]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
d1969d5977aa33fd79cda1a23b143ba6f23bfc61
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/ctype.h"
25 #include "qemu/cutils.h"
26 #include "qemu/module.h"
27 #include "trace-root.h"
28 #ifdef CONFIG_USER_ONLY
29 #include "qemu.h"
30 #else
31 #include "monitor/monitor.h"
32 #include "chardev/char.h"
33 #include "chardev/char-fe.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #include "hw/cpu/cluster.h"
37 #endif
38
39 #define MAX_PACKET_LENGTH 4096
40
41 #include "qemu/sockets.h"
42 #include "sysemu/hw_accel.h"
43 #include "sysemu/kvm.h"
44 #include "hw/semihosting/semihost.h"
45 #include "exec/exec-all.h"
46
47 #ifdef CONFIG_USER_ONLY
48 #define GDB_ATTACHED "0"
49 #else
50 #define GDB_ATTACHED "1"
51 #endif
52
53 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
54 uint8_t *buf, int len, bool is_write)
55 {
56 CPUClass *cc = CPU_GET_CLASS(cpu);
57
58 if (cc->memory_rw_debug) {
59 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
60 }
61 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
62 }
63
64 /* Return the GDB index for a given vCPU state.
65 *
66 * For user mode this is simply the thread id. In system mode GDB
67 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
68 */
69 static inline int cpu_gdb_index(CPUState *cpu)
70 {
71 #if defined(CONFIG_USER_ONLY)
72 TaskState *ts = (TaskState *) cpu->opaque;
73 return ts->ts_tid;
74 #else
75 return cpu->cpu_index + 1;
76 #endif
77 }
78
79 enum {
80 GDB_SIGNAL_0 = 0,
81 GDB_SIGNAL_INT = 2,
82 GDB_SIGNAL_QUIT = 3,
83 GDB_SIGNAL_TRAP = 5,
84 GDB_SIGNAL_ABRT = 6,
85 GDB_SIGNAL_ALRM = 14,
86 GDB_SIGNAL_IO = 23,
87 GDB_SIGNAL_XCPU = 24,
88 GDB_SIGNAL_UNKNOWN = 143
89 };
90
91 #ifdef CONFIG_USER_ONLY
92
93 /* Map target signal numbers to GDB protocol signal numbers and vice
94 * versa. For user emulation's currently supported systems, we can
95 * assume most signals are defined.
96 */
97
98 static int gdb_signal_table[] = {
99 0,
100 TARGET_SIGHUP,
101 TARGET_SIGINT,
102 TARGET_SIGQUIT,
103 TARGET_SIGILL,
104 TARGET_SIGTRAP,
105 TARGET_SIGABRT,
106 -1, /* SIGEMT */
107 TARGET_SIGFPE,
108 TARGET_SIGKILL,
109 TARGET_SIGBUS,
110 TARGET_SIGSEGV,
111 TARGET_SIGSYS,
112 TARGET_SIGPIPE,
113 TARGET_SIGALRM,
114 TARGET_SIGTERM,
115 TARGET_SIGURG,
116 TARGET_SIGSTOP,
117 TARGET_SIGTSTP,
118 TARGET_SIGCONT,
119 TARGET_SIGCHLD,
120 TARGET_SIGTTIN,
121 TARGET_SIGTTOU,
122 TARGET_SIGIO,
123 TARGET_SIGXCPU,
124 TARGET_SIGXFSZ,
125 TARGET_SIGVTALRM,
126 TARGET_SIGPROF,
127 TARGET_SIGWINCH,
128 -1, /* SIGLOST */
129 TARGET_SIGUSR1,
130 TARGET_SIGUSR2,
131 #ifdef TARGET_SIGPWR
132 TARGET_SIGPWR,
133 #else
134 -1,
135 #endif
136 -1, /* SIGPOLL */
137 -1,
138 -1,
139 -1,
140 -1,
141 -1,
142 -1,
143 -1,
144 -1,
145 -1,
146 -1,
147 -1,
148 #ifdef __SIGRTMIN
149 __SIGRTMIN + 1,
150 __SIGRTMIN + 2,
151 __SIGRTMIN + 3,
152 __SIGRTMIN + 4,
153 __SIGRTMIN + 5,
154 __SIGRTMIN + 6,
155 __SIGRTMIN + 7,
156 __SIGRTMIN + 8,
157 __SIGRTMIN + 9,
158 __SIGRTMIN + 10,
159 __SIGRTMIN + 11,
160 __SIGRTMIN + 12,
161 __SIGRTMIN + 13,
162 __SIGRTMIN + 14,
163 __SIGRTMIN + 15,
164 __SIGRTMIN + 16,
165 __SIGRTMIN + 17,
166 __SIGRTMIN + 18,
167 __SIGRTMIN + 19,
168 __SIGRTMIN + 20,
169 __SIGRTMIN + 21,
170 __SIGRTMIN + 22,
171 __SIGRTMIN + 23,
172 __SIGRTMIN + 24,
173 __SIGRTMIN + 25,
174 __SIGRTMIN + 26,
175 __SIGRTMIN + 27,
176 __SIGRTMIN + 28,
177 __SIGRTMIN + 29,
178 __SIGRTMIN + 30,
179 __SIGRTMIN + 31,
180 -1, /* SIGCANCEL */
181 __SIGRTMIN,
182 __SIGRTMIN + 32,
183 __SIGRTMIN + 33,
184 __SIGRTMIN + 34,
185 __SIGRTMIN + 35,
186 __SIGRTMIN + 36,
187 __SIGRTMIN + 37,
188 __SIGRTMIN + 38,
189 __SIGRTMIN + 39,
190 __SIGRTMIN + 40,
191 __SIGRTMIN + 41,
192 __SIGRTMIN + 42,
193 __SIGRTMIN + 43,
194 __SIGRTMIN + 44,
195 __SIGRTMIN + 45,
196 __SIGRTMIN + 46,
197 __SIGRTMIN + 47,
198 __SIGRTMIN + 48,
199 __SIGRTMIN + 49,
200 __SIGRTMIN + 50,
201 __SIGRTMIN + 51,
202 __SIGRTMIN + 52,
203 __SIGRTMIN + 53,
204 __SIGRTMIN + 54,
205 __SIGRTMIN + 55,
206 __SIGRTMIN + 56,
207 __SIGRTMIN + 57,
208 __SIGRTMIN + 58,
209 __SIGRTMIN + 59,
210 __SIGRTMIN + 60,
211 __SIGRTMIN + 61,
212 __SIGRTMIN + 62,
213 __SIGRTMIN + 63,
214 __SIGRTMIN + 64,
215 __SIGRTMIN + 65,
216 __SIGRTMIN + 66,
217 __SIGRTMIN + 67,
218 __SIGRTMIN + 68,
219 __SIGRTMIN + 69,
220 __SIGRTMIN + 70,
221 __SIGRTMIN + 71,
222 __SIGRTMIN + 72,
223 __SIGRTMIN + 73,
224 __SIGRTMIN + 74,
225 __SIGRTMIN + 75,
226 __SIGRTMIN + 76,
227 __SIGRTMIN + 77,
228 __SIGRTMIN + 78,
229 __SIGRTMIN + 79,
230 __SIGRTMIN + 80,
231 __SIGRTMIN + 81,
232 __SIGRTMIN + 82,
233 __SIGRTMIN + 83,
234 __SIGRTMIN + 84,
235 __SIGRTMIN + 85,
236 __SIGRTMIN + 86,
237 __SIGRTMIN + 87,
238 __SIGRTMIN + 88,
239 __SIGRTMIN + 89,
240 __SIGRTMIN + 90,
241 __SIGRTMIN + 91,
242 __SIGRTMIN + 92,
243 __SIGRTMIN + 93,
244 __SIGRTMIN + 94,
245 __SIGRTMIN + 95,
246 -1, /* SIGINFO */
247 -1, /* UNKNOWN */
248 -1, /* DEFAULT */
249 -1,
250 -1,
251 -1,
252 -1,
253 -1,
254 -1
255 #endif
256 };
257 #else
258 /* In system mode we only need SIGINT and SIGTRAP; other signals
259 are not yet supported. */
260
261 enum {
262 TARGET_SIGINT = 2,
263 TARGET_SIGTRAP = 5
264 };
265
266 static int gdb_signal_table[] = {
267 -1,
268 -1,
269 TARGET_SIGINT,
270 -1,
271 -1,
272 TARGET_SIGTRAP
273 };
274 #endif
275
276 #ifdef CONFIG_USER_ONLY
277 static int target_signal_to_gdb (int sig)
278 {
279 int i;
280 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
281 if (gdb_signal_table[i] == sig)
282 return i;
283 return GDB_SIGNAL_UNKNOWN;
284 }
285 #endif
286
287 static int gdb_signal_to_target (int sig)
288 {
289 if (sig < ARRAY_SIZE (gdb_signal_table))
290 return gdb_signal_table[sig];
291 else
292 return -1;
293 }
294
295 typedef struct GDBRegisterState {
296 int base_reg;
297 int num_regs;
298 gdb_reg_cb get_reg;
299 gdb_reg_cb set_reg;
300 const char *xml;
301 struct GDBRegisterState *next;
302 } GDBRegisterState;
303
304 typedef struct GDBProcess {
305 uint32_t pid;
306 bool attached;
307
308 char target_xml[1024];
309 } GDBProcess;
310
311 enum RSState {
312 RS_INACTIVE,
313 RS_IDLE,
314 RS_GETLINE,
315 RS_GETLINE_ESC,
316 RS_GETLINE_RLE,
317 RS_CHKSUM1,
318 RS_CHKSUM2,
319 };
320 typedef struct GDBState {
321 CPUState *c_cpu; /* current CPU for step/continue ops */
322 CPUState *g_cpu; /* current CPU for other ops */
323 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
324 enum RSState state; /* parsing state */
325 char line_buf[MAX_PACKET_LENGTH];
326 int line_buf_index;
327 int line_sum; /* running checksum */
328 int line_csum; /* checksum at the end of the packet */
329 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
330 int last_packet_len;
331 int signal;
332 #ifdef CONFIG_USER_ONLY
333 int fd;
334 int running_state;
335 #else
336 CharBackend chr;
337 Chardev *mon_chr;
338 #endif
339 bool multiprocess;
340 GDBProcess *processes;
341 int process_num;
342 char syscall_buf[256];
343 gdb_syscall_complete_cb current_syscall_cb;
344 } GDBState;
345
346 /* By default use no IRQs and no timers while single stepping so as to
347 * make single stepping like an ICE HW step.
