]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
gdbstub: Change gdb_{read,write}_register() argument to CPUState
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "qemu.h"
31 #else
32 #include "monitor/monitor.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #endif
37
38 #define MAX_PACKET_LENGTH 4096
39
40 #include "cpu.h"
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
44
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
47 uint8_t *buf, int len, int is_write)
48 {
49 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
50 }
51 #else
52 /* target_memory_rw_debug() defined in cpu.h */
53 #endif
54
55 enum {
56 GDB_SIGNAL_0 = 0,
57 GDB_SIGNAL_INT = 2,
58 GDB_SIGNAL_QUIT = 3,
59 GDB_SIGNAL_TRAP = 5,
60 GDB_SIGNAL_ABRT = 6,
61 GDB_SIGNAL_ALRM = 14,
62 GDB_SIGNAL_IO = 23,
63 GDB_SIGNAL_XCPU = 24,
64 GDB_SIGNAL_UNKNOWN = 143
65 };
66
67 #ifdef CONFIG_USER_ONLY
68
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
72 */
73
74 static int gdb_signal_table[] = {
75 0,
76 TARGET_SIGHUP,
77 TARGET_SIGINT,
78 TARGET_SIGQUIT,
79 TARGET_SIGILL,
80 TARGET_SIGTRAP,
81 TARGET_SIGABRT,
82 -1, /* SIGEMT */
83 TARGET_SIGFPE,
84 TARGET_SIGKILL,
85 TARGET_SIGBUS,
86 TARGET_SIGSEGV,
87 TARGET_SIGSYS,
88 TARGET_SIGPIPE,
89 TARGET_SIGALRM,
90 TARGET_SIGTERM,
91 TARGET_SIGURG,
92 TARGET_SIGSTOP,
93 TARGET_SIGTSTP,
94 TARGET_SIGCONT,
95 TARGET_SIGCHLD,
96 TARGET_SIGTTIN,
97 TARGET_SIGTTOU,
98 TARGET_SIGIO,
99 TARGET_SIGXCPU,
100 TARGET_SIGXFSZ,
101 TARGET_SIGVTALRM,
102 TARGET_SIGPROF,
103 TARGET_SIGWINCH,
104 -1, /* SIGLOST */
105 TARGET_SIGUSR1,
106 TARGET_SIGUSR2,
107 #ifdef TARGET_SIGPWR
108 TARGET_SIGPWR,
109 #else
110 -1,
111 #endif
112 -1, /* SIGPOLL */
113 -1,
114 -1,
115 -1,
116 -1,
117 -1,
118 -1,
119 -1,
120 -1,
121 -1,
122 -1,
123 -1,
124 #ifdef __SIGRTMIN
125 __SIGRTMIN + 1,
126 __SIGRTMIN + 2,
127 __SIGRTMIN + 3,
128 __SIGRTMIN + 4,
129 __SIGRTMIN + 5,
130 __SIGRTMIN + 6,
131 __SIGRTMIN + 7,
132 __SIGRTMIN + 8,
133 __SIGRTMIN + 9,
134 __SIGRTMIN + 10,
135 __SIGRTMIN + 11,
136 __SIGRTMIN + 12,
137 __SIGRTMIN + 13,
138 __SIGRTMIN + 14,
139 __SIGRTMIN + 15,
140 __SIGRTMIN + 16,
141 __SIGRTMIN + 17,
142 __SIGRTMIN + 18,
143 __SIGRTMIN + 19,
144 __SIGRTMIN + 20,
145 __SIGRTMIN + 21,
146 __SIGRTMIN + 22,
147 __SIGRTMIN + 23,
148 __SIGRTMIN + 24,
149 __SIGRTMIN + 25,
150 __SIGRTMIN + 26,
151 __SIGRTMIN + 27,
152 __SIGRTMIN + 28,
153 __SIGRTMIN + 29,
154 __SIGRTMIN + 30,
155 __SIGRTMIN + 31,
156 -1, /* SIGCANCEL */
157 __SIGRTMIN,
158 __SIGRTMIN + 32,
159 __SIGRTMIN + 33,
160 __SIGRTMIN + 34,
161 __SIGRTMIN + 35,
162 __SIGRTMIN + 36,
163 __SIGRTMIN + 37,
164 __SIGRTMIN + 38,
165 __SIGRTMIN + 39,
166 __SIGRTMIN + 40,
167 __SIGRTMIN + 41,
168 __SIGRTMIN + 42,
169 __SIGRTMIN + 43,
170 __SIGRTMIN + 44,
171 __SIGRTMIN + 45,
172 __SIGRTMIN + 46,
173 __SIGRTMIN + 47,
174 __SIGRTMIN + 48,
175 __SIGRTMIN + 49,
176 __SIGRTMIN + 50,
177 __SIGRTMIN + 51,
178 __SIGRTMIN + 52,
179 __SIGRTMIN + 53,
180 __SIGRTMIN + 54,
181 __SIGRTMIN + 55,
182 __SIGRTMIN + 56,
183 __SIGRTMIN + 57,
184 __SIGRTMIN + 58,
185 __SIGRTMIN + 59,
186 __SIGRTMIN + 60,
187 __SIGRTMIN + 61,
188 __SIGRTMIN + 62,
189 __SIGRTMIN + 63,
190 __SIGRTMIN + 64,
191 __SIGRTMIN + 65,
192 __SIGRTMIN + 66,
193 __SIGRTMIN + 67,
194 __SIGRTMIN + 68,
195 __SIGRTMIN + 69,
196 __SIGRTMIN + 70,
197 __SIGRTMIN + 71,
198 __SIGRTMIN + 72,
199 __SIGRTMIN + 73,
200 __SIGRTMIN + 74,
201 __SIGRTMIN + 75,
202 __SIGRTMIN + 76,
203 __SIGRTMIN + 77,
204 __SIGRTMIN + 78,
205 __SIGRTMIN + 79,
206 __SIGRTMIN + 80,
207 __SIGRTMIN + 81,
208 __SIGRTMIN + 82,
209 __SIGRTMIN + 83,
210 __SIGRTMIN + 84,
211 __SIGRTMIN + 85,
212 __SIGRTMIN + 86,
213 __SIGRTMIN + 87,
214 __SIGRTMIN + 88,
215 __SIGRTMIN + 89,
216 __SIGRTMIN + 90,
217 __SIGRTMIN + 91,
218 __SIGRTMIN + 92,
219 __SIGRTMIN + 93,
220 __SIGRTMIN + 94,
221 __SIGRTMIN + 95,
222 -1, /* SIGINFO */
223 -1, /* UNKNOWN */
224 -1, /* DEFAULT */
225 -1,
226 -1,
227 -1,
228 -1,
229 -1,
230 -1
231 #endif
232 };
233 #else
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
236
237 enum {
238 TARGET_SIGINT = 2,
239 TARGET_SIGTRAP = 5
240 };
241
242 static int gdb_signal_table[] = {
243 -1,
244 -1,
245 TARGET_SIGINT,
246 -1,
247 -1,
248 TARGET_SIGTRAP
249 };
250 #endif
251
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig)
254 {
255 int i;
256 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
257 if (gdb_signal_table[i] == sig)
258 return i;
259 return GDB_SIGNAL_UNKNOWN;
260 }
261 #endif
262
263 static int gdb_signal_to_target (int sig)
264 {
265 if (sig < ARRAY_SIZE (gdb_signal_table))
266 return gdb_signal_table[sig];
267 else
268 return -1;
269 }
270
271 //#define DEBUG_GDB
272
273 typedef struct GDBRegisterState {
274 int base_reg;
275 int num_regs;
276 gdb_reg_cb get_reg;
277 gdb_reg_cb set_reg;
278 const char *xml;
279 struct GDBRegisterState *next;
280 } GDBRegisterState;
281
282 enum RSState {
283 RS_INACTIVE,
284 RS_IDLE,
285 RS_GETLINE,
286 RS_CHKSUM1,
287 RS_CHKSUM2,
288 };
289 typedef struct GDBState {
290 CPUArchState *c_cpu; /* current CPU for step/continue ops */
291 CPUArchState *g_cpu; /* current CPU for other ops */
292 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
293 enum RSState state; /* parsing state */
294 char line_buf[MAX_PACKET_LENGTH];
295 int line_buf_index;
296 int line_csum;
297 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
298 int last_packet_len;
299 int signal;
300 #ifdef CONFIG_USER_ONLY
301 int fd;
302 int running_state;
303 #else
304 CharDriverState *chr;
305 CharDriverState *mon_chr;
306 #endif
307 char syscall_buf[256];
308 gdb_syscall_complete_cb current_syscall_cb;
309 } GDBState;
310
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
313 */
314 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
315
316 static GDBState *gdbserver_state;
317
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml;
322
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd = -1;
326
327 static int get_char(GDBState *s)
328 {
329 uint8_t ch;
330 int ret;
331
332 for(;;) {
333 ret = qemu_recv(s->fd, &ch, 1, 0);
334 if (ret < 0) {
335 if (errno == ECONNRESET)
336 s->fd = -1;
337 if (errno != EINTR && errno != EAGAIN)
338 return -1;
339 } else if (ret == 0) {
340 close(s->fd);
341 s->fd = -1;
342 return -1;
343 } else {
344 break;
345 }
346 }
347 return ch;
348 }
349 #endif
350
351 static enum {
352 GDB_SYS_UNKNOWN,
353 GDB_SYS_ENABLED,
354 GDB_SYS_DISABLED,
355 } gdb_syscall_mode;
356
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
360 {
361 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
362 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
363 : GDB_SYS_DISABLED);
364 }
365 return gdb_syscall_mode == GDB_SYS_ENABLED;
366 }
367
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState *s)
370 {
371 #ifdef CONFIG_USER_ONLY
372 s->running_state = 1;
373 #else
374 if (runstate_check(RUN_STATE_GUEST_PANICKED)) {
375 runstate_set(RUN_STATE_DEBUG);
376 }
377 if (!runstate_needs_reset()) {
378 vm_start();
379 }
380 #endif
381 }
382
383 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
384 {
385 #ifdef CONFIG_USER_ONLY
386 int ret;
387
388 while (len > 0) {
389 ret = send(s->fd, buf, len, 0);
390 if (ret < 0) {
391 if (errno != EINTR && errno != EAGAIN)
392 return;
393 } else {
394 buf += ret;
395 len -= ret;
396 }
397 }
398 #else
399 qemu_chr_fe_write(s->chr, buf, len);
400 #endif
401 }
402
403 static inline int fromhex(int v)
404 {
405 if (v >= '0' && v <= '9')
406 return v - '0';
407 else if (v >= 'A' && v <= 'F')
408 return v - 'A' + 10;
409 else if (v >= 'a' && v <= 'f')
410 return v - 'a' + 10;
411 else
412 return 0;
413 }
414
415 static inline int tohex(int v)
416 {
417 if (v < 10)
418 return v + '0';
419 else
420 return v - 10 + 'a';
421 }
422
423 static void memtohex(char *buf, const uint8_t *mem, int len)
424 {
425 int i, c;
426 char *q;
427 q = buf;
428 for(i = 0; i < len; i++) {
429 c = mem[i];
430 *q++ = tohex(c >> 4);
431 *q++ = tohex(c & 0xf);
432 }
433 *q = '\0';
434 }
435
436 static void hextomem(uint8_t *mem, const char *buf, int len)
437 {
438 int i;
439
440 for(i = 0; i < len; i++) {
441 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
442 buf += 2;
443 }
444 }
445
446 /* return -1 if error, 0 if OK */
447 static int put_packet_binary(GDBState *s, const char *buf, int len)
448 {
449 int csum, i;
450 uint8_t *p;
451
452 for(;;) {
453 p = s->last_packet;
454 *(p++) = '$';
455 memcpy(p, buf, len);
456 p += len;
457 csum = 0;
458 for(i = 0; i < len; i++) {
459 csum += buf[i];
460 }
461 *(p++) = '#';
462 *(p++) = tohex((csum >> 4) & 0xf);
463 *(p++) = tohex((csum) & 0xf);
464
465 s->last_packet_len = p - s->last_packet;
466 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
467
468 #ifdef CONFIG_USER_ONLY
469 i = get_char(s);
470 if (i < 0)
471 return -1;
472 if (i == '+')
473 break;
474 #else
475 break;
476 #endif
477 }
478 return 0;
479 }
480
481 /* return -1 if error, 0 if OK */
482 static int put_packet(GDBState *s, const char *buf)
483 {
484 #ifdef DEBUG_GDB
485 printf("reply='%s'\n", buf);
486 #endif
487
488 return put_packet_binary(s, buf, strlen(buf));
489 }
490
491 /* The GDB remote protocol transfers values in target byte order. This means
492 we can use the raw memory access routines to access the value buffer.
