]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_trans_buf.c
Merge branch 'perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_trans_buf.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dinode.h"
32 #include "xfs_inode.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_error.h"
36 #include "xfs_rw.h"
37 #include "xfs_trace.h"
38
39 /*
40 * Check to see if a buffer matching the given parameters is already
41 * a part of the given transaction.
42 */
43 STATIC struct xfs_buf *
44 xfs_trans_buf_item_match(
45 struct xfs_trans *tp,
46 struct xfs_buftarg *target,
47 xfs_daddr_t blkno,
48 int len)
49 {
50 struct xfs_log_item_desc *lidp;
51 struct xfs_buf_log_item *blip;
52
53 len = BBTOB(len);
54 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
55 blip = (struct xfs_buf_log_item *)lidp->lid_item;
56 if (blip->bli_item.li_type == XFS_LI_BUF &&
57 XFS_BUF_TARGET(blip->bli_buf) == target &&
58 XFS_BUF_ADDR(blip->bli_buf) == blkno &&
59 XFS_BUF_COUNT(blip->bli_buf) == len)
60 return blip->bli_buf;
61 }
62
63 return NULL;
64 }
65
66 /*
67 * Add the locked buffer to the transaction.
68 *
69 * The buffer must be locked, and it cannot be associated with any
70 * transaction.
71 *
72 * If the buffer does not yet have a buf log item associated with it,
73 * then allocate one for it. Then add the buf item to the transaction.
74 */
75 STATIC void
76 _xfs_trans_bjoin(
77 struct xfs_trans *tp,
78 struct xfs_buf *bp,
79 int reset_recur)
80 {
81 struct xfs_buf_log_item *bip;
82
83 ASSERT(XFS_BUF_ISBUSY(bp));
84 ASSERT(bp->b_transp == NULL);
85
86 /*
87 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
88 * it doesn't have one yet, then allocate one and initialize it.
89 * The checks to see if one is there are in xfs_buf_item_init().
90 */
91 xfs_buf_item_init(bp, tp->t_mountp);
92 bip = bp->b_fspriv;
93 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
94 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
95 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
96 if (reset_recur)
97 bip->bli_recur = 0;
98
99 /*
100 * Take a reference for this transaction on the buf item.
101 */
102 atomic_inc(&bip->bli_refcount);
103
104 /*
105 * Get a log_item_desc to point at the new item.
106 */
107 xfs_trans_add_item(tp, &bip->bli_item);
108
109 /*
110 * Initialize b_fsprivate2 so we can find it with incore_match()
111 * in xfs_trans_get_buf() and friends above.
112 */
113 bp->b_transp = tp;
114
115 }
116
117 void
118 xfs_trans_bjoin(
119 struct xfs_trans *tp,
120 struct xfs_buf *bp)
121 {
122 _xfs_trans_bjoin(tp, bp, 0);
123 trace_xfs_trans_bjoin(bp->b_fspriv);
124 }
125
126 /*
127 * Get and lock the buffer for the caller if it is not already
128 * locked within the given transaction. If it is already locked
129 * within the transaction, just increment its lock recursion count
130 * and return a pointer to it.
131 *
132 * If the transaction pointer is NULL, make this just a normal
133 * get_buf() call.
134 */
135 xfs_buf_t *
136 xfs_trans_get_buf(xfs_trans_t *tp,
137 xfs_buftarg_t *target_dev,
138 xfs_daddr_t blkno,
139 int len,
140 uint flags)
141 {
142 xfs_buf_t *bp;
143 xfs_buf_log_item_t *bip;
144
145 if (flags == 0)
146 flags = XBF_LOCK | XBF_MAPPED;
147
148 /*
149 * Default to a normal get_buf() call if the tp is NULL.
150 */
151 if (tp == NULL)
152 return xfs_buf_get(target_dev, blkno, len,
153 flags | XBF_DONT_BLOCK);
154
155 /*
156 * If we find the buffer in the cache with this transaction
157 * pointer in its b_fsprivate2 field, then we know we already
158 * have it locked. In this case we just increment the lock
159 * recursion count and return the buffer to the caller.