348 */
349 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
350
351 static GDBState *gdbserver_state;
352
353 bool gdb_has_xml;
354
355 #ifdef CONFIG_USER_ONLY
356 /* XXX: This is not thread safe. Do we care? */
357 static int gdbserver_fd = -1;
358
359 static int get_char(GDBState *s)
360 {
361 uint8_t ch;
362 int ret;
363
364 for(;;) {
365 ret = qemu_recv(s->fd, &ch, 1, 0);
366 if (ret < 0) {
367 if (errno == ECONNRESET)
368 s->fd = -1;
369 if (errno != EINTR)
370 return -1;
371 } else if (ret == 0) {
372 close(s->fd);
373 s->fd = -1;
374 return -1;
375 } else {
376 break;
377 }
378 }
379 return ch;
380 }
381 #endif
382
383 static enum {
384 GDB_SYS_UNKNOWN,
385 GDB_SYS_ENABLED,
386 GDB_SYS_DISABLED,
387 } gdb_syscall_mode;
388
389 /* Decide if either remote gdb syscalls or native file IO should be used. */
390 int use_gdb_syscalls(void)
391 {
392 SemihostingTarget target = semihosting_get_target();
393 if (target == SEMIHOSTING_TARGET_NATIVE) {
394 /* -semihosting-config target=native */
395 return false;
396 } else if (target == SEMIHOSTING_TARGET_GDB) {
397 /* -semihosting-config target=gdb */
398 return true;
399 }
400
401 /* -semihosting-config target=auto */
402 /* On the first call check if gdb is connected and remember. */
403 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
404 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
405 : GDB_SYS_DISABLED);
406 }
407 return gdb_syscall_mode == GDB_SYS_ENABLED;
408 }
409
410 /* Resume execution. */
411 static inline void gdb_continue(GDBState *s)
412 {
413
414 #ifdef CONFIG_USER_ONLY
415 s->running_state = 1;
416 trace_gdbstub_op_continue();
417 #else
418 if (!runstate_needs_reset()) {
419 trace_gdbstub_op_continue();
420 vm_start();
421 }
422 #endif
423 }
424
425 /*
426 * Resume execution, per CPU actions. For user-mode emulation it's
427 * equivalent to gdb_continue.
428 */
429 static int gdb_continue_partial(GDBState *s, char *newstates)
430 {
431 CPUState *cpu;
432 int res = 0;
433 #ifdef CONFIG_USER_ONLY
434 /*
435 * This is not exactly accurate, but it's an improvement compared to the
436 * previous situation, where only one CPU would be single-stepped.
437 */
438 CPU_FOREACH(cpu) {
439 if (newstates[cpu->cpu_index] == 's') {
440 trace_gdbstub_op_stepping(cpu->cpu_index);
441 cpu_single_step(cpu, sstep_flags);
442 }
443 }
444 s->running_state = 1;
445 #else
446 int flag = 0;
447
448 if (!runstate_needs_reset()) {
449 if (vm_prepare_start()) {
450 return 0;
451 }
452
453 CPU_FOREACH(cpu) {
454 switch (newstates[cpu->cpu_index]) {
455 case 0:
456 case 1:
457 break; /* nothing to do here */
458 case 's':
459 trace_gdbstub_op_stepping(cpu->cpu_index);
460 cpu_single_step(cpu, sstep_flags);
461 cpu_resume(cpu);
462 flag = 1;
463 break;
464 case 'c':
465 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
466 cpu_resume(cpu);
467 flag = 1;
468 break;
469 default:
470 res = -1;
471 break;
472 }
473 }
474 }
475 if (flag) {
476 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
477 }
478 #endif
479 return res;
480 }
481
482 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
483 {
484 #ifdef CONFIG_USER_ONLY
485 int ret;
486
487 while (len > 0) {
488 ret = send(s->fd, buf, len, 0);
489 if (ret < 0) {
490 if (errno != EINTR)
491 return;
492 } else {
493 buf += ret;
494 len -= ret;
495 }
496 }
497 #else
498 /* XXX this blocks entire thread. Rewrite to use
499 * qemu_chr_fe_write and background I/O callbacks */
500 qemu_chr_fe_write_all(&s->chr, buf, len);
501 #endif
502 }
503
504 static inline int fromhex(int v)
505 {
506 if (v >= '0' && v <= '9')
507 return v - '0';
508 else if (v >= 'A' && v <= 'F')
509 return v - 'A' + 10;
510 else if (v >= 'a' && v <= 'f')
511 return v - 'a' + 10;
512 else
513 return 0;
514 }
515
516 static inline int tohex(int v)
517 {
518 if (v < 10)
519 return v + '0';
520 else
521 return v - 10 + 'a';
522 }
523
524 /* writes 2*len+1 bytes in buf */
525 static void memtohex(char *buf, const uint8_t *mem, int len)
526 {
527 int i, c;
528 char *q;
529 q = buf;
530 for(i = 0; i < len; i++) {
531 c = mem[i];
532 *q++ = tohex(c >> 4);
533 *q++ = tohex(c & 0xf);
534 }
535 *q = '\0';
536 }
537
538 static void hextomem(uint8_t *mem, const char *buf, int len)
539 {
540 int i;
541
542 for(i = 0; i < len; i++) {
543 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
544 buf += 2;
545 }
546 }
547
548 static void hexdump(const char *buf, int len,
549 void (*trace_fn)(size_t ofs, char const *text))
550 {
551 char line_buffer[3 * 16 + 4 + 16 + 1];
552
553 size_t i;
554 for (i = 0; i < len || (i & 0xF); ++i) {
555 size_t byte_ofs = i & 15;
556
557 if (byte_ofs == 0) {
558 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
559 line_buffer[3 * 16 + 4 + 16] = 0;
560 }
561
562 size_t col_group = (i >> 2) & 3;
563 size_t hex_col = byte_ofs * 3 + col_group;
564 size_t txt_col = 3 * 16 + 4 + byte_ofs;
565
566 if (i < len) {
567 char value = buf[i];
568
569 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
570 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
571 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
572 ? value
573 : '.';
574 }
575
576 if (byte_ofs == 0xF)
577 trace_fn(i & -16, line_buffer);
578 }
579 }
580
581 /* return -1 if error, 0 if OK */
582 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
583 {
584 int csum, i;
585 uint8_t *p;
586
587 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
588 hexdump(buf, len, trace_gdbstub_io_binaryreply);
589 }
590
591 for(;;) {
592 p = s->last_packet;
593 *(p++) = '$';
594 memcpy(p, buf, len);
595 p += len;
596 csum = 0;
597 for(i = 0; i < len; i++) {
598 csum += buf[i];
599 }
600 *(p++) = '#';
601 *(p++) = tohex((csum >> 4) & 0xf);
602 *(p++) = tohex((csum) & 0xf);
603
604 s->last_packet_len = p - s->last_packet;
605 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
606
607 #ifdef CONFIG_USER_ONLY
608 i = get_char(s);
609 if (i < 0)
610 return -1;
611 if (i == '+')
612 break;
613 #else
614 break;
615 #endif
616 }
617 return 0;
618 }
619
620 /* return -1 if error, 0 if OK */
621 static int put_packet(GDBState *s, const char *buf)
622 {
623 trace_gdbstub_io_reply(buf);
624
625 return put_packet_binary(s, buf, strlen(buf), false);
626 }
627
628 /* Encode data using the encoding for 'x' packets. */
629 static int memtox(char *buf, const char *mem, int len)
630 {
631 char *p = buf;
632 char c;
633
634 while (len--) {
635 c = *(mem++);
636 switch (c) {
637 case '#': case '$': case '*': case '}':
638 *(p++) = '}';
639 *(p++) = c ^ 0x20;
640 break;
641 default:
642 *(p++) = c;
643 break;
644 }
645 }
646 return p - buf;
647 }
648
649 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
650 {
651 /* TODO: In user mode, we should use the task state PID */
652 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
653 /* Return the default process' PID */
654 return s->processes[s->process_num - 1].pid;
655 }
656 return cpu->cluster_index + 1;
657 }
658
659 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
660 {
661 int i;
662
663 if (!pid) {
664 /* 0 means any process, we take the first one */
665 return &s->processes[0];
666 }
667
668 for (i = 0; i < s->process_num; i++) {
669 if (s->processes[i].pid == pid) {
670 return &s->processes[i];
671 }
672 }
673
674 return NULL;
675 }
676
677 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
678 {
679 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
680 }
681
682 static CPUState *find_cpu(uint32_t thread_id)
683 {
684 CPUState *cpu;
685
686 CPU_FOREACH(cpu) {
687 if (cpu_gdb_index(cpu) == thread_id) {
688 return cpu;
689 }
690 }
691
692 return NULL;
693 }
694
695 static CPUState *get_first_cpu_in_process(const GDBState *s,
696 GDBProcess *process)
697 {
698 CPUState *cpu;
699
700 CPU_FOREACH(cpu) {
701 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
702 return cpu;
703 }
704 }
705
706 return NULL;
707 }
708
709 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
710 {
711 uint32_t pid = gdb_get_cpu_pid(s, cpu);
712 cpu = CPU_NEXT(cpu);
713
714 while (cpu) {
715 if (gdb_get_cpu_pid(s, cpu) == pid) {
716 break;
717 }
718
719 cpu = CPU_NEXT(cpu);
720 }
721
722 return cpu;
723 }
724
725 /* Return the cpu following @cpu, while ignoring unattached processes. */
726 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
727 {
728 cpu = CPU_NEXT(cpu);
729
730 while (cpu) {
731 if (gdb_get_cpu_process(s, cpu)->attached) {
732 break;
733 }
734
735 cpu = CPU_NEXT(cpu);
736 }
737
738 return cpu;
739 }
740
741 /* Return the first attached cpu */
742 static CPUState *gdb_first_attached_cpu(const GDBState *s)
743 {
744 CPUState *cpu = first_cpu;
745 GDBProcess *process = gdb_get_cpu_process(s, cpu);
746
747 if (!process->attached) {
748 return gdb_next_attached_cpu(s, cpu);
749 }
750
751 return cpu;
752 }
753
754 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
755 {
756 GDBProcess *process;
757 CPUState *cpu;
758
759 if (!pid && !tid) {
760 /* 0 means any process/thread, we take the first attached one */
761 return gdb_first_attached_cpu(s);
762 } else if (pid && !tid) {
763 /* any thread in a specific process */
764 process = gdb_get_process(s, pid);
765
766 if (process == NULL) {
767 return NULL;
768 }
769
770 if (!process->attached) {
771 return NULL;
772 }
773
774 return get_first_cpu_in_process(s, process);
775 } else {
776 /* a specific thread */
777 cpu = find_cpu(tid);
778
779 if (cpu == NULL) {
780 return NULL;
781 }
782
783 process = gdb_get_cpu_process(s, cpu);
784
785 if (pid && process->pid != pid) {
786 return NULL;
787 }
788
789 if (!process->attached) {
790 return NULL;
791 }
792
793 return cpu;
794 }
795 }
796
797 static const char *get_feature_xml(const GDBState *s, const char *p,
798 const char **newp, GDBProcess *process)
799 {
800 size_t len;
801 int i;
802 const char *name;
803 CPUState *cpu = get_first_cpu_in_process(s, process);
804 CPUClass *cc = CPU_GET_CLASS(cpu);
