]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
Fix to 'gdb detach' stub
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
37
38 #define MAX_PACKET_LENGTH 4096
39
40 #include "qemu_socket.h"
41 #include "kvm.h"
42
43
44 enum {
45 GDB_SIGNAL_0 = 0,
46 GDB_SIGNAL_INT = 2,
47 GDB_SIGNAL_TRAP = 5,
48 GDB_SIGNAL_UNKNOWN = 143
49 };
50
51 #ifdef CONFIG_USER_ONLY
52
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
56 */
57
58 static int gdb_signal_table[] = {
59 0,
60 TARGET_SIGHUP,
61 TARGET_SIGINT,
62 TARGET_SIGQUIT,
63 TARGET_SIGILL,
64 TARGET_SIGTRAP,
65 TARGET_SIGABRT,
66 -1, /* SIGEMT */
67 TARGET_SIGFPE,
68 TARGET_SIGKILL,
69 TARGET_SIGBUS,
70 TARGET_SIGSEGV,
71 TARGET_SIGSYS,
72 TARGET_SIGPIPE,
73 TARGET_SIGALRM,
74 TARGET_SIGTERM,
75 TARGET_SIGURG,
76 TARGET_SIGSTOP,
77 TARGET_SIGTSTP,
78 TARGET_SIGCONT,
79 TARGET_SIGCHLD,
80 TARGET_SIGTTIN,
81 TARGET_SIGTTOU,
82 TARGET_SIGIO,
83 TARGET_SIGXCPU,
84 TARGET_SIGXFSZ,
85 TARGET_SIGVTALRM,
86 TARGET_SIGPROF,
87 TARGET_SIGWINCH,
88 -1, /* SIGLOST */
89 TARGET_SIGUSR1,
90 TARGET_SIGUSR2,
91 #ifdef TARGET_SIGPWR
92 TARGET_SIGPWR,
93 #else
94 -1,
95 #endif
96 -1, /* SIGPOLL */
97 -1,
98 -1,
99 -1,
100 -1,
101 -1,
102 -1,
103 -1,
104 -1,
105 -1,
106 -1,
107 -1,
108 #ifdef __SIGRTMIN
109 __SIGRTMIN + 1,
110 __SIGRTMIN + 2,
111 __SIGRTMIN + 3,
112 __SIGRTMIN + 4,
113 __SIGRTMIN + 5,
114 __SIGRTMIN + 6,
115 __SIGRTMIN + 7,
116 __SIGRTMIN + 8,
117 __SIGRTMIN + 9,
118 __SIGRTMIN + 10,
119 __SIGRTMIN + 11,
120 __SIGRTMIN + 12,
121 __SIGRTMIN + 13,
122 __SIGRTMIN + 14,
123 __SIGRTMIN + 15,
124 __SIGRTMIN + 16,
125 __SIGRTMIN + 17,
126 __SIGRTMIN + 18,
127 __SIGRTMIN + 19,
128 __SIGRTMIN + 20,
129 __SIGRTMIN + 21,
130 __SIGRTMIN + 22,
131 __SIGRTMIN + 23,
132 __SIGRTMIN + 24,
133 __SIGRTMIN + 25,
134 __SIGRTMIN + 26,
135 __SIGRTMIN + 27,
136 __SIGRTMIN + 28,
137 __SIGRTMIN + 29,
138 __SIGRTMIN + 30,
139 __SIGRTMIN + 31,
140 -1, /* SIGCANCEL */
141 __SIGRTMIN,
142 __SIGRTMIN + 32,
143 __SIGRTMIN + 33,
144 __SIGRTMIN + 34,
145 __SIGRTMIN + 35,
146 __SIGRTMIN + 36,
147 __SIGRTMIN + 37,
148 __SIGRTMIN + 38,
149 __SIGRTMIN + 39,
150 __SIGRTMIN + 40,
151 __SIGRTMIN + 41,
152 __SIGRTMIN + 42,
153 __SIGRTMIN + 43,
154 __SIGRTMIN + 44,
155 __SIGRTMIN + 45,
156 __SIGRTMIN + 46,
157 __SIGRTMIN + 47,
158 __SIGRTMIN + 48,
159 __SIGRTMIN + 49,
160 __SIGRTMIN + 50,
161 __SIGRTMIN + 51,
162 __SIGRTMIN + 52,
163 __SIGRTMIN + 53,
164 __SIGRTMIN + 54,
165 __SIGRTMIN + 55,
166 __SIGRTMIN + 56,
167 __SIGRTMIN + 57,
168 __SIGRTMIN + 58,
169 __SIGRTMIN + 59,
170 __SIGRTMIN + 60,
171 __SIGRTMIN + 61,
172 __SIGRTMIN + 62,
173 __SIGRTMIN + 63,
174 __SIGRTMIN + 64,
175 __SIGRTMIN + 65,
176 __SIGRTMIN + 66,
177 __SIGRTMIN + 67,
178 __SIGRTMIN + 68,
179 __SIGRTMIN + 69,
180 __SIGRTMIN + 70,
181 __SIGRTMIN + 71,
182 __SIGRTMIN + 72,
183 __SIGRTMIN + 73,
184 __SIGRTMIN + 74,
185 __SIGRTMIN + 75,
186 __SIGRTMIN + 76,
187 __SIGRTMIN + 77,
188 __SIGRTMIN + 78,
189 __SIGRTMIN + 79,
190 __SIGRTMIN + 80,
191 __SIGRTMIN + 81,
192 __SIGRTMIN + 82,
193 __SIGRTMIN + 83,
194 __SIGRTMIN + 84,
195 __SIGRTMIN + 85,
196 __SIGRTMIN + 86,
197 __SIGRTMIN + 87,
198 __SIGRTMIN + 88,
199 __SIGRTMIN + 89,
200 __SIGRTMIN + 90,
201 __SIGRTMIN + 91,
202 __SIGRTMIN + 92,
203 __SIGRTMIN + 93,
204 __SIGRTMIN + 94,
205 __SIGRTMIN + 95,
206 -1, /* SIGINFO */
207 -1, /* UNKNOWN */
208 -1, /* DEFAULT */
209 -1,
210 -1,
211 -1,
212 -1,
213 -1,
214 -1
215 #endif
216 };
217 #else
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
220
221 enum {
222 TARGET_SIGINT = 2,
223 TARGET_SIGTRAP = 5
224 };
225
