(&bip->bli_refcount) > 0);
806
807 xfs_blft_to_flags(&bip->__bli_format, type);
808 }
809
810 void
811 xfs_trans_buf_copy_type(
812 struct xfs_buf *dst_bp,
813 struct xfs_buf *src_bp)
814 {
815 struct xfs_buf_log_item *sbip = src_bp->b_fspriv;
816 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv;
817 enum xfs_blft type;
818
819 type = xfs_blft_from_flags(&sbip->__bli_format);
820 xfs_blft_to_flags(&dbip->__bli_format, type);
821 }
822
823 /*
824 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
825 * dquots. However, unlike in inode buffer recovery, dquot buffers get
826 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
827 * The only thing that makes dquot buffers different from regular
828 * buffers is that we must not replay dquot bufs when recovering
829 * if a _corresponding_ quotaoff has happened. We also have to distinguish
830 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
831 * can be turned off independently.
832 */
833 /* ARGSUSED */
834 void
835 xfs_trans_dquot_buf(
836 xfs_trans_t *tp,
837 xfs_buf_t *bp,
838 uint type)
839 {
840 struct xfs_buf_log_item *bip = bp->b_fspriv;
841
842 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
843 type == XFS_BLF_PDQUOT_BUF ||
844 type == XFS_BLF_GDQUOT_BUF);
845
846 bip->__bli_format.blf_flags |= type;
847
848 switch (type) {
849 case XFS_BLF_UDQUOT_BUF:
850 type = XFS_BLFT_UDQUOT_BUF;
851 break;
852 case XFS_BLF_PDQUOT_BUF:
853 type = XFS_BLFT_PDQUOT_BUF;
854 break;
855 case XFS_BLF_GDQUOT_BUF:
856 type = XFS_BLFT_GDQUOT_BUF;
857 break;
858 default:
859 type = XFS_BLFT_UNKNOWN_BUF;
860 break;
861 }
862
863 xfs_trans_buf_set_type(tp, bp, type);
864 }