805
806 len = 0;
807 while (p[len] && p[len] != ':')
808 len++;
809 *newp = p + len;
810
811 name = NULL;
812 if (strncmp(p, "target.xml", len) == 0) {
813 char *buf = process->target_xml;
814 const size_t buf_sz = sizeof(process->target_xml);
815
816 /* Generate the XML description for this CPU. */
817 if (!buf[0]) {
818 GDBRegisterState *r;
819
820 pstrcat(buf, buf_sz,
821 "<?xml version=\"1.0\"?>"
822 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
823 "<target>");
824 if (cc->gdb_arch_name) {
825 gchar *arch = cc->gdb_arch_name(cpu);
826 pstrcat(buf, buf_sz, "<architecture>");
827 pstrcat(buf, buf_sz, arch);
828 pstrcat(buf, buf_sz, "</architecture>");
829 g_free(arch);
830 }
831 pstrcat(buf, buf_sz, "<xi:include href=\"");
832 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
833 pstrcat(buf, buf_sz, "\"/>");
834 for (r = cpu->gdb_regs; r; r = r->next) {
835 pstrcat(buf, buf_sz, "<xi:include href=\"");
836 pstrcat(buf, buf_sz, r->xml);
837 pstrcat(buf, buf_sz, "\"/>");
838 }
839 pstrcat(buf, buf_sz, "</target>");
840 }
841 return buf;
842 }
843 if (cc->gdb_get_dynamic_xml) {
844 char *xmlname = g_strndup(p, len);
845 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
846
847 g_free(xmlname);
848 if (xml) {
849 return xml;
850 }
851 }
852 for (i = 0; ; i++) {
853 name = xml_builtin[i][0];
854 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
855 break;
856 }
857 return name ? xml_builtin[i][1] : NULL;
858 }
859
860 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
861 {
862 CPUClass *cc = CPU_GET_CLASS(cpu);
863 CPUArchState *env = cpu->env_ptr;
864 GDBRegisterState *r;
865
866 if (reg < cc->gdb_num_core_regs) {
867 return cc->gdb_read_register(cpu, mem_buf, reg);
868 }
869
870 for (r = cpu->gdb_regs; r; r = r->next) {
871 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
872 return r->get_reg(env, mem_buf, reg - r->base_reg);
873 }
874 }
875 return 0;
876 }
877
878 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
879 {
880 CPUClass *cc = CPU_GET_CLASS(cpu);
881 CPUArchState *env = cpu->env_ptr;
882 GDBRegisterState *r;
883
884 if (reg < cc->gdb_num_core_regs) {
885 return cc->gdb_write_register(cpu, mem_buf, reg);
886 }
887
888 for (r = cpu->gdb_regs; r; r = r->next) {
889 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
890 return r->set_reg(env, mem_buf, reg - r->base_reg);
891 }
892 }
893 return 0;
894 }
895
896 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
897 specifies the first register number and these registers are included in
898 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
899 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
900 */
901
902 void gdb_register_coprocessor(CPUState *cpu,
903 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
904 int num_regs, const char *xml, int g_pos)
905 {
906 GDBRegisterState *s;
907 GDBRegisterState **p;
908
909 p = &cpu->gdb_regs;
910 while (*p) {
911 /* Check for duplicates. */
912 if (strcmp((*p)->xml, xml) == 0)
913 return;
914 p = &(*p)->next;
915 }
916
917 s = g_new0(GDBRegisterState, 1);
918 s->base_reg = cpu->gdb_num_regs;
919 s->num_regs = num_regs;
920 s->get_reg = get_reg;
921 s->set_reg = set_reg;
922 s->xml = xml;
923
924 /* Add to end of list. */
925 cpu->gdb_num_regs += num_regs;
926 *p = s;
927 if (g_pos) {
928 if (g_pos != s->base_reg) {
929 error_report("Error: Bad gdb register numbering for '%s', "
930 "expected %d got %d", xml, g_pos, s->base_reg);
931 } else {
932 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
933 }
934 }
935 }
936
937 #ifndef CONFIG_USER_ONLY
938 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
939 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
940 {
941 static const int xlat[] = {
942 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
943 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
944 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
945 };
946
947 CPUClass *cc = CPU_GET_CLASS(cpu);
948 int cputype = xlat[gdbtype];
949
950 if (cc->gdb_stop_before_watchpoint) {
951 cputype |= BP_STOP_BEFORE_ACCESS;
952 }
953 return cputype;
954 }
955 #endif
956
957 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
958 {
959 CPUState *cpu;
960 int err = 0;
961
962 if (kvm_enabled()) {
963 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
964 }
965
966 switch (type) {
967 case GDB_BREAKPOINT_SW:
968 case GDB_BREAKPOINT_HW:
969 CPU_FOREACH(cpu) {
970 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
971 if (err) {
972 break;
973 }
974 }
975 return err;
976 #ifndef CONFIG_USER_ONLY
977 case GDB_WATCHPOINT_WRITE:
978 case GDB_WATCHPOINT_READ:
979 case GDB_WATCHPOINT_ACCESS:
980 CPU_FOREACH(cpu) {
981 err = cpu_watchpoint_insert(cpu, addr, len,
982 xlat_gdb_type(cpu, type), NULL);
983 if (err) {
984 break;
985 }
986 }
987 return err;
988 #endif
989 default:
990 return -ENOSYS;
991 }
992 }
993
994 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
995 {
996 CPUState *cpu;
997 int err = 0;
998
999 if (kvm_enabled()) {
1000 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1001 }
1002
1003 switch (type) {
1004 case GDB_BREAKPOINT_SW:
1005 case GDB_BREAKPOINT_HW:
1006 CPU_FOREACH(cpu) {
1007 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1008 if (err) {
1009 break;
1010 }
1011 }
1012 return err;
1013 #ifndef CONFIG_USER_ONLY
1014 case GDB_WATCHPOINT_WRITE:
1015 case GDB_WATCHPOINT_READ:
1016 case GDB_WATCHPOINT_ACCESS:
1017 CPU_FOREACH(cpu) {
1018 err = cpu_watchpoint_remove(cpu, addr, len,
1019 xlat_gdb_type(cpu, type));
1020 if (err)
1021 break;
1022 }
1023 return err;
1024 #endif
1025 default:
1026 return -ENOSYS;
1027 }
1028 }
1029
1030 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1031 {
1032 cpu_breakpoint_remove_all(cpu, BP_GDB);
1033 #ifndef CONFIG_USER_ONLY
1034 cpu_watchpoint_remove_all(cpu, BP_GDB);
1035 #endif
1036 }
1037
1038 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1039 {
1040 CPUState *cpu = get_first_cpu_in_process(s, p);
1041
1042 while (cpu) {
1043 gdb_cpu_breakpoint_remove_all(cpu);
1044 cpu = gdb_next_cpu_in_process(s, cpu);
1045 }
1046 }
1047
1048 static void gdb_breakpoint_remove_all(void)
1049 {
1050 CPUState *cpu;
1051
1052 if (kvm_enabled()) {
1053 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1054 return;
1055 }
1056
1057 CPU_FOREACH(cpu) {
1058 gdb_cpu_breakpoint_remove_all(cpu);
1059 }
1060 }
1061
1062 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1063 {
1064 CPUState *cpu = s->c_cpu;
1065
1066 cpu_synchronize_state(cpu);
1067 cpu_set_pc(cpu, pc);
1068 }
1069
1070 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1071 char *buf, size_t buf_size)
1072 {
1073 if (s->multiprocess) {
1074 snprintf(buf, buf_size, "p%02x.%02x",
1075 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1076 } else {
1077 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1078 }
1079
1080 return buf;
1081 }
1082
1083 typedef enum GDBThreadIdKind {
1084 GDB_ONE_THREAD = 0,
1085 GDB_ALL_THREADS, /* One process, all threads */
1086 GDB_ALL_PROCESSES,
1087 GDB_READ_THREAD_ERR
1088 } GDBThreadIdKind;
1089
1090 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1091 uint32_t *pid, uint32_t *tid)
1092 {
1093 unsigned long p, t;
1094 int ret;
1095
1096 if (*buf == 'p') {
1097 buf++;
1098 ret = qemu_strtoul(buf, &buf, 16, &p);
1099
1100 if (ret) {
1101 return GDB_READ_THREAD_ERR;
1102 }
1103
1104 /* Skip '.' */
1105 buf++;
1106 } else {
1107 p = 1;
1108 }
1109
1110 ret = qemu_strtoul(buf, &buf, 16, &t);
1111
1112 if (ret) {
1113 return GDB_READ_THREAD_ERR;
1114 }
1115
1116 *end_buf = buf;
1117
1118 if (p == -1) {
1119 return GDB_ALL_PROCESSES;
1120 }
1121
1122 if (pid) {
1123 *pid = p;
1124 }
1125
1126 if (t == -1) {
1127 return GDB_ALL_THREADS;
1128 }
1129
1130 if (tid) {
1131 *tid = t;
1132 }
1133
1134 return GDB_ONE_THREAD;
1135 }
1136
1137 static int is_query_packet(const char *p, const char *query, char separator)
1138 {
1139 unsigned int query_len = strlen(query);
1140
1141 return strncmp(p, query, query_len) == 0 &&
1142 (p[query_len] == '\0' || p[query_len] == separator);
1143 }
1144
1145 /**
1146 * gdb_handle_vcont - Parses and handles a vCont packet.
1147 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1148 * a format error, 0 on success.
1149 */
1150 static int gdb_handle_vcont(GDBState *s, const char *p)
1151 {
1152 int res, signal = 0;
1153 char cur_action;
1154 char *newstates;
1155 unsigned long tmp;
1156 uint32_t pid, tid;
1157 GDBProcess *process;
1158 CPUState *cpu;
1159 GDBThreadIdKind kind;
1160 #ifdef CONFIG_USER_ONLY
1161 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1162
1163 CPU_FOREACH(cpu) {
1164 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1165 }
1166 #endif
1167 /* uninitialised CPUs stay 0 */
1168 newstates = g_new0(char, max_cpus);
1169
1170 /* mark valid CPUs with 1 */
1171 CPU_FOREACH(cpu) {
1172 newstates[cpu->cpu_index] = 1;
1173 }
1174
1175 /*
1176 * res keeps track of what error we are returning, with -ENOTSUP meaning
1177 * that the command is unknown or unsupported, thus returning an empty
1178 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1179 * or incorrect parameters passed.
1180 */
1181 res = 0;
1182 while (*p) {
1183 if (*p++ != ';') {
1184 res = -ENOTSUP;
1185 goto out;
1186 }
1187
1188 cur_action = *p++;
1189 if (cur_action == 'C' || cur_action == 'S') {
1190 cur_action = qemu_tolower(cur_action);
1191 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1192 if (res) {
1193 goto out;
1194 }
1195 signal = gdb_signal_to_target(tmp);
1196 } else if (cur_action != 'c' && cur_action != 's') {
1197 /* unknown/invalid/unsupported command */
1198 res = -ENOTSUP;
1199 goto out;
1200 }
1201
1202 if (*p == '\0' || *p == ';') {
1203 /*
1204 * No thread specifier, action is on "all threads". The
1205 * specification is unclear regarding the process to act on. We
1206 * choose all processes.