493 Conveniently, these also handle the case where the buffer is mis-aligned.
494 */
495 #define GET_REG8(val) do { \
496 stb_p(mem_buf, val); \
497 return 1; \
498 } while(0)
499 #define GET_REG16(val) do { \
500 stw_p(mem_buf, val); \
501 return 2; \
502 } while(0)
503 #define GET_REG32(val) do { \
504 stl_p(mem_buf, val); \
505 return 4; \
506 } while(0)
507 #define GET_REG64(val) do { \
508 stq_p(mem_buf, val); \
509 return 8; \
510 } while(0)
511
512 #if TARGET_LONG_BITS == 64
513 #define GET_REGL(val) GET_REG64(val)
514 #define ldtul_p(addr) ldq_p(addr)
515 #else
516 #define GET_REGL(val) GET_REG32(val)
517 #define ldtul_p(addr) ldl_p(addr)
518 #endif
519
520 #if defined(TARGET_I386)
521
522 #ifdef TARGET_X86_64
523 static const int gpr_map[16] = {
524 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
525 8, 9, 10, 11, 12, 13, 14, 15
526 };
527 #else
528 #define gpr_map gpr_map32
529 #endif
530 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
531
532 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
533
534 #define IDX_IP_REG CPU_NB_REGS
535 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
536 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
537 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
538 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
539 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
540
541 static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
542 {
543 if (n < CPU_NB_REGS) {
544 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
545 GET_REG64(env->regs[gpr_map[n]]);
546 } else if (n < CPU_NB_REGS32) {
547 GET_REG32(env->regs[gpr_map32[n]]);
548 }
549 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
550 #ifdef USE_X86LDOUBLE
551 /* FIXME: byteswap float values - after fixing fpregs layout. */
552 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
553 #else
554 memset(mem_buf, 0, 10);
555 #endif
556 return 10;
557 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
558 n -= IDX_XMM_REGS;
559 if (n < CPU_NB_REGS32 ||
560 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
561 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
562 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
563 return 16;
564 }
565 } else {
566 switch (n) {
567 case IDX_IP_REG:
568 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
569 GET_REG64(env->eip);
570 } else {
571 GET_REG32(env->eip);
572 }
573 case IDX_FLAGS_REG: GET_REG32(env->eflags);
574
575 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
576 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
577 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
578 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
579 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
580 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
581
582 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
583 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
584 (env->fpstt & 0x7) << 11);
585 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
586 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
587 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
588 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
589 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
590 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
591
592 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
593 }
594 }
595 return 0;
596 }
597
598 static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
599 {
600 uint16_t selector = ldl_p(mem_buf);
601
602 if (selector != env->segs[sreg].selector) {
603 #if defined(CONFIG_USER_ONLY)
604 cpu_x86_load_seg(env, sreg, selector);
605 #else
606 unsigned int limit, flags;
607 target_ulong base;
608
609 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
610 base = selector << 4;
611 limit = 0xffff;
612 flags = 0;
613 } else {
614 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
615 return 4;
616 }
617 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
618 #endif
619 }
620 return 4;
621 }
622
623 static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
624 {
625 uint32_t tmp;
626
627 if (n < CPU_NB_REGS) {
628 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
629 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
630 return sizeof(target_ulong);
631 } else if (n < CPU_NB_REGS32) {
632 n = gpr_map32[n];
633 env->regs[n] &= ~0xffffffffUL;
634 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
635 return 4;
636 }
637 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
638 #ifdef USE_X86LDOUBLE
639 /* FIXME: byteswap float values - after fixing fpregs layout. */
640 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
641 #endif
642 return 10;
643 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
644 n -= IDX_XMM_REGS;
645 if (n < CPU_NB_REGS32 ||
646 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
647 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
648 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
649 return 16;
650 }
651 } else {
652 switch (n) {
653 case IDX_IP_REG:
654 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
655 env->eip = ldq_p(mem_buf);
656 return 8;
657 } else {
658 env->eip &= ~0xffffffffUL;
659 env->eip |= (uint32_t)ldl_p(mem_buf);
660 return 4;
661 }
662 case IDX_FLAGS_REG:
663 env->eflags = ldl_p(mem_buf);
664 return 4;
665
666 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
667 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
668 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
669 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
670 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
671 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
672
673 case IDX_FP_REGS + 8:
674 env->fpuc = ldl_p(mem_buf);
675 return 4;
676 case IDX_FP_REGS + 9:
677 tmp = ldl_p(mem_buf);
678 env->fpstt = (tmp >> 11) & 7;
679 env->fpus = tmp & ~0x3800;
680 return 4;
681 case IDX_FP_REGS + 10: /* ftag */ return 4;
682 case IDX_FP_REGS + 11: /* fiseg */ return 4;
683 case IDX_FP_REGS + 12: /* fioff */ return 4;
684 case IDX_FP_REGS + 13: /* foseg */ return 4;
685 case IDX_FP_REGS + 14: /* fooff */ return 4;
686 case IDX_FP_REGS + 15: /* fop */ return 4;
687
688 case IDX_MXCSR_REG:
689 env->mxcsr = ldl_p(mem_buf);
690 return 4;
691 }
692 }
693 /* Unrecognised register. */
694 return 0;
695 }
696
697 #elif defined (TARGET_PPC)
698
699 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
700 expects whatever the target description contains. Due to a
701 historical mishap the FP registers appear in between core integer
702 regs and PC, MSR, CR, and so forth. We hack round this by giving the
703 FP regs zero size when talking to a newer gdb. */
704 #define NUM_CORE_REGS 71
705 #if defined (TARGET_PPC64)
706 #define GDB_CORE_XML "power64-core.xml"
707 #else
708 #define GDB_CORE_XML "power-core.xml"
709 #endif
710
711 static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
712 {
713 if (n < 32) {
714 /* gprs */
715 GET_REGL(env->gpr[n]);
716 } else if (n < 64) {
717 /* fprs */
718 if (gdb_has_xml)
719 return 0;
720 stfq_p(mem_buf, env->fpr[n-32]);
721 return 8;
722 } else {
723 switch (n) {
724 case 64: GET_REGL(env->nip);
725 case 65: GET_REGL(env->msr);
726 case 66:
727 {
728 uint32_t cr = 0;
729 int i;
730 for (i = 0; i < 8; i++)
731 cr |= env->crf[i] << (32 - ((i + 1) * 4));
732 GET_REG32(cr);
733 }
734 case 67: GET_REGL(env->lr);
735 case 68: GET_REGL(env->ctr);
736 case 69: GET_REGL(env->xer);
737 case 70:
738 {
739 if (gdb_has_xml)
740 return 0;
741 GET_REG32(env->fpscr);
742 }
743 }
744 }
745 return 0;
746 }
747
748 static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
749 {
750 if (n < 32) {
751 /* gprs */
752 env->gpr[n] = ldtul_p(mem_buf);
753 return sizeof(target_ulong);
754 } else if (n < 64) {
755 /* fprs */
756 if (gdb_has_xml)
757 return 0;
758 env->fpr[n-32] = ldfq_p(mem_buf);
759 return 8;
760 } else {
761 switch (n) {
762 case 64:
763 env->nip = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 65:
766 ppc_store_msr(env, ldtul_p(mem_buf));
767 return sizeof(target_ulong);
768 case 66:
769 {
770 uint32_t cr = ldl_p(mem_buf);
771 int i;
772 for (i = 0; i < 8; i++)
773 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
774 return 4;
775 }
776 case 67:
777 env->lr = ldtul_p(mem_buf);
778 return sizeof(target_ulong);
779 case 68:
780 env->ctr = ldtul_p(mem_buf);
781 return sizeof(target_ulong);
782 case 69:
783 env->xer = ldtul_p(mem_buf);
784 return sizeof(target_ulong);
785 case 70:
786 /* fpscr */
787 if (gdb_has_xml)
788 return 0;
789 store_fpscr(env, ldtul_p(mem_buf), 0xffffffff);
790 return sizeof(target_ulong);
791 }
792 }
793 return 0;
794 }
795
796 #elif defined (TARGET_SPARC)
797
798 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
799 #define NUM_CORE_REGS 86
800 #else
801 #define NUM_CORE_REGS 72
802 #endif
803
804 #ifdef TARGET_ABI32
805 #define GET_REGA(val) GET_REG32(val)
806 #else
807 #define GET_REGA(val) GET_REGL(val)
808 #endif
809
810 static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
811 {
812 if (n < 8) {
813 /* g0..g7 */
814 GET_REGA(env->gregs[n]);
815 }
816 if (n < 32) {
817 /* register window */
818 GET_REGA(env->regwptr[n - 8]);
819 }
820 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
821 if (n < 64) {
822 /* fprs */
823 if (n & 1) {
824 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
825 } else {
826 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
827 }
828 }
829 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
830 switch (n) {
831 case 64: GET_REGA(env->y);
832 case 65: GET_REGA(cpu_get_psr(env));
833 case 66: GET_REGA(env->wim);
834 case 67: GET_REGA(env->tbr);
835 case 68: GET_REGA(env->pc);
