]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
gdbstub: add support to Xfer:auxv:read: packet
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * This implements a subset of the remote protocol as described in:
5 *
6 * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
7 *
8 * Copyright (c) 2003-2005 Fabrice Bellard
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 *
23 * SPDX-License-Identifier: LGPL-2.0+
24 */
25
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/ctype.h"
31 #include "qemu/cutils.h"
32 #include "qemu/module.h"
33 #include "trace/trace-root.h"
34 #ifdef CONFIG_USER_ONLY
35 #include "qemu.h"
36 #else
37 #include "monitor/monitor.h"
38 #include "chardev/char.h"
39 #include "chardev/char-fe.h"
40 #include "sysemu/sysemu.h"
41 #include "exec/gdbstub.h"
42 #include "hw/cpu/cluster.h"
43 #include "hw/boards.h"
44 #endif
45
46 #define MAX_PACKET_LENGTH 4096
47
48 #include "qemu/sockets.h"
49 #include "sysemu/hw_accel.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/runstate.h"
52 #include "hw/semihosting/semihost.h"
53 #include "exec/exec-all.h"
54 #include "sysemu/replay.h"
55
56 #ifdef CONFIG_USER_ONLY
57 #define GDB_ATTACHED "0"
58 #else
59 #define GDB_ATTACHED "1"
60 #endif
61
62 #ifndef CONFIG_USER_ONLY
63 static int phy_memory_mode;
64 #endif
65
66 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
67 uint8_t *buf, int len, bool is_write)
68 {
69 CPUClass *cc;
70
71 #ifndef CONFIG_USER_ONLY
72 if (phy_memory_mode) {
73 if (is_write) {
74 cpu_physical_memory_write(addr, buf, len);
75 } else {
76 cpu_physical_memory_read(addr, buf, len);
77 }
78 return 0;
79 }
80 #endif
81
82 cc = CPU_GET_CLASS(cpu);
83 if (cc->memory_rw_debug) {
84 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
85 }
86 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
87 }
88
89 /* Return the GDB index for a given vCPU state.
90 *
91 * For user mode this is simply the thread id. In system mode GDB
92 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
93 */
94 static inline int cpu_gdb_index(CPUState *cpu)
95 {
96 #if defined(CONFIG_USER_ONLY)
97 TaskState *ts = (TaskState *) cpu->opaque;
98 return ts->ts_tid;
99 #else
100 return cpu->cpu_index + 1;
101 #endif
102 }
103
104 enum {
105 GDB_SIGNAL_0 = 0,
106 GDB_SIGNAL_INT = 2,
107 GDB_SIGNAL_QUIT = 3,
108 GDB_SIGNAL_TRAP = 5,
109 GDB_SIGNAL_ABRT = 6,
110 GDB_SIGNAL_ALRM = 14,
111 GDB_SIGNAL_IO = 23,
112 GDB_SIGNAL_XCPU = 24,
113 GDB_SIGNAL_UNKNOWN = 143
114 };
115
116 #ifdef CONFIG_USER_ONLY
117
118 /* Map target signal numbers to GDB protocol signal numbers and vice
119 * versa. For user emulation's currently supported systems, we can
120 * assume most signals are defined.
121 */
122
123 static int gdb_signal_table[] = {
124 0,
125 TARGET_SIGHUP,
126 TARGET_SIGINT,
127 TARGET_SIGQUIT,
128 TARGET_SIGILL,
129 TARGET_SIGTRAP,
130 TARGET_SIGABRT,
131 -1, /* SIGEMT */
132 TARGET_SIGFPE,
133 TARGET_SIGKILL,
134 TARGET_SIGBUS,
135 TARGET_SIGSEGV,
136 TARGET_SIGSYS,
137 TARGET_SIGPIPE,
138 TARGET_SIGALRM,
139 TARGET_SIGTERM,
140 TARGET_SIGURG,
141 TARGET_SIGSTOP,
142 TARGET_SIGTSTP,
143 TARGET_SIGCONT,
144 TARGET_SIGCHLD,
145 TARGET_SIGTTIN,
146 TARGET_SIGTTOU,
147 TARGET_SIGIO,
148 TARGET_SIGXCPU,
149 TARGET_SIGXFSZ,
150 TARGET_SIGVTALRM,
151 TARGET_SIGPROF,
152 TARGET_SIGWINCH,
153 -1, /* SIGLOST */
154 TARGET_SIGUSR1,
155 TARGET_SIGUSR2,
156 #ifdef TARGET_SIGPWR
157 TARGET_SIGPWR,
158 #else
159 -1,
160 #endif
161 -1, /* SIGPOLL */
162 -1,
163 -1,
164 -1,
165 -1,
166 -1,
167 -1,
168 -1,
169 -1,
170 -1,
171 -1,
172 -1,
173 #ifdef __SIGRTMIN
174 __SIGRTMIN + 1,
175 __SIGRTMIN + 2,
176 __SIGRTMIN + 3,
177 __SIGRTMIN + 4,
178 __SIGRTMIN + 5,
179 __SIGRTMIN + 6,
180 __SIGRTMIN + 7,
181 __SIGRTMIN + 8,
182 __SIGRTMIN + 9,
183 __SIGRTMIN + 10,
184 __SIGRTMIN + 11,
185 __SIGRTMIN + 12,
186 __SIGRTMIN + 13,
187 __SIGRTMIN + 14,
188 __SIGRTMIN + 15,
189 __SIGRTMIN + 16,
190 __SIGRTMIN + 17,
191 __SIGRTMIN + 18,
192 __SIGRTMIN + 19,
193 __SIGRTMIN + 20,
194 __SIGRTMIN + 21,
195 __SIGRTMIN + 22,
196 __SIGRTMIN + 23,
197 __SIGRTMIN + 24,
198 __SIGRTMIN + 25,
199 __SIGRTMIN + 26,
200 __SIGRTMIN + 27,
201 __SIGRTMIN + 28,
202 __SIGRTMIN + 29,
203 __SIGRTMIN + 30,
204 __SIGRTMIN + 31,
205 -1, /* SIGCANCEL */
206 __SIGRTMIN,
207 __SIGRTMIN + 32,
208 __SIGRTMIN + 33,
209 __SIGRTMIN + 34,
210 __SIGRTMIN + 35,
211 __SIGRTMIN + 36,
212 __SIGRTMIN + 37,
213 __SIGRTMIN + 38,
214 __SIGRTMIN + 39,
215 __SIGRTMIN + 40,
216 __SIGRTMIN + 41,
217 __SIGRTMIN + 42,
218 __SIGRTMIN + 43,
219 __SIGRTMIN + 44,
220 __SIGRTMIN + 45,
221 __SIGRTMIN + 46,
222 __SIGRTMIN + 47,
223 __SIGRTMIN + 48,
224 __SIGRTMIN + 49,
225 __SIGRTMIN + 50,
226 __SIGRTMIN + 51,
227 __SIGRTMIN + 52,
228 __SIGRTMIN + 53,
229 __SIGRTMIN + 54,
230 __SIGRTMIN + 55,
231 __SIGRTMIN + 56,
232 __SIGRTMIN + 57,
233 __SIGRTMIN + 58,
234 __SIGRTMIN + 59,
235 __SIGRTMIN + 60,
236 __SIGRTMIN + 61,
237 __SIGRTMIN + 62,
238 __SIGRTMIN + 63,
239 __SIGRTMIN + 64,
240 __SIGRTMIN + 65,
241 __SIGRTMIN + 66,
242 __SIGRTMIN + 67,
243 __SIGRTMIN + 68,
244 __SIGRTMIN + 69,
245 __SIGRTMIN + 70,
246 __SIGRTMIN + 71,
247 __SIGRTMIN + 72,
248 __SIGRTMIN + 73,
249 __SIGRTMIN + 74,
250 __SIGRTMIN + 75,
251 __SIGRTMIN + 76,
252 __SIGRTMIN + 77,
253 __SIGRTMIN + 78,
254 __SIGRTMIN + 79,
255 __SIGRTMIN + 80,
256 __SIGRTMIN + 81,
257 __SIGRTMIN + 82,
258 __SIGRTMIN + 83,
259 __SIGRTMIN + 84,
260 __SIGRTMIN + 85,
261 __SIGRTMIN + 86,
262 __SIGRTMIN + 87,
263 __SIGRTMIN + 88,
264 __SIGRTMIN + 89,
265 __SIGRTMIN + 90,
266 __SIGRTMIN + 91,
267 __SIGRTMIN + 92,
268 __SIGRTMIN + 93,
269 __SIGRTMIN + 94,
270 __SIGRTMIN + 95,
271 -1, /* SIGINFO */
272 -1, /* UNKNOWN */
273 -1, /* DEFAULT */
274 -1,
275 -1,
276 -1,
277 -1,
278 -1,
279 -1
280 #endif
281 };
282 #else
283 /* In system mode we only need SIGINT and SIGTRAP; other signals
284 are not yet supported. */
285
286 enum {
287 TARGET_SIGINT = 2,
288 TARGET_SIGTRAP = 5
289 };
290
291 static int gdb_signal_table[] = {
292 -1,
293 -1,
294 TARGET_SIGINT,
295 -1,
296 -1,
297 TARGET_SIGTRAP
298 };
299 #endif
300
301 #ifdef CONFIG_USER_ONLY
302 static int target_signal_to_gdb (int sig)
303 {
304 int i;
305 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
306 if (gdb_signal_table[i] == sig)
307 return i;
308 return GDB_SIGNAL_UNKNOWN;
309 }
310 #endif
311
312 static int gdb_signal_to_target (int sig)
313 {
314 if (sig < ARRAY_SIZE (gdb_signal_table))
315 return gdb_signal_table[sig];
316 else
317 return -1;
318 }
319
320 typedef struct GDBRegisterState {
321 int base_reg;
322 int num_regs;
323 gdb_get_reg_cb get_reg;
324 gdb_set_reg_cb set_reg;
325 const char *xml;
326 struct GDBRegisterState *next;
327 } GDBRegisterState;
328
329 typedef struct GDBProcess {
330 uint32_t pid;
331 bool attached;
332
333 char target_xml[1024];
334 } GDBProcess;
335
336 enum RSState {
337 RS_INACTIVE,
338 RS_IDLE,
339 RS_GETLINE,
340 RS_GETLINE_ESC,
341 RS_GETLINE_RLE,
342 RS_CHKSUM1,
343 RS_CHKSUM2,
344 };
345 typedef struct GDBState {
346 bool init; /* have we been initialised? */
347 CPUState *c_cpu; /* current CPU for step/continue ops */
348 CPUState *g_cpu; /* current CPU for other ops */
349 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
350 enum RSState state; /* parsing state */
351 char line_buf[MAX_PACKET_LENGTH];
352 int line_buf_index;
353 int line_sum; /* running checksum */
354 int line_csum; /* checksum at the end of the packet */
355 GByteArray *last_packet;
356 int signal;
357 #ifdef CONFIG_USER_ONLY
358 int fd;
359 char *socket_path;
360 int running_state;
361 #else
362 CharBackend chr;
363 Chardev *mon_chr;
364 #endif
365 bool multiprocess;
366 GDBProcess *processes;
367 int process_num;
368 char syscall_buf[256];
369 gdb_syscall_complete_cb current_syscall_cb;
370 GString *str_buf;
371 GByteArray *mem_buf;
372 } GDBState;
373
374 /* By default use no IRQs and no timers while single stepping so as to
375 * make single stepping like an ICE HW step.
376 */
377 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
378
379 /* Retrieves flags for single step mode. */
380 static int get_sstep_flags(void)
381 {
382 /*
383 * In replay mode all events written into the log should be replayed.
384 * That is why NOIRQ flag is removed in this mode.
385 */
386 if (replay_mode != REPLAY_MODE_NONE) {
387 return SSTEP_ENABLE;
388 } else {
389 return sstep_flags;
390 }
391 }
392
393 static GDBState gdbserver_state;
394
395 static void init_gdbserver_state(void)
396 {
397 g_assert(!gdbserver_state.init);
398 memset(&gdbserver_state, 0, sizeof(GDBState));
399 gdbserver_state.init = true;
400 gdbserver_state.str_buf = g_string_new(NULL);
401 gdbserver_state.mem_buf = g_byte_array_sized_new(MAX_PACKET_LENGTH);
402 gdbserver_state.last_packet = g_byte_array_sized_new(MAX_PACKET_LENGTH + 4);
403 }
404
405 #ifndef CONFIG_USER_ONLY
406 static void reset_gdbserver_state(void)
407 {
408 g_free(gdbserver_state.processes);
409 gdbserver_state.processes = NULL;
410 gdbserver_state.process_num = 0;
411 }
412 #endif
413
414 bool gdb_has_xml;
415
416 #ifdef CONFIG_USER_ONLY
417
418 static int get_char(void)
419 {
420 uint8_t ch;
421 int ret;
422
423 for(;;) {
424 ret = qemu_recv(gdbserver_state.fd, &ch, 1, 0);
425 if (ret < 0) {
426 if (errno == ECONNRESET)
427 gdbserver_state.fd = -1;
428 if (errno != EINTR)
429 return -1;
430 } else if (ret == 0) {
431 close(gdbserver_state.fd);
432 gdbserver_state.fd = -1;
433 return -1;
434 } else {
435 break;
436 }
437 }
438 return ch;
439 }
440 #endif
441
442 static enum {
443 GDB_SYS_UNKNOWN,
444 GDB_SYS_ENABLED,
445 GDB_SYS_DISABLED,
446 } gdb_syscall_mode;
447
448 /* Decide if either remote gdb syscalls or native file IO should be used. */
449 int use_gdb_syscalls(void)
450 {
451 SemihostingTarget target = semihosting_get_target();
452 if (target == SEMIHOSTING_TARGET_NATIVE) {
453 /* -semihosting-config target=native */
454 return false;
455 } else if (target == SEMIHOSTING_TARGET_GDB) {
456 /* -semihosting-config target=gdb */
457 return true;
458 }
459
460 /* -semihosting-config target=auto */
461 /* On the first call check if gdb is connected and remember. */
462 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
463 gdb_syscall_mode = gdbserver_state.init ?
