]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
Use standard character device interface for gdbstub.
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "qemu.h"
31 #else
32 #include "vl.h"
33 #endif
34
35 #include "qemu_socket.h"
36 #ifdef _WIN32
37 /* XXX: these constants may be independent of the host ones even for Unix */
38 #ifndef SIGTRAP
39 #define SIGTRAP 5
40 #endif
41 #ifndef SIGINT
42 #define SIGINT 2
43 #endif
44 #else
45 #include <signal.h>
46 #endif
47
48 //#define DEBUG_GDB
49
50 enum RSState {
51 RS_IDLE,
52 RS_GETLINE,
53 RS_CHKSUM1,
54 RS_CHKSUM2,
55 };
56 typedef struct GDBState {
57 CPUState *env; /* current CPU */
58 enum RSState state; /* parsing state */
59 char line_buf[4096];
60 int line_buf_index;
61 int line_csum;
62 char last_packet[4100];
63 int last_packet_len;
64 #ifdef CONFIG_USER_ONLY
65 int fd;
66 int running_state;
67 #else
68 CharDriverState *chr;
69 #endif
70 } GDBState;
71
72 #ifdef CONFIG_USER_ONLY
73 /* XXX: This is not thread safe. Do we care? */
74 static int gdbserver_fd = -1;
75
76 /* XXX: remove this hack. */
77 static GDBState gdbserver_state;
78
79 static int get_char(GDBState *s)
80 {
81 uint8_t ch;
82 int ret;
83
84 for(;;) {
85 ret = recv(s->fd, &ch, 1, 0);
86 if (ret < 0) {
87 if (errno != EINTR && errno != EAGAIN)
88 return -1;
89 } else if (ret == 0) {
90 return -1;
91 } else {
92 break;
93 }
94 }
95 return ch;
96 }
97 #endif
98
99 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
100 {
101 #ifdef CONFIG_USER_ONLY
102 int ret;
103
104 while (len > 0) {
105 ret = send(s->fd, buf, len, 0);
106 if (ret < 0) {
107 if (errno != EINTR && errno != EAGAIN)
108 return;
109 } else {
110 buf += ret;
111 len -= ret;
112 }
113 }
114 #else
115 qemu_chr_write(s->chr, buf, len);
116 #endif
117 }
118
119 static inline int fromhex(int v)
120 {
121 if (v >= '0' && v <= '9')
122 return v - '0';
123 else if (v >= 'A' && v <= 'F')
124 return v - 'A' + 10;
125 else if (v >= 'a' && v <= 'f')
126 return v - 'a' + 10;
127 else
128 return 0;
129 }
130
131 static inline int tohex(int v)
132 {
133 if (v < 10)
134 return v + '0';
135 else
136 return v - 10 + 'a';
137 }
138
139 static void memtohex(char *buf, const uint8_t *mem, int len)
140 {
141 int i, c;
142 char *q;
143 q = buf;
144 for(i = 0; i < len; i++) {
145 c = mem[i];
146 *q++ = tohex(c >> 4);
147 *q++ = tohex(c & 0xf);
148 }
149 *q = '\0';
150 }
151
152 static void hextomem(uint8_t *mem, const char *buf, int len)
153 {
154 int i;
155
156 for(i = 0; i < len; i++) {
157 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
158 buf += 2;
159 }
160 }
161
162 /* return -1 if error, 0 if OK */
163 static int put_packet(GDBState *s, char *buf)
164 {
165 int len, csum, i;
166 char *p;
167
168 #ifdef DEBUG_GDB
169 printf("reply='%s'\n", buf);
170 #endif
171
172 for(;;) {
173 p = s->last_packet;
174 *(p++) = '$';
175 len = strlen(buf);
176 memcpy(p, buf, len);
177 p += len;
178 csum = 0;
179 for(i = 0; i < len; i++) {
180 csum += buf[i];
181 }
182 *(p++) = '#';
183 *(p++) = tohex((csum >> 4) & 0xf);
184 *(p++) = tohex((csum) & 0xf);
185
186 s->last_packet_len = p - s->last_packet;
187 put_buffer(s, s->last_packet, s->last_packet_len);
188
189 #ifdef CONFIG_USER_ONLY
190 i = get_char(s);