1207 */
1208 kind = GDB_ALL_PROCESSES;
1209 } else if (*p++ == ':') {
1210 kind = read_thread_id(p, &p, &pid, &tid);
1211 } else {
1212 res = -ENOTSUP;
1213 goto out;
1214 }
1215
1216 switch (kind) {
1217 case GDB_READ_THREAD_ERR:
1218 res = -EINVAL;
1219 goto out;
1220
1221 case GDB_ALL_PROCESSES:
1222 cpu = gdb_first_attached_cpu(s);
1223 while (cpu) {
1224 if (newstates[cpu->cpu_index] == 1) {
1225 newstates[cpu->cpu_index] = cur_action;
1226 }
1227
1228 cpu = gdb_next_attached_cpu(s, cpu);
1229 }
1230 break;
1231
1232 case GDB_ALL_THREADS:
1233 process = gdb_get_process(s, pid);
1234
1235 if (!process->attached) {
1236 res = -EINVAL;
1237 goto out;
1238 }
1239
1240 cpu = get_first_cpu_in_process(s, process);
1241 while (cpu) {
1242 if (newstates[cpu->cpu_index] == 1) {
1243 newstates[cpu->cpu_index] = cur_action;
1244 }
1245
1246 cpu = gdb_next_cpu_in_process(s, cpu);
1247 }
1248 break;
1249
1250 case GDB_ONE_THREAD:
1251 cpu = gdb_get_cpu(s, pid, tid);
1252
1253 /* invalid CPU/thread specified */
1254 if (!cpu) {
1255 res = -EINVAL;
1256 goto out;
1257 }
1258
1259 /* only use if no previous match occourred */
1260 if (newstates[cpu->cpu_index] == 1) {
1261 newstates[cpu->cpu_index] = cur_action;
1262 }
1263 break;
1264 }
1265 }
1266 s->signal = signal;
1267 gdb_continue_partial(s, newstates);
1268
1269 out:
1270 g_free(newstates);
1271
1272 return res;
1273 }
1274
1275 typedef union GdbCmdVariant {
1276 const char *data;
1277 uint8_t opcode;
1278 unsigned long val_ul;
1279 unsigned long long val_ull;
1280 struct {
1281 GDBThreadIdKind kind;
1282 uint32_t pid;
1283 uint32_t tid;
1284 } thread_id;
1285 } GdbCmdVariant;
1286
1287 static const char *cmd_next_param(const char *param, const char delimiter)
1288 {
1289 static const char all_delimiters[] = ",;:=";
1290 char curr_delimiters[2] = {0};
1291 const char *delimiters;
1292
1293 if (delimiter == '?') {
1294 delimiters = all_delimiters;
1295 } else if (delimiter == '0') {
1296 return strchr(param, '\0');
1297 } else if (delimiter == '.' && *param) {
1298 return param + 1;
1299 } else {
1300 curr_delimiters[0] = delimiter;
1301 delimiters = curr_delimiters;
1302 }
1303
1304 param += strcspn(param, delimiters);
1305 if (*param) {
1306 param++;
1307 }
1308 return param;
1309 }
1310
1311 static int cmd_parse_params(const char *data, const char *schema,
1312 GdbCmdVariant *params, int *num_params)
1313 {
1314 int curr_param;
1315 const char *curr_schema, *curr_data;
1316
1317 *num_params = 0;
1318
1319 if (!schema) {
1320 return 0;
1321 }
1322
1323 curr_schema = schema;
1324 curr_param = 0;
1325 curr_data = data;
1326 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1327 switch (curr_schema[0]) {
1328 case 'l':
1329 if (qemu_strtoul(curr_data, &curr_data, 16,
1330 &params[curr_param].val_ul)) {
1331 return -EINVAL;
1332 }
1333 curr_param++;
1334 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1335 break;
1336 case 'L':
1337 if (qemu_strtou64(curr_data, &curr_data, 16,
1338 (uint64_t *)&params[curr_param].val_ull)) {
1339 return -EINVAL;
1340 }
1341 curr_param++;
1342 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1343 break;
1344 case 's':
1345 params[curr_param].data = curr_data;
1346 curr_param++;
1347 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1348 break;
1349 case 'o':
1350 params[curr_param].opcode = *(uint8_t *)curr_data;
1351 curr_param++;
1352 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1353 break;
1354 case 't':
1355 params[curr_param].thread_id.kind =
1356 read_thread_id(curr_data, &curr_data,
1357 &params[curr_param].thread_id.pid,
1358 &params[curr_param].thread_id.tid);
1359 curr_param++;
1360 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1361 break;
1362 case '?':
1363 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1364 break;
1365 default:
1366 return -EINVAL;
1367 }
1368 curr_schema += 2;
1369 }
1370
1371 *num_params = curr_param;
1372 return 0;
1373 }
1374
1375 typedef struct GdbCmdContext {
1376 GDBState *s;
1377 GdbCmdVariant *params;
1378 int num_params;
1379 uint8_t mem_buf[MAX_PACKET_LENGTH];
1380 char str_buf[MAX_PACKET_LENGTH + 1];
1381 } GdbCmdContext;
1382
1383 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1384
1385 /*
1386 * cmd_startswith -> cmd is compared using startswith
1387 *
1388 *
1389 * schema definitions:
1390 * Each schema parameter entry consists of 2 chars,
1391 * the first char represents the parameter type handling
1392 * the second char represents the delimiter for the next parameter
1393 *
1394 * Currently supported schema types:
1395 * 'l' -> unsigned long (stored in .val_ul)
1396 * 'L' -> unsigned long long (stored in .val_ull)
1397 * 's' -> string (stored in .data)
1398 * 'o' -> single char (stored in .opcode)
1399 * 't' -> thread id (stored in .thread_id)
1400 * '?' -> skip according to delimiter
1401 *
1402 * Currently supported delimiters:
1403 * '?' -> Stop at any delimiter (",;:=\0")
1404 * '0' -> Stop at "\0"
1405 * '.' -> Skip 1 char unless reached "\0"
1406 * Any other value is treated as the delimiter value itself
1407 */
1408 typedef struct GdbCmdParseEntry {
1409 GdbCmdHandler handler;
1410 const char *cmd;
1411 bool cmd_startswith;
1412 const char *schema;
1413 } GdbCmdParseEntry;
1414
1415 static inline int startswith(const char *string, const char *pattern)
1416 {
1417 return !strncmp(string, pattern, strlen(pattern));
1418 }
1419
1420 static int process_string_cmd(GDBState *s, void *user_ctx, const char *data,
1421 const GdbCmdParseEntry *cmds, int num_cmds)
1422 {
1423 int i, schema_len, max_num_params = 0;
1424 GdbCmdContext gdb_ctx;
1425
1426 if (!cmds) {
1427 return -1;
1428 }
1429
1430 for (i = 0; i < num_cmds; i++) {
1431 const GdbCmdParseEntry *cmd = &cmds[i];
1432 g_assert(cmd->handler && cmd->cmd);
1433
1434 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1435 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1436 continue;
1437 }
1438
1439 if (cmd->schema) {
1440 schema_len = strlen(cmd->schema);
1441 if (schema_len % 2) {
1442 return -2;
1443 }
1444
1445 max_num_params = schema_len / 2;
1446 }
1447
1448 gdb_ctx.params =
1449 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1450 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1451
1452 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1453 gdb_ctx.params, &gdb_ctx.num_params)) {
1454 return -1;
1455 }
1456
1457 gdb_ctx.s = s;
1458 cmd->handler(&gdb_ctx, user_ctx);
1459 return 0;
1460 }
1461
1462 return -1;
1463 }
1464
1465 static void run_cmd_parser(GDBState *s, const char *data,
1466 const GdbCmdParseEntry *cmd)
1467 {
1468 if (!data) {
1469 return;
1470 }
1471
1472 /* In case there was an error during the command parsing we must
1473 * send a NULL packet to indicate the command is not supported */
1474 if (process_string_cmd(s, NULL, data, cmd, 1)) {
1475 put_packet(s, "");
1476 }
1477 }
1478
1479 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1480 {
1481 GDBProcess *process;
1482 GDBState *s = gdb_ctx->s;
1483 uint32_t pid = 1;
1484
1485 if (s->multiprocess) {
1486 if (!gdb_ctx->num_params) {
1487 put_packet(s, "E22");
1488 return;
1489 }
1490
1491 pid = gdb_ctx->params[0].val_ul;
1492 }
1493
1494 process = gdb_get_process(s, pid);
1495 gdb_process_breakpoint_remove_all(s, process);
1496 process->attached = false;
1497
1498 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1499 s->c_cpu = gdb_first_attached_cpu(s);
1500 }
1501
1502 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1503 s->g_cpu = gdb_first_attached_cpu(s);
1504 }
1505
1506 if (!s->c_cpu) {
1507 /* No more process attached */
1508 gdb_syscall_mode = GDB_SYS_DISABLED;
1509 gdb_continue(s);
1510 }
1511 put_packet(s, "OK");
1512 }
1513
1514 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1515 {
1516 CPUState *cpu;
1517
1518 if (!gdb_ctx->num_params) {
1519 put_packet(gdb_ctx->s, "E22");
1520 return;
1521 }
1522
1523 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1524 put_packet(gdb_ctx->s, "E22");
1525 return;
1526 }
1527
1528 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1529 gdb_ctx->params[0].thread_id.tid);
1530 if (!cpu) {
1531 put_packet(gdb_ctx->s, "E22");
1532 return;
1533 }
1534
1535 put_packet(gdb_ctx->s, "OK");
1536 }
1537
1538 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1539 {
1540 if (gdb_ctx->num_params) {
1541 gdb_set_cpu_pc(gdb_ctx->s, gdb_ctx->params[0].val_ull);
1542 }
1543
1544 gdb_ctx->s->signal = 0;
1545 gdb_continue(gdb_ctx->s);
1546 }
1547
1548 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1549 {
1550 unsigned long signal = 0;
1551
1552 /*
1553 * Note: C sig;[addr] is currently unsupported and we simply
1554 * omit the addr parameter
1555 */
1556 if (gdb_ctx->num_params) {
1557 signal = gdb_ctx->params[0].val_ul;
1558 }
1559
1560 gdb_ctx->s->signal = gdb_signal_to_target(signal);
1561 if (gdb_ctx->s->signal == -1) {
1562 gdb_ctx->s->signal = 0;
1563 }
1564 gdb_continue(gdb_ctx->s);
1565 }
1566
1567 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1568 {
1569 CPUState *cpu;
1570
1571 if (gdb_ctx->num_params != 2) {
1572 put_packet(gdb_ctx->s, "E22");
1573 return;
1574 }
1575
1576 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1577 put_packet(gdb_ctx->s, "E22");
1578 return;
1579 }
1580
1581 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1582 put_packet(gdb_ctx->s, "OK");
1583 return;
1584 }
1585
1586 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[1].thread_id.pid,
1587 gdb_ctx->params[1].thread_id.tid);
1588 if (!cpu) {
1589 put_packet(gdb_ctx->s, "E22");
1590 return;
1591 }
1592
1593 /*
1594 * Note: This command is deprecated and modern gdb's will be using the
1595 * vCont command instead.