464 GDB_SYS_ENABLED : GDB_SYS_DISABLED;
465 }
466 return gdb_syscall_mode == GDB_SYS_ENABLED;
467 }
468
469 /* Resume execution. */
470 static inline void gdb_continue(void)
471 {
472
473 #ifdef CONFIG_USER_ONLY
474 gdbserver_state.running_state = 1;
475 trace_gdbstub_op_continue();
476 #else
477 if (!runstate_needs_reset()) {
478 trace_gdbstub_op_continue();
479 vm_start();
480 }
481 #endif
482 }
483
484 /*
485 * Resume execution, per CPU actions. For user-mode emulation it's
486 * equivalent to gdb_continue.
487 */
488 static int gdb_continue_partial(char *newstates)
489 {
490 CPUState *cpu;
491 int res = 0;
492 #ifdef CONFIG_USER_ONLY
493 /*
494 * This is not exactly accurate, but it's an improvement compared to the
495 * previous situation, where only one CPU would be single-stepped.
496 */
497 CPU_FOREACH(cpu) {
498 if (newstates[cpu->cpu_index] == 's') {
499 trace_gdbstub_op_stepping(cpu->cpu_index);
500 cpu_single_step(cpu, sstep_flags);
501 }
502 }
503 gdbserver_state.running_state = 1;
504 #else
505 int flag = 0;
506
507 if (!runstate_needs_reset()) {
508 if (vm_prepare_start()) {
509 return 0;
510 }
511
512 CPU_FOREACH(cpu) {
513 switch (newstates[cpu->cpu_index]) {
514 case 0:
515 case 1:
516 break; /* nothing to do here */
517 case 's':
518 trace_gdbstub_op_stepping(cpu->cpu_index);
519 cpu_single_step(cpu, get_sstep_flags());
520 cpu_resume(cpu);
521 flag = 1;
522 break;
523 case 'c':
524 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
525 cpu_resume(cpu);
526 flag = 1;
527 break;
528 default:
529 res = -1;
530 break;
531 }
532 }
533 }
534 if (flag) {
535 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
536 }
537 #endif
538 return res;
539 }
540
541 static void put_buffer(const uint8_t *buf, int len)
542 {
543 #ifdef CONFIG_USER_ONLY
544 int ret;
545
546 while (len > 0) {
547 ret = send(gdbserver_state.fd, buf, len, 0);
548 if (ret < 0) {
549 if (errno != EINTR)
550 return;
551 } else {
552 buf += ret;
553 len -= ret;
554 }
555 }
556 #else
557 /* XXX this blocks entire thread. Rewrite to use
558 * qemu_chr_fe_write and background I/O callbacks */
559 qemu_chr_fe_write_all(&gdbserver_state.chr, buf, len);
560 #endif
561 }
562
563 static inline int fromhex(int v)
564 {
565 if (v >= '0' && v <= '9')
566 return v - '0';
567 else if (v >= 'A' && v <= 'F')
568 return v - 'A' + 10;
569 else if (v >= 'a' && v <= 'f')
570 return v - 'a' + 10;
571 else
572 return 0;
573 }
574
575 static inline int tohex(int v)
576 {
577 if (v < 10)
578 return v + '0';
579 else
580 return v - 10 + 'a';
581 }
582
583 /* writes 2*len+1 bytes in buf */
584 static void memtohex(GString *buf, const uint8_t *mem, int len)
585 {
586 int i, c;
587 for(i = 0; i < len; i++) {
588 c = mem[i];
589 g_string_append_c(buf, tohex(c >> 4));
590 g_string_append_c(buf, tohex(c & 0xf));
591 }
592 g_string_append_c(buf, '\0');
593 }
594
595 static void hextomem(GByteArray *mem, const char *buf, int len)
596 {
597 int i;
598
599 for(i = 0; i < len; i++) {
600 guint8 byte = fromhex(buf[0]) << 4 | fromhex(buf[1]);
601 g_byte_array_append(mem, &byte, 1);
602 buf += 2;
603 }
604 }
605
606 static void hexdump(const char *buf, int len,
607 void (*trace_fn)(size_t ofs, char const *text))
608 {
609 char line_buffer[3 * 16 + 4 + 16 + 1];
610
611 size_t i;
612 for (i = 0; i < len || (i & 0xF); ++i) {
613 size_t byte_ofs = i & 15;
614
615 if (byte_ofs == 0) {
616 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
617 line_buffer[3 * 16 + 4 + 16] = 0;
618 }
619
620 size_t col_group = (i >> 2) & 3;
621 size_t hex_col = byte_ofs * 3 + col_group;
622 size_t txt_col = 3 * 16 + 4 + byte_ofs;
623
624 if (i < len) {
625 char value = buf[i];
626
627 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
628 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
629 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
630 ? value
631 : '.';
632 }
633
634 if (byte_ofs == 0xF)
635 trace_fn(i & -16, line_buffer);
636 }
637 }
638
639 /* return -1 if error, 0 if OK */
640 static int put_packet_binary(const char *buf, int len, bool dump)
641 {
642 int csum, i;
643 uint8_t footer[3];
644
645 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
646 hexdump(buf, len, trace_gdbstub_io_binaryreply);
647 }
648
649 for(;;) {
650 g_byte_array_set_size(gdbserver_state.last_packet, 0);
651 g_byte_array_append(gdbserver_state.last_packet,
652 (const uint8_t *) "$", 1);
653 g_byte_array_append(gdbserver_state.last_packet,
654 (const uint8_t *) buf, len);
655 csum = 0;
656 for(i = 0; i < len; i++) {
657 csum += buf[i];
658 }
659 footer[0] = '#';
660 footer[1] = tohex((csum >> 4) & 0xf);
661 footer[2] = tohex((csum) & 0xf);
662 g_byte_array_append(gdbserver_state.last_packet, footer, 3);
663
664 put_buffer(gdbserver_state.last_packet->data,
665 gdbserver_state.last_packet->len);
666
667 #ifdef CONFIG_USER_ONLY
668 i = get_char();
669 if (i < 0)
670 return -1;
671 if (i == '+')
672 break;
673 #else
674 break;
675 #endif
676 }
677 return 0;
678 }
679
680 /* return -1 if error, 0 if OK */
681 static int put_packet(const char *buf)
682 {
683 trace_gdbstub_io_reply(buf);
684
685 return put_packet_binary(buf, strlen(buf), false);
686 }
687
688 static void put_strbuf(void)
689 {
690 put_packet(gdbserver_state.str_buf->str);
691 }
692
693 /* Encode data using the encoding for 'x' packets. */
694 static void memtox(GString *buf, const char *mem, int len)
695 {
696 char c;
697
698 while (len--) {
699 c = *(mem++);
700 switch (c) {
701 case '#': case '$': case '*': case '}':
702 g_string_append_c(buf, '}');
703 g_string_append_c(buf, c ^ 0x20);
704 break;
705 default:
706 g_string_append_c(buf, c);
707 break;
708 }
709 }
710 }
711
712 static uint32_t gdb_get_cpu_pid(CPUState *cpu)
713 {
714 /* TODO: In user mode, we should use the task state PID */
715 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
716 /* Return the default process' PID */
717 int index = gdbserver_state.process_num - 1;
718 return gdbserver_state.processes[index].pid;
719 }
720 return cpu->cluster_index + 1;
721 }
722
723 static GDBProcess *gdb_get_process(uint32_t pid)
724 {
725 int i;
726
727 if (!pid) {
728 /* 0 means any process, we take the first one */
729 return &gdbserver_state.processes[0];
730 }
731
732 for (i = 0; i < gdbserver_state.process_num; i++) {
733 if (gdbserver_state.processes[i].pid == pid) {
734 return &gdbserver_state.processes[i];
735 }
736 }
737
738 return NULL;
739 }
740
741 static GDBProcess *gdb_get_cpu_process(CPUState *cpu)
742 {
743 return gdb_get_process(gdb_get_cpu_pid(cpu));
744 }
745
746 static CPUState *find_cpu(uint32_t thread_id)
747 {
748 CPUState *cpu;
749
750 CPU_FOREACH(cpu) {
751 if (cpu_gdb_index(cpu) == thread_id) {
752 return cpu;
753 }
754 }
755
756 return NULL;
757 }
758
759 static CPUState *get_first_cpu_in_process(GDBProcess *process)
760 {
761 CPUState *cpu;
762
763 CPU_FOREACH(cpu) {
764 if (gdb_get_cpu_pid(cpu) == process->pid) {
765 return cpu;
766 }
767 }
768
769 return NULL;
770 }
771
772 static CPUState *gdb_next_cpu_in_process(CPUState *cpu)
773 {
774 uint32_t pid = gdb_get_cpu_pid(cpu);
775 cpu = CPU_NEXT(cpu);
776
777 while (cpu) {
778 if (gdb_get_cpu_pid(cpu) == pid) {
779 break;
780 }
781
782 cpu = CPU_NEXT(cpu);
783 }
784
785 return cpu;
786 }
787
788 /* Return the cpu following @cpu, while ignoring unattached processes. */
789 static CPUState *gdb_next_attached_cpu(CPUState *cpu)
790 {
791 cpu = CPU_NEXT(cpu);
792
793 while (cpu) {
794 if (gdb_get_cpu_process(cpu)->attached) {
795 break;
796 }
797
798 cpu = CPU_NEXT(cpu);
799 }
800
801 return cpu;
802 }
803
804 /* Return the first attached cpu */
805 static CPUState *gdb_first_attached_cpu(void)
806 {
807 CPUState *cpu = first_cpu;
808 GDBProcess *process = gdb_get_cpu_process(cpu);
809
810 if (!process->attached) {
811 return gdb_next_attached_cpu(cpu);
812 }
813
814 return cpu;
815 }
816
817 static CPUState *gdb_get_cpu(uint32_t pid, uint32_t tid)
818 {
819 GDBProcess *process;
820 CPUState *cpu;
821
822 if (!pid && !tid) {
823 /* 0 means any process/thread, we take the first attached one */
824 return gdb_first_attached_cpu();
825 } else if (pid && !tid) {
826 /* any thread in a specific process */
827 process = gdb_get_process(pid);
828
829 if (process == NULL) {
830 return NULL;
831 }
832
833 if (!process->attached) {
834 return NULL;
835 }
836
837 return get_first_cpu_in_process(process);
838 } else {
839 /* a specific thread */
840 cpu = find_cpu(tid);
841
842 if (cpu == NULL) {
843 return NULL;
844 }
845
846 process = gdb_get_cpu_process(cpu);
847
848 if (pid && process->pid != pid) {
849 return NULL;
850 }
851
852 if (!process->attached) {
853 return NULL;
854 }
855
856 return cpu;
857 }
858 }
859
860 static const char *get_feature_xml(const char *p, const char **newp,
861 GDBProcess *process)
862 {
863 size_t len;
864 int i;
865 const char *name;
866 CPUState *cpu = get_first_cpu_in_process(process);
867 CPUClass *cc = CPU_GET_CLASS(cpu);
868
869 len = 0;
870 while (p[len] && p[len] != ':')
871 len++;
872 *newp = p + len;
873
874 name = NULL;
875 if (strncmp(p, "target.xml", len) == 0) {
876 char *buf = process->target_xml;
877 const size_t buf_sz = sizeof(process->target_xml);
878
879 /* Generate the XML description for this CPU. */
880 if (!buf[0]) {
881 GDBRegisterState *r;
882
883 pstrcat(buf, buf_sz,
884 "<?xml version=\"1.0\"?>"