226 static int gdb_signal_table[] = {
227 -1,
228 -1,
229 TARGET_SIGINT,
230 -1,
231 -1,
232 TARGET_SIGTRAP
233 };
234 #endif
235
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig)
238 {
239 int i;
240 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
241 if (gdb_signal_table[i] == sig)
242 return i;
243 return GDB_SIGNAL_UNKNOWN;
244 }
245 #endif
246
247 static int gdb_signal_to_target (int sig)
248 {
249 if (sig < ARRAY_SIZE (gdb_signal_table))
250 return gdb_signal_table[sig];
251 else
252 return -1;
253 }
254
255 //#define DEBUG_GDB
256
257 typedef struct GDBRegisterState {
258 int base_reg;
259 int num_regs;
260 gdb_reg_cb get_reg;
261 gdb_reg_cb set_reg;
262 const char *xml;
263 struct GDBRegisterState *next;
264 } GDBRegisterState;
265
266 enum RSState {
267 RS_INACTIVE,
268 RS_IDLE,
269 RS_GETLINE,
270 RS_CHKSUM1,
271 RS_CHKSUM2,
272 RS_SYSCALL,
273 };
274 typedef struct GDBState {
275 CPUState *c_cpu; /* current CPU for step/continue ops */
276 CPUState *g_cpu; /* current CPU for other ops */
277 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
278 enum RSState state; /* parsing state */
279 char line_buf[MAX_PACKET_LENGTH];
280 int line_buf_index;
281 int line_csum;
282 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
283 int last_packet_len;
284 int signal;
285 #ifdef CONFIG_USER_ONLY
286 int fd;
287 int running_state;
288 #else
289 CharDriverState *chr;
290 CharDriverState *mon_chr;
291 #endif
292 } GDBState;
293
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
296 */
297 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
298
299 static GDBState *gdbserver_state;
300
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml;
305
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd = -1;
309
310 static int get_char(GDBState *s)
311 {
312 uint8_t ch;
313 int ret;
314
315 for(;;) {
316 ret = recv(s->fd, &ch, 1, 0);
317 if (ret < 0) {
318 if (errno == ECONNRESET)
319 s->fd = -1;
320 if (errno != EINTR && errno != EAGAIN)
321 return -1;
322 } else if (ret == 0) {
323 close(s->fd);
324 s->fd = -1;
325 return -1;
326 } else {
327 break;
328 }
329 }
330 return ch;
331 }
332 #endif
333
334 static gdb_syscall_complete_cb gdb_current_syscall_cb;
335
336 static enum {
337 GDB_SYS_UNKNOWN,
338 GDB_SYS_ENABLED,
339 GDB_SYS_DISABLED,
340 } gdb_syscall_mode;
341
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
345 {
346 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
347 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
348 : GDB_SYS_DISABLED);
349 }
350 return gdb_syscall_mode == GDB_SYS_ENABLED;
351 }
352
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState *s)
355 {
356 #ifdef CONFIG_USER_ONLY
357 s->running_state = 1;
358 #else
359 vm_start();
360 #endif
361 }
362
363 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
364 {
365 #ifdef CONFIG_USER_ONLY
366 int ret;
367
368 while (len > 0) {
369 ret = send(s->fd, buf, len, 0);
370 if (ret < 0) {
371 if (errno != EINTR && errno != EAGAIN)
372 return;
373 } else {
374 buf += ret;
375 len -= ret;
376 }
377 }
378 #else
379 qemu_chr_write(s->chr, buf, len);
380 #endif
381 }
382
383 static inline int fromhex(int v)
384 {
385 if (v >= '0' && v <= '9')
386 return v - '0';
387 else if (v >= 'A' && v <= 'F')
388 return v - 'A' + 10;
389 else if (v >= 'a' && v <= 'f')
390 return v - 'a' + 10;
391 else
392 return 0;
393 }
394
395 static inline int tohex(int v)
396 {
397 if (v < 10)
398 return v + '0';
399 else
400 return v - 10 + 'a';
401 }
402
403 static void memtohex(char *buf, const uint8_t *mem, int len)
404 {