191 if (i < 0)
192 return -1;
193 if (i == '+')
194 break;
195 #else
196 break;
197 #endif
198 }
199 return 0;
200 }
201
202 #if defined(TARGET_I386)
203
204 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
205 {
206 uint32_t *registers = (uint32_t *)mem_buf;
207 int i, fpus;
208
209 for(i = 0; i < 8; i++) {
210 registers[i] = env->regs[i];
211 }
212 registers[8] = env->eip;
213 registers[9] = env->eflags;
214 registers[10] = env->segs[R_CS].selector;
215 registers[11] = env->segs[R_SS].selector;
216 registers[12] = env->segs[R_DS].selector;
217 registers[13] = env->segs[R_ES].selector;
218 registers[14] = env->segs[R_FS].selector;
219 registers[15] = env->segs[R_GS].selector;
220 /* XXX: convert floats */
221 for(i = 0; i < 8; i++) {
222 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
223 }
224 registers[36] = env->fpuc;
225 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
226 registers[37] = fpus;
227 registers[38] = 0; /* XXX: convert tags */
228 registers[39] = 0; /* fiseg */
229 registers[40] = 0; /* fioff */
230 registers[41] = 0; /* foseg */
231 registers[42] = 0; /* fooff */
232 registers[43] = 0; /* fop */
233
234 for(i = 0; i < 16; i++)
235 tswapls(&registers[i]);
236 for(i = 36; i < 44; i++)
237 tswapls(&registers[i]);
238 return 44 * 4;
239 }
240
241 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
242 {
243 uint32_t *registers = (uint32_t *)mem_buf;
244 int i;
245
246 for(i = 0; i < 8; i++) {
247 env->regs[i] = tswapl(registers[i]);
248 }
249 env->eip = tswapl(registers[8]);
250 env->eflags = tswapl(registers[9]);
251 #if defined(CONFIG_USER_ONLY)
252 #define LOAD_SEG(index, sreg)\
253 if (tswapl(registers[index]) != env->segs[sreg].selector)\
254 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
255 LOAD_SEG(10, R_CS);
256 LOAD_SEG(11, R_SS);
257 LOAD_SEG(12, R_DS);
258 LOAD_SEG(13, R_ES);
259 LOAD_SEG(14, R_FS);
260 LOAD_SEG(15, R_GS);
261 #endif
262 }
263
264 #elif defined (TARGET_PPC)
265 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
266 {
267 uint32_t *registers = (uint32_t *)mem_buf, tmp;
268 int i;
269
270 /* fill in gprs */
271 for(i = 0; i < 32; i++) {
272 registers[i] = tswapl(env->gpr[i]);
273 }
274 /* fill in fprs */
275 for (i = 0; i < 32; i++) {
276 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
277 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
278 }
279 /* nip, msr, ccr, lnk, ctr, xer, mq */
280 registers[96] = tswapl(env->nip);
281 registers[97] = tswapl(do_load_msr(env));
282 tmp = 0;
283 for (i = 0; i < 8; i++)
284 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
285 registers[98] = tswapl(tmp);
286 registers[99] = tswapl(env->lr);
287 registers[100] = tswapl(env->ctr);
288 registers[101] = tswapl(do_load_xer(env));
289 registers[102] = 0;
290
291 return 103 * 4;
292 }
293
294 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
295 {
296 uint32_t *registers = (uint32_t *)mem_buf;
297 int i;
298
299 /* fill in gprs */
300 for (i = 0; i < 32; i++) {
301 env->gpr[i] = tswapl(registers[i]);
302 }
303 /* fill in fprs */
304 for (i = 0; i < 32; i++) {
305 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
306 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
307 }
308 /* nip, msr, ccr, lnk, ctr, xer, mq */