1596 */
1597 switch (gdb_ctx->params[0].opcode) {
1598 case 'c':
1599 gdb_ctx->s->c_cpu = cpu;
1600 put_packet(gdb_ctx->s, "OK");
1601 break;
1602 case 'g':
1603 gdb_ctx->s->g_cpu = cpu;
1604 put_packet(gdb_ctx->s, "OK");
1605 break;
1606 default:
1607 put_packet(gdb_ctx->s, "E22");
1608 break;
1609 }
1610 }
1611
1612 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1613 {
1614 int res;
1615
1616 if (gdb_ctx->num_params != 3) {
1617 put_packet(gdb_ctx->s, "E22");
1618 return;
1619 }
1620
1621 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1622 gdb_ctx->params[1].val_ull,
1623 gdb_ctx->params[2].val_ull);
1624 if (res >= 0) {
1625 put_packet(gdb_ctx->s, "OK");
1626 return;
1627 } else if (res == -ENOSYS) {
1628 put_packet(gdb_ctx->s, "");
1629 return;
1630 }
1631
1632 put_packet(gdb_ctx->s, "E22");
1633 }
1634
1635 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1636 {
1637 int res;
1638
1639 if (gdb_ctx->num_params != 3) {
1640 put_packet(gdb_ctx->s, "E22");
1641 return;
1642 }
1643
1644 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1645 gdb_ctx->params[1].val_ull,
1646 gdb_ctx->params[2].val_ull);
1647 if (res >= 0) {
1648 put_packet(gdb_ctx->s, "OK");
1649 return;
1650 } else if (res == -ENOSYS) {
1651 put_packet(gdb_ctx->s, "");
1652 return;
1653 }
1654
1655 put_packet(gdb_ctx->s, "E22");
1656 }
1657
1658 static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1659 {
1660 int reg_size;
1661
1662 if (!gdb_has_xml) {
1663 put_packet(gdb_ctx->s, "E00");
1664 return;
1665 }
1666
1667 if (gdb_ctx->num_params != 2) {
1668 put_packet(gdb_ctx->s, "E22");
1669 return;
1670 }
1671
1672 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1673 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[1].data, reg_size);
1674 gdb_write_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1675 gdb_ctx->params[0].val_ull);
1676 put_packet(gdb_ctx->s, "OK");
1677 }
1678
1679 static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1680 {
1681 int reg_size;
1682
1683 /*
1684 * Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1685 * This works, but can be very slow. Anything new enough to
1686 * understand XML also knows how to use this properly.
1687 */
1688 if (!gdb_has_xml) {
1689 put_packet(gdb_ctx->s, "");
1690 return;
1691 }
1692
1693 if (!gdb_ctx->num_params) {
1694 put_packet(gdb_ctx->s, "E14");
1695 return;
1696 }
1697
1698 reg_size = gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1699 gdb_ctx->params[0].val_ull);
1700 if (!reg_size) {
1701 put_packet(gdb_ctx->s, "E14");
1702 return;
1703 }
1704
1705 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, reg_size);
1706 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1707 }
1708
1709 static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1710 {
1711 if (gdb_ctx->num_params != 3) {
1712 put_packet(gdb_ctx->s, "E22");
1713 return;
1714 }
1715
1716 /* hextomem() reads 2*len bytes */
1717 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1718 put_packet(gdb_ctx->s, "E22");
1719 return;
1720 }
1721
1722 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[2].data,
1723 gdb_ctx->params[1].val_ull);
1724 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1725 gdb_ctx->mem_buf,
1726 gdb_ctx->params[1].val_ull, true)) {
1727 put_packet(gdb_ctx->s, "E14");
1728 return;
1729 }
1730
1731 put_packet(gdb_ctx->s, "OK");
1732 }
1733
1734 static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1735 {
1736 if (gdb_ctx->num_params != 2) {
1737 put_packet(gdb_ctx->s, "E22");
1738 return;
1739 }
1740
1741 /* memtohex() doubles the required space */
1742 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1743 put_packet(gdb_ctx->s, "E22");
1744 return;
1745 }
1746
1747 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1748 gdb_ctx->mem_buf,
1749 gdb_ctx->params[1].val_ull, false)) {
1750 put_packet(gdb_ctx->s, "E14");
1751 return;
1752 }
1753
1754 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, gdb_ctx->params[1].val_ull);
1755 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1756 }
1757
1758 static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1759 {
1760 target_ulong addr, len;
1761 uint8_t *registers;
1762 int reg_size;
1763
1764 if (!gdb_ctx->num_params) {
1765 return;
1766 }
1767
1768 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1769 registers = gdb_ctx->mem_buf;
1770 len = strlen(gdb_ctx->params[0].data) / 2;
1771 hextomem(registers, gdb_ctx->params[0].data, len);
1772 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs && len > 0;
1773 addr++) {
1774 reg_size = gdb_write_register(gdb_ctx->s->g_cpu, registers, addr);
1775 len -= reg_size;
1776 registers += reg_size;
1777 }
1778 put_packet(gdb_ctx->s, "OK");
1779 }
1780
1781 static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1782 {
1783 target_ulong addr, len;
1784
1785 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1786 len = 0;
1787 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs; addr++) {
1788 len += gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf + len,
1789 addr);
1790 }
1791
1792 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
1793 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1794 }
1795
1796 static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx)
1797 {
1798 if (gdb_ctx->num_params >= 2 && gdb_ctx->s->current_syscall_cb) {
1799 target_ulong ret, err;
1800
1801 ret = (target_ulong)gdb_ctx->params[0].val_ull;
1802 err = (target_ulong)gdb_ctx->params[1].val_ull;
1803 gdb_ctx->s->current_syscall_cb(gdb_ctx->s->c_cpu, ret, err);
1804 gdb_ctx->s->current_syscall_cb = NULL;
1805 }
1806
1807 if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') {
1808 put_packet(gdb_ctx->s, "T02");
1809 return;
1810 }
1811
1812 gdb_continue(gdb_ctx->s);
1813 }
1814
1815 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1816 {
1817 CPUState *cpu;
1818 GDBProcess *process;
1819 CPUClass *cc;
1820 const char *p;
1821 uint32_t pid, tid;
1822 int ch, type, res;
1823 uint8_t mem_buf[MAX_PACKET_LENGTH];
1824 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1825 char thread_id[16];
1826 target_ulong addr, len;
1827 const GdbCmdParseEntry *cmd_parser = NULL;
1828
1829 trace_gdbstub_io_command(line_buf);
1830
1831 p = line_buf;
1832 ch = *p++;
1833 switch(ch) {
1834 case '!':
1835 put_packet(s, "OK");
1836 break;
1837 case '?':
1838 /* TODO: Make this return the correct value for user-mode. */
1839 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1840 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1841 put_packet(s, buf);
1842 /* Remove all the breakpoints when this query is issued,
1843 * because gdb is doing and initial connect and the state
1844 * should be cleaned up.
1845 */
1846 gdb_breakpoint_remove_all();
1847 break;
1848 case 'c':
1849 {
1850 static const GdbCmdParseEntry continue_cmd_desc = {
1851 .handler = handle_continue,
1852 .cmd = "c",
1853 .cmd_startswith = 1,
1854 .schema = "L0"
1855 };
1856 cmd_parser = &continue_cmd_desc;
1857 }
1858 break;
1859 case 'C':
1860 {
1861 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
1862 .handler = handle_cont_with_sig,
1863 .cmd = "C",
1864 .cmd_startswith = 1,
1865 .schema = "l0"
1866 };
1867 cmd_parser = &cont_with_sig_cmd_desc;
1868 }
1869 break;
1870 case 'v':
1871 if (strncmp(p, "Cont", 4) == 0) {
1872 p += 4;
1873 if (*p == '?') {
1874 put_packet(s, "vCont;c;C;s;S");
1875 break;
1876 }
1877
1878 res = gdb_handle_vcont(s, p);
1879
1880 if (res) {
1881 if ((res == -EINVAL) || (res == -ERANGE)) {
1882 put_packet(s, "E22");
1883 break;
1884 }
1885 goto unknown_command;
1886 }
1887 break;
1888 } else if (strncmp(p, "Attach;", 7) == 0) {
1889 unsigned long pid;
1890
1891 p += 7;
1892
1893 if (qemu_strtoul(p, &p, 16, &pid)) {
1894 put_packet(s, "E22");
1895 break;
1896 }
1897
1898 process = gdb_get_process(s, pid);
1899
1900 if (process == NULL) {
1901 put_packet(s, "E22");
1902 break;
1903 }
1904
1905 cpu = get_first_cpu_in_process(s, process);
1906
1907 if (cpu == NULL) {
1908 /* Refuse to attach an empty process */
1909 put_packet(s, "E22");
1910 break;
1911 }
1912
1913 process->attached = true;
1914
1915 s->g_cpu = cpu;
1916 s->c_cpu = cpu;
1917
1918 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1919 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1920
1921 put_packet(s, buf);
1922 break;
1923 } else if (strncmp(p, "Kill;", 5) == 0) {
1924 /* Kill the target */
1925 put_packet(s, "OK");
1926 error_report("QEMU: Terminated via GDBstub");
1927 exit(0);
1928 } else {
1929 goto unknown_command;
1930 }
1931 case 'k':
1932 /* Kill the target */
1933 error_report("QEMU: Terminated via GDBstub");
1934 exit(0);
1935 case 'D':
1936 {
1937 static const GdbCmdParseEntry detach_cmd_desc = {
1938 .handler = handle_detach,
1939 .cmd = "D",
1940 .cmd_startswith = 1,
1941 .schema = "?.l0"
1942 };
1943 cmd_parser = &detach_cmd_desc;
1944 }
1945 break;
1946 case 's':
1947 if (*p != '\0') {
1948 addr = strtoull(p, (char **)&p, 16);
1949 gdb_set_cpu_pc(s, addr);
1950 }
1951 cpu_single_step(s->c_cpu, sstep_flags);
1952 gdb_continue(s);
1953 return RS_IDLE;
1954 case 'F':
1955 {
1956 static const GdbCmdParseEntry file_io_cmd_desc = {
1957 .handler = handle_file_io,
1958 .cmd = "F",
1959 .cmd_startswith = 1,
1960 .schema = "L,L,o0"
1961 };
1962 cmd_parser = &file_io_cmd_desc;
1963 }
1964 break;
1965 case 'g':
1966 {
1967 static const GdbCmdParseEntry read_all_regs_cmd_desc = {
1968 .handler = handle_read_all_regs,
1969 .cmd = "g",
1970 .cmd_startswith = 1
1971 };
1972 cmd_parser = &read_all_regs_cmd_desc;
1973 }
1974 break;
1975 case 'G':
1976 {
1977 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
1978 .handler = handle_write_all_regs,
1979 .cmd = "G",
1980 .cmd_startswith = 1,
1981 .schema = "s0"
1982 };
1983 cmd_parser = &write_all_regs_cmd_desc;
1984 }
1985 break;
1986 case 'm':
1987 {
1988 static const GdbCmdParseEntry read_mem_cmd_desc = {
1989 .handler = handle_read_mem,
1990 .cmd = "m",
1991 .cmd_startswith = 1,