160 */
161 bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
162 if (bp != NULL) {
163 ASSERT(xfs_buf_islocked(bp));
164 if (XFS_FORCED_SHUTDOWN(tp->t_mountp))
165 XFS_BUF_SUPER_STALE(bp);
166
167 /*
168 * If the buffer is stale then it was binval'ed
169 * since last read. This doesn't matter since the
170 * caller isn't allowed to use the data anyway.
171 */
172 else if (XFS_BUF_ISSTALE(bp))
173 ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
174
175 ASSERT(bp->b_transp == tp);
176 bip = bp->b_fspriv;
177 ASSERT(bip != NULL);
178 ASSERT(atomic_read(&bip->bli_refcount) > 0);
179 bip->bli_recur++;
180 trace_xfs_trans_get_buf_recur(bip);
181 return (bp);
182 }
183
184 /*
185 * We always specify the XBF_DONT_BLOCK flag within a transaction
186 * so that get_buf does not try to push out a delayed write buffer
187 * which might cause another transaction to take place (if the
188 * buffer was delayed alloc). Such recursive transactions can
189 * easily deadlock with our current transaction as well as cause
190 * us to run out of stack space.
191 */
192 bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK);
193 if (bp == NULL) {
194 return NULL;
195 }
196
197 ASSERT(!XFS_BUF_GETERROR(bp));
198
199 _xfs_trans_bjoin(tp, bp, 1);
200 trace_xfs_trans_get_buf(bp->b_fspriv);
201 return (bp);
202 }
203
204 /*
205 * Get and lock the superblock buffer of this file system for the
206 * given transaction.
207 *
208 * We don't need to use incore_match() here, because the superblock
209 * buffer is a private buffer which we keep a pointer to in the
210 * mount structure.
211 */
212 xfs_buf_t *
213 xfs_trans_getsb(xfs_trans_t *tp,
214 struct xfs_mount *mp,
215 int flags)
216 {
217 xfs_buf_t *bp;
218 xfs_buf_log_item_t *bip;
219
220 /*
221 * Default to just trying to lock the superblock buffer
222 * if tp is NULL.
223 */
224 if (tp == NULL) {
225 return (xfs_getsb(mp, flags));
226 }
227
228 /*
229 * If the superblock buffer already has this transaction
230 * pointer in its b_fsprivate2 field, then we know we already
231 * have it locked. In this case we just increment the lock
232 * recursion count and return the buffer to the caller.
233 */
234 bp = mp->m_sb_bp;
235 if (bp->b_transp == tp) {
236 bip = bp->b_fspriv;
237 ASSERT(bip != NULL);
238 ASSERT(atomic_read(&bip->bli_refcount) > 0);
239 bip->bli_recur++;
240 trace_xfs_trans_getsb_recur(bip);
241 return (bp);
242 }
243
244 bp = xfs_getsb(mp, flags);
245 if (bp == NULL)
246 return NULL;
247
248 _xfs_trans_bjoin(tp, bp, 1);
249 trace_xfs_trans_getsb(bp->b_fspriv);
250 return (bp);
251 }
252
253 #ifdef DEBUG
254 xfs_buftarg_t *xfs_error_target;
255 int xfs_do_error;
256 int xfs_req_num;
257 int xfs_error_mod = 33;
258 #endif
259
260 /*
261 * Get and lock the buffer for the caller if it is not already
262 * locked within the given transaction. If it has not yet been
263 * read in, read it from disk. If it is already locked
264 * within the transaction and already read in, just increment its
265 * lock recursion count and return a pointer to it.
266 *
267 * If the transaction pointer is NULL, make this just a normal
268 * read_buf() call.
269 */
270 int
271 xfs_trans_read_buf(
272 xfs_mount_t *mp,
273 xfs_trans_t *tp,
274 xfs_buftarg_t *target,
275 xfs_daddr_t blkno,
276 int len,
277 uint flags,
278 xfs_buf_t **bpp)
279 {
280 xfs_buf_t *bp;
281 xfs_buf_log_item_t *bip;
282 int error;
283
284 if (flags == 0)
285 flags = XBF_LOCK | XBF_MAPPED;
286
287 /*
288 * Default to a normal get_buf() call if the tp is NULL.