405 int i, c;
406 char *q;
407 q = buf;
408 for(i = 0; i < len; i++) {
409 c = mem[i];
410 *q++ = tohex(c >> 4);
411 *q++ = tohex(c & 0xf);
412 }
413 *q = '\0';
414 }
415
416 static void hextomem(uint8_t *mem, const char *buf, int len)
417 {
418 int i;
419
420 for(i = 0; i < len; i++) {
421 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
422 buf += 2;
423 }
424 }
425
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState *s, const char *buf, int len)
428 {
429 int csum, i;
430 uint8_t *p;
431
432 for(;;) {
433 p = s->last_packet;
434 *(p++) = '$';
435 memcpy(p, buf, len);
436 p += len;
437 csum = 0;
438 for(i = 0; i < len; i++) {
439 csum += buf[i];
440 }
441 *(p++) = '#';
442 *(p++) = tohex((csum >> 4) & 0xf);
443 *(p++) = tohex((csum) & 0xf);
444
445 s->last_packet_len = p - s->last_packet;
446 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
447
448 #ifdef CONFIG_USER_ONLY
449 i = get_char(s);
450 if (i < 0)
451 return -1;
452 if (i == '+')
453 break;
454 #else
455 break;
456 #endif
457 }
458 return 0;
459 }
460
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState *s, const char *buf)
463 {
464 #ifdef DEBUG_GDB
465 printf("reply='%s'\n", buf);
466 #endif
467
468 return put_packet_binary(s, buf, strlen(buf));
469 }
470
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
474 */
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
477 return 1; \
478 } while(0)
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
481 return 2; \
482 } while(0)
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
485 return 4; \
486 } while(0)
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
489 return 8; \
490 } while(0)
491
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
495 #else
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
498 #endif
499
500 #if defined(TARGET_I386)
501
502 #ifdef TARGET_X86_64
503 static const int gpr_map[16] = {
504 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
505 8, 9, 10, 11, 12, 13, 14, 15
506 };
507 #else
508 #define gpr_map gpr_map32
509 #endif
510 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
511
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
513
514 #define IDX_IP_REG CPU_NB_REGS
515 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
516 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
517 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
518 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
519 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
520
521 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
522 {
523 if (n < CPU_NB_REGS) {
524 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
525 GET_REG64(env->regs[gpr_map[n]]);
526 } else if (n < CPU_NB_REGS32) {
527 GET_REG32(env->regs[gpr_map32[n]]);
528 }
529 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
530 #ifdef USE_X86LDOUBLE
531 /* FIXME: byteswap float values - after fixing fpregs layout. */
532 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
533 #else
534 memset(mem_buf, 0, 10);
535 #endif
536 return 10;
537 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
538 n -= IDX_XMM_REGS;
539 if (n < CPU_NB_REGS32 ||
540 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
541 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
542 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
543 return 16;
544 }
545 } else {
546 switch (n) {
547 case IDX_IP_REG:
548 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
549 GET_REG64(env->eip);
550 } else {
551 GET_REG32(env->eip);
552 }
553 case IDX_FLAGS_REG: GET_REG32(env->eflags);