1992 .schema = "L,L0"
1993 };
1994 cmd_parser = &read_mem_cmd_desc;
1995 }
1996 break;
1997 case 'M':
1998 {
1999 static const GdbCmdParseEntry write_mem_cmd_desc = {
2000 .handler = handle_write_mem,
2001 .cmd = "M",
2002 .cmd_startswith = 1,
2003 .schema = "L,L:s0"
2004 };
2005 cmd_parser = &write_mem_cmd_desc;
2006 }
2007 break;
2008 case 'p':
2009 {
2010 static const GdbCmdParseEntry get_reg_cmd_desc = {
2011 .handler = handle_get_reg,
2012 .cmd = "p",
2013 .cmd_startswith = 1,
2014 .schema = "L0"
2015 };
2016 cmd_parser = &get_reg_cmd_desc;
2017 }
2018 break;
2019 case 'P':
2020 {
2021 static const GdbCmdParseEntry set_reg_cmd_desc = {
2022 .handler = handle_set_reg,
2023 .cmd = "P",
2024 .cmd_startswith = 1,
2025 .schema = "L?s0"
2026 };
2027 cmd_parser = &set_reg_cmd_desc;
2028 }
2029 break;
2030 case 'Z':
2031 {
2032 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2033 .handler = handle_insert_bp,
2034 .cmd = "Z",
2035 .cmd_startswith = 1,
2036 .schema = "l?L?L0"
2037 };
2038 cmd_parser = &insert_bp_cmd_desc;
2039 }
2040 break;
2041 case 'z':
2042 {
2043 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2044 .handler = handle_remove_bp,
2045 .cmd = "z",
2046 .cmd_startswith = 1,
2047 .schema = "l?L?L0"
2048 };
2049 cmd_parser = &remove_bp_cmd_desc;
2050 }
2051 break;
2052 case 'H':
2053 {
2054 static const GdbCmdParseEntry set_thread_cmd_desc = {
2055 .handler = handle_set_thread,
2056 .cmd = "H",
2057 .cmd_startswith = 1,
2058 .schema = "o.t0"
2059 };
2060 cmd_parser = &set_thread_cmd_desc;
2061 }
2062 break;
2063 case 'T':
2064 {
2065 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2066 .handler = handle_thread_alive,
2067 .cmd = "T",
2068 .cmd_startswith = 1,
2069 .schema = "t0"
2070 };
2071 cmd_parser = &thread_alive_cmd_desc;
2072 }
2073 break;
2074 case 'q':
2075 case 'Q':
2076 /* parse any 'q' packets here */
2077 if (!strcmp(p,"qemu.sstepbits")) {
2078 /* Query Breakpoint bit definitions */
2079 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2080 SSTEP_ENABLE,
2081 SSTEP_NOIRQ,
2082 SSTEP_NOTIMER);
2083 put_packet(s, buf);
2084 break;
2085 } else if (is_query_packet(p, "qemu.sstep", '=')) {
2086 /* Display or change the sstep_flags */
2087 p += 10;
2088 if (*p != '=') {
2089 /* Display current setting */
2090 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2091 put_packet(s, buf);
2092 break;
2093 }
2094 p++;
2095 type = strtoul(p, (char **)&p, 16);
2096 sstep_flags = type;
2097 put_packet(s, "OK");
2098 break;
2099 } else if (strcmp(p,"C") == 0) {
2100 /*
2101 * "Current thread" remains vague in the spec, so always return
2102 * the first thread of the current process (gdb returns the
2103 * first thread).
2104 */
2105 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
2106 snprintf(buf, sizeof(buf), "QC%s",
2107 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
2108 put_packet(s, buf);
2109 break;
2110 } else if (strcmp(p,"fThreadInfo") == 0) {
2111 s->query_cpu = gdb_first_attached_cpu(s);
2112 goto report_cpuinfo;
2113 } else if (strcmp(p,"sThreadInfo") == 0) {
2114 report_cpuinfo:
2115 if (s->query_cpu) {
2116 snprintf(buf, sizeof(buf), "m%s",
2117 gdb_fmt_thread_id(s, s->query_cpu,
2118 thread_id, sizeof(thread_id)));
2119 put_packet(s, buf);
2120 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
2121 } else
2122 put_packet(s, "l");
2123 break;
2124 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2125 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
2126 put_packet(s, "E22");
2127 break;
2128 }
2129 cpu = gdb_get_cpu(s, pid, tid);
2130 if (cpu != NULL) {
2131 cpu_synchronize_state(cpu);
2132
2133 if (s->multiprocess && (s->process_num > 1)) {
2134 /* Print the CPU model and name in multiprocess mode */
2135 ObjectClass *oc = object_get_class(OBJECT(cpu));
2136 const char *cpu_model = object_class_get_name(oc);
2137 char *cpu_name =
2138 object_get_canonical_path_component(OBJECT(cpu));
2139 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
2140 "%s %s [%s]", cpu_model, cpu_name,
2141 cpu->halted ? "halted " : "running");
2142 g_free(cpu_name);
2143 } else {
2144 /* memtohex() doubles the required space */
2145 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
2146 "CPU#%d [%s]", cpu->cpu_index,
2147 cpu->halted ? "halted " : "running");
2148 }
2149 trace_gdbstub_op_extra_info((char *)mem_buf);
2150 memtohex(buf, mem_buf, len);
2151 put_packet(s, buf);
2152 }
2153 break;
2154 }
2155 #ifdef CONFIG_USER_ONLY
2156 else if (strcmp(p, "Offsets") == 0) {
2157 TaskState *ts = s->c_cpu->opaque;
2158
2159 snprintf(buf, sizeof(buf),
2160 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2161 ";Bss=" TARGET_ABI_FMT_lx,
2162 ts->info->code_offset,
2163 ts->info->data_offset,
2164 ts->info->data_offset);
2165 put_packet(s, buf);
2166 break;
2167 }
2168 #else /* !CONFIG_USER_ONLY */
2169 else if (strncmp(p, "Rcmd,", 5) == 0) {
2170 int len = strlen(p + 5);
2171
2172 if ((len % 2) != 0) {
2173 put_packet(s, "E01");
2174 break;
2175 }
2176 len = len / 2;
2177 hextomem(mem_buf, p + 5, len);
2178 mem_buf[len++] = 0;
2179 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2180 put_packet(s, "OK");
2181 break;
2182 }
2183 #endif /* !CONFIG_USER_ONLY */
2184 if (is_query_packet(p, "Supported", ':')) {
2185 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2186 cc = CPU_GET_CLASS(first_cpu);
2187 if (cc->gdb_core_xml_file != NULL) {
2188 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2189 }
2190
2191 if (strstr(p, "multiprocess+")) {
2192 s->multiprocess = true;
2193 }
2194 pstrcat(buf, sizeof(buf), ";multiprocess+");
2195
2196 put_packet(s, buf);
2197 break;
2198 }
2199 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2200 const char *xml;
2201 target_ulong total_len;
2202
2203 process = gdb_get_cpu_process(s, s->g_cpu);
2204 cc = CPU_GET_CLASS(s->g_cpu);
2205 if (cc->gdb_core_xml_file == NULL) {
2206 goto unknown_command;
2207 }
2208
2209 gdb_has_xml = true;
2210 p += 19;
2211 xml = get_feature_xml(s, p, &p, process);
2212 if (!xml) {
2213 snprintf(buf, sizeof(buf), "E00");
2214 put_packet(s, buf);
2215 break;
2216 }
2217
2218 if (*p == ':')
2219 p++;
2220 addr = strtoul(p, (char **)&p, 16);
2221 if (*p == ',')
2222 p++;
2223 len = strtoul(p, (char **)&p, 16);
2224
2225 total_len = strlen(xml);
2226 if (addr > total_len) {
2227 snprintf(buf, sizeof(buf), "E00");
2228 put_packet(s, buf);
2229 break;
2230 }
2231 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2232 len = (MAX_PACKET_LENGTH - 5) / 2;
2233 if (len < total_len - addr) {
2234 buf[0] = 'm';
2235 len = memtox(buf + 1, xml + addr, len);
2236 } else {
2237 buf[0] = 'l';
2238 len = memtox(buf + 1, xml + addr, total_len - addr);
2239 }
2240 put_packet_binary(s, buf, len + 1, true);
2241 break;
2242 }
2243 if (is_query_packet(p, "Attached", ':')) {
2244 put_packet(s, GDB_ATTACHED);
2245 break;
2246 }
2247 /* Unrecognised 'q' command. */
2248 goto unknown_command;
2249
2250 default:
2251 unknown_command:
2252 /* put empty packet */
2253 buf[0] = '\0';
2254 put_packet(s, buf);
2255 break;
2256 }
2257
2258 run_cmd_parser(s, line_buf, cmd_parser);
2259
2260 return RS_IDLE;
2261 }
2262
2263 void gdb_set_stop_cpu(CPUState *cpu)
2264 {
2265 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
2266
2267 if (!p->attached) {
2268 /*
2269 * Having a stop CPU corresponding to a process that is not attached
2270 * confuses GDB. So we ignore the request.
2271 */
2272 return;
2273 }
2274
2275 gdbserver_state->c_cpu = cpu;
2276 gdbserver_state->g_cpu = cpu;
2277 }
2278
2279 #ifndef CONFIG_USER_ONLY
2280 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2281 {
2282 GDBState *s = gdbserver_state;
2283 CPUState *cpu = s->c_cpu;
2284 char buf[256];
2285 char thread_id[16];
2286 const char *type;
2287 int ret;
2288
2289 if (running || s->state == RS_INACTIVE) {
2290 return;
2291 }
2292 /* Is there a GDB syscall waiting to be sent? */
2293 if (s->current_syscall_cb) {
2294 put_packet(s, s->syscall_buf);
2295 return;
2296 }
2297
2298 if (cpu == NULL) {
2299 /* No process attached */
2300 return;
2301 }
2302
2303 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
2304
2305 switch (state) {
2306 case RUN_STATE_DEBUG:
2307 if (cpu->watchpoint_hit) {
2308 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2309 case BP_MEM_READ:
2310 type = "r";
2311 break;
2312 case BP_MEM_ACCESS:
2313 type = "a";
2314 break;
2315 default:
2316 type = "";
2317 break;
2318 }
2319 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2320 (target_ulong)cpu->watchpoint_hit->vaddr);
2321 snprintf(buf, sizeof(buf),
2322 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2323 GDB_SIGNAL_TRAP, thread_id, type,
2324 (target_ulong)cpu->watchpoint_hit->vaddr);
2325 cpu->watchpoint_hit = NULL;
2326 goto send_packet;
2327 } else {
2328 trace_gdbstub_hit_break();
2329 }
2330 tb_flush(cpu);
2331 ret = GDB_SIGNAL_TRAP;
2332 break;
2333 case RUN_STATE_PAUSED:
2334 trace_gdbstub_hit_paused();
2335 ret = GDB_SIGNAL_INT;
2336 break;
2337 case RUN_STATE_SHUTDOWN:
2338 trace_gdbstub_hit_shutdown();
2339 ret = GDB_SIGNAL_QUIT;
2340 break;
2341 case RUN_STATE_IO_ERROR:
2342 trace_gdbstub_hit_io_error();
2343 ret = GDB_SIGNAL_IO;
2344 break;
2345 case RUN_STATE_WATCHDOG:
2346 trace_gdbstub_hit_watchdog();
2347 ret = GDB_SIGNAL_ALRM;
2348 break;
2349 case RUN_STATE_INTERNAL_ERROR:
2350 trace_gdbstub_hit_internal_error();
2351 ret = GDB_SIGNAL_ABRT;
2352 break;
2353 case RUN_STATE_SAVE_VM:
2354 case RUN_STATE_RESTORE_VM:
2355 return;
2356 case RUN_STATE_FINISH_MIGRATE:
2357 ret = GDB_SIGNAL_XCPU;
2358 break;
2359 default:
2360 trace_gdbstub_hit_unknown(state);
2361 ret = GDB_SIGNAL_UNKNOWN;
2362 break;
2363 }
2364 gdb_set_stop_cpu(cpu);
2365 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
2366
2367 send_packet:
2368 put_packet(s, buf);
2369
2370 /* disable single step if it was enabled */
2371 cpu_single_step(cpu, 0);
2372 }
2373 #endif
2374
2375 /* Send a gdb syscall request.