289 */
290 if (tp == NULL) {
291 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
292 if (!bp)
293 return (flags & XBF_TRYLOCK) ?
294 EAGAIN : XFS_ERROR(ENOMEM);
295
296 if (XFS_BUF_GETERROR(bp) != 0) {
297 xfs_ioerror_alert("xfs_trans_read_buf", mp,
298 bp, blkno);
299 error = XFS_BUF_GETERROR(bp);
300 xfs_buf_relse(bp);
301 return error;
302 }
303 #ifdef DEBUG
304 if (xfs_do_error) {
305 if (xfs_error_target == target) {
306 if (((xfs_req_num++) % xfs_error_mod) == 0) {
307 xfs_buf_relse(bp);
308 xfs_debug(mp, "Returning error!");
309 return XFS_ERROR(EIO);
310 }
311 }
312 }
313 #endif
314 if (XFS_FORCED_SHUTDOWN(mp))
315 goto shutdown_abort;
316 *bpp = bp;
317 return 0;
318 }
319
320 /*
321 * If we find the buffer in the cache with this transaction
322 * pointer in its b_fsprivate2 field, then we know we already
323 * have it locked. If it is already read in we just increment
324 * the lock recursion count and return the buffer to the caller.
325 * If the buffer is not yet read in, then we read it in, increment
326 * the lock recursion count, and return it to the caller.
327 */
328 bp = xfs_trans_buf_item_match(tp, target, blkno, len);
329 if (bp != NULL) {
330 ASSERT(xfs_buf_islocked(bp));
331 ASSERT(bp->b_transp == tp);
332 ASSERT(bp->b_fspriv != NULL);
333 ASSERT((XFS_BUF_ISERROR(bp)) == 0);
334 if (!(XFS_BUF_ISDONE(bp))) {
335 trace_xfs_trans_read_buf_io(bp, _RET_IP_);
336 ASSERT(!XFS_BUF_ISASYNC(bp));
337 XFS_BUF_READ(bp);
338 xfsbdstrat(tp->t_mountp, bp);
339 error = xfs_buf_iowait(bp);
340 if (error) {
341 xfs_ioerror_alert("xfs_trans_read_buf", mp,
342 bp, blkno);
343 xfs_buf_relse(bp);
344 /*
345 * We can gracefully recover from most read
346 * errors. Ones we can't are those that happen
347 * after the transaction's already dirty.
348 */
349 if (tp->t_flags & XFS_TRANS_DIRTY)
350 xfs_force_shutdown(tp->t_mountp,
351 SHUTDOWN_META_IO_ERROR);
352 return error;
353 }
354 }
355 /*
356 * We never locked this buf ourselves, so we shouldn't
357 * brelse it either. Just get out.
358 */
359 if (XFS_FORCED_SHUTDOWN(mp)) {
360 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
361 *bpp = NULL;
362 return XFS_ERROR(EIO);
363 }
364
365
366 bip = bp->b_fspriv;
367 bip->bli_recur++;
368
369 ASSERT(atomic_read(&bip->bli_refcount) > 0);
370 trace_xfs_trans_read_buf_recur(bip);
371 *bpp = bp;
372 return 0;
373 }
374
375 /*
376 * We always specify the XBF_DONT_BLOCK flag within a transaction
377 * so that get_buf does not try to push out a delayed write buffer
378 * which might cause another transaction to take place (if the
379 * buffer was delayed alloc). Such recursive transactions can
380 * easily deadlock with our current transaction as well as cause
381 * us to run out of stack space.
382 */
383 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
384 if (bp == NULL) {
385 *bpp = NULL;
386 return (flags & XBF_TRYLOCK) ?