309 env->nip = tswapl(registers[96]);
310 do_store_msr(env, tswapl(registers[97]));
311 registers[98] = tswapl(registers[98]);
312 for (i = 0; i < 8; i++)
313 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
314 env->lr = tswapl(registers[99]);
315 env->ctr = tswapl(registers[100]);
316 do_store_xer(env, tswapl(registers[101]));
317 }
318 #elif defined (TARGET_SPARC)
319 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
320 {
321 target_ulong *registers = (target_ulong *)mem_buf;
322 int i;
323
324 /* fill in g0..g7 */
325 for(i = 0; i < 8; i++) {
326 registers[i] = tswapl(env->gregs[i]);
327 }
328 /* fill in register window */
329 for(i = 0; i < 24; i++) {
330 registers[i + 8] = tswapl(env->regwptr[i]);
331 }
332 #ifndef TARGET_SPARC64
333 /* fill in fprs */
334 for (i = 0; i < 32; i++) {
335 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
336 }
337 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
338 registers[64] = tswapl(env->y);
339 {
340 target_ulong tmp;
341
342 tmp = GET_PSR(env);
343 registers[65] = tswapl(tmp);
344 }
345 registers[66] = tswapl(env->wim);
346 registers[67] = tswapl(env->tbr);
347 registers[68] = tswapl(env->pc);
348 registers[69] = tswapl(env->npc);
349 registers[70] = tswapl(env->fsr);
350 registers[71] = 0; /* csr */
351 registers[72] = 0;
352 return 73 * sizeof(target_ulong);
353 #else
354 /* fill in fprs */
355 for (i = 0; i < 64; i += 2) {
356 uint64_t tmp;
357
358 tmp = (uint64_t)tswap32(*((uint32_t *)&env->fpr[i])) << 32;
359 tmp |= tswap32(*((uint32_t *)&env->fpr[i + 1]));
360 registers[i/2 + 32] = tmp;
361 }
362 registers[64] = tswapl(env->pc);
363 registers[65] = tswapl(env->npc);
364 registers[66] = tswapl(env->tstate[env->tl]);
365 registers[67] = tswapl(env->fsr);
366 registers[68] = tswapl(env->fprs);
367 registers[69] = tswapl(env->y);
368 return 70 * sizeof(target_ulong);
369 #endif
370 }
371
372 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
373 {
374 target_ulong *registers = (target_ulong *)mem_buf;
375 int i;
376
377 /* fill in g0..g7 */
378 for(i = 0; i < 7; i++) {
379 env->gregs[i] = tswapl(registers[i]);
380 }
381 /* fill in register window */
382 for(i = 0; i < 24; i++) {
383 env->regwptr[i] = tswapl(registers[i + 8]);
384 }
385 #ifndef TARGET_SPARC64
386 /* fill in fprs */
387 for (i = 0; i < 32; i++) {
388 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
389 }
390 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
391 env->y = tswapl(registers[64]);
392 PUT_PSR(env, tswapl(registers[65]));
393 env->wim = tswapl(registers[66]);
394 env->tbr = tswapl(registers[67]);
395 env->pc = tswapl(registers[68]);
396 env->npc = tswapl(registers[69]);
397 env->fsr = tswapl(registers[70]);
398 #else
399 for (i = 0; i < 64; i += 2) {
400 *((uint32_t *)&env->fpr[i]) = tswap32(registers[i/2 + 32] >> 32);
401 *((uint32_t *)&env->fpr[i + 1]) = tswap32(registers[i/2 + 32] & 0xffffffff);
402 }
403 env->pc = tswapl(registers[64]);
404 env->npc = tswapl(registers[65]);
405 env->tstate[env->tl] = tswapl(registers[66]);
406 env->fsr = tswapl(registers[67]);
407 env->fprs = tswapl(registers[68]);
408 env->y = tswapl(registers[69]);
409 #endif
410 }
411 #elif defined (TARGET_ARM)