885 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
886 "<target>");
887 if (cc->gdb_arch_name) {
888 gchar *arch = cc->gdb_arch_name(cpu);
889 pstrcat(buf, buf_sz, "<architecture>");
890 pstrcat(buf, buf_sz, arch);
891 pstrcat(buf, buf_sz, "</architecture>");
892 g_free(arch);
893 }
894 pstrcat(buf, buf_sz, "<xi:include href=\"");
895 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
896 pstrcat(buf, buf_sz, "\"/>");
897 for (r = cpu->gdb_regs; r; r = r->next) {
898 pstrcat(buf, buf_sz, "<xi:include href=\"");
899 pstrcat(buf, buf_sz, r->xml);
900 pstrcat(buf, buf_sz, "\"/>");
901 }
902 pstrcat(buf, buf_sz, "</target>");
903 }
904 return buf;
905 }
906 if (cc->gdb_get_dynamic_xml) {
907 char *xmlname = g_strndup(p, len);
908 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
909
910 g_free(xmlname);
911 if (xml) {
912 return xml;
913 }
914 }
915 for (i = 0; ; i++) {
916 name = xml_builtin[i][0];
917 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
918 break;
919 }
920 return name ? xml_builtin[i][1] : NULL;
921 }
922
923 static int gdb_read_register(CPUState *cpu, GByteArray *buf, int reg)
924 {
925 CPUClass *cc = CPU_GET_CLASS(cpu);
926 CPUArchState *env = cpu->env_ptr;
927 GDBRegisterState *r;
928
929 if (reg < cc->gdb_num_core_regs) {
930 return cc->gdb_read_register(cpu, buf, reg);
931 }
932
933 for (r = cpu->gdb_regs; r; r = r->next) {
934 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
935 return r->get_reg(env, buf, reg - r->base_reg);
936 }
937 }
938 return 0;
939 }
940
941 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
942 {
943 CPUClass *cc = CPU_GET_CLASS(cpu);
944 CPUArchState *env = cpu->env_ptr;
945 GDBRegisterState *r;
946
947 if (reg < cc->gdb_num_core_regs) {
948 return cc->gdb_write_register(cpu, mem_buf, reg);
949 }
950
951 for (r = cpu->gdb_regs; r; r = r->next) {
952 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
953 return r->set_reg(env, mem_buf, reg - r->base_reg);
954 }
955 }
956 return 0;
957 }
958
959 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
960 specifies the first register number and these registers are included in
961 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
962 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
963 */
964
965 void gdb_register_coprocessor(CPUState *cpu,
966 gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg,
967 int num_regs, const char *xml, int g_pos)
968 {
969 GDBRegisterState *s;
970 GDBRegisterState **p;
971
972 p = &cpu->gdb_regs;
973 while (*p) {
974 /* Check for duplicates. */
975 if (strcmp((*p)->xml, xml) == 0)
976 return;
977 p = &(*p)->next;
978 }
979
980 s = g_new0(GDBRegisterState, 1);
981 s->base_reg = cpu->gdb_num_regs;
982 s->num_regs = num_regs;
983 s->get_reg = get_reg;
984 s->set_reg = set_reg;
985 s->xml = xml;
986
987 /* Add to end of list. */
988 cpu->gdb_num_regs += num_regs;
989 *p = s;
990 if (g_pos) {
991 if (g_pos != s->base_reg) {
992 error_report("Error: Bad gdb register numbering for '%s', "
993 "expected %d got %d", xml, g_pos, s->base_reg);
994 } else {
995 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
996 }
997 }
998 }
999
1000 #ifndef CONFIG_USER_ONLY
1001 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
1002 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
1003 {
1004 static const int xlat[] = {
1005 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1006 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1007 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1008 };
1009
1010 CPUClass *cc = CPU_GET_CLASS(cpu);
1011 int cputype = xlat[gdbtype];
1012
1013 if (cc->gdb_stop_before_watchpoint) {
1014 cputype |= BP_STOP_BEFORE_ACCESS;
1015 }
1016 return cputype;
1017 }
1018 #endif
1019
1020 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
1021 {
1022 CPUState *cpu;
1023 int err = 0;
1024
1025 if (kvm_enabled()) {
1026 return kvm_insert_breakpoint(gdbserver_state.c_cpu, addr, len, type);
1027 }
1028
1029 switch (type) {
1030 case GDB_BREAKPOINT_SW:
1031 case GDB_BREAKPOINT_HW:
1032 CPU_FOREACH(cpu) {
1033 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
1034 if (err) {
1035 break;
1036 }
1037 }
1038 return err;
1039 #ifndef CONFIG_USER_ONLY
1040 case GDB_WATCHPOINT_WRITE:
1041 case GDB_WATCHPOINT_READ:
1042 case GDB_WATCHPOINT_ACCESS:
1043 CPU_FOREACH(cpu) {
1044 err = cpu_watchpoint_insert(cpu, addr, len,
1045 xlat_gdb_type(cpu, type), NULL);
1046 if (err) {
1047 break;
1048 }
1049 }
1050 return err;
1051 #endif
1052 default:
1053 return -ENOSYS;
1054 }
1055 }
1056
1057 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
1058 {
1059 CPUState *cpu;
1060 int err = 0;
1061
1062 if (kvm_enabled()) {
1063 return kvm_remove_breakpoint(gdbserver_state.c_cpu, addr, len, type);
1064 }
1065
1066 switch (type) {
1067 case GDB_BREAKPOINT_SW:
1068 case GDB_BREAKPOINT_HW:
1069 CPU_FOREACH(cpu) {
1070 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1071 if (err) {
1072 break;
1073 }
1074 }
1075 return err;
1076 #ifndef CONFIG_USER_ONLY
1077 case GDB_WATCHPOINT_WRITE:
1078 case GDB_WATCHPOINT_READ:
1079 case GDB_WATCHPOINT_ACCESS:
1080 CPU_FOREACH(cpu) {
1081 err = cpu_watchpoint_remove(cpu, addr, len,
1082 xlat_gdb_type(cpu, type));
1083 if (err)
1084 break;
1085 }
1086 return err;
1087 #endif
1088 default:
1089 return -ENOSYS;
1090 }
1091 }
1092
1093 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1094 {
1095 cpu_breakpoint_remove_all(cpu, BP_GDB);
1096 #ifndef CONFIG_USER_ONLY
1097 cpu_watchpoint_remove_all(cpu, BP_GDB);
1098 #endif
1099 }
1100
1101 static void gdb_process_breakpoint_remove_all(GDBProcess *p)
1102 {
1103 CPUState *cpu = get_first_cpu_in_process(p);
1104
1105 while (cpu) {
1106 gdb_cpu_breakpoint_remove_all(cpu);
1107 cpu = gdb_next_cpu_in_process(cpu);
1108 }
1109 }
1110
1111 static void gdb_breakpoint_remove_all(void)
1112 {
1113 CPUState *cpu;
1114
1115 if (kvm_enabled()) {
1116 kvm_remove_all_breakpoints(gdbserver_state.c_cpu);
1117 return;
1118 }
1119
1120 CPU_FOREACH(cpu) {
1121 gdb_cpu_breakpoint_remove_all(cpu);
1122 }
1123 }
1124
1125 static void gdb_set_cpu_pc(target_ulong pc)
1126 {
1127 CPUState *cpu = gdbserver_state.c_cpu;
1128
1129 cpu_synchronize_state(cpu);
1130 cpu_set_pc(cpu, pc);
1131 }
1132
1133 static void gdb_append_thread_id(CPUState *cpu, GString *buf)
1134 {
1135 if (gdbserver_state.multiprocess) {
1136 g_string_append_printf(buf, "p%02x.%02x",
1137 gdb_get_cpu_pid(cpu), cpu_gdb_index(cpu));
1138 } else {
1139 g_string_append_printf(buf, "%02x", cpu_gdb_index(cpu));
1140 }
1141 }
1142
1143 typedef enum GDBThreadIdKind {
1144 GDB_ONE_THREAD = 0,
1145 GDB_ALL_THREADS, /* One process, all threads */
1146 GDB_ALL_PROCESSES,
1147 GDB_READ_THREAD_ERR
1148 } GDBThreadIdKind;
1149
1150 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1151 uint32_t *pid, uint32_t *tid)
1152 {
1153 unsigned long p, t;
1154 int ret;
1155
1156 if (*buf == 'p') {
1157 buf++;
1158 ret = qemu_strtoul(buf, &buf, 16, &p);
1159
1160 if (ret) {
1161 return GDB_READ_THREAD_ERR;
1162 }
1163
1164 /* Skip '.' */
1165 buf++;
1166 } else {
1167 p = 1;
1168 }
1169
1170 ret = qemu_strtoul(buf, &buf, 16, &t);
1171
1172 if (ret) {
1173 return GDB_READ_THREAD_ERR;
1174 }
1175
1176 *end_buf = buf;
1177
1178 if (p == -1) {
1179 return GDB_ALL_PROCESSES;
1180 }
1181
1182 if (pid) {
1183 *pid = p;
1184 }
1185
1186 if (t == -1) {
1187 return GDB_ALL_THREADS;
1188 }
1189
1190 if (tid) {
1191 *tid = t;
1192 }
1193
1194 return GDB_ONE_THREAD;
1195 }
1196
1197 /**
1198 * gdb_handle_vcont - Parses and handles a vCont packet.
1199 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1200 * a format error, 0 on success.
1201 */
1202 static int gdb_handle_vcont(const char *p)
1203 {
1204 int res, signal = 0;
1205 char cur_action;
1206 char *newstates;
1207 unsigned long tmp;
1208 uint32_t pid, tid;
1209 GDBProcess *process;
1210 CPUState *cpu;
1211 GDBThreadIdKind kind;
1212 #ifdef CONFIG_USER_ONLY
1213 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1214
1215 CPU_FOREACH(cpu) {
1216 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1217 }
1218 #else
1219 MachineState *ms = MACHINE(qdev_get_machine());
1220 unsigned int max_cpus = ms->smp.max_cpus;
1221 #endif
1222 /* uninitialised CPUs stay 0 */
1223 newstates = g_new0(char, max_cpus);
1224
1225 /* mark valid CPUs with 1 */
1226 CPU_FOREACH(cpu) {
1227 newstates[cpu->cpu_index] = 1;
1228 }
1229
1230 /*
1231 * res keeps track of what error we are returning, with -ENOTSUP meaning
1232 * that the command is unknown or unsupported, thus returning an empty
1233 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1234 * or incorrect parameters passed.
1235 */
1236 res = 0;
1237 while (*p) {
1238 if (*p++ != ';') {
1239 res = -ENOTSUP;
1240 goto out;
1241 }
1242
1243 cur_action = *p++;
1244 if (cur_action == 'C' || cur_action == 'S') {
1245 cur_action = qemu_tolower(cur_action);
1246 res = qemu_strtoul(p, &p, 16, &tmp);
1247 if (res) {
1248 goto out;
1249 }
1250 signal = gdb_signal_to_target(tmp);
1251 } else if (cur_action != 'c' && cur_action != 's') {
1252 /* unknown/invalid/unsupported command */
1253 res = -ENOTSUP;
1254 goto out;
1255 }
1256
1257 if (*p == '\0' || *p == ';') {
1258 /*
1259 * No thread specifier, action is on "all threads". The
1260 * specification is unclear regarding the process to act on. We
1261 * choose all processes.