387 0 : XFS_ERROR(ENOMEM);
388 }
389 if (XFS_BUF_GETERROR(bp) != 0) {
390 XFS_BUF_SUPER_STALE(bp);
391 error = XFS_BUF_GETERROR(bp);
392
393 xfs_ioerror_alert("xfs_trans_read_buf", mp,
394 bp, blkno);
395 if (tp->t_flags & XFS_TRANS_DIRTY)
396 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
397 xfs_buf_relse(bp);
398 return error;
399 }
400 #ifdef DEBUG
401 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
402 if (xfs_error_target == target) {
403 if (((xfs_req_num++) % xfs_error_mod) == 0) {
404 xfs_force_shutdown(tp->t_mountp,
405 SHUTDOWN_META_IO_ERROR);
406 xfs_buf_relse(bp);
407 xfs_debug(mp, "Returning trans error!");
408 return XFS_ERROR(EIO);
409 }
410 }
411 }
412 #endif
413 if (XFS_FORCED_SHUTDOWN(mp))
414 goto shutdown_abort;
415
416 _xfs_trans_bjoin(tp, bp, 1);
417 trace_xfs_trans_read_buf(bp->b_fspriv);
418
419 *bpp = bp;
420 return 0;
421
422 shutdown_abort:
423 /*
424 * the theory here is that buffer is good but we're
425 * bailing out because the filesystem is being forcibly
426 * shut down. So we should leave the b_flags alone since
427 * the buffer's not staled and just get out.
428 */
429 #if defined(DEBUG)
430 if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
431 xfs_notice(mp, "about to pop assert, bp == 0x%p", bp);
432 #endif
433 ASSERT((XFS_BUF_BFLAGS(bp) & (XBF_STALE|XBF_DELWRI)) !=
434 (XBF_STALE|XBF_DELWRI));
435
436 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
437 xfs_buf_relse(bp);
438 *bpp = NULL;
439 return XFS_ERROR(EIO);
440 }
441
442
443 /*
444 * Release the buffer bp which was previously acquired with one of the
445 * xfs_trans_... buffer allocation routines if the buffer has not
446 * been modified within this transaction. If the buffer is modified
447 * within this transaction, do decrement the recursion count but do
448 * not release the buffer even if the count goes to 0. If the buffer is not
449 * modified within the transaction, decrement the recursion count and
450 * release the buffer if the recursion count goes to 0.
451 *
452 * If the buffer is to be released and it was not modified before
453 * this transaction began, then free the buf_log_item associated with it.
454 *
455 * If the transaction pointer is NULL, make this just a normal
456 * brelse() call.
457 */
458 void
459 xfs_trans_brelse(xfs_trans_t *tp,
460 xfs_buf_t *bp)
461 {
462 xfs_buf_log_item_t *bip;
463
464 /*
465 * Default to a normal brelse() call if the tp is NULL.
466 */
467 if (tp == NULL) {
468 struct xfs_log_item *lip = bp->b_fspriv;
469
470 ASSERT(bp->b_transp == NULL);
471
472 /*
473 * If there's a buf log item attached to the buffer,
474 * then let the AIL know that the buffer is being
475 * unlocked.
476 */
477 if (lip != NULL && lip->li_type == XFS_LI_BUF) {
478 bip = bp->b_fspriv;
479 xfs_trans_unlocked_item(bip->bli_item.li_ailp, lip);
480 }
481 xfs_buf_relse(bp);
482 return;
483 }
484
485 ASSERT(bp->b_transp == tp);
486 bip = bp->b_fspriv;
487 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
488 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
489 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
490 ASSERT(atomic_read(&bip->bli_refcount) > 0);
491
492 trace_xfs_trans_brelse(bip);
493
494 /*
495 * If the release is just for a recursive lock,
496 * then decrement the count and return.
497 */
498 if (bip->bli_recur > 0) {
499 bip->bli_recur--;
500 return;
501 }
502
503 /*
504 * If the buffer is dirty within this transaction, we can't
505 * release it until we commit.
506 */
507 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
508 return;
509
510 /*
511 * If the buffer has been invalidated, then we can't release
512 * it until the transaction commits to disk unless it is re-dirtied
513 * as part of this transaction. This prevents us from pulling
514 * the item from the AIL before we should.
515 */
516 if (bip->bli_flags & XFS_BLI_STALE)
517 return;
518
519 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
520
521 /*
522 * Free up the log item descriptor tracking the released item.