836 case 69: GET_REGA(env->npc);
837 case 70: GET_REGA(env->fsr);
838 case 71: GET_REGA(0); /* csr */
839 default: GET_REGA(0);
840 }
841 #else
842 if (n < 64) {
843 /* f0-f31 */
844 if (n & 1) {
845 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
846 } else {
847 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
848 }
849 }
850 if (n < 80) {
851 /* f32-f62 (double width, even numbers only) */
852 GET_REG64(env->fpr[(n - 32) / 2].ll);
853 }
854 switch (n) {
855 case 80: GET_REGL(env->pc);
856 case 81: GET_REGL(env->npc);
857 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
858 ((env->asi & 0xff) << 24) |
859 ((env->pstate & 0xfff) << 8) |
860 cpu_get_cwp64(env));
861 case 83: GET_REGL(env->fsr);
862 case 84: GET_REGL(env->fprs);
863 case 85: GET_REGL(env->y);
864 }
865 #endif
866 return 0;
867 }
868
869 static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
870 {
871 #if defined(TARGET_ABI32)
872 abi_ulong tmp;
873
874 tmp = ldl_p(mem_buf);
875 #else
876 target_ulong tmp;
877
878 tmp = ldtul_p(mem_buf);
879 #endif
880
881 if (n < 8) {
882 /* g0..g7 */
883 env->gregs[n] = tmp;
884 } else if (n < 32) {
885 /* register window */
886 env->regwptr[n - 8] = tmp;
887 }
888 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
889 else if (n < 64) {
890 /* fprs */
891 /* f0-f31 */
892 if (n & 1) {
893 env->fpr[(n - 32) / 2].l.lower = tmp;
894 } else {
895 env->fpr[(n - 32) / 2].l.upper = tmp;
896 }
897 } else {
898 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
899 switch (n) {
900 case 64: env->y = tmp; break;
901 case 65: cpu_put_psr(env, tmp); break;
902 case 66: env->wim = tmp; break;
903 case 67: env->tbr = tmp; break;
904 case 68: env->pc = tmp; break;
905 case 69: env->npc = tmp; break;
906 case 70: env->fsr = tmp; break;
907 default: return 0;
908 }
909 }
910 return 4;
911 #else
912 else if (n < 64) {
913 /* f0-f31 */
914 tmp = ldl_p(mem_buf);
915 if (n & 1) {
916 env->fpr[(n - 32) / 2].l.lower = tmp;
917 } else {
918 env->fpr[(n - 32) / 2].l.upper = tmp;
919 }
920 return 4;
921 } else if (n < 80) {
922 /* f32-f62 (double width, even numbers only) */
923 env->fpr[(n - 32) / 2].ll = tmp;
924 } else {
925 switch (n) {
926 case 80: env->pc = tmp; break;
927 case 81: env->npc = tmp; break;
928 case 82:
929 cpu_put_ccr(env, tmp >> 32);
930 env->asi = (tmp >> 24) & 0xff;
931 env->pstate = (tmp >> 8) & 0xfff;
932 cpu_put_cwp64(env, tmp & 0xff);
933 break;
934 case 83: env->fsr = tmp; break;
935 case 84: env->fprs = tmp; break;
936 case 85: env->y = tmp; break;
937 default: return 0;
938 }
939 }
940 return 8;
941 #endif
942 }
943 #elif defined (TARGET_ARM)
944
945 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
946 whatever the target description contains. Due to a historical mishap
947 the FPA registers appear in between core integer regs and the CPSR.
948 We hack round this by giving the FPA regs zero size when talking to a
949 newer gdb. */
950 #define NUM_CORE_REGS 26
951 #define GDB_CORE_XML "arm-core.xml"
952
953 static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
954 {
955 if (n < 16) {
956 /* Core integer register. */
957 GET_REG32(env->regs[n]);
958 }
959 if (n < 24) {
960 /* FPA registers. */
961 if (gdb_has_xml)
962 return 0;
963 memset(mem_buf, 0, 12);
964 return 12;
965 }
966 switch (n) {
967 case 24:
968 /* FPA status register. */
969 if (gdb_has_xml)
970 return 0;
971 GET_REG32(0);
972 case 25:
973 /* CPSR */
974 GET_REG32(cpsr_read(env));
975 }
976 /* Unknown register. */
977 return 0;
978 }
979
980 static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
981 {
982 uint32_t tmp;
983
984 tmp = ldl_p(mem_buf);
985
986 /* Mask out low bit of PC to workaround gdb bugs. This will probably
987 cause problems if we ever implement the Jazelle DBX extensions. */
988 if (n == 15)
989 tmp &= ~1;
990
991 if (n < 16) {
992 /* Core integer register. */
993 env->regs[n] = tmp;
994 return 4;
995 }
996 if (n < 24) { /* 16-23 */
997 /* FPA registers (ignored). */
998 if (gdb_has_xml)
999 return 0;
1000 return 12;
1001 }
1002 switch (n) {
1003 case 24:
1004 /* FPA status register (ignored). */
1005 if (gdb_has_xml)
1006 return 0;
1007 return 4;
1008 case 25:
1009 /* CPSR */
1010 cpsr_write (env, tmp, 0xffffffff);
1011 return 4;
1012 }
1013 /* Unknown register. */
1014 return 0;
1015 }
1016
1017 #elif defined (TARGET_M68K)
1018
1019 #define NUM_CORE_REGS 18
1020
1021 #define GDB_CORE_XML "cf-core.xml"
1022
1023 static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1024 {
1025 if (n < 8) {
1026 /* D0-D7 */
1027 GET_REG32(env->dregs[n]);
1028 } else if (n < 16) {
1029 /* A0-A7 */
1030 GET_REG32(env->aregs[n - 8]);
1031 } else {
1032 switch (n) {
1033 case 16: GET_REG32(env->sr);
1034 case 17: GET_REG32(env->pc);
1035 }
1036 }
1037 /* FP registers not included here because they vary between
1038 ColdFire and m68k. Use XML bits for these. */
1039 return 0;
1040 }
1041
1042 static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1043 {
1044 uint32_t tmp;
1045
1046 tmp = ldl_p(mem_buf);
1047
1048 if (n < 8) {
1049 /* D0-D7 */
1050 env->dregs[n] = tmp;
1051 } else if (n < 16) {
1052 /* A0-A7 */
1053 env->aregs[n - 8] = tmp;
1054 } else {
1055 switch (n) {
1056 case 16: env->sr = tmp; break;
1057 case 17: env->pc = tmp; break;
1058 default: return 0;
1059 }
1060 }
1061 return 4;
1062 }
1063 #elif defined (TARGET_MIPS)
1064
1065 #define NUM_CORE_REGS 73
1066
1067 static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1068 {
1069 if (n < 32) {
1070 GET_REGL(env->active_tc.gpr[n]);
1071 }
1072 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1073 if (n >= 38 && n < 70) {
1074 if (env->CP0_Status & (1 << CP0St_FR))
1075 GET_REGL(env->active_fpu.fpr[n - 38].d);
1076 else
1077 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1078 }
1079 switch (n) {
1080 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1081 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1082 }
1083 }
1084 switch (n) {
1085 case 32: GET_REGL((int32_t)env->CP0_Status);
1086 case 33: GET_REGL(env->active_tc.LO[0]);
1087 case 34: GET_REGL(env->active_tc.HI[0]);
1088 case 35: GET_REGL(env->CP0_BadVAddr);
1089 case 36: GET_REGL((int32_t)env->CP0_Cause);
1090 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1091 case 72: GET_REGL(0); /* fp */
1092 case 89: GET_REGL((int32_t)env->CP0_PRid);
1093 }
1094 if (n >= 73 && n <= 88) {
1095 /* 16 embedded regs. */
1096 GET_REGL(0);
1097 }
1098
1099 return 0;
1100 }
1101
1102 /* convert MIPS rounding mode in FCR31 to IEEE library */
1103 static unsigned int ieee_rm[] =
1104 {
1105 float_round_nearest_even,
1106 float_round_to_zero,
1107 float_round_up,
1108 float_round_down
1109 };
1110 #define RESTORE_ROUNDING_MODE \
1111 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1112
1113 static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1114 {
1115 target_ulong tmp;
1116
1117 tmp = ldtul_p(mem_buf);
1118
1119 if (n < 32) {
1120 env->active_tc.gpr[n] = tmp;
1121 return sizeof(target_ulong);
1122 }
1123 if (env->CP0_Config1 & (1 << CP0C1_FP)
1124 && n >= 38 && n < 73) {
1125 if (n < 70) {
1126 if (env->CP0_Status & (1 << CP0St_FR))
1127 env->active_fpu.fpr[n - 38].d = tmp;
1128 else
1129 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1130 }
1131 switch (n) {
1132 case 70:
1133 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1134 /* set rounding mode */
1135 RESTORE_ROUNDING_MODE;
1136 break;
1137 case 71: env->active_fpu.fcr0 = tmp; break;
1138 }
1139 return sizeof(target_ulong);
1140 }
1141 switch (n) {
1142 case 32: env->CP0_Status = tmp; break;
1143 case 33: env->active_tc.LO[0] = tmp; break;
1144 case 34: env->active_tc.HI[0] = tmp; break;
1145 case 35: env->CP0_BadVAddr = tmp; break;
1146 case 36: env->CP0_Cause = tmp; break;
1147 case 37:
1148 env->active_tc.PC = tmp & ~(target_ulong)1;
1149 if (tmp & 1) {
1150 env->hflags |= MIPS_HFLAG_M16;
1151 } else {
1152 env->hflags &= ~(MIPS_HFLAG_M16);
1153 }
1154 break;
1155 case 72: /* fp, ignored */ break;
1156 default:
1157 if (n > 89)
1158 return 0;
1159 /* Other registers are readonly. Ignore writes. */
1160 break;
1161 }
1162
1163 return sizeof(target_ulong);
1164 }
1165 #elif defined(TARGET_OPENRISC)
1166
1167 #define NUM_CORE_REGS (32 + 3)
1168
1169 static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n)
1170 {
1171 if (n < 32) {
1172 GET_REG32(env->gpr[n]);
1173 } else {
1174 switch (n) {
1175 case 32: /* PPC */
1176 GET_REG32(env->ppc);
1177 break;
1178
1179 case 33: /* NPC */
1180 GET_REG32(env->npc);
1181 break;
1182
1183 case 34: /* SR */
1184 GET_REG32(env->sr);
1185 break;
1186
1187 default:
1188 break;
1189 }
1190 }
1191 return 0;
1192 }
1193
1194 static int cpu_gdb_write_register(CPUOpenRISCState *env,
1195 uint8_t *mem_buf, int n)
1196 {
1197 uint32_t tmp;
1198
1199 if (n > NUM_CORE_REGS) {
1200 return 0;
1201 }
1202
1203 tmp = ldl_p(mem_buf);
1204
1205 if (n < 32) {
1206 env->gpr[n] = tmp;
1207 } else {
1208 switch (n) {
1209 case 32: /* PPC */
1210 env->ppc = tmp;
1211 break;
1212
1213 case 33: /* NPC */
1214 env->npc = tmp;
1215 break;
1216
1217 case 34: /* SR */
1218 env->sr = tmp;
1219 break;
1220
1221 default:
1222 break;
1223 }
1224 }
1225 return 4;
1226 }
1227 #elif defined (TARGET_SH4)
1228
1229 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1230 /* FIXME: We should use XML for this. */
1231
1232 #define NUM_CORE_REGS 59
1233
1234 static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1235 {
1236 switch (n) {
1237 case 0 ... 7:
1238 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1239 GET_REGL(env->gregs[n + 16]);
1240 } else {
1241 GET_REGL(env->gregs[n]);
1242 }
1243 case 8 ... 15:
1244 GET_REGL(env->gregs[n]);
1245 case 16:
1246 GET_REGL(env->pc);
1247 case 17:
1248 GET_REGL(env->pr);
1249 case 18:
1250 GET_REGL(env->gbr);
1251 case 19:
1252 GET_REGL(env->vbr);
1253 case 20:
1254 GET_REGL(env->mach);
1255 case 21:
1256 GET_REGL(env->macl);
1257 case 22:
1258 GET_REGL(env->sr);
1259 case 23:
1260 GET_REGL(env->fpul);
1261 case 24:
1262 GET_REGL(env->fpscr);
1263 case 25 ... 40:
1264 if (env->fpscr & FPSCR_FR) {
1265 stfl_p(mem_buf, env->fregs[n - 9]);
1266 } else {
1267 stfl_p(mem_buf, env->fregs[n - 25]);
1268 }
1269 return 4;
1270 case 41:
1271 GET_REGL(env->ssr);
1272 case 42:
1273 GET_REGL(env->spc);
1274 case 43 ... 50:
1275 GET_REGL(env->gregs[n - 43]);
1276 case 51 ... 58:
1277 GET_REGL(env->gregs[n - (51 - 16)]);
1278 }
1279
1280 return 0;
1281 }
1282
1283 static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1284 {
1285 switch (n) {
1286 case 0 ... 7:
1287 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1288 env->gregs[n + 16] = ldl_p(mem_buf);
1289 } else {
1290 env->gregs[n] = ldl_p(mem_buf);
1291 }
1292 break;
1293 case 8 ... 15:
1294 env->gregs[n] = ldl_p(mem_buf);
1295 break;
1296 case 16:
1297 env->pc = ldl_p(mem_buf);
1298 break;
1299 case 17:
1300 env->pr = ldl_p(mem_buf);
1301 break;
1302 case 18:
1303 env->gbr = ldl_p(mem_buf);
1304 break;
1305 case 19:
1306 env->vbr = ldl_p(mem_buf);
1307 break;
1308 case 20:
1309 env->mach = ldl_p(mem_buf);
1310 break;
1311 case 21:
1312 env->macl = ldl_p(mem_buf);
1313 break;
1314 case 22:
1315 env->sr = ldl_p(mem_buf);
1316 break;
1317 case 23:
1318 env->fpul = ldl_p(mem_buf);
1319 break;
1320 case 24:
1321 env->fpscr = ldl_p(mem_buf);
1322 break;
1323 case 25 ... 40:
1324 if (env->fpscr & FPSCR_FR) {
1325 env->fregs[n - 9] = ldfl_p(mem_buf);
1326 } else {
1327 env->fregs[n - 25] = ldfl_p(mem_buf);
1328 }
1329 break;
1330 case 41:
1331 env->ssr = ldl_p(mem_buf);
1332 break;
1333 case 42:
1334 env->spc = ldl_p(mem_buf);
1335 break;
1336 case 43 ... 50:
1337 env->gregs[n - 43] = ldl_p(mem_buf);
1338 break;
1339 case 51 ... 58:
1340 env->gregs[n - (51 - 16)] = ldl_p(mem_buf);
1341 break;
1342 default: return 0;
1343 }
1344
1345 return 4;
1346 }
1347 #elif defined (TARGET_MICROBLAZE)
1348
1349 #define NUM_CORE_REGS (32 + 5)
1350
1351 static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1352 {
1353 if (n < 32) {
1354 GET_REG32(env->regs[n]);
1355 } else {
1356 GET_REG32(env->sregs[n - 32]);
1357 }
1358 return 0;
1359 }
1360
1361 static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1362 {
1363 uint32_t tmp;
1364
1365 if (n > NUM_CORE_REGS)
1366 return 0;
1367
1368 tmp = ldl_p(mem_buf);
1369
1370 if (n < 32) {
1371 env->regs[n] = tmp;
1372 } else {
1373 env->sregs[n - 32] = tmp;
1374 }
1375 return 4;
1376 }
1377 #elif defined (TARGET_CRIS)
1378
1379 #define NUM_CORE_REGS 49
1380
1381 static int
1382 read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1383 {
1384 if (n < 15) {
1385 GET_REG32(env->regs[n]);
1386 }
1387
1388 if (n == 15) {
1389 GET_REG32(env->pc);
1390 }
1391
1392 if (n < 32) {
1393 switch (n) {
1394 case 16:
1395 GET_REG8(env->pregs[n - 16]);
1396 break;
1397 case 17:
1398 GET_REG8(env->pregs[n - 16]);
1399 break;
1400 case 20:
1401 case 21:
1402 GET_REG16(env->pregs[n - 16]);
1403 break;
1404 default:
1405 if (n >= 23) {
1406 GET_REG32(env->pregs[n - 16]);
1407 }
1408 break;
1409 }
1410 }
1411 return 0;
1412 }
1413
1414 static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1415 {
1416 uint8_t srs;
1417
1418 if (env->pregs[PR_VR] < 32)
1419 return read_register_crisv10(env, mem_buf, n);
1420
1421 srs = env->pregs[PR_SRS];
1422 if (n < 16) {
1423 GET_REG32(env->regs[n]);
1424 }
1425
1426 if (n >= 21 && n < 32) {
1427 GET_REG32(env->pregs[n - 16]);
1428 }
1429 if (n >= 33 && n < 49) {
1430 GET_REG32(env->sregs[srs][n - 33]);
1431 }
1432 switch (n) {
1433 case 16: GET_REG8(env->pregs[0]);
1434 case 17: GET_REG8(env->pregs[1]);
1435 case 18: GET_REG32(env->pregs[2]);
1436 case 19: GET_REG8(srs);
1437 case 20: GET_REG16(env->pregs[4]);
1438 case 32: GET_REG32(env->pc);
1439 }
1440
1441 return 0;
1442 }
1443
1444 static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1445 {
1446 uint32_t tmp;
1447
1448 if (n > 49)
1449 return 0;
1450
1451 tmp = ldl_p(mem_buf);
1452
1453 if (n < 16) {
1454 env->regs[n] = tmp;
1455 }
1456
1457 if (n >= 21 && n < 32) {
1458 env->pregs[n - 16] = tmp;
1459 }
1460
1461 /* FIXME: Should support function regs be writable? */
1462 switch (n) {
1463 case 16: return 1;
1464 case 17: return 1;
1465 case 18: env->pregs[PR_PID] = tmp; break;
1466 case 19: return 1;
1467 case 20: return 2;
1468 case 32: env->pc = tmp; break;
1469 }
1470
1471 return 4;
1472 }
1473 #elif defined (TARGET_ALPHA)
1474
1475 #define NUM_CORE_REGS 67
1476
1477 static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1478 {
1479 uint64_t val;
1480 CPU_DoubleU d;
1481
1482 switch (n) {
1483 case 0 ... 30:
1484 val = env->ir[n];
1485 break;
1486 case 32 ... 62:
1487 d.d = env->fir[n - 32];
1488 val = d.ll;
1489 break;
1490 case 63:
1491 val = cpu_alpha_load_fpcr(env);
1492 break;
1493 case 64:
1494 val = env->pc;
1495 break;
1496 case 66:
1497 val = env->unique;
1498 break;
1499 case 31:
1500 case 65:
1501 /* 31 really is the zero register; 65 is unassigned in the
1502 gdb protocol, but is still required to occupy 8 bytes. */
1503 val = 0;
1504 break;
1505 default:
1506 return 0;
1507 }
1508 GET_REGL(val);
1509 }
1510
1511 static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1512 {
1513 target_ulong tmp = ldtul_p(mem_buf);
1514 CPU_DoubleU d;
1515
1516 switch (n) {
1517 case 0 ... 30:
1518 env->ir[n] = tmp;
1519 break;
1520 case 32 ... 62:
1521 d.ll = tmp;
1522 env->fir[n - 32] = d.d;
1523 break;
1524 case 63:
1525 cpu_alpha_store_fpcr(env, tmp);
1526 break;
1527 case 64:
1528 env->pc = tmp;
1529 break;
1530 case 66:
1531 env->unique = tmp;
1532 break;
1533 case 31:
1534 case 65:
1535 /* 31 really is the zero register; 65 is unassigned in the
1536 gdb protocol, but is still required to occupy 8 bytes. */
1537 break;
1538 default:
1539 return 0;
1540 }
1541 return 8;
1542 }
1543 #elif defined (TARGET_S390X)
1544
1545 #define NUM_CORE_REGS S390_NUM_REGS
1546
1547 static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1548 {
1549 uint64_t val;
1550 int cc_op;
1551
1552 switch (n) {
1553 case S390_PSWM_REGNUM:
1554 cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr);
1555 val = deposit64(env->psw.mask, 44, 2, cc_op);
1556 GET_REGL(val);
1557 break;
1558 case S390_PSWA_REGNUM:
1559 GET_REGL(env->psw.addr);
1560 break;
1561 case S390_R0_REGNUM ... S390_R15_REGNUM:
1562 GET_REGL(env->regs[n-S390_R0_REGNUM]);
1563 break;
1564 case S390_A0_REGNUM ... S390_A15_REGNUM:
1565 GET_REG32(env->aregs[n-S390_A0_REGNUM]);
1566 break;
1567 case S390_FPC_REGNUM:
1568 GET_REG32(env->fpc);
1569 break;
1570 case S390_F0_REGNUM ... S390_F15_REGNUM:
1571 GET_REG64(env->fregs[n-S390_F0_REGNUM].ll);
1572 break;
1573 }
1574
1575 return 0;
1576 }
1577
1578 static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1579 {
1580 target_ulong tmpl;
1581 uint32_t tmp32;
1582 int r = 8;
1583 tmpl = ldtul_p(mem_buf);
1584 tmp32 = ldl_p(mem_buf);
1585
1586 switch (n) {
1587 case S390_PSWM_REGNUM:
1588 env->psw.mask = tmpl;
1589 env->cc_op = extract64(tmpl, 44, 2);
1590 break;
1591 case S390_PSWA_REGNUM:
1592 env->psw.addr = tmpl;
1593 break;
1594 case S390_R0_REGNUM ... S390_R15_REGNUM:
1595 env->regs[n-S390_R0_REGNUM] = tmpl;
1596 break;
1597 case S390_A0_REGNUM ... S390_A15_REGNUM:
1598 env->aregs[n-S390_A0_REGNUM] = tmp32;
1599 r = 4;
1600 break;
1601 case S390_FPC_REGNUM:
1602 env->fpc = tmp32;
1603 r = 4;
1604 break;
1605 case S390_F0_REGNUM ... S390_F15_REGNUM:
1606 env->fregs[n-S390_F0_REGNUM].ll = tmpl;
1607 break;
1608 default:
1609 return 0;
1610 }
1611 return r;
1612 }
1613 #elif defined (TARGET_LM32)
1614
1615 #include "hw/lm32/lm32_pic.h"
1616 #define NUM_CORE_REGS (32 + 7)
1617
1618 static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1619 {
1620 if (n < 32) {
1621 GET_REG32(env->regs[n]);
1622 } else {
1623 switch (n) {
1624 case 32:
1625 GET_REG32(env->pc);
1626 break;
1627 /* FIXME: put in right exception ID */
1628 case 33:
1629 GET_REG32(0);
1630 break;
1631 case 34:
1632 GET_REG32(env->eba);
1633 break;
1634 case 35:
1635 GET_REG32(env->deba);
1636 break;
1637 case 36:
1638 GET_REG32(env->ie);
1639 break;
1640 case 37:
1641 GET_REG32(lm32_pic_get_im(env->pic_state));
1642 break;
1643 case 38:
1644 GET_REG32(lm32_pic_get_ip(env->pic_state));
1645 break;
1646 }
1647 }
1648 return 0;
1649 }
1650
1651 static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1652 {
1653 uint32_t tmp;
1654
1655 if (n > NUM_CORE_REGS) {
1656 return 0;
1657 }
1658
1659 tmp = ldl_p(mem_buf);
1660
1661 if (n < 32) {
1662 env->regs[n] = tmp;
1663 } else {
1664 switch (n) {
1665 case 32:
1666 env->pc = tmp;
1667 break;
1668 case 34:
1669 env->eba = tmp;
1670 break;
1671 case 35:
1672 env->deba = tmp;
1673 break;
1674 case 36:
1675 env->ie = tmp;
1676 break;
1677 case 37:
1678 lm32_pic_set_im(env->pic_state, tmp);
1679 break;
1680 case 38:
1681 lm32_pic_set_ip(env->pic_state, tmp);
1682 break;
1683 }
1684 }
1685 return 4;
1686 }
1687 #elif defined(TARGET_XTENSA)
1688
1689 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1690 * Use num_regs to see all registers. gdb modification is required for that:
1691 * reset bit 0 in the 'flags' field of the registers definitions in the
1692 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1693 */
1694 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1695 #define num_g_regs NUM_CORE_REGS
1696
1697 static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1698 {
1699 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1700