554
555 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
556 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
557 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
558 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
559 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
560 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
561
562 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
563 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
564 (env->fpstt & 0x7) << 11);
565 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
566 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
567 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
568 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
569 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
570 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
571
572 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
573 }
574 }
575 return 0;
576 }
577
578 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
579 {
580 uint16_t selector = ldl_p(mem_buf);
581
582 if (selector != env->segs[sreg].selector) {
583 #if defined(CONFIG_USER_ONLY)
584 cpu_x86_load_seg(env, sreg, selector);
585 #else
586 unsigned int limit, flags;
587 target_ulong base;
588
589 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
590 base = selector << 4;
591 limit = 0xffff;
592 flags = 0;
593 } else {
594 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
595 return 4;
596 }
597 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
598 #endif
599 }
600 return 4;
601 }
602
603 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
604 {
605 uint32_t tmp;
606
607 if (n < CPU_NB_REGS) {
608 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
609 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
610 return sizeof(target_ulong);
611 } else if (n < CPU_NB_REGS32) {
612 n = gpr_map32[n];
613 env->regs[n] &= ~0xffffffffUL;
614 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
615 return 4;
616 }
617 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
618 #ifdef USE_X86LDOUBLE
619 /* FIXME: byteswap float values - after fixing fpregs layout. */
620 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
621 #endif
622 return 10;
623 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
624 n -= IDX_XMM_REGS;
625 if (n < CPU_NB_REGS32 ||
626 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
627 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
628 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
629 return 16;
630 }
631 } else {
632 switch (n) {
633 case IDX_IP_REG:
634 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
635 env->eip = ldq_p(mem_buf);
636 return 8;
637 } else {
638 env->eip &= ~0xffffffffUL;
639 env->eip |= (uint32_t)ldl_p(mem_buf);
640 return 4;
641 }
642 case IDX_FLAGS_REG:
643 env->eflags = ldl_p(mem_buf);
644 return 4;
645
646 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
647 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
648 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
649 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
650 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
651 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
652
653 case IDX_FP_REGS + 8:
654 env->fpuc = ldl_p(mem_buf);
655 return 4;
656 case IDX_FP_REGS + 9:
657 tmp = ldl_p(mem_buf);
658 env->fpstt = (tmp >> 11) & 7;
659 env->fpus = tmp & ~0x3800;
660 return 4;
661 case IDX_FP_REGS + 10: /* ftag */ return 4;
662 case IDX_FP_REGS + 11: /* fiseg */ return 4;
663 case IDX_FP_REGS + 12: /* fioff */ return 4;