523 */
524 xfs_trans_del_item(&bip->bli_item);
525
526 /*
527 * Clear the hold flag in the buf log item if it is set.
528 * We wouldn't want the next user of the buffer to
529 * get confused.
530 */
531 if (bip->bli_flags & XFS_BLI_HOLD) {
532 bip->bli_flags &= ~XFS_BLI_HOLD;
533 }
534
535 /*
536 * Drop our reference to the buf log item.
537 */
538 atomic_dec(&bip->bli_refcount);
539
540 /*
541 * If the buf item is not tracking data in the log, then
542 * we must free it before releasing the buffer back to the
543 * free pool. Before releasing the buffer to the free pool,
544 * clear the transaction pointer in b_fsprivate2 to dissolve
545 * its relation to this transaction.
546 */
547 if (!xfs_buf_item_dirty(bip)) {
548 /***
549 ASSERT(bp->b_pincount == 0);
550 ***/
551 ASSERT(atomic_read(&bip->bli_refcount) == 0);
552 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
553 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
554 xfs_buf_item_relse(bp);
555 bip = NULL;
556 }
557 bp->b_transp = NULL;
558
559 /*
560 * If we've still got a buf log item on the buffer, then
561 * tell the AIL that the buffer is being unlocked.
562 */
563 if (bip != NULL) {
564 xfs_trans_unlocked_item(bip->bli_item.li_ailp,
565 (xfs_log_item_t*)bip);
566 }
567
568 xfs_buf_relse(bp);
569 return;
570 }
571
572 /*
573 * Mark the buffer as not needing to be unlocked when the buf item's
574 * IOP_UNLOCK() routine is called. The buffer must already be locked
575 * and associated with the given transaction.
576 */
577 /* ARGSUSED */
578 void
579 xfs_trans_bhold(xfs_trans_t *tp,
580 xfs_buf_t *bp)
581 {
582 xfs_buf_log_item_t *bip = bp->b_fspriv;
583
584 ASSERT(XFS_BUF_ISBUSY(bp));
585 ASSERT(bp->b_transp == tp);
586 ASSERT(bip != NULL);
587 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
588 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
589 ASSERT(atomic_read(&bip->bli_refcount) > 0);
590
591 bip->bli_flags |= XFS_BLI_HOLD;
592 trace_xfs_trans_bhold(bip);
593 }
594
595 /*
596 * Cancel the previous buffer hold request made on this buffer
597 * for this transaction.
598 */
599 void
600 xfs_trans_bhold_release(xfs_trans_t *tp,
601 xfs_buf_t *bp)
602 {
603 xfs_buf_log_item_t *bip = bp->b_fspriv;
604
605 ASSERT(XFS_BUF_ISBUSY(bp));
606 ASSERT(bp->b_transp == tp);
607 ASSERT(bip != NULL);
608 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
609 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
610 ASSERT(atomic_read(&bip->bli_refcount) > 0);
611 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
612
613 bip->bli_flags &= ~XFS_BLI_HOLD;
614 trace_xfs_trans_bhold_release(bip);
615 }
616
617 /*
618 * This is called to mark bytes first through last inclusive of the given
619 * buffer as needing to be logged when the transaction is committed.
620 * The buffer must already be associated with the given transaction.
621 *
622 * First and last are numbers relative to the beginning of this buffer,
623 * so the first byte in the buffer is numbered 0 regardless of the
624 * value of b_blkno.
625 */
626 void
627 xfs_trans_log_buf(xfs_trans_t *tp,
628 xfs_buf_t *bp,
629 uint first,
630 uint last)
631 {
632 xfs_buf_log_item_t *bip = bp->b_fspriv;
633
634 ASSERT(XFS_BUF_ISBUSY(bp));
635 ASSERT(bp->b_transp == tp);
636 ASSERT(bip != NULL);
637 ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
638 ASSERT(bp->b_iodone == NULL ||
639 bp->b_iodone == xfs_buf_iodone_callbacks);
640
641 /*
642 * Mark the buffer as needing to be written out eventually,
643 * and set its iodone function to remove the buffer's buf log
644 * item from the AIL and free it when the buffer is flushed
645 * to disk. See xfs_buf_attach_iodone() for more details
646 * on li_cb and xfs_buf_iodone_callbacks().