1701 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1702 return 0;
1703 }
1704
1705 switch (reg->type) {
1706 case 9: /*pc*/
1707 GET_REG32(env->pc);
1708 break;
1709
1710 case 1: /*ar*/
1711 xtensa_sync_phys_from_window(env);
1712 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1713 break;
1714
1715 case 2: /*SR*/
1716 GET_REG32(env->sregs[reg->targno & 0xff]);
1717 break;
1718
1719 case 3: /*UR*/
1720 GET_REG32(env->uregs[reg->targno & 0xff]);
1721 break;
1722
1723 case 4: /*f*/
1724 GET_REG32(float32_val(env->fregs[reg->targno & 0x0f]));
1725 break;
1726
1727 case 8: /*a*/
1728 GET_REG32(env->regs[reg->targno & 0x0f]);
1729 break;
1730
1731 default:
1732 qemu_log("%s from reg %d of unsupported type %d\n",
1733 __func__, n, reg->type);
1734 return 0;
1735 }
1736 }
1737
1738 static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1739 {
1740 uint32_t tmp;
1741 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1742
1743 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1744 return 0;
1745 }
1746
1747 tmp = ldl_p(mem_buf);
1748
1749 switch (reg->type) {
1750 case 9: /*pc*/
1751 env->pc = tmp;
1752 break;
1753
1754 case 1: /*ar*/
1755 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1756 xtensa_sync_window_from_phys(env);
1757 break;
1758
1759 case 2: /*SR*/
1760 env->sregs[reg->targno & 0xff] = tmp;
1761 break;
1762
1763 case 3: /*UR*/
1764 env->uregs[reg->targno & 0xff] = tmp;
1765 break;
1766
1767 case 4: /*f*/
1768 env->fregs[reg->targno & 0x0f] = make_float32(tmp);
1769 break;
1770
1771 case 8: /*a*/
1772 env->regs[reg->targno & 0x0f] = tmp;
1773 break;
1774
1775 default:
1776 qemu_log("%s to reg %d of unsupported type %d\n",
1777 __func__, n, reg->type);
1778 return 0;
1779 }
1780
1781 return 4;
1782 }
1783 #else
1784
1785 #define NUM_CORE_REGS 0
1786
1787 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1788 {
1789 return 0;
1790 }
1791
1792 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1793 {
1794 return 0;
1795 }
1796
1797 #endif
1798
1799 #if !defined(TARGET_XTENSA)
1800 static int num_g_regs = NUM_CORE_REGS;
1801 #endif
1802
1803 #ifdef GDB_CORE_XML
1804 /* Encode data using the encoding for 'x' packets. */
1805 static int memtox(char *buf, const char *mem, int len)
1806 {
1807 char *p = buf;
1808 char c;
1809
1810 while (len--) {
1811 c = *(mem++);
1812 switch (c) {
1813 case '#': case '$': case '*': case '}':
1814 *(p++) = '}';
1815 *(p++) = c ^ 0x20;
1816 break;
1817 default:
1818 *(p++) = c;
1819 break;
1820 }
1821 }
1822 return p - buf;
1823 }
1824
1825 static const char *get_feature_xml(const char *p, const char **newp)
1826 {
1827 size_t len;
1828 int i;
1829 const char *name;
1830 static char target_xml[1024];
1831
1832 len = 0;
1833 while (p[len] && p[len] != ':')
1834 len++;
1835 *newp = p + len;
1836
1837 name = NULL;
1838 if (strncmp(p, "target.xml", len) == 0) {
1839 /* Generate the XML description for this CPU. */
1840 if (!target_xml[0]) {
1841 GDBRegisterState *r;
1842 CPUArchState *env = first_cpu->env_ptr;
1843
1844 snprintf(target_xml, sizeof(target_xml),
1845 "<?xml version=\"1.0\"?>"
1846 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1847 "<target>"
1848 "<xi:include href=\"%s\"/>",
1849 GDB_CORE_XML);
1850
1851 for (r = env->gdb_regs; r; r = r->next) {
1852 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1853 pstrcat(target_xml, sizeof(target_xml), r->xml);
1854 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1855 }
1856 pstrcat(target_xml, sizeof(target_xml), "</target>");
1857 }
1858 return target_xml;
1859 }
1860 for (i = 0; ; i++) {
1861 name = xml_builtin[i][0];
1862 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1863 break;
1864 }
1865 return name ? xml_builtin[i][1] : NULL;
1866 }
1867 #endif
1868
1869 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
1870 {
1871 CPUArchState *env = cpu->env_ptr;
1872 GDBRegisterState *r;
1873
1874 if (reg < NUM_CORE_REGS)
1875 return cpu_gdb_read_register(env, mem_buf, reg);
1876
1877 for (r = env->gdb_regs; r; r = r->next) {
1878 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1879 return r->get_reg(env, mem_buf, reg - r->base_reg);
1880 }
1881 }
1882 return 0;
1883 }
1884
1885 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
1886 {
1887 CPUArchState *env = cpu->env_ptr;
1888 GDBRegisterState *r;
1889
1890 if (reg < NUM_CORE_REGS)
1891 return cpu_gdb_write_register(env, mem_buf, reg);
1892
1893 for (r = env->gdb_regs; r; r = r->next) {
1894 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1895 return r->set_reg(env, mem_buf, reg - r->base_reg);
1896 }
1897 }
1898 return 0;
1899 }
1900
1901 #if !defined(TARGET_XTENSA)
1902 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1903 specifies the first register number and these registers are included in
1904 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1905 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1906 */
1907
1908 void gdb_register_coprocessor(CPUArchState * env,
1909 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1910 int num_regs, const char *xml, int g_pos)
1911 {
1912 GDBRegisterState *s;
1913 GDBRegisterState **p;
1914 static int last_reg = NUM_CORE_REGS;
1915
1916 p = &env->gdb_regs;
1917 while (*p) {
1918 /* Check for duplicates. */
1919 if (strcmp((*p)->xml, xml) == 0)
1920 return;
1921 p = &(*p)->next;
1922 }
1923
1924 s = g_new0(GDBRegisterState, 1);
1925 s->base_reg = last_reg;
1926 s->num_regs = num_regs;
1927 s->get_reg = get_reg;
1928 s->set_reg = set_reg;
1929 s->xml = xml;
1930
1931 /* Add to end of list. */
1932 last_reg += num_regs;
1933 *p = s;
1934 if (g_pos) {
1935 if (g_pos != s->base_reg) {
1936 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1937 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1938 } else {
1939 num_g_regs = last_reg;
1940 }
1941 }
1942 }
1943 #endif
1944
1945 #ifndef CONFIG_USER_ONLY
1946 static const int xlat_gdb_type[] = {
1947 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1948 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1949 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1950 };
1951 #endif
1952
1953 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1954 {
1955 CPUState *cpu;
1956 CPUArchState *env;
1957 int err = 0;
1958
1959 if (kvm_enabled()) {
1960 return kvm_insert_breakpoint(ENV_GET_CPU(gdbserver_state->c_cpu),
1961 addr, len, type);
1962 }
1963
1964 switch (type) {
1965 case GDB_BREAKPOINT_SW:
1966 case GDB_BREAKPOINT_HW:
1967 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1968 env = cpu->env_ptr;
1969 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1970 if (err)
1971 break;
1972 }
1973 return err;
1974 #ifndef CONFIG_USER_ONLY
1975 case GDB_WATCHPOINT_WRITE:
1976 case GDB_WATCHPOINT_READ:
1977 case GDB_WATCHPOINT_ACCESS:
1978 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1979 env = cpu->env_ptr;
1980 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1981 NULL);
1982 if (err)
1983 break;
1984 }
1985 return err;
1986 #endif
1987 default:
1988 return -ENOSYS;
1989 }
1990 }
1991
1992 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1993 {
1994 CPUState *cpu;
1995 CPUArchState *env;
1996 int err = 0;
1997
1998 if (kvm_enabled()) {
1999 return kvm_remove_breakpoint(ENV_GET_CPU(gdbserver_state->c_cpu),
2000 addr, len, type);
2001 }
2002
2003 switch (type) {
2004 case GDB_BREAKPOINT_SW:
2005 case GDB_BREAKPOINT_HW:
2006 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2007 env = cpu->env_ptr;
2008 err = cpu_breakpoint_remove(env, addr, BP_GDB);
2009 if (err)
2010 break;
2011 }
2012 return err;
2013 #ifndef CONFIG_USER_ONLY
2014 case GDB_WATCHPOINT_WRITE:
2015 case GDB_WATCHPOINT_READ:
2016 case GDB_WATCHPOINT_ACCESS:
2017 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2018 env = cpu->env_ptr;
2019 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
2020 if (err)
2021 break;
2022 }
2023 return err;
2024 #endif
2025 default:
2026 return -ENOSYS;
2027 }
2028 }
2029
2030 static void gdb_breakpoint_remove_all(void)
2031 {
2032 CPUState *cpu;
2033 CPUArchState *env;
2034
2035 if (kvm_enabled()) {
2036 kvm_remove_all_breakpoints(ENV_GET_CPU(gdbserver_state->c_cpu));
2037 return;
2038 }
2039
2040 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2041 env = cpu->env_ptr;
2042 cpu_breakpoint_remove_all(env, BP_GDB);
2043 #ifndef CONFIG_USER_ONLY
2044 cpu_watchpoint_remove_all(env, BP_GDB);
2045 #endif
2046 }
2047 }
2048
2049 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
2050 {
2051 CPUState *cpu = ENV_GET_CPU(s->c_cpu);
2052 CPUClass *cc = CPU_GET_CLASS(cpu);
2053
2054 cpu_synchronize_state(cpu);
2055 if (cc->set_pc) {
2056 cc->set_pc(cpu, pc);
2057 }
2058 }
2059
2060 static CPUArchState *find_cpu(uint32_t thread_id)
2061 {
2062 CPUState *cpu;
2063
2064 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2065 if (cpu_index(cpu) == thread_id) {
2066 return cpu->env_ptr;
2067 }
2068 }
2069
2070 return NULL;
2071 }
2072
2073 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2074 {
2075 CPUArchState *env;
2076 const char *p;
2077 uint32_t thread;
2078 int ch, reg_size, type, res;
2079 char buf[MAX_PACKET_LENGTH];
2080 uint8_t mem_buf[MAX_PACKET_LENGTH];
2081 uint8_t *registers;
2082 target_ulong addr, len;
2083
2084 #ifdef DEBUG_GDB
2085 printf("command='%s'\n", line_buf);
2086 #endif
2087 p = line_buf;
2088 ch = *p++;
2089 switch(ch) {
2090 case '?':
2091 /* TODO: Make this return the correct value for user-mode. */
2092 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
2093 cpu_index(ENV_GET_CPU(s->c_cpu)));
2094 put_packet(s, buf);
2095 /* Remove all the breakpoints when this query is issued,
2096 * because gdb is doing and initial connect and the state
2097 * should be cleaned up.