2376 This accepts limited printf-style format specifiers, specifically:
2377 %x - target_ulong argument printed in hex.
2378 %lx - 64-bit argument printed in hex.
2379 %s - string pointer (target_ulong) and length (int) pair. */
2380 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2381 {
2382 char *p;
2383 char *p_end;
2384 target_ulong addr;
2385 uint64_t i64;
2386 GDBState *s;
2387
2388 s = gdbserver_state;
2389 if (!s)
2390 return;
2391 s->current_syscall_cb = cb;
2392 #ifndef CONFIG_USER_ONLY
2393 vm_stop(RUN_STATE_DEBUG);
2394 #endif
2395 p = s->syscall_buf;
2396 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2397 *(p++) = 'F';
2398 while (*fmt) {
2399 if (*fmt == '%') {
2400 fmt++;
2401 switch (*fmt++) {
2402 case 'x':
2403 addr = va_arg(va, target_ulong);
2404 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2405 break;
2406 case 'l':
2407 if (*(fmt++) != 'x')
2408 goto bad_format;
2409 i64 = va_arg(va, uint64_t);
2410 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2411 break;
2412 case 's':
2413 addr = va_arg(va, target_ulong);
2414 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2415 addr, va_arg(va, int));
2416 break;
2417 default:
2418 bad_format:
2419 error_report("gdbstub: Bad syscall format string '%s'",
2420 fmt - 1);
2421 break;
2422 }
2423 } else {
2424 *(p++) = *(fmt++);
2425 }
2426 }
2427 *p = 0;
2428 #ifdef CONFIG_USER_ONLY
2429 put_packet(s, s->syscall_buf);
2430 /* Return control to gdb for it to process the syscall request.
2431 * Since the protocol requires that gdb hands control back to us
2432 * using a "here are the results" F packet, we don't need to check
2433 * gdb_handlesig's return value (which is the signal to deliver if
2434 * execution was resumed via a continue packet).
2435 */
2436 gdb_handlesig(s->c_cpu, 0);
2437 #else
2438 /* In this case wait to send the syscall packet until notification that
2439 the CPU has stopped. This must be done because if the packet is sent
2440 now the reply from the syscall request could be received while the CPU
2441 is still in the running state, which can cause packets to be dropped
2442 and state transition 'T' packets to be sent while the syscall is still
2443 being processed. */
2444 qemu_cpu_kick(s->c_cpu);
2445 #endif
2446 }
2447
2448 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2449 {
2450 va_list va;
2451
2452 va_start(va, fmt);
2453 gdb_do_syscallv(cb, fmt, va);
2454 va_end(va);
2455 }
2456
2457 static void gdb_read_byte(GDBState *s, uint8_t ch)
2458 {
2459 uint8_t reply;
2460
2461 #ifndef CONFIG_USER_ONLY
2462 if (s->last_packet_len) {
2463 /* Waiting for a response to the last packet. If we see the start
2464 of a new command then abandon the previous response. */
2465 if (ch == '-') {
2466 trace_gdbstub_err_got_nack();
2467 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2468 } else if (ch == '+') {
2469 trace_gdbstub_io_got_ack();
2470 } else {
2471 trace_gdbstub_io_got_unexpected(ch);
2472 }
2473
2474 if (ch == '+' || ch == '$')
2475 s->last_packet_len = 0;
2476 if (ch != '$')
2477 return;
2478 }
2479 if (runstate_is_running()) {
2480 /* when the CPU is running, we cannot do anything except stop
2481 it when receiving a char */
2482 vm_stop(RUN_STATE_PAUSED);
2483 } else
2484 #endif
2485 {
2486 switch(s->state) {
2487 case RS_IDLE:
2488 if (ch == '$') {
2489 /* start of command packet */
2490 s->line_buf_index = 0;
2491 s->line_sum = 0;
2492 s->state = RS_GETLINE;
2493 } else {
2494 trace_gdbstub_err_garbage(ch);
2495 }
2496 break;
2497 case RS_GETLINE:
2498 if (ch == '}') {
2499 /* start escape sequence */
2500 s->state = RS_GETLINE_ESC;
2501 s->line_sum += ch;
2502 } else if (ch == '*') {
2503 /* start run length encoding sequence */
2504 s->state = RS_GETLINE_RLE;
2505 s->line_sum += ch;
2506 } else if (ch == '#') {
2507 /* end of command, start of checksum*/
2508 s->state = RS_CHKSUM1;
2509 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2510 trace_gdbstub_err_overrun();
2511 s->state = RS_IDLE;
2512 } else {
2513 /* unescaped command character */
2514 s->line_buf[s->line_buf_index++] = ch;
2515 s->line_sum += ch;
2516 }
2517 break;
2518 case RS_GETLINE_ESC:
2519 if (ch == '#') {
2520 /* unexpected end of command in escape sequence */
2521 s->state = RS_CHKSUM1;
2522 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2523 /* command buffer overrun */
2524 trace_gdbstub_err_overrun();
2525 s->state = RS_IDLE;
2526 } else {
2527 /* parse escaped character and leave escape state */
2528 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2529 s->line_sum += ch;
2530 s->state = RS_GETLINE;
2531 }
2532 break;
2533 case RS_GETLINE_RLE:
2534 /*
2535 * Run-length encoding is explained in "Debugging with GDB /
2536 * Appendix E GDB Remote Serial Protocol / Overview".
2537 */
2538 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2539 /* invalid RLE count encoding */
2540 trace_gdbstub_err_invalid_repeat(ch);
2541 s->state = RS_GETLINE;
2542 } else {
2543 /* decode repeat length */
2544 int repeat = ch - ' ' + 3;
2545 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2546 /* that many repeats would overrun the command buffer */
2547 trace_gdbstub_err_overrun();
2548 s->state = RS_IDLE;
2549 } else if (s->line_buf_index < 1) {
2550 /* got a repeat but we have nothing to repeat */
2551 trace_gdbstub_err_invalid_rle();
2552 s->state = RS_GETLINE;
2553 } else {
2554 /* repeat the last character */
2555 memset(s->line_buf + s->line_buf_index,
2556 s->line_buf[s->line_buf_index - 1], repeat);
2557 s->line_buf_index += repeat;
2558 s->line_sum += ch;
2559 s->state = RS_GETLINE;
2560 }
2561 }
2562 break;
2563 case RS_CHKSUM1:
2564 /* get high hex digit of checksum */
2565 if (!isxdigit(ch)) {
2566 trace_gdbstub_err_checksum_invalid(ch);
2567 s->state = RS_GETLINE;
2568 break;
2569 }
2570 s->line_buf[s->line_buf_index] = '\0';
2571 s->line_csum = fromhex(ch) << 4;
2572 s->state = RS_CHKSUM2;
2573 break;
2574 case RS_CHKSUM2:
2575 /* get low hex digit of checksum */
2576 if (!isxdigit(ch)) {
2577 trace_gdbstub_err_checksum_invalid(ch);
2578 s->state = RS_GETLINE;
2579 break;
2580 }
2581 s->line_csum |= fromhex(ch);
2582
2583 if (s->line_csum != (s->line_sum & 0xff)) {
2584 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2585 /* send NAK reply */
2586 reply = '-';
2587 put_buffer(s, &reply, 1);
2588 s->state = RS_IDLE;
2589 } else {
2590 /* send ACK reply */
2591 reply = '+';
2592 put_buffer(s, &reply, 1);
2593 s->state = gdb_handle_packet(s, s->line_buf);
2594 }
2595 break;
2596 default:
2597 abort();
2598 }
2599 }
2600 }
2601
2602 /* Tell the remote gdb that the process has exited. */
2603 void gdb_exit(CPUArchState *env, int code)
2604 {
2605 GDBState *s;
2606 char buf[4];
2607
2608 s = gdbserver_state;
2609 if (!s) {
2610 return;
2611 }
2612 #ifdef CONFIG_USER_ONLY
2613 if (gdbserver_fd < 0 || s->fd < 0) {
2614 return;
2615 }
2616 #endif
2617
2618 trace_gdbstub_op_exiting((uint8_t)code);
2619
2620 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2621 put_packet(s, buf);
2622
2623 #ifndef CONFIG_USER_ONLY
2624 qemu_chr_fe_deinit(&s->chr, true);
2625 #endif
2626 }
2627
2628 /*
2629 * Create the process that will contain all the "orphan" CPUs (that are not
2630 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2631 * be attachable and thus will be invisible to the user.