664 case IDX_FP_REGS + 13: /* foseg */ return 4;
665 case IDX_FP_REGS + 14: /* fooff */ return 4;
666 case IDX_FP_REGS + 15: /* fop */ return 4;
667
668 case IDX_MXCSR_REG:
669 env->mxcsr = ldl_p(mem_buf);
670 return 4;
671 }
672 }
673 /* Unrecognised register. */
674 return 0;
675 }
676
677 #elif defined (TARGET_PPC)
678
679 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
680 expects whatever the target description contains. Due to a
681 historical mishap the FP registers appear in between core integer
682 regs and PC, MSR, CR, and so forth. We hack round this by giving the
683 FP regs zero size when talking to a newer gdb. */
684 #define NUM_CORE_REGS 71
685 #if defined (TARGET_PPC64)
686 #define GDB_CORE_XML "power64-core.xml"
687 #else
688 #define GDB_CORE_XML "power-core.xml"
689 #endif
690
691 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
692 {
693 if (n < 32) {
694 /* gprs */
695 GET_REGL(env->gpr[n]);
696 } else if (n < 64) {
697 /* fprs */
698 if (gdb_has_xml)
699 return 0;
700 stfq_p(mem_buf, env->fpr[n-32]);
701 return 8;
702 } else {
703 switch (n) {
704 case 64: GET_REGL(env->nip);
705 case 65: GET_REGL(env->msr);
706 case 66:
707 {
708 uint32_t cr = 0;
709 int i;
710 for (i = 0; i < 8; i++)
711 cr |= env->crf[i] << (32 - ((i + 1) * 4));
712 GET_REG32(cr);
713 }
714 case 67: GET_REGL(env->lr);
715 case 68: GET_REGL(env->ctr);
716 case 69: GET_REGL(env->xer);
717 case 70:
718 {
719 if (gdb_has_xml)
720 return 0;
721 GET_REG32(0); /* fpscr */
722 }
723 }
724 }
725 return 0;
726 }
727
728 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
729 {
730 if (n < 32) {
731 /* gprs */
732 env->gpr[n] = ldtul_p(mem_buf);
733 return sizeof(target_ulong);
734 } else if (n < 64) {
735 /* fprs */
736 if (gdb_has_xml)
737 return 0;
738 env->fpr[n-32] = ldfq_p(mem_buf);
739 return 8;
740 } else {
741 switch (n) {
742 case 64:
743 env->nip = ldtul_p(mem_buf);
744 return sizeof(target_ulong);
745 case 65:
746 ppc_store_msr(env, ldtul_p(mem_buf));
747 return sizeof(target_ulong);
748 case 66:
749 {
750 uint32_t cr = ldl_p(mem_buf);
751 int i;
752 for (i = 0; i < 8; i++)
753 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
754 return 4;
755 }
756 case 67:
757 env->lr = ldtul_p(mem_buf);
758 return sizeof(target_ulong);
759 case 68:
760 env->ctr = ldtul_p(mem_buf);
761 return sizeof(target_ulong);
762 case 69:
763 env->xer = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 70:
766 /* fpscr */
767 if (gdb_has_xml)
768 return 0;
769 return 4;
770 }
771 }
772 return 0;
773 }
774
775 #elif defined (TARGET_SPARC)
776
777 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
778 #define NUM_CORE_REGS 86
779 #else
780 #define NUM_CORE_REGS 72
781 #endif
782
783 #ifdef TARGET_ABI32
784 #define GET_REGA(val) GET_REG32(val)
785 #else
786 #define GET_REGA(val) GET_REGL(val)
787 #endif
788
789 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
790 {
791 if (n < 8) {
792 /* g0..g7 */
793 GET_REGA(env->gregs[n]);
794 }
795 if (n < 32) {
796 /* register window */
797 GET_REGA(env->regwptr[n - 8]);
798 }
799 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
800 if (n < 64) {
801 /* fprs */
802 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
803 }
804 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
805 switch (n) {
806 case 64: GET_REGA(env->y);
807 case 65: GET_REGA(GET_PSR(env));
808 case 66: GET_REGA(env->wim);
809 case 67: GET_REGA(env->tbr);
810 case 68: GET_REGA(env->pc);
811 case 69: GET_REGA(env->npc);
812 case 70: GET_REGA(env->fsr);
813 case 71: GET_REGA(0); /* csr */