1262 */
1263 kind = GDB_ALL_PROCESSES;
1264 } else if (*p++ == ':') {
1265 kind = read_thread_id(p, &p, &pid, &tid);
1266 } else {
1267 res = -ENOTSUP;
1268 goto out;
1269 }
1270
1271 switch (kind) {
1272 case GDB_READ_THREAD_ERR:
1273 res = -EINVAL;
1274 goto out;
1275
1276 case GDB_ALL_PROCESSES:
1277 cpu = gdb_first_attached_cpu();
1278 while (cpu) {
1279 if (newstates[cpu->cpu_index] == 1) {
1280 newstates[cpu->cpu_index] = cur_action;
1281 }
1282
1283 cpu = gdb_next_attached_cpu(cpu);
1284 }
1285 break;
1286
1287 case GDB_ALL_THREADS:
1288 process = gdb_get_process(pid);
1289
1290 if (!process->attached) {
1291 res = -EINVAL;
1292 goto out;
1293 }
1294
1295 cpu = get_first_cpu_in_process(process);
1296 while (cpu) {
1297 if (newstates[cpu->cpu_index] == 1) {
1298 newstates[cpu->cpu_index] = cur_action;
1299 }
1300
1301 cpu = gdb_next_cpu_in_process(cpu);
1302 }
1303 break;
1304
1305 case GDB_ONE_THREAD:
1306 cpu = gdb_get_cpu(pid, tid);
1307
1308 /* invalid CPU/thread specified */
1309 if (!cpu) {
1310 res = -EINVAL;
1311 goto out;
1312 }
1313
1314 /* only use if no previous match occourred */
1315 if (newstates[cpu->cpu_index] == 1) {
1316 newstates[cpu->cpu_index] = cur_action;
1317 }
1318 break;
1319 }
1320 }
1321 gdbserver_state.signal = signal;
1322 gdb_continue_partial(newstates);
1323
1324 out:
1325 g_free(newstates);
1326
1327 return res;
1328 }
1329
1330 typedef union GdbCmdVariant {
1331 const char *data;
1332 uint8_t opcode;
1333 unsigned long val_ul;
1334 unsigned long long val_ull;
1335 struct {
1336 GDBThreadIdKind kind;
1337 uint32_t pid;
1338 uint32_t tid;
1339 } thread_id;
1340 } GdbCmdVariant;
1341
1342 static const char *cmd_next_param(const char *param, const char delimiter)
1343 {
1344 static const char all_delimiters[] = ",;:=";
1345 char curr_delimiters[2] = {0};
1346 const char *delimiters;
1347
1348 if (delimiter == '?') {
1349 delimiters = all_delimiters;
1350 } else if (delimiter == '0') {
1351 return strchr(param, '\0');
1352 } else if (delimiter == '.' && *param) {
1353 return param + 1;
1354 } else {
1355 curr_delimiters[0] = delimiter;
1356 delimiters = curr_delimiters;
1357 }
1358
1359 param += strcspn(param, delimiters);
1360 if (*param) {
1361 param++;
1362 }
1363 return param;
1364 }
1365
1366 static int cmd_parse_params(const char *data, const char *schema,
1367 GdbCmdVariant *params, int *num_params)
1368 {
1369 int curr_param;
1370 const char *curr_schema, *curr_data;
1371
1372 *num_params = 0;
1373
1374 if (!schema) {
1375 return 0;
1376 }
1377
1378 curr_schema = schema;
1379 curr_param = 0;
1380 curr_data = data;
1381 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1382 switch (curr_schema[0]) {
1383 case 'l':
1384 if (qemu_strtoul(curr_data, &curr_data, 16,
1385 &params[curr_param].val_ul)) {
1386 return -EINVAL;
1387 }
1388 curr_param++;
1389 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1390 break;
1391 case 'L':
1392 if (qemu_strtou64(curr_data, &curr_data, 16,
1393 (uint64_t *)&params[curr_param].val_ull)) {
1394 return -EINVAL;
1395 }
1396 curr_param++;
1397 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1398 break;
1399 case 's':
1400 params[curr_param].data = curr_data;
1401 curr_param++;
1402 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1403 break;
1404 case 'o':
1405 params[curr_param].opcode = *(uint8_t *)curr_data;
1406 curr_param++;
1407 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1408 break;
1409 case 't':
1410 params[curr_param].thread_id.kind =
1411 read_thread_id(curr_data, &curr_data,
1412 &params[curr_param].thread_id.pid,
1413 &params[curr_param].thread_id.tid);
1414 curr_param++;
1415 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1416 break;
1417 case '?':
1418 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1419 break;
1420 default:
1421 return -EINVAL;
1422 }
1423 curr_schema += 2;
1424 }
1425
1426 *num_params = curr_param;
1427 return 0;
1428 }
1429
1430 typedef struct GdbCmdContext {
1431 GdbCmdVariant *params;
1432 int num_params;
1433 } GdbCmdContext;
1434
1435 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1436
1437 /*
1438 * cmd_startswith -> cmd is compared using startswith
1439 *
1440 *
1441 * schema definitions:
1442 * Each schema parameter entry consists of 2 chars,
1443 * the first char represents the parameter type handling
1444 * the second char represents the delimiter for the next parameter
1445 *
1446 * Currently supported schema types:
1447 * 'l' -> unsigned long (stored in .val_ul)
1448 * 'L' -> unsigned long long (stored in .val_ull)
1449 * 's' -> string (stored in .data)
1450 * 'o' -> single char (stored in .opcode)
1451 * 't' -> thread id (stored in .thread_id)
1452 * '?' -> skip according to delimiter
1453 *
1454 * Currently supported delimiters:
1455 * '?' -> Stop at any delimiter (",;:=\0")
1456 * '0' -> Stop at "\0"
1457 * '.' -> Skip 1 char unless reached "\0"
1458 * Any other value is treated as the delimiter value itself
1459 */
1460 typedef struct GdbCmdParseEntry {
1461 GdbCmdHandler handler;
1462 const char *cmd;
1463 bool cmd_startswith;
1464 const char *schema;
1465 } GdbCmdParseEntry;
1466
1467 static inline int startswith(const char *string, const char *pattern)
1468 {
1469 return !strncmp(string, pattern, strlen(pattern));
1470 }
1471
1472 static int process_string_cmd(void *user_ctx, const char *data,
1473 const GdbCmdParseEntry *cmds, int num_cmds)
1474 {
1475 int i, schema_len, max_num_params = 0;
1476 GdbCmdContext gdb_ctx;
1477
1478 if (!cmds) {
1479 return -1;
1480 }
1481
1482 for (i = 0; i < num_cmds; i++) {
1483 const GdbCmdParseEntry *cmd = &cmds[i];
1484 g_assert(cmd->handler && cmd->cmd);
1485
1486 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1487 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1488 continue;
1489 }
1490
1491 if (cmd->schema) {
1492 schema_len = strlen(cmd->schema);
1493 if (schema_len % 2) {
1494 return -2;
1495 }
1496
1497 max_num_params = schema_len / 2;
1498 }
1499
1500 gdb_ctx.params =
1501 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1502 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1503
1504 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1505 gdb_ctx.params, &gdb_ctx.num_params)) {
1506 return -1;
1507 }
1508
1509 cmd->handler(&gdb_ctx, user_ctx);
1510 return 0;
1511 }
1512
1513 return -1;
1514 }
1515
1516 static void run_cmd_parser(const char *data, const GdbCmdParseEntry *cmd)
1517 {
1518 if (!data) {
1519 return;
1520 }
1521
1522 g_string_set_size(gdbserver_state.str_buf, 0);
1523 g_byte_array_set_size(gdbserver_state.mem_buf, 0);
1524
1525 /* In case there was an error during the command parsing we must
1526 * send a NULL packet to indicate the command is not supported */
1527 if (process_string_cmd(NULL, data, cmd, 1)) {
1528 put_packet("");
1529 }
1530 }
1531
1532 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1533 {
1534 GDBProcess *process;
1535 uint32_t pid = 1;
1536
1537 if (gdbserver_state.multiprocess) {
1538 if (!gdb_ctx->num_params) {
1539 put_packet("E22");
1540 return;
1541 }
1542
1543 pid = gdb_ctx->params[0].val_ul;
1544 }
1545
1546 process = gdb_get_process(pid);
1547 gdb_process_breakpoint_remove_all(process);
1548 process->attached = false;
1549
1550 if (pid == gdb_get_cpu_pid(gdbserver_state.c_cpu)) {
1551 gdbserver_state.c_cpu = gdb_first_attached_cpu();
1552 }
1553
1554 if (pid == gdb_get_cpu_pid(gdbserver_state.g_cpu)) {
1555 gdbserver_state.g_cpu = gdb_first_attached_cpu();
1556 }
1557
1558 if (!gdbserver_state.c_cpu) {
1559 /* No more process attached */
1560 gdb_syscall_mode = GDB_SYS_DISABLED;
1561 gdb_continue();
1562 }
1563 put_packet("OK");
1564 }
1565
1566 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1567 {
1568 CPUState *cpu;
1569
1570 if (!gdb_ctx->num_params) {
1571 put_packet("E22");
1572 return;
1573 }
1574
1575 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1576 put_packet("E22");
1577 return;
1578 }
1579
1580 cpu = gdb_get_cpu(gdb_ctx->params[0].thread_id.pid,
1581 gdb_ctx->params[0].thread_id.tid);
1582 if (!cpu) {
1583 put_packet("E22");
1584 return;
1585 }
1586
1587 put_packet("OK");
1588 }
1589
1590 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1591 {
1592 if (gdb_ctx->num_params) {
1593 gdb_set_cpu_pc(gdb_ctx->params[0].val_ull);
1594 }
1595
1596 gdbserver_state.signal = 0;
1597 gdb_continue();
1598 }
1599
1600 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1601 {
1602 unsigned long signal = 0;
1603
1604 /*
1605 * Note: C sig;[addr] is currently unsupported and we simply
1606 * omit the addr parameter
1607 */
1608 if (gdb_ctx->num_params) {
1609 signal = gdb_ctx->params[0].val_ul;
1610 }
1611
1612 gdbserver_state.signal = gdb_signal_to_target(signal);
1613 if (gdbserver_state.signal == -1) {
1614 gdbserver_state.signal = 0;
1615 }
1616 gdb_continue();
1617 }
1618
1619 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1620 {
1621 CPUState *cpu;
1622
1623 if (gdb_ctx->num_params != 2) {
1624 put_packet("E22");
1625 return;
1626 }
1627
1628 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1629 put_packet("E22");
1630 return;
1631 }
1632
1633 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1634 put_packet("OK");
1635 return;
1636 }
1637
1638 cpu = gdb_get_cpu(gdb_ctx->params[1].thread_id.pid,
1639 gdb_ctx->params[1].thread_id.tid);
1640 if (!cpu) {
1641 put_packet("E22");
1642 return;
1643 }
1644
1645 /*
1646 * Note: This command is deprecated and modern gdb's will be using the
1647 * vCont command instead.
1648 */
1649 switch (gdb_ctx->params[0].opcode) {
1650 case 'c':
1651 gdbserver_state.c_cpu = cpu;
1652 put_packet("OK");
1653 break;
1654 case 'g':
1655 gdbserver_state.g_cpu = cpu;
1656 put_packet("OK");
1657 break;
1658 default:
1659 put_packet("E22");
1660 break;
1661 }
1662 }
1663
1664 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1665 {
1666 int res;
1667
1668 if (gdb_ctx->num_params != 3) {
1669 put_packet("E22");
1670 return;
1671 }
1672
1673 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1674 gdb_ctx->params[1].val_ull,
1675 gdb_ctx->params[2].val_ull);
1676 if (res >= 0) {
1677 put_packet("OK");
1678 return;
1679 } else if (res == -ENOSYS) {
1680 put_packet("");
1681 return;
1682 }
1683
1684 put_packet("E22");
1685 }
1686
1687 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1688 {
1689 int res;
1690
1691 if (gdb_ctx->num_params != 3) {
1692 put_packet("E22");
1693 return;
1694 }
1695
1696 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1697 gdb_ctx->params[1].val_ull,
1698 gdb_ctx->params[2].val_ull);
1699 if (res >= 0) {
1700 put_packet("OK");
1701 return;
1702 } else if (res == -ENOSYS) {
1703 put_packet("");
1704 return;
1705 }
1706
1707 put_packet("E22");
1708 }
1709
1710 /*
1711 * handle_set/get_reg
1712 *
1713 * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
1714 * This works, but can be very slow. Anything new enough to understand
1715 * XML also knows how to use this properly. However to use this we
1716 * need to define a local XML file as well as be talking to a
1717 * reasonably modern gdb. Responding with an empty packet will cause
1718 * the remote gdb to fallback to older methods.
1719 */
1720
1721 static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1722 {
1723 int reg_size;
1724
1725 if (!gdb_has_xml) {
1726 put_packet("");
1727 return;
1728 }
1729
1730 if (gdb_ctx->num_params != 2) {
1731 put_packet("E22");
1732 return;
1733 }
1734
1735 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1736 hextomem(gdbserver_state.mem_buf, gdb_ctx->params[1].data, reg_size);
1737 gdb_write_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf->data,
1738 gdb_ctx->params[0].val_ull);
1739 put_packet("OK");
1740 }
1741
1742 static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1743 {
1744 int reg_size;
1745
1746 if (!gdb_has_xml) {
1747 put_packet("");
1748 return;
1749 }
1750
1751 if (!gdb_ctx->num_params) {
1752 put_packet("E14");
1753 return;
1754 }
1755
1756 reg_size = gdb_read_register(gdbserver_state.g_cpu,
1757 gdbserver_state.mem_buf,
1758 gdb_ctx->params[0].val_ull);
1759 if (!reg_size) {
1760 put_packet("E14");
1761 return;
1762 } else {
1763 g_byte_array_set_size(gdbserver_state.mem_buf, reg_size);
1764 }
1765
1766 memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, reg_size);
1767 put_strbuf();
1768 }
1769