2098 */
2099 gdb_breakpoint_remove_all();
2100 break;
2101 case 'c':
2102 if (*p != '\0') {
2103 addr = strtoull(p, (char **)&p, 16);
2104 gdb_set_cpu_pc(s, addr);
2105 }
2106 s->signal = 0;
2107 gdb_continue(s);
2108 return RS_IDLE;
2109 case 'C':
2110 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2111 if (s->signal == -1)
2112 s->signal = 0;
2113 gdb_continue(s);
2114 return RS_IDLE;
2115 case 'v':
2116 if (strncmp(p, "Cont", 4) == 0) {
2117 int res_signal, res_thread;
2118
2119 p += 4;
2120 if (*p == '?') {
2121 put_packet(s, "vCont;c;C;s;S");
2122 break;
2123 }
2124 res = 0;
2125 res_signal = 0;
2126 res_thread = 0;
2127 while (*p) {
2128 int action, signal;
2129
2130 if (*p++ != ';') {
2131 res = 0;
2132 break;
2133 }
2134 action = *p++;
2135 signal = 0;
2136 if (action == 'C' || action == 'S') {
2137 signal = strtoul(p, (char **)&p, 16);
2138 } else if (action != 'c' && action != 's') {
2139 res = 0;
2140 break;
2141 }
2142 thread = 0;
2143 if (*p == ':') {
2144 thread = strtoull(p+1, (char **)&p, 16);
2145 }
2146 action = tolower(action);
2147 if (res == 0 || (res == 'c' && action == 's')) {
2148 res = action;
2149 res_signal = signal;
2150 res_thread = thread;
2151 }
2152 }
2153 if (res) {
2154 if (res_thread != -1 && res_thread != 0) {
2155 env = find_cpu(res_thread);
2156 if (env == NULL) {
2157 put_packet(s, "E22");
2158 break;
2159 }
2160 s->c_cpu = env;
2161 }
2162 if (res == 's') {
2163 cpu_single_step(ENV_GET_CPU(s->c_cpu), sstep_flags);
2164 }
2165 s->signal = res_signal;
2166 gdb_continue(s);
2167 return RS_IDLE;
2168 }
2169 break;
2170 } else {
2171 goto unknown_command;
2172 }
2173 case 'k':
2174 #ifdef CONFIG_USER_ONLY
2175 /* Kill the target */
2176 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2177 exit(0);
2178 #endif
2179 case 'D':
2180 /* Detach packet */
2181 gdb_breakpoint_remove_all();
2182 gdb_syscall_mode = GDB_SYS_DISABLED;
2183 gdb_continue(s);
2184 put_packet(s, "OK");
2185 break;
2186 case 's':
2187 if (*p != '\0') {
2188 addr = strtoull(p, (char **)&p, 16);
2189 gdb_set_cpu_pc(s, addr);
2190 }
2191 cpu_single_step(ENV_GET_CPU(s->c_cpu), sstep_flags);
2192 gdb_continue(s);
2193 return RS_IDLE;
2194 case 'F':
2195 {
2196 target_ulong ret;
2197 target_ulong err;
2198
2199 ret = strtoull(p, (char **)&p, 16);
2200 if (*p == ',') {
2201 p++;
2202 err = strtoull(p, (char **)&p, 16);
2203 } else {
2204 err = 0;
2205 }
2206 if (*p == ',')
2207 p++;
2208 type = *p;
2209 if (s->current_syscall_cb) {
2210 s->current_syscall_cb(ENV_GET_CPU(s->c_cpu), ret, err);
2211 s->current_syscall_cb = NULL;
2212 }
2213 if (type == 'C') {
2214 put_packet(s, "T02");
2215 } else {
2216 gdb_continue(s);
2217 }
2218 }
2219 break;
2220 case 'g':
2221 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2222 env = s->g_cpu;
2223 len = 0;
2224 for (addr = 0; addr < num_g_regs; addr++) {
2225 reg_size = gdb_read_register(ENV_GET_CPU(s->g_cpu),
2226 mem_buf + len, addr);
2227 len += reg_size;
2228 }
2229 memtohex(buf, mem_buf, len);
2230 put_packet(s, buf);
2231 break;
2232 case 'G':
2233 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2234 env = s->g_cpu;
2235 registers = mem_buf;
2236 len = strlen(p) / 2;
2237 hextomem((uint8_t *)registers, p, len);
2238 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2239 reg_size = gdb_write_register(ENV_GET_CPU(s->g_cpu), registers,
2240 addr);
2241 len -= reg_size;
2242 registers += reg_size;
2243 }
2244 put_packet(s, "OK");
2245 break;
2246 case 'm':
2247 addr = strtoull(p, (char **)&p, 16);
2248 if (*p == ',')
2249 p++;
2250 len = strtoull(p, NULL, 16);
2251 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2252 put_packet (s, "E14");
2253 } else {
2254 memtohex(buf, mem_buf, len);
2255 put_packet(s, buf);
2256 }
2257 break;
2258 case 'M':
2259 addr = strtoull(p, (char **)&p, 16);
2260 if (*p == ',')
2261 p++;
2262 len = strtoull(p, (char **)&p, 16);
2263 if (*p == ':')
2264 p++;
2265 hextomem(mem_buf, p, len);
2266 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2267 put_packet(s, "E14");
2268 } else {
2269 put_packet(s, "OK");
2270 }
2271 break;
2272 case 'p':
2273 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2274 This works, but can be very slow. Anything new enough to
2275 understand XML also knows how to use this properly. */
2276 if (!gdb_has_xml)
2277 goto unknown_command;
2278 addr = strtoull(p, (char **)&p, 16);
2279 reg_size = gdb_read_register(ENV_GET_CPU(s->g_cpu), mem_buf, addr);
2280 if (reg_size) {
2281 memtohex(buf, mem_buf, reg_size);
2282 put_packet(s, buf);
2283 } else {
2284 put_packet(s, "E14");
2285 }
2286 break;
2287 case 'P':
2288 if (!gdb_has_xml)
2289 goto unknown_command;
2290 addr = strtoull(p, (char **)&p, 16);
2291 if (*p == '=')
2292 p++;
2293 reg_size = strlen(p) / 2;
2294 hextomem(mem_buf, p, reg_size);
2295 gdb_write_register(ENV_GET_CPU(s->g_cpu), mem_buf, addr);
2296 put_packet(s, "OK");
2297 break;
2298 case 'Z':
2299 case 'z':
2300 type = strtoul(p, (char **)&p, 16);
2301 if (*p == ',')
2302 p++;
2303 addr = strtoull(p, (char **)&p, 16);
2304 if (*p == ',')
2305 p++;
2306 len = strtoull(p, (char **)&p, 16);
2307 if (ch == 'Z')
2308 res = gdb_breakpoint_insert(addr, len, type);
2309 else
2310 res = gdb_breakpoint_remove(addr, len, type);
2311 if (res >= 0)
2312 put_packet(s, "OK");
2313 else if (res == -ENOSYS)
2314 put_packet(s, "");
2315 else
2316 put_packet(s, "E22");
2317 break;
2318 case 'H':
2319 type = *p++;
2320 thread = strtoull(p, (char **)&p, 16);
2321 if (thread == -1 || thread == 0) {
2322 put_packet(s, "OK");
2323 break;
2324 }
2325 env = find_cpu(thread);
2326 if (env == NULL) {
2327 put_packet(s, "E22");
2328 break;
2329 }
2330 switch (type) {
2331 case 'c':
2332 s->c_cpu = env;
2333 put_packet(s, "OK");
2334 break;
2335 case 'g':
2336 s->g_cpu = env;
2337 put_packet(s, "OK");
2338 break;
2339 default:
2340 put_packet(s, "E22");
2341 break;
2342 }
2343 break;
2344 case 'T':
2345 thread = strtoull(p, (char **)&p, 16);
2346 env = find_cpu(thread);
2347
2348 if (env != NULL) {
2349 put_packet(s, "OK");
2350 } else {
2351 put_packet(s, "E22");
2352 }
2353 break;
2354 case 'q':
2355 case 'Q':