412 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
413 {
414 int i;
415 uint8_t *ptr;
416
417 ptr = mem_buf;
418 /* 16 core integer registers (4 bytes each). */
419 for (i = 0; i < 16; i++)
420 {
421 *(uint32_t *)ptr = tswapl(env->regs[i]);
422 ptr += 4;
423 }
424 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
425 Not yet implemented. */
426 memset (ptr, 0, 8 * 12 + 4);
427 ptr += 8 * 12 + 4;
428 /* CPSR (4 bytes). */
429 *(uint32_t *)ptr = tswapl (cpsr_read(env));
430 ptr += 4;
431
432 return ptr - mem_buf;
433 }
434
435 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
436 {
437 int i;
438 uint8_t *ptr;
439
440 ptr = mem_buf;
441 /* Core integer registers. */
442 for (i = 0; i < 16; i++)
443 {
444 env->regs[i] = tswapl(*(uint32_t *)ptr);
445 ptr += 4;
446 }
447 /* Ignore FPA regs and scr. */
448 ptr += 8 * 12 + 4;
449 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
450 }
451 #elif defined (TARGET_M68K)
452 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
453 {
454 int i;
455 uint8_t *ptr;
456 CPU_DoubleU u;
457
458 ptr = mem_buf;
459 /* D0-D7 */
460 for (i = 0; i < 8; i++) {
461 *(uint32_t *)ptr = tswapl(env->dregs[i]);
462 ptr += 4;
463 }
464 /* A0-A7 */
465 for (i = 0; i < 8; i++) {
466 *(uint32_t *)ptr = tswapl(env->aregs[i]);
467 ptr += 4;
468 }
469 *(uint32_t *)ptr = tswapl(env->sr);
470 ptr += 4;
471 *(uint32_t *)ptr = tswapl(env->pc);
472 ptr += 4;
473 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
474 ColdFire has 8-bit double precision registers. */
475 for (i = 0; i < 8; i++) {
476 u.d = env->fregs[i];
477 *(uint32_t *)ptr = tswap32(u.l.upper);
478 *(uint32_t *)ptr = tswap32(u.l.lower);
479 }
480 /* FP control regs (not implemented). */
481 memset (ptr, 0, 3 * 4);
482 ptr += 3 * 4;
483
484 return ptr - mem_buf;
485 }
486
487 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
488 {
489 int i;
490 uint8_t *ptr;
491 CPU_DoubleU u;
492
493 ptr = mem_buf;
494 /* D0-D7 */
495 for (i = 0; i < 8; i++) {
496 env->dregs[i] = tswapl(*(uint32_t *)ptr);
497 ptr += 4;
498 }
499 /* A0-A7 */
500 for (i = 0; i < 8; i++) {
501 env->aregs[i] = tswapl(*(uint32_t *)ptr);
502 ptr += 4;
503 }
504 env->sr = tswapl(*(uint32_t *)ptr);
505 ptr += 4;
506 env->pc = tswapl(*(uint32_t *)ptr);
507 ptr += 4;
508 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
509 ColdFire has 8-bit double precision registers. */
510 for (i = 0; i < 8; i++) {
511 u.l.upper = tswap32(*(uint32_t *)ptr);
512 u.l.lower = tswap32(*(uint32_t *)ptr);
513 env->fregs[i] = u.d;
514 }
515 /* FP control regs (not implemented). */
516 ptr += 3 * 4;
517 }
518 #elif defined (TARGET_MIPS)
519 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
520 {
521 int i;
522 uint8_t *ptr;
523
524 ptr = mem_buf;
525 for (i = 0; i < 32; i++)
526 {
527 *(uint32_t *)ptr = tswapl(env->gpr[i]);
528 ptr += 4;
529 }
530
531 *(uint32_t *)ptr = tswapl(env->CP0_Status);
532 ptr += 4;
533
534 *(uint32_t *)ptr = tswapl(env->LO);
535 ptr += 4;
536
537 *(uint32_t *)ptr = tswapl(env->HI);
538 ptr += 4;
539
540 *(uint32_t *)ptr = tswapl(env->CP0_BadVAddr);
541 ptr += 4;
542
543 *(uint32_t *)ptr = tswapl(env->CP0_Cause);
544 ptr += 4;
545
546 *(uint32_t *)ptr = tswapl(env->PC);
547 ptr += 4;
548
549 #ifdef MIPS_USES_FPU