1770 static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1771 {
1772 if (gdb_ctx->num_params != 3) {
1773 put_packet("E22");
1774 return;
1775 }
1776
1777 /* hextomem() reads 2*len bytes */
1778 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1779 put_packet("E22");
1780 return;
1781 }
1782
1783 hextomem(gdbserver_state.mem_buf, gdb_ctx->params[2].data,
1784 gdb_ctx->params[1].val_ull);
1785 if (target_memory_rw_debug(gdbserver_state.g_cpu, gdb_ctx->params[0].val_ull,
1786 gdbserver_state.mem_buf->data,
1787 gdbserver_state.mem_buf->len, true)) {
1788 put_packet("E14");
1789 return;
1790 }
1791
1792 put_packet("OK");
1793 }
1794
1795 static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1796 {
1797 if (gdb_ctx->num_params != 2) {
1798 put_packet("E22");
1799 return;
1800 }
1801
1802 /* memtohex() doubles the required space */
1803 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1804 put_packet("E22");
1805 return;
1806 }
1807
1808 g_byte_array_set_size(gdbserver_state.mem_buf, gdb_ctx->params[1].val_ull);
1809
1810 if (target_memory_rw_debug(gdbserver_state.g_cpu, gdb_ctx->params[0].val_ull,
1811 gdbserver_state.mem_buf->data,
1812 gdbserver_state.mem_buf->len, false)) {
1813 put_packet("E14");
1814 return;
1815 }
1816
1817 memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data,
1818 gdbserver_state.mem_buf->len);
1819 put_strbuf();
1820 }
1821
1822 static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1823 {
1824 target_ulong addr, len;
1825 uint8_t *registers;
1826 int reg_size;
1827
1828 if (!gdb_ctx->num_params) {
1829 return;
1830 }
1831
1832 cpu_synchronize_state(gdbserver_state.g_cpu);
1833 len = strlen(gdb_ctx->params[0].data) / 2;
1834 hextomem(gdbserver_state.mem_buf, gdb_ctx->params[0].data, len);
1835 registers = gdbserver_state.mem_buf->data;
1836 for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs && len > 0;
1837 addr++) {
1838 reg_size = gdb_write_register(gdbserver_state.g_cpu, registers, addr);
1839 len -= reg_size;
1840 registers += reg_size;
1841 }
1842 put_packet("OK");
1843 }
1844
1845 static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1846 {
1847 target_ulong addr, len;
1848
1849 cpu_synchronize_state(gdbserver_state.g_cpu);
1850 g_byte_array_set_size(gdbserver_state.mem_buf, 0);
1851 len = 0;
1852 for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs; addr++) {
1853 len += gdb_read_register(gdbserver_state.g_cpu,
1854 gdbserver_state.mem_buf,
1855 addr);
1856 }
1857 g_assert(len == gdbserver_state.mem_buf->len);
1858
1859 memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, len);
1860 put_strbuf();
1861 }
1862
1863 static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx)
1864 {
1865 if (gdb_ctx->num_params >= 1 && gdbserver_state.current_syscall_cb) {
1866 target_ulong ret, err;
1867
1868 ret = (target_ulong)gdb_ctx->params[0].val_ull;
1869 if (gdb_ctx->num_params >= 2) {
1870 err = (target_ulong)gdb_ctx->params[1].val_ull;
1871 } else {
1872 err = 0;
1873 }
1874 gdbserver_state.current_syscall_cb(gdbserver_state.c_cpu, ret, err);
1875 gdbserver_state.current_syscall_cb = NULL;
1876 }
1877
1878 if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') {
1879 put_packet("T02");
1880 return;
1881 }
1882
1883 gdb_continue();
1884 }
1885
1886 static void handle_step(GdbCmdContext *gdb_ctx, void *user_ctx)
1887 {
1888 if (gdb_ctx->num_params) {
1889 gdb_set_cpu_pc((target_ulong)gdb_ctx->params[0].val_ull);
1890 }
1891
1892 cpu_single_step(gdbserver_state.c_cpu, get_sstep_flags());
1893 gdb_continue();
1894 }
1895
1896 static void handle_backward(GdbCmdContext *gdb_ctx, void *user_ctx)
1897 {
1898 if (replay_mode != REPLAY_MODE_PLAY) {
1899 put_packet("E22");
1900 }
1901 if (gdb_ctx->num_params == 1) {
1902 switch (gdb_ctx->params[0].opcode) {
1903 case 's':
1904 if (replay_reverse_step()) {
1905 gdb_continue();
1906 } else {
1907 put_packet("E14");
1908 }
1909 return;
1910 case 'c':
1911 if (replay_reverse_continue()) {
1912 gdb_continue();
1913 } else {
1914 put_packet("E14");
1915 }
1916 return;
1917 }
1918 }
1919
1920 /* Default invalid command */
1921 put_packet("");
1922 }
1923
1924 static void handle_v_cont_query(GdbCmdContext *gdb_ctx, void *user_ctx)
1925 {
1926 put_packet("vCont;c;C;s;S");
1927 }
1928
1929 static void handle_v_cont(GdbCmdContext *gdb_ctx, void *user_ctx)
1930 {
1931 int res;
1932
1933 if (!gdb_ctx->num_params) {
1934 return;
1935 }
1936
1937 res = gdb_handle_vcont(gdb_ctx->params[0].data);
1938 if ((res == -EINVAL) || (res == -ERANGE)) {
1939 put_packet("E22");
1940 } else if (res) {
1941 put_packet("");
1942 }
1943 }
1944
1945 static void handle_v_attach(GdbCmdContext *gdb_ctx, void *user_ctx)
1946 {
1947 GDBProcess *process;
1948 CPUState *cpu;
1949
1950 g_string_assign(gdbserver_state.str_buf, "E22");
1951 if (!gdb_ctx->num_params) {
1952 goto cleanup;
1953 }
1954
1955 process = gdb_get_process(gdb_ctx->params[0].val_ul);
1956 if (!process) {
1957 goto cleanup;
1958 }
1959
1960 cpu = get_first_cpu_in_process(process);
1961 if (!cpu) {
1962 goto cleanup;
1963 }
1964
1965 process->attached = true;
1966 gdbserver_state.g_cpu = cpu;
1967 gdbserver_state.c_cpu = cpu;
1968
1969 g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
1970 gdb_append_thread_id(cpu, gdbserver_state.str_buf);
1971 g_string_append_c(gdbserver_state.str_buf, ';');
1972 cleanup:
1973 put_strbuf();
1974 }
1975
1976 static void handle_v_kill(GdbCmdContext *gdb_ctx, void *user_ctx)
1977 {
1978 /* Kill the target */
1979 put_packet("OK");
1980 error_report("QEMU: Terminated via GDBstub");
1981 exit(0);
1982 }
1983
1984 static GdbCmdParseEntry gdb_v_commands_table[] = {
1985 /* Order is important if has same prefix */
1986 {
1987 .handler = handle_v_cont_query,
1988 .cmd = "Cont?",
1989 .cmd_startswith = 1
1990 },
1991 {
1992 .handler = handle_v_cont,
1993 .cmd = "Cont",
1994 .cmd_startswith = 1,
1995 .schema = "s0"
1996 },
1997 {
1998 .handler = handle_v_attach,
1999 .cmd = "Attach;",
2000 .cmd_startswith = 1,
2001 .schema = "l0"
2002 },
2003 {
2004 .handler = handle_v_kill,
2005 .cmd = "Kill;",
2006 .cmd_startswith = 1
2007 },
2008 };
2009
2010 static void handle_v_commands(GdbCmdContext *gdb_ctx, void *user_ctx)
2011 {
2012 if (!gdb_ctx->num_params) {
2013 return;
2014 }
2015
2016 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
2017 gdb_v_commands_table,
2018 ARRAY_SIZE(gdb_v_commands_table))) {
2019 put_packet("");
2020 }
2021 }
2022
2023 static void handle_query_qemu_sstepbits(GdbCmdContext *gdb_ctx, void *user_ctx)
2024 {
2025 g_string_printf(gdbserver_state.str_buf, "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2026 SSTEP_ENABLE, SSTEP_NOIRQ, SSTEP_NOTIMER);
2027 put_strbuf();
2028 }
2029
2030 static void handle_set_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
2031 {
2032 if (!gdb_ctx->num_params) {
2033 return;
2034 }
2035
2036 sstep_flags = gdb_ctx->params[0].val_ul;
2037 put_packet("OK");
2038 }
2039
2040 static void handle_query_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
2041 {
2042 g_string_printf(gdbserver_state.str_buf, "0x%x", sstep_flags);
2043 put_strbuf();
2044 }
2045
2046 static void handle_query_curr_tid(GdbCmdContext *gdb_ctx, void *user_ctx)
2047 {
2048 CPUState *cpu;
2049 GDBProcess *process;
2050
2051 /*
2052 * "Current thread" remains vague in the spec, so always return
2053 * the first thread of the current process (gdb returns the
2054 * first thread).
2055 */
2056 process = gdb_get_cpu_process(gdbserver_state.g_cpu);
2057 cpu = get_first_cpu_in_process(process);
2058 g_string_assign(gdbserver_state.str_buf, "QC");
2059 gdb_append_thread_id(cpu, gdbserver_state.str_buf);
2060 put_strbuf();
2061 }
2062
2063 static void handle_query_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2064 {
2065 if (!gdbserver_state.query_cpu) {
2066 put_packet("l");
2067 return;
2068 }
2069
2070 g_string_assign(gdbserver_state.str_buf, "m");
2071 gdb_append_thread_id(gdbserver_state.query_cpu, gdbserver_state.str_buf);
2072 put_strbuf();
2073 gdbserver_state.query_cpu = gdb_next_attached_cpu(gdbserver_state.query_cpu);
2074 }
2075
2076 static void handle_query_first_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2077 {
2078 gdbserver_state.query_cpu = gdb_first_attached_cpu();
2079 handle_query_threads(gdb_ctx, user_ctx);
2080 }
2081
2082 static void handle_query_thread_extra(GdbCmdContext *gdb_ctx, void *user_ctx)
2083 {
2084 g_autoptr(GString) rs = g_string_new(NULL);
2085 CPUState *cpu;
2086
2087 if (!gdb_ctx->num_params ||
2088 gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
2089 put_packet("E22");
2090 return;
2091 }
2092
2093 cpu = gdb_get_cpu(gdb_ctx->params[0].thread_id.pid,
2094 gdb_ctx->params[0].thread_id.tid);
2095 if (!cpu) {
2096 return;
2097 }
2098
2099 cpu_synchronize_state(cpu);
2100
2101 if (gdbserver_state.multiprocess && (gdbserver_state.process_num > 1)) {
2102 /* Print the CPU model and name in multiprocess mode */
2103 ObjectClass *oc = object_get_class(OBJECT(cpu));
2104 const char *cpu_model = object_class_get_name(oc);
2105 const char *cpu_name =
2106 object_get_canonical_path_component(OBJECT(cpu));
2107 g_string_printf(rs, "%s %s [%s]", cpu_model, cpu_name,
2108 cpu->halted ? "halted " : "running");
2109 } else {
2110 g_string_printf(rs, "CPU#%d [%s]", cpu->cpu_index,
2111 cpu->halted ? "halted " : "running");
2112 }
2113 trace_gdbstub_op_extra_info(rs->str);
2114 memtohex(gdbserver_state.str_buf, (uint8_t *)rs->str, rs->len);
2115 put_strbuf();
2116 }
2117
2118 #ifdef CONFIG_USER_ONLY
2119 static void handle_query_offsets(GdbCmdContext *gdb_ctx, void *user_ctx)
2120 {
2121 TaskState *ts;
2122
2123 ts = gdbserver_state.c_cpu->opaque;
2124 g_string_printf(gdbserver_state.str_buf,
2125 "Text=" TARGET_ABI_FMT_lx
2126 ";Data=" TARGET_ABI_FMT_lx
2127 ";Bss=" TARGET_ABI_FMT_lx,
2128 ts->info->code_offset,
2129 ts->info->data_offset,
2130 ts->info->data_offset);
2131 put_strbuf();
2132 }
2133 #else
2134 static void handle_query_rcmd(GdbCmdContext *gdb_ctx, void *user_ctx)
2135 {
2136 const guint8 zero = 0;
2137 int len;
2138
2139 if (!gdb_ctx->num_params) {
2140 put_packet("E22");
2141 return;
2142 }
2143
2144 len = strlen(gdb_ctx->params[0].data);
2145 if (len % 2) {
2146 put_packet("E01");
2147 return;
2148 }
2149
2150 g_assert(gdbserver_state.mem_buf->len == 0);
2151 len = len / 2;
2152 hextomem(gdbserver_state.mem_buf, gdb_ctx->params[0].data, len);
2153 g_byte_array_append(gdbserver_state.mem_buf, &zero, 1);
2154 qemu_chr_be_write(gdbserver_state.mon_chr, gdbserver_state.mem_buf->data,
2155 gdbserver_state.mem_buf->len);
2156 put_packet("OK");
2157 }
2158 #endif
2159
2160 static void handle_query_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2161 {
2162 CPUClass *cc;
2163
2164 g_string_printf(gdbserver_state.str_buf, "PacketSize=%x", MAX_PACKET_LENGTH);
2165 cc = CPU_GET_CLASS(first_cpu);
2166 if (cc->gdb_core_xml_file) {
2167 g_string_append(gdbserver_state.str_buf, ";qXfer:features:read+");
2168 }
2169
2170 if (replay_mode == REPLAY_MODE_PLAY) {
2171 g_string_append(gdbserver_state.str_buf,
2172 ";ReverseStep+;ReverseContinue+");
2173 }
2174
2175 #ifdef CONFIG_USER_ONLY
2176 if (gdbserver_state.c_cpu->opaque) {
2177 g_string_append(gdbserver_state.str_buf, ";qXfer:auxv:read+");
2178 }
2179 #endif
2180
2181 if (gdb_ctx->num_params &&
2182 strstr(gdb_ctx->params[0].data, "multiprocess+")) {
2183 gdbserver_state.multiprocess = true;
2184 }
2185
2186 g_string_append(gdbserver_state.str_buf, ";vContSupported+;multiprocess+");
2187 put_strbuf();
2188 }
2189
2190 static void handle_query_xfer_features(GdbCmdContext *gdb_ctx, void *user_ctx)
2191 {
2192 GDBProcess *process;
2193 CPUClass *cc;
2194 unsigned long len, total_len, addr;
2195 const char *xml;
2196 const char *p;
2197
2198 if (gdb_ctx->num_params < 3) {
2199 put_packet("E22");
2200 return;
2201 }
2202
2203 process = gdb_get_cpu_process(gdbserver_state.g_cpu);
2204 cc = CPU_GET_CLASS(gdbserver_state.g_cpu);
2205 if (!cc->gdb_core_xml_file) {
2206 put_packet("");
2207 return;
2208 }
2209
2210 gdb_has_xml = true;
2211 p = gdb_ctx->params[0].data;
2212 xml = get_feature_xml(p, &p, process);
2213 if (!xml) {
2214 put_packet("E00");
2215 return;
2216 }
2217
2218 addr = gdb_ctx->params[1].val_ul;
2219 len = gdb_ctx->params[2].val_ul;
2220 total_len = strlen(xml);
2221 if (addr > total_len) {