2356 /* parse any 'q' packets here */
2357 if (!strcmp(p,"qemu.sstepbits")) {
2358 /* Query Breakpoint bit definitions */
2359 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2360 SSTEP_ENABLE,
2361 SSTEP_NOIRQ,
2362 SSTEP_NOTIMER);
2363 put_packet(s, buf);
2364 break;
2365 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2366 /* Display or change the sstep_flags */
2367 p += 10;
2368 if (*p != '=') {
2369 /* Display current setting */
2370 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2371 put_packet(s, buf);
2372 break;
2373 }
2374 p++;
2375 type = strtoul(p, (char **)&p, 16);
2376 sstep_flags = type;
2377 put_packet(s, "OK");
2378 break;
2379 } else if (strcmp(p,"C") == 0) {
2380 /* "Current thread" remains vague in the spec, so always return
2381 * the first CPU (gdb returns the first thread). */
2382 put_packet(s, "QC1");
2383 break;
2384 } else if (strcmp(p,"fThreadInfo") == 0) {
2385 s->query_cpu = first_cpu;
2386 goto report_cpuinfo;
2387 } else if (strcmp(p,"sThreadInfo") == 0) {
2388 report_cpuinfo:
2389 if (s->query_cpu) {
2390 snprintf(buf, sizeof(buf), "m%x", cpu_index(s->query_cpu));
2391 put_packet(s, buf);
2392 s->query_cpu = s->query_cpu->next_cpu;
2393 } else
2394 put_packet(s, "l");
2395 break;
2396 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2397 thread = strtoull(p+16, (char **)&p, 16);
2398 env = find_cpu(thread);
2399 if (env != NULL) {
2400 CPUState *cpu = ENV_GET_CPU(env);
2401 cpu_synchronize_state(cpu);
2402 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2403 "CPU#%d [%s]", cpu->cpu_index,
2404 cpu->halted ? "halted " : "running");
2405 memtohex(buf, mem_buf, len);
2406 put_packet(s, buf);
2407 }
2408 break;
2409 }
2410 #ifdef CONFIG_USER_ONLY
2411 else if (strncmp(p, "Offsets", 7) == 0) {
2412 TaskState *ts = s->c_cpu->opaque;
2413
2414 snprintf(buf, sizeof(buf),
2415 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2416 ";Bss=" TARGET_ABI_FMT_lx,
2417 ts->info->code_offset,
2418 ts->info->data_offset,
2419 ts->info->data_offset);
2420 put_packet(s, buf);
2421 break;
2422 }
2423 #else /* !CONFIG_USER_ONLY */
2424 else if (strncmp(p, "Rcmd,", 5) == 0) {
2425 int len = strlen(p + 5);
2426
2427 if ((len % 2) != 0) {
2428 put_packet(s, "E01");
2429 break;
2430 }
2431 hextomem(mem_buf, p + 5, len);
2432 len = len / 2;
2433 mem_buf[len++] = 0;
2434 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2435 put_packet(s, "OK");
2436 break;
2437 }
2438 #endif /* !CONFIG_USER_ONLY */
2439 if (strncmp(p, "Supported", 9) == 0) {
2440 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2441 #ifdef GDB_CORE_XML
2442 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2443 #endif
2444 put_packet(s, buf);
2445 break;
2446 }
2447 #ifdef GDB_CORE_XML
2448 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2449 const char *xml;
2450 target_ulong total_len;
2451
2452 gdb_has_xml = 1;
2453 p += 19;
2454 xml = get_feature_xml(p, &p);
2455 if (!xml) {
2456 snprintf(buf, sizeof(buf), "E00");
2457 put_packet(s, buf);
2458 break;
2459 }
2460
2461 if (*p == ':')
2462 p++;
2463 addr = strtoul(p, (char **)&p, 16);
2464 if (*p == ',')
2465 p++;
2466 len = strtoul(p, (char **)&p, 16);
2467
2468 total_len = strlen(xml);
2469 if (addr > total_len) {
2470 snprintf(buf, sizeof(buf), "E00");
2471 put_packet(s, buf);
2472 break;
2473 }
2474 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2475 len = (MAX_PACKET_LENGTH - 5) / 2;
2476 if (len < total_len - addr) {
2477 buf[0] = 'm';
2478 len = memtox(buf + 1, xml + addr, len);
2479 } else {
2480 buf[0] = 'l';
2481 len = memtox(buf + 1, xml + addr, total_len - addr);
2482 }
2483 put_packet_binary(s, buf, len + 1);
2484 break;
2485 }
2486 #endif
2487 /* Unrecognised 'q' command. */
2488 goto unknown_command;
2489
2490 default:
2491 unknown_command:
2492 /* put empty packet */
2493 buf[0] = '\0';
2494 put_packet(s, buf);
2495 break;
2496 }
2497 return RS_IDLE;
2498 }
2499
2500 void gdb_set_stop_cpu(CPUState *cpu)
2501 {
2502 CPUArchState *env = cpu->env_ptr;
2503
2504 gdbserver_state->c_cpu = env;
2505 gdbserver_state->g_cpu = env;
2506 }
2507
2508 #ifndef CONFIG_USER_ONLY
2509 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2510 {
2511 GDBState *s = gdbserver_state;
2512 CPUArchState *env = s->c_cpu;
2513 CPUState *cpu = ENV_GET_CPU(env);
2514 char buf[256];
2515 const char *type;
2516 int ret;
2517
2518 if (running || s->state == RS_INACTIVE) {
2519 return;
2520 }
2521 /* Is there a GDB syscall waiting to be sent? */
2522 if (s->current_syscall_cb) {
2523 put_packet(s, s->syscall_buf);
2524 return;
2525 }
2526 switch (state) {
2527 case RUN_STATE_DEBUG:
2528 if (env->watchpoint_hit) {
2529 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2530 case BP_MEM_READ:
2531 type = "r";
2532 break;
2533 case BP_MEM_ACCESS:
2534 type = "a";
2535 break;
2536 default:
2537 type = "";
2538 break;
2539 }
2540 snprintf(buf, sizeof(buf),
2541 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2542 GDB_SIGNAL_TRAP, cpu_index(cpu), type,
2543 env->watchpoint_hit->vaddr);
2544 env->watchpoint_hit = NULL;
2545 goto send_packet;
2546 }
2547 tb_flush(env);
2548 ret = GDB_SIGNAL_TRAP;
2549 break;
2550 case RUN_STATE_PAUSED:
2551 ret = GDB_SIGNAL_INT;
2552 break;
2553 case RUN_STATE_SHUTDOWN:
2554 ret = GDB_SIGNAL_QUIT;
2555 break;
2556 case RUN_STATE_IO_ERROR:
2557 ret = GDB_SIGNAL_IO;
2558 break;
2559 case RUN_STATE_WATCHDOG:
2560 ret = GDB_SIGNAL_ALRM;
2561 break;
2562 case RUN_STATE_INTERNAL_ERROR:
2563 ret = GDB_SIGNAL_ABRT;
2564 break;
2565 case RUN_STATE_SAVE_VM:
2566 case RUN_STATE_RESTORE_VM:
2567 return;
2568 case RUN_STATE_FINISH_MIGRATE:
2569 ret = GDB_SIGNAL_XCPU;
2570 break;
2571 default:
2572 ret = GDB_SIGNAL_UNKNOWN;
2573 break;
2574 }
2575 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(cpu));
2576
2577 send_packet:
2578 put_packet(s, buf);
2579
2580 /* disable single step if it was enabled */
2581 cpu_single_step(cpu, 0);
2582 }
2583 #endif
2584
2585 /* Send a gdb syscall request.
2586 This accepts limited printf-style format specifiers, specifically:
2587 %x - target_ulong argument printed in hex.
2588 %lx - 64-bit argument printed in hex.