550 for (i = 0; i < 32; i++)
551 {
552 *(uint32_t *)ptr = tswapl(FPR_W (env, i));
553 ptr += 4;
554 }
555
556 *(uint32_t *)ptr = tswapl(env->fcr31);
557 ptr += 4;
558
559 *(uint32_t *)ptr = tswapl(env->fcr0);
560 ptr += 4;
561 #endif
562
563 /* 32 FP registers, fsr, fir, fp. Not yet implemented. */
564 /* what's 'fp' mean here? */
565
566 return ptr - mem_buf;
567 }
568
569 /* convert MIPS rounding mode in FCR31 to IEEE library */
570 static unsigned int ieee_rm[] =
571 {
572 float_round_nearest_even,
573 float_round_to_zero,
574 float_round_up,
575 float_round_down
576 };
577 #define RESTORE_ROUNDING_MODE \
578 set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
579
580 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
581 {
582 int i;
583 uint8_t *ptr;
584
585 ptr = mem_buf;
586 for (i = 0; i < 32; i++)
587 {
588 env->gpr[i] = tswapl(*(uint32_t *)ptr);
589 ptr += 4;
590 }
591
592 env->CP0_Status = tswapl(*(uint32_t *)ptr);
593 ptr += 4;
594
595 env->LO = tswapl(*(uint32_t *)ptr);
596 ptr += 4;
597
598 env->HI = tswapl(*(uint32_t *)ptr);
599 ptr += 4;
600
601 env->CP0_BadVAddr = tswapl(*(uint32_t *)ptr);
602 ptr += 4;
603
604 env->CP0_Cause = tswapl(*(uint32_t *)ptr);
605 ptr += 4;
606
607 env->PC = tswapl(*(uint32_t *)ptr);
608 ptr += 4;
609
610 #ifdef MIPS_USES_FPU
611 for (i = 0; i < 32; i++)
612 {
613 FPR_W (env, i) = tswapl(*(uint32_t *)ptr);
614 ptr += 4;
615 }
616
617 env->fcr31 = tswapl(*(uint32_t *)ptr) & 0x0183FFFF;
618 ptr += 4;
619
620 env->fcr0 = tswapl(*(uint32_t *)ptr);
621 ptr += 4;
622
623 /* set rounding mode */
624 RESTORE_ROUNDING_MODE;
625
626 #ifndef CONFIG_SOFTFLOAT
627 /* no floating point exception for native float */
628 SET_FP_ENABLE(env->fcr31, 0);
629 #endif
630 #endif
631 }
632 #elif defined (TARGET_SH4)
633 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
634 {
635 uint32_t *ptr = (uint32_t *)mem_buf;
636 int i;
637
638 #define SAVE(x) *ptr++=tswapl(x)
639 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
640 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
641 } else {
642 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
643 }
644 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
645 SAVE (env->pc);
646 SAVE (env->pr);
647 SAVE (env->gbr);
648 SAVE (env->vbr);
649 SAVE (env->mach);
650 SAVE (env->macl);
651 SAVE (env->sr);
652 SAVE (0); /* TICKS */
653 SAVE (0); /* STALLS */
654 SAVE (0); /* CYCLES */
655 SAVE (0); /* INSTS */
656 SAVE (0); /* PLR */
657
658 return ((uint8_t *)ptr - mem_buf);
659 }
660
661 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
662 {
663 uint32_t *ptr = (uint32_t *)mem_buf;
664 int i;
665
666 #define LOAD(x) (x)=*ptr++;
667 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
668 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
669 } else {
670 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
671 }
672 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
673 LOAD (env->pc);
674 LOAD (env->pr);
675 LOAD (env->gbr);
676 LOAD (env->vbr);
677 LOAD (env->mach);
678 LOAD (env->macl);
679 LOAD (env->sr);
680 }
681 #else
682 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
683 {
684 return 0;
685 }
686
687 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
688 {
689 }
690
691 #endif