2222 put_packet("E00");
2223 return;
2224 }
2225
2226 if (len > (MAX_PACKET_LENGTH - 5) / 2) {
2227 len = (MAX_PACKET_LENGTH - 5) / 2;
2228 }
2229
2230 if (len < total_len - addr) {
2231 g_string_assign(gdbserver_state.str_buf, "m");
2232 memtox(gdbserver_state.str_buf, xml + addr, len);
2233 } else {
2234 g_string_assign(gdbserver_state.str_buf, "l");
2235 memtox(gdbserver_state.str_buf, xml + addr, total_len - addr);
2236 }
2237
2238 put_packet_binary(gdbserver_state.str_buf->str,
2239 gdbserver_state.str_buf->len, true);
2240 }
2241
2242 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX_USER)
2243 static void handle_query_xfer_auxv(GdbCmdContext *gdb_ctx, void *user_ctx)
2244 {
2245 TaskState *ts;
2246 unsigned long offset, len, saved_auxv, auxv_len;
2247 const char *mem;
2248
2249 if (gdb_ctx->num_params < 2) {
2250 put_packet("E22");
2251 return;
2252 }
2253
2254 offset = gdb_ctx->params[0].val_ul;
2255 len = gdb_ctx->params[1].val_ul;
2256 ts = gdbserver_state.c_cpu->opaque;
2257 saved_auxv = ts->info->saved_auxv;
2258 auxv_len = ts->info->auxv_len;
2259 mem = (const char *)(saved_auxv + offset);
2260 if (offset > auxv_len) {
2261 put_packet("E00");
2262 return;
2263 }
2264
2265 if (len > (MAX_PACKET_LENGTH - 5) / 2) {
2266 len = (MAX_PACKET_LENGTH - 5) / 2;
2267 }
2268
2269 if (len < auxv_len - offset) {
2270 g_string_assign(gdbserver_state.str_buf, "m");
2271 memtox(gdbserver_state.str_buf, mem, len);
2272 } else {
2273 g_string_assign(gdbserver_state.str_buf, "l");
2274 memtox(gdbserver_state.str_buf, mem, auxv_len - offset);
2275 }
2276
2277 put_packet_binary(gdbserver_state.str_buf->str,
2278 gdbserver_state.str_buf->len, true);
2279 }
2280 #endif
2281
2282 static void handle_query_attached(GdbCmdContext *gdb_ctx, void *user_ctx)
2283 {
2284 put_packet(GDB_ATTACHED);
2285 }
2286
2287 static void handle_query_qemu_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2288 {
2289 g_string_printf(gdbserver_state.str_buf, "sstepbits;sstep");
2290 #ifndef CONFIG_USER_ONLY
2291 g_string_append(gdbserver_state.str_buf, ";PhyMemMode");
2292 #endif
2293 put_strbuf();
2294 }
2295
2296 #ifndef CONFIG_USER_ONLY
2297 static void handle_query_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx,
2298 void *user_ctx)
2299 {
2300 g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode);
2301 put_strbuf();
2302 }
2303
2304 static void handle_set_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx, void *user_ctx)
2305 {
2306 if (!gdb_ctx->num_params) {
2307 put_packet("E22");
2308 return;
2309 }
2310
2311 if (!gdb_ctx->params[0].val_ul) {
2312 phy_memory_mode = 0;
2313 } else {
2314 phy_memory_mode = 1;
2315 }
2316 put_packet("OK");
2317 }
2318 #endif
2319
2320 static GdbCmdParseEntry gdb_gen_query_set_common_table[] = {
2321 /* Order is important if has same prefix */
2322 {
2323 .handler = handle_query_qemu_sstepbits,
2324 .cmd = "qemu.sstepbits",
2325 },
2326 {
2327 .handler = handle_query_qemu_sstep,
2328 .cmd = "qemu.sstep",
2329 },
2330 {
2331 .handler = handle_set_qemu_sstep,
2332 .cmd = "qemu.sstep=",
2333 .cmd_startswith = 1,
2334 .schema = "l0"
2335 },
2336 };
2337
2338 static GdbCmdParseEntry gdb_gen_query_table[] = {
2339 {
2340 .handler = handle_query_curr_tid,
2341 .cmd = "C",
2342 },
2343 {
2344 .handler = handle_query_threads,
2345 .cmd = "sThreadInfo",
2346 },
2347 {
2348 .handler = handle_query_first_threads,
2349 .cmd = "fThreadInfo",
2350 },
2351 {
2352 .handler = handle_query_thread_extra,
2353 .cmd = "ThreadExtraInfo,",
2354 .cmd_startswith = 1,
2355 .schema = "t0"
2356 },
2357 #ifdef CONFIG_USER_ONLY
2358 {
2359 .handler = handle_query_offsets,
2360 .cmd = "Offsets",
2361 },
2362 #else
2363 {
2364 .handler = handle_query_rcmd,
2365 .cmd = "Rcmd,",
2366 .cmd_startswith = 1,
2367 .schema = "s0"
2368 },
2369 #endif
2370 {
2371 .handler = handle_query_supported,
2372 .cmd = "Supported:",
2373 .cmd_startswith = 1,
2374 .schema = "s0"
2375 },
2376 {
2377 .handler = handle_query_supported,
2378 .cmd = "Supported",
2379 .schema = "s0"
2380 },
2381 {
2382 .handler = handle_query_xfer_features,
2383 .cmd = "Xfer:features:read:",
2384 .cmd_startswith = 1,
2385 .schema = "s:l,l0"
2386 },
2387 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX_USER)
2388 {
2389 .handler = handle_query_xfer_auxv,
2390 .cmd = "Xfer:auxv:read::",
2391 .cmd_startswith = 1,
2392 .schema = "l,l0"
2393 },
2394 #endif
2395 {
2396 .handler = handle_query_attached,
2397 .cmd = "Attached:",
2398 .cmd_startswith = 1
2399 },
2400 {
2401 .handler = handle_query_attached,
2402 .cmd = "Attached",
2403 },
2404 {
2405 .handler = handle_query_qemu_supported,
2406 .cmd = "qemu.Supported",
2407 },
2408 #ifndef CONFIG_USER_ONLY
2409 {
2410 .handler = handle_query_qemu_phy_mem_mode,
2411 .cmd = "qemu.PhyMemMode",
2412 },
2413 #endif
2414 };
2415
2416 static GdbCmdParseEntry gdb_gen_set_table[] = {
2417 /* Order is important if has same prefix */
2418 {
2419 .handler = handle_set_qemu_sstep,
2420 .cmd = "qemu.sstep:",
2421 .cmd_startswith = 1,
2422 .schema = "l0"
2423 },
2424 #ifndef CONFIG_USER_ONLY
2425 {
2426 .handler = handle_set_qemu_phy_mem_mode,
2427 .cmd = "qemu.PhyMemMode:",
2428 .cmd_startswith = 1,
2429 .schema = "l0"
2430 },
2431 #endif
2432 };
2433
2434 static void handle_gen_query(GdbCmdContext *gdb_ctx, void *user_ctx)
2435 {
2436 if (!gdb_ctx->num_params) {
2437 return;
2438 }
2439
2440 if (!process_string_cmd(NULL, gdb_ctx->params[0].data,
2441 gdb_gen_query_set_common_table,
2442 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2443 return;
2444 }
2445
2446 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
2447 gdb_gen_query_table,
2448 ARRAY_SIZE(gdb_gen_query_table))) {
2449 put_packet("");
2450 }
2451 }
2452
2453 static void handle_gen_set(GdbCmdContext *gdb_ctx, void *user_ctx)
2454 {
2455 if (!gdb_ctx->num_params) {
2456 return;
2457 }
2458
2459 if (!process_string_cmd(NULL, gdb_ctx->params[0].data,
2460 gdb_gen_query_set_common_table,
2461 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2462 return;
2463 }
2464
2465 if (process_string_cmd(NULL, gdb_ctx->params[0].data,
2466 gdb_gen_set_table,
2467 ARRAY_SIZE(gdb_gen_set_table))) {
2468 put_packet("");
2469 }
2470 }
2471
2472 static void handle_target_halt(GdbCmdContext *gdb_ctx, void *user_ctx)
2473 {
2474 g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
2475 gdb_append_thread_id(gdbserver_state.c_cpu, gdbserver_state.str_buf);
2476 g_string_append_c(gdbserver_state.str_buf, ';');
2477 put_strbuf();
2478 /*
2479 * Remove all the breakpoints when this query is issued,
2480 * because gdb is doing an initial connect and the state
2481 * should be cleaned up.
2482 */
2483 gdb_breakpoint_remove_all();
2484 }
2485
2486 static int gdb_handle_packet(const char *line_buf)
2487 {
2488 const GdbCmdParseEntry *cmd_parser = NULL;
2489
2490 trace_gdbstub_io_command(line_buf);
2491
2492 switch (line_buf[0]) {
2493 case '!':
2494 put_packet("OK");
2495 break;
2496 case '?':
2497 {
2498 static const GdbCmdParseEntry target_halted_cmd_desc = {
2499 .handler = handle_target_halt,
2500 .cmd = "?",
2501 .cmd_startswith = 1
2502 };
2503 cmd_parser = &target_halted_cmd_desc;
2504 }
2505 break;
2506 case 'c':
2507 {
2508 static const GdbCmdParseEntry continue_cmd_desc = {
2509 .handler = handle_continue,
2510 .cmd = "c",
2511 .cmd_startswith = 1,
2512 .schema = "L0"
2513 };
2514 cmd_parser = &continue_cmd_desc;
2515 }
2516 break;
2517 case 'C':
2518 {
2519 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
2520 .handler = handle_cont_with_sig,
2521 .cmd = "C",
2522 .cmd_startswith = 1,
2523 .schema = "l0"
2524 };
2525 cmd_parser = &cont_with_sig_cmd_desc;
2526 }
2527 break;
2528 case 'v':
2529 {
2530 static const GdbCmdParseEntry v_cmd_desc = {
2531 .handler = handle_v_commands,
2532 .cmd = "v",
2533 .cmd_startswith = 1,
2534 .schema = "s0"
2535 };
2536 cmd_parser = &v_cmd_desc;
2537 }
2538 break;
2539 case 'k':
2540 /* Kill the target */
2541 error_report("QEMU: Terminated via GDBstub");
2542 exit(0);
2543 case 'D':
2544 {
2545 static const GdbCmdParseEntry detach_cmd_desc = {
2546 .handler = handle_detach,
2547 .cmd = "D",
2548 .cmd_startswith = 1,
2549 .schema = "?.l0"
2550 };
2551 cmd_parser = &detach_cmd_desc;
2552 }
2553 break;
2554 case 's':
2555 {
2556 static const GdbCmdParseEntry step_cmd_desc = {
2557 .handler = handle_step,
2558 .cmd = "s",
2559 .cmd_startswith = 1,
2560 .schema = "L0"
2561 };
2562 cmd_parser = &step_cmd_desc;
2563 }
2564 break;
2565 case 'b':
2566 {
2567 static const GdbCmdParseEntry backward_cmd_desc = {
2568 .handler = handle_backward,
2569 .cmd = "b",
2570 .cmd_startswith = 1,
2571 .schema = "o0"
2572 };
2573 cmd_parser = &backward_cmd_desc;
2574 }
2575 break;
2576 case 'F':
2577 {
2578 static const GdbCmdParseEntry file_io_cmd_desc = {
2579 .handler = handle_file_io,
2580 .cmd = "F",
2581 .cmd_startswith = 1,
2582 .schema = "L,L,o0"
2583 };
2584 cmd_parser = &file_io_cmd_desc;
2585 }
2586 break;
2587 case 'g':
2588 {
2589 static const GdbCmdParseEntry read_all_regs_cmd_desc = {
2590 .handler = handle_read_all_regs,
2591 .cmd = "g",
2592 .cmd_startswith = 1
2593 };
2594 cmd_parser = &read_all_regs_cmd_desc;
2595 }
2596 break;
2597 case 'G':
2598 {
2599 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
2600 .handler = handle_write_all_regs,
2601 .cmd = "G",
2602 .cmd_startswith = 1,
2603 .schema = "s0"
2604 };
2605 cmd_parser = &write_all_regs_cmd_desc;
2606 }
2607 break;
2608 case 'm':
2609 {
2610 static const GdbCmdParseEntry read_mem_cmd_desc = {
2611 .handler = handle_read_mem,
2612 .cmd = "m",
2613 .cmd_startswith = 1,
2614 .schema = "L,L0"
2615 };
2616 cmd_parser = &read_mem_cmd_desc;
2617 }
2618 break;
2619 case 'M':
2620 {
2621 static const GdbCmdParseEntry write_mem_cmd_desc = {
2622 .handler = handle_write_mem,
2623 .cmd = "M",
2624 .cmd_startswith = 1,
2625 .schema = "L,L:s0"
2626 };
2627 cmd_parser = &write_mem_cmd_desc;
2628 }
2629 break;
2630 case 'p':
2631 {
2632 static const GdbCmdParseEntry get_reg_cmd_desc = {
2633 .handler = handle_get_reg,
2634 .cmd = "p",
2635 .cmd_startswith = 1,
2636 .schema = "L0"
2637 };
2638 cmd_parser = &get_reg_cmd_desc;
2639 }
2640 break;
2641 case 'P':
2642 {
2643 static const GdbCmdParseEntry set_reg_cmd_desc = {
2644 .handler = handle_set_reg,
2645 .cmd = "P",
2646 .cmd_startswith = 1,
2647 .schema = "L?s0"
2648 };
2649 cmd_parser = &set_reg_cmd_desc;
2650 }
2651 break;
2652 case 'Z':
2653 {
2654 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2655 .handler = handle_insert_bp,
2656 .cmd = "Z",
2657 .cmd_startswith = 1,
2658 .schema = "l?L?L0"
2659 };
2660 cmd_parser = &insert_bp_cmd_desc;
2661 }
2662 break;
2663 case 'z':
2664 {
2665 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2666 .handler = handle_remove_bp,
2667 .cmd = "z",
2668 .cmd_startswith = 1,
2669 .schema = "l?L?L0"
2670 };
2671 cmd_parser = &remove_bp_cmd_desc;
2672 }
2673 break;
2674 case 'H':
2675 {
2676 static const GdbCmdParseEntry set_thread_cmd_desc = {
2677 .handler = handle_set_thread,
2678 .cmd = "H",
2679 .cmd_startswith = 1,
2680 .schema = "o.t0"
2681 };
2682 cmd_parser = &set_thread_cmd_desc;
2683 }
2684 break;
2685 case 'T':
2686 {
2687 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2688 .handler = handle_thread_alive,
2689 .cmd = "T",
2690 .cmd_startswith = 1,
2691 .schema = "t0"
2692 };
2693 cmd_parser = &thread_alive_cmd_desc;
2694 }
2695 break;
2696 case 'q':
2697 {
2698 static const GdbCmdParseEntry gen_query_cmd_desc = {
2699 .handler = handle_gen_query,
2700 .cmd = "q",
2701 .cmd_startswith = 1,
2702 .schema = "s0"
2703 };
2704 cmd_parser = &gen_query_cmd_desc;
2705 }
2706 break;
2707 case 'Q':
2708 {
2709 static const GdbCmdParseEntry gen_set_cmd_desc = {
2710 .handler = handle_gen_set,
2711 .cmd = "Q",
2712 .cmd_startswith = 1,
2713 .schema = "s0"
2714 };
2715 cmd_parser = &gen_set_cmd_desc;
2716 }
2717 break;
2718 default:
2719 /* put empty packet */
2720 put_packet("");
2721 break;
2722 }
2723
2724 if (cmd_parser) {
2725 run_cmd_parser(line_buf, cmd_parser);
2726 }
2727
2728 return RS_IDLE;
2729 }
2730
2731 void gdb_set_stop_cpu(CPUState *cpu)
2732 {
2733 GDBProcess *p = gdb_get_cpu_process(cpu);
2734
2735 if (!p->attached) {
2736 /*
2737 * Having a stop CPU corresponding to a process that is not attached
2738 * confuses GDB. So we ignore the request.