647 * If we end up aborting this transaction, we trap this buffer
648 * inside the b_bdstrat callback so that this won't get written to
649 * disk.
650 */
651 XFS_BUF_DELAYWRITE(bp);
652 XFS_BUF_DONE(bp);
653
654 ASSERT(atomic_read(&bip->bli_refcount) > 0);
655 bp->b_iodone = xfs_buf_iodone_callbacks;
656 bip->bli_item.li_cb = xfs_buf_iodone;
657
658 trace_xfs_trans_log_buf(bip);
659
660 /*
661 * If we invalidated the buffer within this transaction, then
662 * cancel the invalidation now that we're dirtying the buffer
663 * again. There are no races with the code in xfs_buf_item_unpin(),
664 * because we have a reference to the buffer this entire time.
665 */
666 if (bip->bli_flags & XFS_BLI_STALE) {
667 bip->bli_flags &= ~XFS_BLI_STALE;
668 ASSERT(XFS_BUF_ISSTALE(bp));
669 XFS_BUF_UNSTALE(bp);
670 bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
671 }
672
673 tp->t_flags |= XFS_TRANS_DIRTY;
674 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
675 bip->bli_flags |= XFS_BLI_LOGGED;
676 xfs_buf_item_log(bip, first, last);
677 }
678
679
680 /*
681 * This called to invalidate a buffer that is being used within
682 * a transaction. Typically this is because the blocks in the
683 * buffer are being freed, so we need to prevent it from being
684 * written out when we're done. Allowing it to be written again
685 * might overwrite data in the free blocks if they are reallocated
686 * to a file.
687 *
688 * We prevent the buffer from being written out by clearing the
689 * B_DELWRI flag. We can't always
690 * get rid of the buf log item at this point, though, because
691 * the buffer may still be pinned by another transaction. If that
692 * is the case, then we'll wait until the buffer is committed to
693 * disk for the last time (we can tell by the ref count) and
694 * free it in xfs_buf_item_unpin(). Until it is cleaned up we
695 * will keep the buffer locked so that the buffer and buf log item
696 * are not reused.
697 */
698 void
699 xfs_trans_binval(
700 xfs_trans_t *tp,
701 xfs_buf_t *bp)
702 {
703 xfs_buf_log_item_t *bip = bp->b_fspriv;
704
705 ASSERT(XFS_BUF_ISBUSY(bp));
706 ASSERT(bp->b_transp == tp);
707 ASSERT(bip != NULL);
708 ASSERT(atomic_read(&bip->bli_refcount) > 0);
709
710 trace_xfs_trans_binval(bip);
711
712 if (bip->bli_flags & XFS_BLI_STALE) {
713 /*
714 * If the buffer is already invalidated, then
715 * just return.
716 */
717 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
718 ASSERT(XFS_BUF_ISSTALE(bp));
719 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
720 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
721 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
722 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
723 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
724 return;
725 }
726
727 /*
728 * Clear the dirty bit in the buffer and set the STALE flag
729 * in the buf log item. The STALE flag will be used in
730 * xfs_buf_item_unpin() to determine if it should clean up
731 * when the last reference to the buf item is given up.
732 * We set the XFS_BLF_CANCEL flag in the buf log format structure
733 * and log the buf item. This will be used at recovery time
734 * to determine that copies of the buffer in the log before
735 * this should not be replayed.
736 * We mark the item descriptor and the transaction dirty so
737 * that we'll hold the buffer until after the commit.
738 *
739 * Since we're invalidating the buffer, we also clear the state
740 * about which parts of the buffer have been logged. We also
741 * clear the flag indicating that this is an inode buffer since
742 * the data in the buffer will no longer be valid.
743 *
744 * We set the stale bit in the buffer as well since we're getting
745 * rid of it.