692
693 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
694 {
695 const char *p;
696 int ch, reg_size, type;
697 char buf[4096];
698 uint8_t mem_buf[2000];
699 uint32_t *registers;
700 target_ulong addr, len;
701
702 #ifdef DEBUG_GDB
703 printf("command='%s'\n", line_buf);
704 #endif
705 p = line_buf;
706 ch = *p++;
707 switch(ch) {
708 case '?':
709 /* TODO: Make this return the correct value for user-mode. */
710 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
711 put_packet(s, buf);
712 break;
713 case 'c':
714 if (*p != '\0') {
715 addr = strtoull(p, (char **)&p, 16);
716 #if defined(TARGET_I386)
717 env->eip = addr;
718 #elif defined (TARGET_PPC)
719 env->nip = addr;
720 #elif defined (TARGET_SPARC)
721 env->pc = addr;
722 env->npc = addr + 4;
723 #elif defined (TARGET_ARM)
724 env->regs[15] = addr;
725 #elif defined (TARGET_SH4)
726 env->pc = addr;
727 #endif
728 }
729 #ifdef CONFIG_USER_ONLY
730 s->running_state = 1;
731 #else
732 vm_start();
733 #endif
734 return RS_IDLE;
735 case 's':
736 if (*p != '\0') {
737 addr = strtoul(p, (char **)&p, 16);
738 #if defined(TARGET_I386)
739 env->eip = addr;
740 #elif defined (TARGET_PPC)
741 env->nip = addr;
742 #elif defined (TARGET_SPARC)
743 env->pc = addr;
744 env->npc = addr + 4;
745 #elif defined (TARGET_ARM)
746 env->regs[15] = addr;
747 #elif defined (TARGET_SH4)
748 env->pc = addr;
749 #endif
750 }
751 cpu_single_step(env, 1);
752 #ifdef CONFIG_USER_ONLY
753 s->running_state = 1;
754 #else
755 vm_start();
756 #endif
757 return RS_IDLE;
758 case 'g':
759 reg_size = cpu_gdb_read_registers(env, mem_buf);
760 memtohex(buf, mem_buf, reg_size);
761 put_packet(s, buf);
762 break;
763 case 'G':
764 registers = (void *)mem_buf;
765 len = strlen(p) / 2;
766 hextomem((uint8_t *)registers, p, len);
767 cpu_gdb_write_registers(env, mem_buf, len);
768 put_packet(s, "OK");
769 break;
770 case 'm':
771 addr = strtoull(p, (char **)&p, 16);
772 if (*p == ',')
773 p++;
774 len = strtoull(p, NULL, 16);
775 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
776 put_packet (s, "E14");
777 } else {
778 memtohex(buf, mem_buf, len);
779 put_packet(s, buf);
780 }
781 break;
782 case 'M':
783 addr = strtoull(p, (char **)&p, 16);
784 if (*p == ',')
785 p++;
786 len = strtoull(p, (char **)&p, 16);
787 if (*p == ':')
788 p++;
789 hextomem(mem_buf, p, len);
790 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
791 put_packet(s, "E14");
792 else
793 put_packet(s, "OK");
794 break;
795 case 'Z':
796 type = strtoul(p, (char **)&p, 16);
797 if (*p == ',')
798 p++;
799 addr = strtoull(p, (char **)&p, 16);
800 if (*p == ',')
801 p++;
802 len = strtoull(p, (char **)&p, 16);
803 if (type == 0 || type == 1) {
804 if (cpu_breakpoint_insert(env, addr) < 0)
805 goto breakpoint_error;
806 put_packet(s, "OK");
807 } else {
808 breakpoint_error:
809 put_packet(s, "E22");
810 }
811 break;
812 case 'z':
813 type = strtoul(p, (char **)&p, 16);
814 if (*p == ',')
815 p++;
816 addr = strtoull(p, (char **)&p, 16);
817 if (*p == ',')
818 p++;
819 len = strtoull(p, (char **)&p, 16);
820 if (type == 0 || type == 1) {
821 cpu_breakpoint_remove(env, addr);
822 put_packet(s, "OK");
823 } else {
824 goto breakpoint_error;
825 }
826 break;
827 #ifdef CONFIG_LINUX_USER