2632 */
2633 static void create_default_process(GDBState *s)
2634 {
2635 GDBProcess *process;
2636 int max_pid = 0;
2637
2638 if (s->process_num) {
2639 max_pid = s->processes[s->process_num - 1].pid;
2640 }
2641
2642 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2643 process = &s->processes[s->process_num - 1];
2644
2645 /* We need an available PID slot for this process */
2646 assert(max_pid < UINT32_MAX);
2647
2648 process->pid = max_pid + 1;
2649 process->attached = false;
2650 process->target_xml[0] = '\0';
2651 }
2652
2653 #ifdef CONFIG_USER_ONLY
2654 int
2655 gdb_handlesig(CPUState *cpu, int sig)
2656 {
2657 GDBState *s;
2658 char buf[256];
2659 int n;
2660
2661 s = gdbserver_state;
2662 if (gdbserver_fd < 0 || s->fd < 0) {
2663 return sig;
2664 }
2665
2666 /* disable single step if it was enabled */
2667 cpu_single_step(cpu, 0);
2668 tb_flush(cpu);
2669
2670 if (sig != 0) {
2671 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2672 put_packet(s, buf);
2673 }
2674 /* put_packet() might have detected that the peer terminated the
2675 connection. */
2676 if (s->fd < 0) {
2677 return sig;
2678 }
2679
2680 sig = 0;
2681 s->state = RS_IDLE;
2682 s->running_state = 0;
2683 while (s->running_state == 0) {
2684 n = read(s->fd, buf, 256);
2685 if (n > 0) {
2686 int i;
2687
2688 for (i = 0; i < n; i++) {
2689 gdb_read_byte(s, buf[i]);
2690 }
2691 } else {
2692 /* XXX: Connection closed. Should probably wait for another
2693 connection before continuing. */
2694 if (n == 0) {
2695 close(s->fd);
2696 }
2697 s->fd = -1;
2698 return sig;
2699 }
2700 }
2701 sig = s->signal;
2702 s->signal = 0;
2703 return sig;
2704 }
2705
2706 /* Tell the remote gdb that the process has exited due to SIG. */
2707 void gdb_signalled(CPUArchState *env, int sig)
2708 {
2709 GDBState *s;
2710 char buf[4];
2711
2712 s = gdbserver_state;
2713 if (gdbserver_fd < 0 || s->fd < 0) {
2714 return;
2715 }
2716
2717 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2718 put_packet(s, buf);
2719 }
2720
2721 static bool gdb_accept(void)
2722 {
2723 GDBState *s;
2724 struct sockaddr_in sockaddr;
2725 socklen_t len;
2726 int fd;
2727
2728 for(;;) {
2729 len = sizeof(sockaddr);
2730 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2731 if (fd < 0 && errno != EINTR) {
2732 perror("accept");
2733 return false;
2734 } else if (fd >= 0) {
2735 qemu_set_cloexec(fd);
2736 break;
2737 }
2738 }
2739
2740 /* set short latency */
2741 if (socket_set_nodelay(fd)) {
2742 perror("setsockopt");
2743 close(fd);
2744 return false;
2745 }
2746
2747 s = g_malloc0(sizeof(GDBState));
2748 create_default_process(s);
2749 s->processes[0].attached = true;
2750 s->c_cpu = gdb_first_attached_cpu(s);
2751 s->g_cpu = s->c_cpu;
2752 s->fd = fd;
2753 gdb_has_xml = false;
2754
2755 gdbserver_state = s;
2756 return true;
2757 }
2758
2759 static int gdbserver_open(int port)
2760 {
2761 struct sockaddr_in sockaddr;
2762 int fd, ret;
2763
2764 fd = socket(PF_INET, SOCK_STREAM, 0);
2765 if (fd < 0) {
2766 perror("socket");
2767 return -1;
2768 }
2769 qemu_set_cloexec(fd);
2770
2771 socket_set_fast_reuse(fd);
2772
2773 sockaddr.sin_family = AF_INET;
2774 sockaddr.sin_port = htons(port);
2775 sockaddr.sin_addr.s_addr = 0;
2776 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2777 if (ret < 0) {
2778 perror("bind");
2779 close(fd);
2780 return -1;
2781 }
2782 ret = listen(fd, 1);
2783 if (ret < 0) {
2784 perror("listen");
2785 close(fd);
2786 return -1;
2787 }
2788 return fd;
2789 }
2790
2791 int gdbserver_start(int port)
2792 {
2793 gdbserver_fd = gdbserver_open(port);
2794 if (gdbserver_fd < 0)
2795 return -1;
2796 /* accept connections */
2797 if (!gdb_accept()) {
2798 close(gdbserver_fd);
2799 gdbserver_fd = -1;
2800 return -1;
2801 }
2802 return 0;
2803 }
2804
2805 /* Disable gdb stub for child processes. */
2806 void gdbserver_fork(CPUState *cpu)
2807 {
2808 GDBState *s = gdbserver_state;
2809
2810 if (gdbserver_fd < 0 || s->fd < 0) {
2811 return;
2812 }
2813 close(s->fd);
2814 s->fd = -1;
2815 cpu_breakpoint_remove_all(cpu, BP_GDB);
2816 cpu_watchpoint_remove_all(cpu, BP_GDB);
2817 }
2818 #else
2819 static int gdb_chr_can_receive(void *opaque)
2820 {
2821 /* We can handle an arbitrarily large amount of data.
2822 Pick the maximum packet size, which is as good as anything. */
2823 return MAX_PACKET_LENGTH;
2824 }
2825
2826 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2827 {
2828 int i;
2829
2830 for (i = 0; i < size; i++) {
2831 gdb_read_byte(gdbserver_state, buf[i]);
2832 }
2833 }
2834
2835 static void gdb_chr_event(void *opaque, int event)
2836 {
2837 int i;
2838 GDBState *s = (GDBState *) opaque;
2839
2840 switch (event) {
2841 case CHR_EVENT_OPENED:
2842 /* Start with first process attached, others detached */
2843 for (i = 0; i < s->process_num; i++) {
2844 s->processes[i].attached = !i;
2845 }
2846
2847 s->c_cpu = gdb_first_attached_cpu(s);
2848 s->g_cpu = s->c_cpu;
2849
2850 vm_stop(RUN_STATE_PAUSED);
2851 gdb_has_xml = false;
2852 break;
2853 default:
2854 break;
2855 }
2856 }
2857
2858 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2859 {
2860 char buf[MAX_PACKET_LENGTH];
2861
2862 buf[0] = 'O';
2863 if (len > (MAX_PACKET_LENGTH/2) - 1)
2864 len = (MAX_PACKET_LENGTH/2) - 1;
2865 memtohex(buf + 1, (uint8_t *)msg, len);
2866 put_packet(s, buf);
2867 }
2868
2869 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2870 {
2871 const char *p = (const char *)buf;
2872 int max_sz;
2873
2874 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2875 for (;;) {
2876 if (len <= max_sz) {
2877 gdb_monitor_output(gdbserver_state, p, len);
2878 break;
2879 }
2880 gdb_monitor_output(gdbserver_state, p, max_sz);
2881 p += max_sz;
2882 len -= max_sz;
2883 }
2884 return len;
2885 }
2886
2887 #ifndef _WIN32
2888 static void gdb_sigterm_handler(int signal)
2889 {
2890 if (runstate_is_running()) {
2891 vm_stop(RUN_STATE_PAUSED);
2892 }
2893 }
2894 #endif
2895
2896 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2897 bool *be_opened, Error **errp)
2898 {
2899 *be_opened = false;
2900 }
2901
2902 static void char_gdb_class_init(ObjectClass *oc, void *data)
2903 {
2904 ChardevClass *cc = CHARDEV_CLASS(oc);
2905
2906 cc->internal = true;
2907 cc->open = gdb_monitor_open;
2908 cc->chr_write = gdb_monitor_write;
2909 }
2910
2911 #define TYPE_CHARDEV_GDB "chardev-gdb"
2912
2913 static const TypeInfo char_gdb_type_info = {
2914 .name = TYPE_CHARDEV_GDB,
2915 .parent = TYPE_CHARDEV,
2916 .class_init = char_gdb_class_init,
2917 };
2918
2919 static int find_cpu_clusters(Object *child, void *opaque)
2920 {
2921 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2922 GDBState *s = (GDBState *) opaque;
2923 CPUClusterState *cluster = CPU_CLUSTER(child);
2924 GDBProcess *process;
2925
2926 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2927
2928 process = &s->processes[s->process_num - 1];
2929
2930 /*
2931 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2932 * runtime, we enforce here that the machine does not use a cluster ID
2933 * that would lead to PID 0.
2934 */
2935 assert(cluster->cluster_id != UINT32_MAX);
2936 process->pid = cluster->cluster_id + 1;
2937 process->attached = false;
2938 process->target_xml[0] = '\0';
2939
2940 return 0;
2941 }
2942
2943 return object_child_foreach(child, find_cpu_clusters, opaque);
2944 }
2945
2946 static int pid_order(const void *a, const void *b)
2947 {
2948 GDBProcess *pa = (GDBProcess *) a;
2949 GDBProcess *pb = (GDBProcess *) b;
2950
2951 if (pa->pid < pb->pid) {
2952 return -1;
2953 } else if (pa->pid > pb->pid) {
2954 return 1;
2955 } else {
2956 return 0;
2957 }
2958 }
2959
2960 static void create_processes(GDBState *s)
2961 {
2962 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2963
2964 if (s->processes) {
2965 /* Sort by PID */
2966 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2967 }
2968
2969 create_default_process(s);
2970 }
2971
2972 static void cleanup_processes(GDBState *s)
2973 {
2974 g_free(s->processes);
2975 s->process_num = 0;
2976 s->processes = NULL;
2977 }
2978
2979 int gdbserver_start(const char *device)
2980 {
2981 trace_gdbstub_op_start(device);
2982
2983 GDBState *s;
2984 char gdbstub_device_name[128];
2985 Chardev *chr = NULL;
2986 Chardev *mon_chr;
2987
2988 if (!first_cpu) {
2989 error_report("gdbstub: meaningless to attach gdb to a "
2990 "machine without any CPU.");
2991 return -1;
2992 }
2993
2994 if (!device)
2995 return -1;
2996 if (strcmp(device, "none") != 0) {
2997 if (strstart(device, "tcp:", NULL)) {
2998 /* enforce required TCP attributes */
2999 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3000 "%s,nowait,nodelay,server", device);
3001 device = gdbstub_device_name;
3002 }
3003 #ifndef _WIN32
3004 else if (strcmp(device, "stdio") == 0) {
3005 struct sigaction act;
3006
3007 memset(&act, 0, sizeof(act));
3008 act.sa_handler = gdb_sigterm_handler;
3009 sigaction(SIGINT, &act, NULL);
3010 }
3011 #endif
3012 /*
3013 * FIXME: it's a bit weird to allow using a mux chardev here
3014 * and implicitly setup a monitor. We may want to break this.
3015 */
3016 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
3017 if (!chr)
3018 return -1;
3019 }
3020
3021 s = gdbserver_state;
3022 if (!s) {
3023 s = g_malloc0(sizeof(GDBState));
3024 gdbserver_state = s;
3025
3026 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3027
3028 /* Initialize a monitor terminal for gdb */
3029 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3030 NULL, NULL, &error_abort);
3031 monitor_init(mon_chr, 0);
3032 } else {
3033 qemu_chr_fe_deinit(&s->chr, true);
3034 mon_chr = s->mon_chr;
3035 cleanup_processes(s);
3036 memset(s, 0, sizeof(GDBState));
3037 s->mon_chr = mon_chr;
3038 }
3039
3040 create_processes(s);
3041
3042 if (chr) {
3043 qemu_chr_fe_init(&s->chr, chr, &error_abort);
3044 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
3045 gdb_chr_event, NULL, s, NULL, true);
3046 }
3047 s->state = chr ? RS_IDLE : RS_INACTIVE;
3048 s->mon_chr = mon_chr;
3049 s->current_syscall_cb = NULL;
3050
3051 return 0;
3052 }
3053
3054 void gdbserver_cleanup(void)
3055 {
3056 if (gdbserver_state) {
3057 put_packet(gdbserver_state, "W00");
3058 }
3059 }
3060
3061 static void register_types(void)
3062 {
3063 type_register_static(&char_gdb_type_info);
3064 }
3065
3066 type_init(register_types);
3067 #endif