2739 */
2740 return;
2741 }
2742
2743 gdbserver_state.c_cpu = cpu;
2744 gdbserver_state.g_cpu = cpu;
2745 }
2746
2747 #ifndef CONFIG_USER_ONLY
2748 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2749 {
2750 CPUState *cpu = gdbserver_state.c_cpu;
2751 g_autoptr(GString) buf = g_string_new(NULL);
2752 g_autoptr(GString) tid = g_string_new(NULL);
2753 const char *type;
2754 int ret;
2755
2756 if (running || gdbserver_state.state == RS_INACTIVE) {
2757 return;
2758 }
2759 /* Is there a GDB syscall waiting to be sent? */
2760 if (gdbserver_state.current_syscall_cb) {
2761 put_packet(gdbserver_state.syscall_buf);
2762 return;
2763 }
2764
2765 if (cpu == NULL) {
2766 /* No process attached */
2767 return;
2768 }
2769
2770 gdb_append_thread_id(cpu, tid);
2771
2772 switch (state) {
2773 case RUN_STATE_DEBUG:
2774 if (cpu->watchpoint_hit) {
2775 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2776 case BP_MEM_READ:
2777 type = "r";
2778 break;
2779 case BP_MEM_ACCESS:
2780 type = "a";
2781 break;
2782 default:
2783 type = "";
2784 break;
2785 }
2786 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2787 (target_ulong)cpu->watchpoint_hit->vaddr);
2788 g_string_printf(buf, "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2789 GDB_SIGNAL_TRAP, tid->str, type,
2790 (target_ulong)cpu->watchpoint_hit->vaddr);
2791 cpu->watchpoint_hit = NULL;
2792 goto send_packet;
2793 } else {
2794 trace_gdbstub_hit_break();
2795 }
2796 tb_flush(cpu);
2797 ret = GDB_SIGNAL_TRAP;
2798 break;
2799 case RUN_STATE_PAUSED:
2800 trace_gdbstub_hit_paused();
2801 ret = GDB_SIGNAL_INT;
2802 break;
2803 case RUN_STATE_SHUTDOWN:
2804 trace_gdbstub_hit_shutdown();
2805 ret = GDB_SIGNAL_QUIT;
2806 break;
2807 case RUN_STATE_IO_ERROR:
2808 trace_gdbstub_hit_io_error();
2809 ret = GDB_SIGNAL_IO;
2810 break;
2811 case RUN_STATE_WATCHDOG:
2812 trace_gdbstub_hit_watchdog();
2813 ret = GDB_SIGNAL_ALRM;
2814 break;
2815 case RUN_STATE_INTERNAL_ERROR:
2816 trace_gdbstub_hit_internal_error();
2817 ret = GDB_SIGNAL_ABRT;
2818 break;
2819 case RUN_STATE_SAVE_VM:
2820 case RUN_STATE_RESTORE_VM:
2821 return;
2822 case RUN_STATE_FINISH_MIGRATE:
2823 ret = GDB_SIGNAL_XCPU;
2824 break;
2825 default:
2826 trace_gdbstub_hit_unknown(state);
2827 ret = GDB_SIGNAL_UNKNOWN;
2828 break;
2829 }
2830 gdb_set_stop_cpu(cpu);
2831 g_string_printf(buf, "T%02xthread:%s;", ret, tid->str);
2832
2833 send_packet:
2834 put_packet(buf->str);
2835
2836 /* disable single step if it was enabled */
2837 cpu_single_step(cpu, 0);
2838 }
2839 #endif
2840
2841 /* Send a gdb syscall request.
2842 This accepts limited printf-style format specifiers, specifically:
2843 %x - target_ulong argument printed in hex.
2844 %lx - 64-bit argument printed in hex.
2845 %s - string pointer (target_ulong) and length (int) pair. */
2846 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2847 {
2848 char *p;
2849 char *p_end;
2850 target_ulong addr;
2851 uint64_t i64;
2852
2853 if (!gdbserver_state.init) {
2854 return;
2855 }
2856
2857 gdbserver_state.current_syscall_cb = cb;
2858 #ifndef CONFIG_USER_ONLY
2859 vm_stop(RUN_STATE_DEBUG);
2860 #endif
2861 p = &gdbserver_state.syscall_buf[0];
2862 p_end = &gdbserver_state.syscall_buf[sizeof(gdbserver_state.syscall_buf)];
2863 *(p++) = 'F';
2864 while (*fmt) {
2865 if (*fmt == '%') {
2866 fmt++;
2867 switch (*fmt++) {
2868 case 'x':
2869 addr = va_arg(va, target_ulong);
2870 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2871 break;
2872 case 'l':
2873 if (*(fmt++) != 'x')
2874 goto bad_format;
2875 i64 = va_arg(va, uint64_t);
2876 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2877 break;
2878 case 's':
2879 addr = va_arg(va, target_ulong);
2880 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2881 addr, va_arg(va, int));
2882 break;
2883 default:
2884 bad_format:
2885 error_report("gdbstub: Bad syscall format string '%s'",
2886 fmt - 1);
2887 break;
2888 }
2889 } else {
2890 *(p++) = *(fmt++);
2891 }
2892 }
2893 *p = 0;
2894 #ifdef CONFIG_USER_ONLY
2895 put_packet(gdbserver_state.syscall_buf);
2896 /* Return control to gdb for it to process the syscall request.
2897 * Since the protocol requires that gdb hands control back to us
2898 * using a "here are the results" F packet, we don't need to check
2899 * gdb_handlesig's return value (which is the signal to deliver if
2900 * execution was resumed via a continue packet).
2901 */
2902 gdb_handlesig(gdbserver_state.c_cpu, 0);
2903 #else
2904 /* In this case wait to send the syscall packet until notification that
2905 the CPU has stopped. This must be done because if the packet is sent
2906 now the reply from the syscall request could be received while the CPU
2907 is still in the running state, which can cause packets to be dropped
2908 and state transition 'T' packets to be sent while the syscall is still
2909 being processed. */
2910 qemu_cpu_kick(gdbserver_state.c_cpu);
2911 #endif
2912 }
2913
2914 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2915 {
2916 va_list va;
2917
2918 va_start(va, fmt);
2919 gdb_do_syscallv(cb, fmt, va);
2920 va_end(va);
2921 }
2922
2923 static void gdb_read_byte(uint8_t ch)
2924 {
2925 uint8_t reply;
2926
2927 #ifndef CONFIG_USER_ONLY
2928 if (gdbserver_state.last_packet->len) {
2929 /* Waiting for a response to the last packet. If we see the start
2930 of a new command then abandon the previous response. */
2931 if (ch == '-') {
2932 trace_gdbstub_err_got_nack();
2933 put_buffer(gdbserver_state.last_packet->data,
2934 gdbserver_state.last_packet->len);
2935 } else if (ch == '+') {
2936 trace_gdbstub_io_got_ack();
2937 } else {
2938 trace_gdbstub_io_got_unexpected(ch);
2939 }
2940
2941 if (ch == '+' || ch == '$') {
2942 g_byte_array_set_size(gdbserver_state.last_packet, 0);
2943 }
2944 if (ch != '$')
2945 return;
2946 }
2947 if (runstate_is_running()) {
2948 /* when the CPU is running, we cannot do anything except stop
2949 it when receiving a char */
2950 vm_stop(RUN_STATE_PAUSED);
2951 } else
2952 #endif
2953 {
2954 switch(gdbserver_state.state) {
2955 case RS_IDLE:
2956 if (ch == '$') {
2957 /* start of command packet */
2958 gdbserver_state.line_buf_index = 0;
2959 gdbserver_state.line_sum = 0;
2960 gdbserver_state.state = RS_GETLINE;
2961 } else {
2962 trace_gdbstub_err_garbage(ch);
2963 }
2964 break;
2965 case RS_GETLINE:
2966 if (ch == '}') {
2967 /* start escape sequence */
2968 gdbserver_state.state = RS_GETLINE_ESC;
2969 gdbserver_state.line_sum += ch;
2970 } else if (ch == '*') {
2971 /* start run length encoding sequence */
2972 gdbserver_state.state = RS_GETLINE_RLE;
2973 gdbserver_state.line_sum += ch;
2974 } else if (ch == '#') {
2975 /* end of command, start of checksum*/
2976 gdbserver_state.state = RS_CHKSUM1;
2977 } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
2978 trace_gdbstub_err_overrun();
2979 gdbserver_state.state = RS_IDLE;
2980 } else {
2981 /* unescaped command character */
2982 gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch;
2983 gdbserver_state.line_sum += ch;
2984 }
2985 break;
2986 case RS_GETLINE_ESC:
2987 if (ch == '#') {
2988 /* unexpected end of command in escape sequence */
2989 gdbserver_state.state = RS_CHKSUM1;
2990 } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
2991 /* command buffer overrun */
2992 trace_gdbstub_err_overrun();
2993 gdbserver_state.state = RS_IDLE;
2994 } else {
2995 /* parse escaped character and leave escape state */
2996 gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch ^ 0x20;
2997 gdbserver_state.line_sum += ch;
2998 gdbserver_state.state = RS_GETLINE;
2999 }
3000 break;
3001 case RS_GETLINE_RLE:
3002 /*
3003 * Run-length encoding is explained in "Debugging with GDB /
3004 * Appendix E GDB Remote Serial Protocol / Overview".
3005 */
3006 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
3007 /* invalid RLE count encoding */
3008 trace_gdbstub_err_invalid_repeat(ch);
3009 gdbserver_state.state = RS_GETLINE;
3010 } else {
3011 /* decode repeat length */
3012 int repeat = ch - ' ' + 3;
3013 if (gdbserver_state.line_buf_index + repeat >= sizeof(gdbserver_state.line_buf) - 1) {
3014 /* that many repeats would overrun the command buffer */
3015 trace_gdbstub_err_overrun();
3016 gdbserver_state.state = RS_IDLE;
3017 } else if (gdbserver_state.line_buf_index < 1) {
3018 /* got a repeat but we have nothing to repeat */
3019 trace_gdbstub_err_invalid_rle();
3020 gdbserver_state.state = RS_GETLINE;
3021 } else {
3022 /* repeat the last character */
3023 memset(gdbserver_state.line_buf + gdbserver_state.line_buf_index,
3024 gdbserver_state.line_buf[gdbserver_state.line_buf_index - 1], repeat);
3025 gdbserver_state.line_buf_index += repeat;
3026 gdbserver_state.line_sum += ch;
3027 gdbserver_state.state = RS_GETLINE;
3028 }
3029 }
3030 break;
3031 case RS_CHKSUM1:
3032 /* get high hex digit of checksum */
3033 if (!isxdigit(ch)) {
3034 trace_gdbstub_err_checksum_invalid(ch);
3035 gdbserver_state.state = RS_GETLINE;
3036 break;
3037 }
3038 gdbserver_state.line_buf[gdbserver_state.line_buf_index] = '\0';
3039 gdbserver_state.line_csum = fromhex(ch) << 4;
3040 gdbserver_state.state = RS_CHKSUM2;
3041 break;
3042 case RS_CHKSUM2:
3043 /* get low hex digit of checksum */
3044 if (!isxdigit(ch)) {
3045 trace_gdbstub_err_checksum_invalid(ch);
3046 gdbserver_state.state = RS_GETLINE;
3047 break;
3048 }
3049 gdbserver_state.line_csum |= fromhex(ch);
3050
3051 if (gdbserver_state.line_csum != (gdbserver_state.line_sum & 0xff)) {
3052 trace_gdbstub_err_checksum_incorrect(gdbserver_state.line_sum, gdbserver_state.line_csum);
3053 /* send NAK reply */
3054 reply = '-';
3055 put_buffer(&reply, 1);
3056 gdbserver_state.state = RS_IDLE;
3057 } else {
3058 /* send ACK reply */
3059 reply = '+';
3060 put_buffer(&reply, 1);
3061 gdbserver_state.state = gdb_handle_packet(gdbserver_state.line_buf);
3062 }
3063 break;
3064 default:
3065 abort();
3066 }
3067 }
3068 }
3069
3070 /* Tell the remote gdb that the process has exited. */
3071 void gdb_exit(CPUArchState *env, int code)
3072 {
3073 char buf[4];
3074
3075 if (!gdbserver_state.init) {
3076 return;
3077 }
3078 #ifdef CONFIG_USER_ONLY
3079 if (gdbserver_state.socket_path) {
3080 unlink(gdbserver_state.socket_path);
3081 }
3082 if (gdbserver_state.fd < 0) {
3083 return;
3084 }
3085 #endif
3086
3087 trace_gdbstub_op_exiting((uint8_t)code);
3088
3089 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
3090 put_packet(buf);
3091
3092 #ifndef CONFIG_USER_ONLY
3093 qemu_chr_fe_deinit(&gdbserver_state.chr, true);
3094 #endif
3095 }
3096
3097 /*
3098 * Create the process that will contain all the "orphan" CPUs (that are not
3099 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
3100 * be attachable and thus will be invisible to the user.