2589 %s - string pointer (target_ulong) and length (int) pair. */
2590 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2591 {
2592 va_list va;
2593 char *p;
2594 char *p_end;
2595 target_ulong addr;
2596 uint64_t i64;
2597 GDBState *s;
2598
2599 s = gdbserver_state;
2600 if (!s)
2601 return;
2602 s->current_syscall_cb = cb;
2603 #ifndef CONFIG_USER_ONLY
2604 vm_stop(RUN_STATE_DEBUG);
2605 #endif
2606 va_start(va, fmt);
2607 p = s->syscall_buf;
2608 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2609 *(p++) = 'F';
2610 while (*fmt) {
2611 if (*fmt == '%') {
2612 fmt++;
2613 switch (*fmt++) {
2614 case 'x':
2615 addr = va_arg(va, target_ulong);
2616 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2617 break;
2618 case 'l':
2619 if (*(fmt++) != 'x')
2620 goto bad_format;
2621 i64 = va_arg(va, uint64_t);
2622 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2623 break;
2624 case 's':
2625 addr = va_arg(va, target_ulong);
2626 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2627 addr, va_arg(va, int));
2628 break;
2629 default:
2630 bad_format:
2631 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2632 fmt - 1);
2633 break;
2634 }
2635 } else {
2636 *(p++) = *(fmt++);
2637 }
2638 }
2639 *p = 0;
2640 va_end(va);
2641 #ifdef CONFIG_USER_ONLY
2642 put_packet(s, s->syscall_buf);
2643 gdb_handlesig(ENV_GET_CPU(s->c_cpu), 0);
2644 #else
2645 /* In this case wait to send the syscall packet until notification that
2646 the CPU has stopped. This must be done because if the packet is sent
2647 now the reply from the syscall request could be received while the CPU
2648 is still in the running state, which can cause packets to be dropped
2649 and state transition 'T' packets to be sent while the syscall is still
2650 being processed. */
2651 cpu_exit(ENV_GET_CPU(s->c_cpu));
2652 #endif
2653 }
2654
2655 static void gdb_read_byte(GDBState *s, int ch)
2656 {
2657 int i, csum;
2658 uint8_t reply;
2659
2660 #ifndef CONFIG_USER_ONLY
2661 if (s->last_packet_len) {
2662 /* Waiting for a response to the last packet. If we see the start
2663 of a new command then abandon the previous response. */
2664 if (ch == '-') {
2665 #ifdef DEBUG_GDB
2666 printf("Got NACK, retransmitting\n");
2667 #endif
2668 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2669 }
2670 #ifdef DEBUG_GDB
2671 else if (ch == '+')
2672 printf("Got ACK\n");
2673 else
2674 printf("Got '%c' when expecting ACK/NACK\n", ch);
2675 #endif
2676 if (ch == '+' || ch == '$')
2677 s->last_packet_len = 0;
2678 if (ch != '$')
2679 return;
2680 }
2681 if (runstate_is_running()) {
2682 /* when the CPU is running, we cannot do anything except stop
2683 it when receiving a char */
2684 vm_stop(RUN_STATE_PAUSED);
2685 } else
2686 #endif
2687 {
2688 switch(s->state) {
2689 case RS_IDLE:
2690 if (ch == '$') {
2691 s->line_buf_index = 0;
2692 s->state = RS_GETLINE;
2693 }
2694 break;
2695 case RS_GETLINE:
2696 if (ch == '#') {
2697 s->state = RS_CHKSUM1;
2698 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2699 s->state = RS_IDLE;
2700 } else {
2701 s->line_buf[s->line_buf_index++] = ch;
2702 }
2703 break;
2704 case RS_CHKSUM1:
2705 s->line_buf[s->line_buf_index] = '\0';
2706 s->line_csum = fromhex(ch) << 4;
2707 s->state = RS_CHKSUM2;
2708 break;
2709 case RS_CHKSUM2:
2710 s->line_csum |= fromhex(ch);
2711 csum = 0;
2712 for(i = 0; i < s->line_buf_index; i++) {
2713 csum += s->line_buf[i];
2714 }
2715 if (s->line_csum != (csum & 0xff)) {
2716 reply = '-';
2717 put_buffer(s, &reply, 1);
2718 s->state = RS_IDLE;
2719 } else {
2720 reply = '+';
2721 put_buffer(s, &reply, 1);
2722 s->state = gdb_handle_packet(s, s->line_buf);
2723 }
2724 break;
2725 default:
2726 abort();
2727 }
2728 }
2729 }
2730
2731 /* Tell the remote gdb that the process has exited. */
2732 void gdb_exit(CPUArchState *env, int code)
2733 {
2734 GDBState *s;
2735 char buf[4];
2736
2737 s = gdbserver_state;
2738 if (!s) {
2739 return;
2740 }
2741 #ifdef CONFIG_USER_ONLY
2742 if (gdbserver_fd < 0 || s->fd < 0) {
2743 return;
2744 }
2745 #endif
2746
2747 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2748 put_packet(s, buf);
2749
2750 #ifndef CONFIG_USER_ONLY
2751 if (s->chr) {
2752 qemu_chr_delete(s->chr);
2753 }
2754 #endif
2755 }
2756
2757 #ifdef CONFIG_USER_ONLY
2758 int
2759 gdb_queuesig (void)
2760 {
2761 GDBState *s;
2762
2763 s = gdbserver_state;
2764
2765 if (gdbserver_fd < 0 || s->fd < 0)
2766 return 0;
2767 else
2768 return 1;
2769 }
2770
2771 int
2772 gdb_handlesig(CPUState *cpu, int sig)
2773 {
2774 CPUArchState *env = cpu->env_ptr;
2775 GDBState *s;
2776 char buf[256];
2777 int n;
2778
2779 s = gdbserver_state;
2780 if (gdbserver_fd < 0 || s->fd < 0) {
2781 return sig;
2782 }
2783
2784 /* disable single step if it was enabled */
2785 cpu_single_step(cpu, 0);
2786 tb_flush(env);
2787
2788 if (sig != 0) {
2789 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2790 put_packet(s, buf);
2791 }
2792 /* put_packet() might have detected that the peer terminated the
2793 connection. */
2794 if (s->fd < 0) {
2795 return sig;
2796 }
2797
2798 sig = 0;
2799 s->state = RS_IDLE;
2800 s->running_state = 0;
2801 while (s->running_state == 0) {
2802 n = read(s->fd, buf, 256);
2803 if (n > 0) {
2804 int i;
2805
2806 for (i = 0; i < n; i++) {
2807 gdb_read_byte(s, buf[i]);
2808 }
2809 } else if (n == 0 || errno != EAGAIN) {
2810 /* XXX: Connection closed. Should probably wait for another
2811 connection before continuing. */
2812 return sig;
2813 }
2814 }
2815 sig = s->signal;
2816 s->signal = 0;
2817 return sig;
2818 }
2819
2820 /* Tell the remote gdb that the process has exited due to SIG. */
2821 void gdb_signalled(CPUArchState *env, int sig)
2822 {
2823 GDBState *s;
2824 char buf[4];
2825
2826 s = gdbserver_state;
2827 if (gdbserver_fd < 0 || s->fd < 0) {
2828 return;
2829 }
2830
2831 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2832 put_packet(s, buf);
2833 }
2834
2835 static void gdb_accept(void)
2836 {
2837 GDBState *s;
2838 struct sockaddr_in sockaddr;
2839 socklen_t len;
2840 int fd;
2841
2842 for(;;) {
2843 len = sizeof(sockaddr);
2844 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2845 if (fd < 0 && errno != EINTR) {
2846 perror("accept");
2847 return;
2848 } else if (fd >= 0) {
2849 #ifndef _WIN32
2850 fcntl(fd, F_SETFD, FD_CLOEXEC);
2851 #endif
2852 break;
2853 }
2854 }
2855
2856 /* set short latency */
2857 socket_set_nodelay(fd);
2858
2859 s = g_malloc0(sizeof(GDBState));
2860 s->c_cpu = first_cpu->env_ptr;
2861 s->g_cpu = first_cpu->env_ptr;
2862 s->fd = fd;
2863 gdb_has_xml = 0;
2864
2865 gdbserver_state = s;
2866
2867 fcntl(fd, F_SETFL, O_NONBLOCK);
2868 }
2869
2870 static int gdbserver_open(int port)
2871 {
2872 struct sockaddr_in sockaddr;
2873 int fd, val, ret;
2874
2875 fd = socket(PF_INET, SOCK_STREAM, 0);
2876 if (fd < 0) {
2877 perror("socket");
2878 return -1;
2879 }
2880 #ifndef _WIN32
2881 fcntl(fd, F_SETFD, FD_CLOEXEC);
2882 #endif
2883
2884 /* allow fast reuse */
2885 val = 1;
2886 qemu_setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
2887
2888 sockaddr.sin_family = AF_INET;
2889 sockaddr.sin_port = htons(port);
2890 sockaddr.sin_addr.s_addr = 0;
2891 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2892 if (ret < 0) {
2893 perror("bind");
2894 close(fd);
2895 return -1;
2896 }
2897 ret = listen(fd, 0);
2898 if (ret < 0) {
2899 perror("listen");
2900 close(fd);
2901 return -1;
2902 }
2903 return fd;
2904 }
2905
2906 int gdbserver_start(int port)
2907 {
2908 gdbserver_fd = gdbserver_open(port);
2909 if (gdbserver_fd < 0)
2910 return -1;
2911 /* accept connections */
2912 gdb_accept();
2913 return 0;
2914 }
2915
2916 /* Disable gdb stub for child processes. */
2917 void gdbserver_fork(CPUArchState *env)
2918 {
2919 GDBState *s = gdbserver_state;
2920 if (gdbserver_fd < 0 || s->fd < 0)
2921 return;
2922 close(s->fd);
2923 s->fd = -1;
2924 cpu_breakpoint_remove_all(env, BP_GDB);
2925 cpu_watchpoint_remove_all(env, BP_GDB);
2926 }
2927 #else
2928 static int gdb_chr_can_receive(void *opaque)
2929 {
2930 /* We can handle an arbitrarily large amount of data.
2931 Pick the maximum packet size, which is as good as anything. */
2932 return MAX_PACKET_LENGTH;
2933 }
2934
2935 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2936 {
2937 int i;
2938
2939 for (i = 0; i < size; i++) {
2940 gdb_read_byte(gdbserver_state, buf[i]);
2941 }
2942 }
2943
2944 static void gdb_chr_event(void *opaque, int event)
2945 {
2946 switch (event) {
2947 case CHR_EVENT_OPENED:
2948 vm_stop(RUN_STATE_PAUSED);
2949 gdb_has_xml = 0;
2950 break;
2951 default:
2952 break;
2953 }
2954 }
2955
2956 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2957 {
2958 char buf[MAX_PACKET_LENGTH];
2959
2960 buf[0] = 'O';
2961 if (len > (MAX_PACKET_LENGTH/2) - 1)
2962 len = (MAX_PACKET_LENGTH/2) - 1;
2963 memtohex(buf + 1, (uint8_t *)msg, len);
2964 put_packet(s, buf);
2965 }
2966
2967 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2968 {
2969 const char *p = (const char *)buf;
2970 int max_sz;
2971
2972 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2973 for (;;) {
2974 if (len <= max_sz) {
2975 gdb_monitor_output(gdbserver_state, p, len);
2976 break;
2977 }
2978 gdb_monitor_output(gdbserver_state, p, max_sz);
2979 p += max_sz;
2980 len -= max_sz;
2981 }
2982 return len;
2983 }
2984
2985 #ifndef _WIN32
2986 static void gdb_sigterm_handler(int signal)
2987 {
2988 if (runstate_is_running()) {
2989 vm_stop(RUN_STATE_PAUSED);
2990 }
2991 }
2992 #endif
2993
2994 int gdbserver_start(const char *device)
2995 {
2996 GDBState *s;
2997 char gdbstub_device_name[128];
2998 CharDriverState *chr = NULL;
2999 CharDriverState *mon_chr;
3000
3001 if (!device)
3002 return -1;
3003 if (strcmp(device, "none") != 0) {
3004 if (strstart(device, "tcp:", NULL)) {
3005 /* enforce required TCP attributes */
3006 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3007 "%s,nowait,nodelay,server", device);
3008 device = gdbstub_device_name;
3009 }
3010 #ifndef _WIN32
3011 else if (strcmp(device, "stdio") == 0) {
3012 struct sigaction act;
3013
3014 memset(&act, 0, sizeof(act));
3015 act.sa_handler = gdb_sigterm_handler;
3016 sigaction(SIGINT, &act, NULL);
3017 }
3018 #endif
3019 chr = qemu_chr_new("gdb", device, NULL);
3020 if (!chr)
3021 return -1;
3022
3023 qemu_chr_fe_claim_no_fail(chr);
3024 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
3025 gdb_chr_event, NULL);
3026 }
3027
3028 s = gdbserver_state;
3029 if (!s) {
3030 s = g_malloc0(sizeof(GDBState));
3031 gdbserver_state = s;
3032
3033 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3034
3035 /* Initialize a monitor terminal for gdb */
3036 mon_chr = g_malloc0(sizeof(*mon_chr));
3037 mon_chr->chr_write = gdb_monitor_write;
3038 monitor_init(mon_chr, 0);
3039 } else {
3040 if (s->chr)
3041 qemu_chr_delete(s->chr);
3042 mon_chr = s->mon_chr;
3043 memset(s, 0, sizeof(GDBState));
3044 }
3045 s->c_cpu = first_cpu->env_ptr;
3046 s->g_cpu = first_cpu->env_ptr;
3047 s->chr = chr;
3048 s->state = chr ? RS_IDLE : RS_INACTIVE;
3049 s->mon_chr = mon_chr;
3050 s->current_syscall_cb = NULL;
3051
3052 return 0;
3053 }
3054 #endif