814 default: GET_REGA(0);
815 }
816 #else
817 if (n < 64) {
818 /* f0-f31 */
819 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
820 }
821 if (n < 80) {
822 /* f32-f62 (double width, even numbers only) */
823 uint64_t val;
824
825 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
826 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
827 GET_REG64(val);
828 }
829 switch (n) {
830 case 80: GET_REGL(env->pc);
831 case 81: GET_REGL(env->npc);
832 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
833 ((env->asi & 0xff) << 24) |
834 ((env->pstate & 0xfff) << 8) |
835 GET_CWP64(env));
836 case 83: GET_REGL(env->fsr);
837 case 84: GET_REGL(env->fprs);
838 case 85: GET_REGL(env->y);
839 }
840 #endif
841 return 0;
842 }
843
844 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
845 {
846 #if defined(TARGET_ABI32)
847 abi_ulong tmp;
848
849 tmp = ldl_p(mem_buf);
850 #else
851 target_ulong tmp;
852
853 tmp = ldtul_p(mem_buf);
854 #endif
855
856 if (n < 8) {
857 /* g0..g7 */
858 env->gregs[n] = tmp;
859 } else if (n < 32) {
860 /* register window */
861 env->regwptr[n - 8] = tmp;
862 }
863 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
864 else if (n < 64) {
865 /* fprs */
866 *((uint32_t *)&env->fpr[n - 32]) = tmp;
867 } else {
868 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
869 switch (n) {
870 case 64: env->y = tmp; break;
871 case 65: PUT_PSR(env, tmp); break;
872 case 66: env->wim = tmp; break;
873 case 67: env->tbr = tmp; break;
874 case 68: env->pc = tmp; break;
875 case 69: env->npc = tmp; break;
876 case 70: env->fsr = tmp; break;
877 default: return 0;
878 }
879 }
880 return 4;
881 #else
882 else if (n < 64) {
883 /* f0-f31 */
884 env->fpr[n] = ldfl_p(mem_buf);
885 return 4;
886 } else if (n < 80) {
887 /* f32-f62 (double width, even numbers only) */
888 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
889 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
890 } else {
891 switch (n) {
892 case 80: env->pc = tmp; break;
893 case 81: env->npc = tmp; break;
894 case 82:
895 PUT_CCR(env, tmp >> 32);
896 env->asi = (tmp >> 24) & 0xff;
897 env->pstate = (tmp >> 8) & 0xfff;
898 PUT_CWP64(env, tmp & 0xff);
899 break;
900 case 83: env->fsr = tmp; break;
901 case 84: env->fprs = tmp; break;
902 case 85: env->y = tmp; break;
903 default: return 0;
904 }
905 }
906 return 8;
907 #endif
908 }
909 #elif defined (TARGET_ARM)
910
911 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
912 whatever the target description contains. Due to a historical mishap
913 the FPA registers appear in between core integer regs and the CPSR.
914 We hack round this by giving the FPA regs zero size when talking to a
915 newer gdb. */
916 #define NUM_CORE_REGS 26
917 #define GDB_CORE_XML "arm-core.xml"
918
919 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
920 {
921 if (n < 16) {
922 /* Core integer register. */
923 GET_REG32(env->regs[n]);
924 }
925 if (n < 24) {
926 /* FPA registers. */
927 if (gdb_has_xml)
928 return 0;
929 memset(mem_buf, 0, 12);
930 return 12;
931 }
932 switch (n) {
933 case 24:
934 /* FPA status register. */
935 if (gdb_has_xml)
936 return 0;
937 GET_REG32(0);
938 case 25:
939 /* CPSR */
940 GET_REG32(cpsr_read(env));
941 }
942 /* Unknown register. */
943 return 0;
944 }
945
946 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
947 {
948 uint32_t tmp;
949
950 tmp = ldl_p(mem_buf);
951
952 /* Mask out low bit of PC to workaround gdb bugs. This will probably
953 cause problems if we ever implement the Jazelle DBX extensions. */
954 if (n == 15)