828 case 'q':
829 if (strncmp(p, "Offsets", 7) == 0) {
830 TaskState *ts = env->opaque;
831
832 sprintf(buf, "Text=%x;Data=%x;Bss=%x", ts->info->code_offset,
833 ts->info->data_offset, ts->info->data_offset);
834 put_packet(s, buf);
835 break;
836 }
837 /* Fall through. */
838 #endif
839 default:
840 // unknown_command:
841 /* put empty packet */
842 buf[0] = '\0';
843 put_packet(s, buf);
844 break;
845 }
846 return RS_IDLE;
847 }
848
849 extern void tb_flush(CPUState *env);
850
851 #ifndef CONFIG_USER_ONLY
852 static void gdb_vm_stopped(void *opaque, int reason)
853 {
854 GDBState *s = opaque;
855 char buf[256];
856 int ret;
857
858 /* disable single step if it was enable */
859 cpu_single_step(s->env, 0);
860
861 if (reason == EXCP_DEBUG) {
862 tb_flush(s->env);
863 ret = SIGTRAP;
864 } else if (reason == EXCP_INTERRUPT) {
865 ret = SIGINT;
866 } else {
867 ret = 0;
868 }
869 snprintf(buf, sizeof(buf), "S%02x", ret);
870 put_packet(s, buf);
871 }
872 #endif
873
874 static void gdb_read_byte(GDBState *s, int ch)
875 {
876 CPUState *env = s->env;
877 int i, csum;
878 char reply[1];
879
880 #ifndef CONFIG_USER_ONLY
881 if (s->last_packet_len) {
882 /* Waiting for a response to the last packet. If we see the start
883 of a new command then abandon the previous response. */
884 if (ch == '-') {
885 #ifdef DEBUG_GDB
886 printf("Got NACK, retransmitting\n");
887 #endif
888 put_buffer(s, s->last_packet, s->last_packet_len);
889 }
890 #ifdef DEBUG_GDB
891 else if (ch == '+')
892 printf("Got ACK\n");
893 else
894 printf("Got '%c' when expecting ACK/NACK\n", ch);
895 #endif
896 if (ch == '+' || ch == '$')
897 s->last_packet_len = 0;
898 if (ch != '$')
899 return;
900 }
901 if (vm_running) {
902 /* when the CPU is running, we cannot do anything except stop
903 it when receiving a char */
904 vm_stop(EXCP_INTERRUPT);
905 } else
906 #endif
907 {
908 switch(s->state) {
909 case RS_IDLE:
910 if (ch == '$') {
911 s->line_buf_index = 0;
912 s->state = RS_GETLINE;
913 }
914 break;
915 case RS_GETLINE:
916 if (ch == '#') {
917 s->state = RS_CHKSUM1;
918 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
919 s->state = RS_IDLE;
920 } else {
921 s->line_buf[s->line_buf_index++] = ch;
922 }
923 break;
924 case RS_CHKSUM1:
925 s->line_buf[s->line_buf_index] = '\0';
926 s->line_csum = fromhex(ch) << 4;
927 s->state = RS_CHKSUM2;
928 break;
929 case RS_CHKSUM2:
930 s->line_csum |= fromhex(ch);
931 csum = 0;
932 for(i = 0; i < s->line_buf_index; i++) {
933 csum += s->line_buf[i];
934 }
935 if (s->line_csum != (csum & 0xff)) {
936 reply[0] = '-';
937 put_buffer(s, reply, 1);
938 s->state = RS_IDLE;
939 } else {
940 reply[0] = '+';
941 put_buffer(s, reply, 1);
942 s->state = gdb_handle_packet(s, env, s->line_buf);
943 }
944 break;
945 }
946 }
947 }
948
949 #ifdef CONFIG_USER_ONLY
950 int
951 gdb_handlesig (CPUState *env, int sig)
952 {
953 GDBState *s;
954 char buf[256];
955 int n;
956
957 if (gdbserver_fd < 0)
958 return sig;
959
960 s = &gdbserver_state;
961
962 /* disable single step if it was enabled */
963 cpu_single_step(env, 0);
964 tb_flush(env);
965
966 if (sig != 0)
967 {
968 snprintf(buf, sizeof(buf), "S%02x", sig);
969 put_packet(s, buf);
970 }
971
972 sig = 0;
973 s->state = RS_IDLE;