746 */
747 XFS_BUF_UNDELAYWRITE(bp);
748 XFS_BUF_STALE(bp);
749 bip->bli_flags |= XFS_BLI_STALE;
750 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
751 bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
752 bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
753 memset((char *)(bip->bli_format.blf_data_map), 0,
754 (bip->bli_format.blf_map_size * sizeof(uint)));
755 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
756 tp->t_flags |= XFS_TRANS_DIRTY;
757 }
758
759 /*
760 * This call is used to indicate that the buffer contains on-disk inodes which
761 * must be handled specially during recovery. They require special handling
762 * because only the di_next_unlinked from the inodes in the buffer should be
763 * recovered. The rest of the data in the buffer is logged via the inodes
764 * themselves.
765 *
766 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
767 * transferred to the buffer's log format structure so that we'll know what to
768 * do at recovery time.
769 */
770 void
771 xfs_trans_inode_buf(
772 xfs_trans_t *tp,
773 xfs_buf_t *bp)
774 {
775 xfs_buf_log_item_t *bip = bp->b_fspriv;
776
777 ASSERT(XFS_BUF_ISBUSY(bp));
778 ASSERT(bp->b_transp == tp);
779 ASSERT(bip != NULL);
780 ASSERT(atomic_read(&bip->bli_refcount) > 0);
781
782 bip->bli_flags |= XFS_BLI_INODE_BUF;
783 }
784
785 /*
786 * This call is used to indicate that the buffer is going to
787 * be staled and was an inode buffer. This means it gets
788 * special processing during unpin - where any inodes
789 * associated with the buffer should be removed from ail.
790 * There is also special processing during recovery,
791 * any replay of the inodes in the buffer needs to be
792 * prevented as the buffer may have been reused.
793 */
794 void
795 xfs_trans_stale_inode_buf(
796 xfs_trans_t *tp,
797 xfs_buf_t *bp)
798 {
799 xfs_buf_log_item_t *bip = bp->b_fspriv;
800
801 ASSERT(XFS_BUF_ISBUSY(bp));
802 ASSERT(bp->b_transp == tp);
803 ASSERT(bip != NULL);
804 ASSERT(atomic_read(&bip->bli_refcount) > 0);
805
806 bip->bli_flags |= XFS_BLI_STALE_INODE;
807 bip->bli_item.li_cb = xfs_buf_iodone;
808 }
809
810 /*
811 * Mark the buffer as being one which contains newly allocated
812 * inodes. We need to make sure that even if this buffer is
813 * relogged as an 'inode buf' we still recover all of the inode
814 * images in the face of a crash. This works in coordination with
815 * xfs_buf_item_committed() to ensure that the buffer remains in the
816 * AIL at its original location even after it has been relogged.
817 */
818 /* ARGSUSED */
819 void
820 xfs_trans_inode_alloc_buf(
821 xfs_trans_t *tp,
822 xfs_buf_t *bp)
823 {
824 xfs_buf_log_item_t *bip = bp->b_fspriv;
825
826 ASSERT(XFS_BUF_ISBUSY(bp));
827 ASSERT(bp->b_transp == tp);
828 ASSERT(bip != NULL);
829 ASSERT(atomic_read(&bip->bli_refcount) > 0);
830
831 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
832 }
833
834
835 /*
836 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
837 * dquots. However, unlike in inode buffer recovery, dquot buffers get
838 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
839 * The only thing that makes dquot buffers different from regular
840 * buffers is that we must not replay dquot bufs when recovering
841 * if a _corresponding_ quotaoff has happened. We also have to distinguish
842 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
843 * can be turned off independently.
844 */
845 /* ARGSUSED */
846 void
847 xfs_trans_dquot_buf(
848 xfs_trans_t *tp,
849 xfs_buf_t *bp,
850 uint type)
851 {
852 xfs_buf_log_item_t *bip = bp->b_fspriv;
853
854 ASSERT(XFS_BUF_ISBUSY(bp));
855 ASSERT(bp->b_transp == tp);
856 ASSERT(bip != NULL);
857 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
858 type == XFS_BLF_PDQUOT_BUF ||
859 type == XFS_BLF_GDQUOT_BUF);
860 ASSERT(atomic_read(&bip->bli_refcount) > 0);
861
862 bip->bli_format.blf_flags |= type;
863 }