955 tmp &= ~1;
956
957 if (n < 16) {
958 /* Core integer register. */
959 env->regs[n] = tmp;
960 return 4;
961 }
962 if (n < 24) { /* 16-23 */
963 /* FPA registers (ignored). */
964 if (gdb_has_xml)
965 return 0;
966 return 12;
967 }
968 switch (n) {
969 case 24:
970 /* FPA status register (ignored). */
971 if (gdb_has_xml)
972 return 0;
973 return 4;
974 case 25:
975 /* CPSR */
976 cpsr_write (env, tmp, 0xffffffff);
977 return 4;
978 }
979 /* Unknown register. */
980 return 0;
981 }
982
983 #elif defined (TARGET_M68K)
984
985 #define NUM_CORE_REGS 18
986
987 #define GDB_CORE_XML "cf-core.xml"
988
989 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
990 {
991 if (n < 8) {
992 /* D0-D7 */
993 GET_REG32(env->dregs[n]);
994 } else if (n < 16) {
995 /* A0-A7 */
996 GET_REG32(env->aregs[n - 8]);
997 } else {
998 switch (n) {
999 case 16: GET_REG32(env->sr);
1000 case 17: GET_REG32(env->pc);
1001 }
1002 }
1003 /* FP registers not included here because they vary between
1004 ColdFire and m68k. Use XML bits for these. */
1005 return 0;
1006 }
1007
1008 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1009 {
1010 uint32_t tmp;
1011
1012 tmp = ldl_p(mem_buf);
1013
1014 if (n < 8) {
1015 /* D0-D7 */
1016 env->dregs[n] = tmp;
1017 } else if (n < 16) {
1018 /* A0-A7 */
1019 env->aregs[n - 8] = tmp;
1020 } else {
1021 switch (n) {
1022 case 16: env->sr = tmp; break;
1023 case 17: env->pc = tmp; break;
1024 default: return 0;
1025 }
1026 }
1027 return 4;
1028 }
1029 #elif defined (TARGET_MIPS)
1030
1031 #define NUM_CORE_REGS 73
1032
1033 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1034 {
1035 if (n < 32) {
1036 GET_REGL(env->active_tc.gpr[n]);
1037 }
1038 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1039 if (n >= 38 && n < 70) {
1040 if (env->CP0_Status & (1 << CP0St_FR))
1041 GET_REGL(env->active_fpu.fpr[n - 38].d);
1042 else
1043 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1044 }
1045 switch (n) {
1046 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1047 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1048 }
1049 }
1050 switch (n) {
1051 case 32: GET_REGL((int32_t)env->CP0_Status);
1052 case 33: GET_REGL(env->active_tc.LO[0]);
1053 case 34: GET_REGL(env->active_tc.HI[0]);
1054 case 35: GET_REGL(env->CP0_BadVAddr);
1055 case 36: GET_REGL((int32_t)env->CP0_Cause);
1056 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1057 case 72: GET_REGL(0); /* fp */
1058 case 89: GET_REGL((int32_t)env->CP0_PRid);
1059 }
1060 if (n >= 73 && n <= 88) {
1061 /* 16 embedded regs. */
1062 GET_REGL(0);
1063 }
1064
1065 return 0;
1066 }
1067
1068 /* convert MIPS rounding mode in FCR31 to IEEE library */
1069 static unsigned int ieee_rm[] =
1070 {
1071 float_round_nearest_even,
1072 float_round_to_zero,
1073 float_round_up,
1074 float_round_down
1075 };
1076 #define RESTORE_ROUNDING_MODE \
1077 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1078
1079 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1080 {
1081 target_ulong tmp;
1082
1083 tmp = ldtul_p(mem_buf);
1084
1085 if (n < 32) {
1086 env->active_tc.gpr[n] = tmp;
1087 return sizeof(target_ulong);
1088 }
1089 if (env->CP0_Config1 & (1 << CP0C1_FP)
1090 && n >= 38 && n < 73) {
1091 if (n < 70) {
1092 if (env->CP0_Status & (1 << CP0St_FR))
1093 env->active_fpu.fpr[n - 38].d = tmp;
1094 else
1095 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1096 }
1097 switch (n) {
1098 case 70:
1099 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1100 /* set rounding mode */
1101 RESTORE_ROUNDING_MODE;
1102 #ifndef CONFIG_SOFTFLOAT