974 s->running_state = 0;
975 while (s->running_state == 0) {
976 n = read (s->fd, buf, 256);
977 if (n > 0)
978 {
979 int i;
980
981 for (i = 0; i < n; i++)
982 gdb_read_byte (s, buf[i]);
983 }
984 else if (n == 0 || errno != EAGAIN)
985 {
986 /* XXX: Connection closed. Should probably wait for annother
987 connection before continuing. */
988 return sig;
989 }
990 }
991 return sig;
992 }
993
994 /* Tell the remote gdb that the process has exited. */
995 void gdb_exit(CPUState *env, int code)
996 {
997 GDBState *s;
998 char buf[4];
999
1000 if (gdbserver_fd < 0)
1001 return;
1002
1003 s = &gdbserver_state;
1004
1005 snprintf(buf, sizeof(buf), "W%02x", code);
1006 put_packet(s, buf);
1007 }
1008
1009
1010 static void gdb_accept(void *opaque)
1011 {
1012 GDBState *s;
1013 struct sockaddr_in sockaddr;
1014 socklen_t len;
1015 int val, fd;
1016
1017 for(;;) {
1018 len = sizeof(sockaddr);
1019 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1020 if (fd < 0 && errno != EINTR) {
1021 perror("accept");
1022 return;
1023 } else if (fd >= 0) {
1024 break;
1025 }
1026 }
1027
1028 /* set short latency */
1029 val = 1;
1030 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1031
1032 s = &gdbserver_state;
1033 memset (s, 0, sizeof (GDBState));
1034 s->env = first_cpu; /* XXX: allow to change CPU */
1035 s->fd = fd;
1036
1037 fcntl(fd, F_SETFL, O_NONBLOCK);
1038 }
1039
1040 static int gdbserver_open(int port)
1041 {
1042 struct sockaddr_in sockaddr;
1043 int fd, val, ret;
1044
1045 fd = socket(PF_INET, SOCK_STREAM, 0);
1046 if (fd < 0) {
1047 perror("socket");
1048 return -1;
1049 }
1050
1051 /* allow fast reuse */
1052 val = 1;
1053 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1054
1055 sockaddr.sin_family = AF_INET;
1056 sockaddr.sin_port = htons(port);
1057 sockaddr.sin_addr.s_addr = 0;
1058 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1059 if (ret < 0) {
1060 perror("bind");
1061 return -1;
1062 }
1063 ret = listen(fd, 0);
1064 if (ret < 0) {
1065 perror("listen");
1066 return -1;
1067 }
1068 return fd;
1069 }
1070
1071 int gdbserver_start(int port)
1072 {
1073 gdbserver_fd = gdbserver_open(port);
1074 if (gdbserver_fd < 0)
1075 return -1;
1076 /* accept connections */
1077 gdb_accept (NULL);
1078 return 0;
1079 }
1080 #else
1081 static int gdb_chr_can_recieve(void *opaque)
1082 {
1083 return 1;
1084 }
1085
1086 static void gdb_chr_recieve(void *opaque, const uint8_t *buf, int size)
1087 {
1088 GDBState *s = opaque;
1089 int i;
1090
1091 for (i = 0; i < size; i++) {
1092 gdb_read_byte(s, buf[i]);
1093 }
1094 }
1095
1096 static void gdb_chr_event(void *opaque, int event)
1097 {
1098 switch (event) {
1099 case CHR_EVENT_RESET:
1100 vm_stop(EXCP_INTERRUPT);
1101 break;
1102 default:
1103 break;
1104 }
1105 }
1106
1107 int gdbserver_start(CharDriverState *chr)
1108 {
1109 GDBState *s;
1110
1111 if (!chr)
1112 return -1;
1113
1114 s = qemu_mallocz(sizeof(GDBState));
1115 if (!s) {
1116 return -1;
1117 }
1118 s->env = first_cpu; /* XXX: allow to change CPU */
1119 s->chr = chr;
1120 qemu_chr_add_handlers(chr, gdb_chr_can_recieve, gdb_chr_recieve,
1121 gdb_chr_event, s);
1122 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1123 return 0;
1124 }
1125 #endif