3101 */
3102 static void create_default_process(GDBState *s)
3103 {
3104 GDBProcess *process;
3105 int max_pid = 0;
3106
3107 if (gdbserver_state.process_num) {
3108 max_pid = s->processes[s->process_num - 1].pid;
3109 }
3110
3111 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3112 process = &s->processes[s->process_num - 1];
3113
3114 /* We need an available PID slot for this process */
3115 assert(max_pid < UINT32_MAX);
3116
3117 process->pid = max_pid + 1;
3118 process->attached = false;
3119 process->target_xml[0] = '\0';
3120 }
3121
3122 #ifdef CONFIG_USER_ONLY
3123 int
3124 gdb_handlesig(CPUState *cpu, int sig)
3125 {
3126 char buf[256];
3127 int n;
3128
3129 if (!gdbserver_state.init || gdbserver_state.fd < 0) {
3130 return sig;
3131 }
3132
3133 /* disable single step if it was enabled */
3134 cpu_single_step(cpu, 0);
3135 tb_flush(cpu);
3136
3137 if (sig != 0) {
3138 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
3139 put_packet(buf);
3140 }
3141 /* put_packet() might have detected that the peer terminated the
3142 connection. */
3143 if (gdbserver_state.fd < 0) {
3144 return sig;
3145 }
3146
3147 sig = 0;
3148 gdbserver_state.state = RS_IDLE;
3149 gdbserver_state.running_state = 0;
3150 while (gdbserver_state.running_state == 0) {
3151 n = read(gdbserver_state.fd, buf, 256);
3152 if (n > 0) {
3153 int i;
3154
3155 for (i = 0; i < n; i++) {
3156 gdb_read_byte(buf[i]);
3157 }
3158 } else {
3159 /* XXX: Connection closed. Should probably wait for another
3160 connection before continuing. */
3161 if (n == 0) {
3162 close(gdbserver_state.fd);
3163 }
3164 gdbserver_state.fd = -1;
3165 return sig;
3166 }
3167 }
3168 sig = gdbserver_state.signal;
3169 gdbserver_state.signal = 0;
3170 return sig;
3171 }
3172
3173 /* Tell the remote gdb that the process has exited due to SIG. */
3174 void gdb_signalled(CPUArchState *env, int sig)
3175 {
3176 char buf[4];
3177
3178 if (!gdbserver_state.init || gdbserver_state.fd < 0) {
3179 return;
3180 }
3181
3182 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
3183 put_packet(buf);
3184 }
3185
3186 static void gdb_accept_init(int fd)
3187 {
3188 init_gdbserver_state();
3189 create_default_process(&gdbserver_state);
3190 gdbserver_state.processes[0].attached = true;
3191 gdbserver_state.c_cpu = gdb_first_attached_cpu();
3192 gdbserver_state.g_cpu = gdbserver_state.c_cpu;
3193 gdbserver_state.fd = fd;
3194 gdb_has_xml = false;
3195 }
3196
3197 static bool gdb_accept_socket(int gdb_fd)
3198 {
3199 int fd;
3200
3201 for(;;) {
3202 fd = accept(gdb_fd, NULL, NULL);
3203 if (fd < 0 && errno != EINTR) {
3204 perror("accept socket");
3205 return false;
3206 } else if (fd >= 0) {
3207 qemu_set_cloexec(fd);
3208 break;
3209 }
3210 }
3211
3212 gdb_accept_init(fd);
3213 return true;
3214 }
3215
3216 static int gdbserver_open_socket(const char *path)
3217 {
3218 struct sockaddr_un sockaddr;
3219 int fd, ret;
3220
3221 fd = socket(AF_UNIX, SOCK_STREAM, 0);
3222 if (fd < 0) {
3223 perror("create socket");
3224 return -1;
3225 }
3226
3227 sockaddr.sun_family = AF_UNIX;
3228 pstrcpy(sockaddr.sun_path, sizeof(sockaddr.sun_path) - 1, path);
3229 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3230 if (ret < 0) {
3231 perror("bind socket");
3232 close(fd);
3233 return -1;
3234 }
3235 ret = listen(fd, 1);
3236 if (ret < 0) {
3237 perror("listen socket");
3238 close(fd);
3239 return -1;
3240 }
3241
3242 return fd;
3243 }
3244
3245 static bool gdb_accept_tcp(int gdb_fd)
3246 {
3247 struct sockaddr_in sockaddr;
3248 socklen_t len;
3249 int fd;
3250
3251 for(;;) {
3252 len = sizeof(sockaddr);
3253 fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
3254 if (fd < 0 && errno != EINTR) {
3255 perror("accept");
3256 return false;
3257 } else if (fd >= 0) {
3258 qemu_set_cloexec(fd);
3259 break;
3260 }
3261 }
3262
3263 /* set short latency */
3264 if (socket_set_nodelay(fd)) {
3265 perror("setsockopt");
3266 close(fd);
3267 return false;
3268 }
3269
3270 gdb_accept_init(fd);
3271 return true;
3272 }
3273
3274 static int gdbserver_open_port(int port)
3275 {
3276 struct sockaddr_in sockaddr;
3277 int fd, ret;
3278
3279 fd = socket(PF_INET, SOCK_STREAM, 0);
3280 if (fd < 0) {
3281 perror("socket");
3282 return -1;
3283 }
3284 qemu_set_cloexec(fd);
3285
3286 socket_set_fast_reuse(fd);
3287
3288 sockaddr.sin_family = AF_INET;
3289 sockaddr.sin_port = htons(port);
3290 sockaddr.sin_addr.s_addr = 0;
3291 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3292 if (ret < 0) {
3293 perror("bind");
3294 close(fd);
3295 return -1;
3296 }
3297 ret = listen(fd, 1);
3298 if (ret < 0) {
3299 perror("listen");
3300 close(fd);
3301 return -1;
3302 }
3303
3304 return fd;
3305 }
3306
3307 int gdbserver_start(const char *port_or_path)
3308 {
3309 int port = g_ascii_strtoull(port_or_path, NULL, 10);
3310 int gdb_fd;
3311
3312 if (port > 0) {
3313 gdb_fd = gdbserver_open_port(port);
3314 } else {
3315 gdb_fd = gdbserver_open_socket(port_or_path);
3316 }
3317
3318 if (gdb_fd < 0) {
3319 return -1;
3320 }
3321
3322 if (port > 0 && gdb_accept_tcp(gdb_fd)) {
3323 return 0;
3324 } else if (gdb_accept_socket(gdb_fd)) {
3325 gdbserver_state.socket_path = g_strdup(port_or_path);
3326 return 0;
3327 }
3328
3329 /* gone wrong */
3330 close(gdb_fd);
3331 return -1;
3332 }
3333
3334 /* Disable gdb stub for child processes. */
3335 void gdbserver_fork(CPUState *cpu)
3336 {
3337 if (!gdbserver_state.init || gdbserver_state.fd < 0) {
3338 return;
3339 }
3340 close(gdbserver_state.fd);
3341 gdbserver_state.fd = -1;
3342 cpu_breakpoint_remove_all(cpu, BP_GDB);
3343 cpu_watchpoint_remove_all(cpu, BP_GDB);
3344 }
3345 #else
3346 static int gdb_chr_can_receive(void *opaque)
3347 {
3348 /* We can handle an arbitrarily large amount of data.
3349 Pick the maximum packet size, which is as good as anything. */
3350 return MAX_PACKET_LENGTH;
3351 }
3352
3353 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
3354 {
3355 int i;
3356
3357 for (i = 0; i < size; i++) {
3358 gdb_read_byte(buf[i]);
3359 }
3360 }
3361
3362 static void gdb_chr_event(void *opaque, QEMUChrEvent event)
3363 {
3364 int i;
3365 GDBState *s = (GDBState *) opaque;
3366
3367 switch (event) {
3368 case CHR_EVENT_OPENED:
3369 /* Start with first process attached, others detached */
3370 for (i = 0; i < s->process_num; i++) {
3371 s->processes[i].attached = !i;
3372 }
3373
3374 s->c_cpu = gdb_first_attached_cpu();
3375 s->g_cpu = s->c_cpu;
3376
3377 vm_stop(RUN_STATE_PAUSED);
3378 replay_gdb_attached();
3379 gdb_has_xml = false;
3380 break;
3381 default:
3382 break;
3383 }
3384 }
3385
3386 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
3387 {
3388 g_autoptr(GString) hex_buf = g_string_new("O");
3389 memtohex(hex_buf, buf, len);
3390 put_packet(hex_buf->str);
3391 return len;
3392 }
3393
3394 #ifndef _WIN32
3395 static void gdb_sigterm_handler(int signal)
3396 {
3397 if (runstate_is_running()) {
3398 vm_stop(RUN_STATE_PAUSED);
3399 }
3400 }
3401 #endif
3402
3403 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
3404 bool *be_opened, Error **errp)
3405 {
3406 *be_opened = false;
3407 }
3408
3409 static void char_gdb_class_init(ObjectClass *oc, void *data)
3410 {
3411 ChardevClass *cc = CHARDEV_CLASS(oc);
3412
3413 cc->internal = true;
3414 cc->open = gdb_monitor_open;
3415 cc->chr_write = gdb_monitor_write;
3416 }
3417
3418 #define TYPE_CHARDEV_GDB "chardev-gdb"
3419
3420 static const TypeInfo char_gdb_type_info = {
3421 .name = TYPE_CHARDEV_GDB,
3422 .parent = TYPE_CHARDEV,
3423 .class_init = char_gdb_class_init,
3424 };
3425
3426 static int find_cpu_clusters(Object *child, void *opaque)
3427 {
3428 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
3429 GDBState *s = (GDBState *) opaque;
3430 CPUClusterState *cluster = CPU_CLUSTER(child);
3431 GDBProcess *process;
3432
3433 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3434
3435 process = &s->processes[s->process_num - 1];
3436
3437 /*
3438 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3439 * runtime, we enforce here that the machine does not use a cluster ID
3440 * that would lead to PID 0.
3441 */
3442 assert(cluster->cluster_id != UINT32_MAX);
3443 process->pid = cluster->cluster_id + 1;
3444 process->attached = false;
3445 process->target_xml[0] = '\0';
3446
3447 return 0;
3448 }
3449
3450 return object_child_foreach(child, find_cpu_clusters, opaque);
3451 }
3452
3453 static int pid_order(const void *a, const void *b)
3454 {
3455 GDBProcess *pa = (GDBProcess *) a;
3456 GDBProcess *pb = (GDBProcess *) b;
3457
3458 if (pa->pid < pb->pid) {
3459 return -1;
3460 } else if (pa->pid > pb->pid) {
3461 return 1;
3462 } else {
3463 return 0;
3464 }
3465 }
3466
3467 static void create_processes(GDBState *s)
3468 {
3469 object_child_foreach(object_get_root(), find_cpu_clusters, s);
3470
3471 if (gdbserver_state.processes) {
3472 /* Sort by PID */
3473 qsort(gdbserver_state.processes, gdbserver_state.process_num, sizeof(gdbserver_state.processes[0]), pid_order);
3474 }
3475
3476 create_default_process(s);
3477 }
3478
3479 int gdbserver_start(const char *device)
3480 {
3481 trace_gdbstub_op_start(device);
3482
3483 char gdbstub_device_name[128];
3484 Chardev *chr = NULL;
3485 Chardev *mon_chr;
3486
3487 if (!first_cpu) {
3488 error_report("gdbstub: meaningless to attach gdb to a "
3489 "machine without any CPU.");
3490 return -1;
3491 }
3492
3493 if (!device)
3494 return -1;
3495 if (strcmp(device, "none") != 0) {
3496 if (strstart(device, "tcp:", NULL)) {
3497 /* enforce required TCP attributes */
3498 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3499 "%s,nowait,nodelay,server", device);
3500 device = gdbstub_device_name;
3501 }
3502 #ifndef _WIN32
3503 else if (strcmp(device, "stdio") == 0) {
3504 struct sigaction act;
3505
3506 memset(&act, 0, sizeof(act));
3507 act.sa_handler = gdb_sigterm_handler;
3508 sigaction(SIGINT, &act, NULL);
3509 }
3510 #endif
3511 /*
3512 * FIXME: it's a bit weird to allow using a mux chardev here
3513 * and implicitly setup a monitor. We may want to break this.
3514 */
3515 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
3516 if (!chr)
3517 return -1;
3518 }
3519
3520 if (!gdbserver_state.init) {
3521 init_gdbserver_state();
3522
3523 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3524
3525 /* Initialize a monitor terminal for gdb */
3526 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3527 NULL, NULL, &error_abort);
3528 monitor_init_hmp(mon_chr, false, &error_abort);
3529 } else {
3530 qemu_chr_fe_deinit(&gdbserver_state.chr, true);
3531 mon_chr = gdbserver_state.mon_chr;
3532 reset_gdbserver_state();
3533 }
3534
3535 create_processes(&gdbserver_state);
3536
3537 if (chr) {
3538 qemu_chr_fe_init(&gdbserver_state.chr, chr, &error_abort);
3539 qemu_chr_fe_set_handlers(&gdbserver_state.chr, gdb_chr_can_receive,
3540 gdb_chr_receive, gdb_chr_event,
3541 NULL, &gdbserver_state, NULL, true);
3542 }
3543 gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE;
3544 gdbserver_state.mon_chr = mon_chr;
3545 gdbserver_state.current_syscall_cb = NULL;
3546
3547 return 0;
3548 }
3549
3550 void gdbserver_cleanup(void)
3551 {
3552 if (gdbserver_state.init) {
3553 put_packet("W00");
3554 }
3555 }
3556
3557 static void register_types(void)
3558 {
3559 type_register_static(&char_gdb_type_info);
3560 }
3561
3562 type_init(register_types);
3563 #endif