1103 /* no floating point exception for native float */
1104 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1105 #endif
1106 break;
1107 case 71: env->active_fpu.fcr0 = tmp; break;
1108 }
1109 return sizeof(target_ulong);
1110 }
1111 switch (n) {
1112 case 32: env->CP0_Status = tmp; break;
1113 case 33: env->active_tc.LO[0] = tmp; break;
1114 case 34: env->active_tc.HI[0] = tmp; break;
1115 case 35: env->CP0_BadVAddr = tmp; break;
1116 case 36: env->CP0_Cause = tmp; break;
1117 case 37:
1118 env->active_tc.PC = tmp & ~(target_ulong)1;
1119 if (tmp & 1) {
1120 env->hflags |= MIPS_HFLAG_M16;
1121 } else {
1122 env->hflags &= ~(MIPS_HFLAG_M16);
1123 }
1124 break;
1125 case 72: /* fp, ignored */ break;
1126 default:
1127 if (n > 89)
1128 return 0;
1129 /* Other registers are readonly. Ignore writes. */
1130 break;
1131 }
1132
1133 return sizeof(target_ulong);
1134 }
1135 #elif defined (TARGET_SH4)
1136
1137 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1138 /* FIXME: We should use XML for this. */
1139
1140 #define NUM_CORE_REGS 59
1141
1142 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1143 {
1144 if (n < 8) {
1145 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1146 GET_REGL(env->gregs[n + 16]);
1147 } else {
1148 GET_REGL(env->gregs[n]);
1149 }
1150 } else if (n < 16) {
1151 GET_REGL(env->gregs[n - 8]);
1152 } else if (n >= 25 && n < 41) {
1153 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1154 } else if (n >= 43 && n < 51) {
1155 GET_REGL(env->gregs[n - 43]);
1156 } else if (n >= 51 && n < 59) {
1157 GET_REGL(env->gregs[n - (51 - 16)]);
1158 }
1159 switch (n) {
1160 case 16: GET_REGL(env->pc);
1161 case 17: GET_REGL(env->pr);
1162 case 18: GET_REGL(env->gbr);
1163 case 19: GET_REGL(env->vbr);
1164 case 20: GET_REGL(env->mach);
1165 case 21: GET_REGL(env->macl);
1166 case 22: GET_REGL(env->sr);
1167 case 23: GET_REGL(env->fpul);
1168 case 24: GET_REGL(env->fpscr);
1169 case 41: GET_REGL(env->ssr);
1170 case 42: GET_REGL(env->spc);
1171 }
1172
1173 return 0;
1174 }
1175
1176 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1177 {
1178 uint32_t tmp;
1179
1180 tmp = ldl_p(mem_buf);
1181
1182 if (n < 8) {
1183 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1184 env->gregs[n + 16] = tmp;
1185 } else {
1186 env->gregs[n] = tmp;
1187 }
1188 return 4;
1189 } else if (n < 16) {
1190 env->gregs[n - 8] = tmp;
1191 return 4;
1192 } else if (n >= 25 && n < 41) {
1193 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1194 } else if (n >= 43 && n < 51) {
1195 env->gregs[n - 43] = tmp;
1196 return 4;
1197 } else if (n >= 51 && n < 59) {
1198 env->gregs[n - (51 - 16)] = tmp;
1199 return 4;
1200 }
1201 switch (n) {
1202 case 16: env->pc = tmp;
1203 case 17: env->pr = tmp;
1204 case 18: env->gbr = tmp;
1205 case 19: env->vbr = tmp;
1206 case 20: env->mach = tmp;
1207 case 21: env->macl = tmp;
1208 case 22: env->sr = tmp;
1209 case 23: env->fpul = tmp;
1210 case 24: env->fpscr = tmp;
1211 case 41: env->ssr = tmp;
1212 case 42: env->spc = tmp;
1213 default: return 0;
1214 }
1215
1216 return 4;
1217 }
1218 #elif defined (TARGET_MICROBLAZE)
1219
1220 #define NUM_CORE_REGS (32 + 5)
1221
1222 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1223 {
1224 if (n < 32) {
1225 GET_REG32(env->regs[n]);
1226 } else {
1227 GET_REG32(env->sregs[n - 32]);
1228 }
1229 return 0;
1230 }
1231
1232 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1233 {
1234 uint32_t tmp;
1235
1236 if (n > NUM_CORE_REGS)
1237 return 0;
1238
1239 tmp = ldl_p(mem_buf);
1240
1241 if (n < 32) {
1242 env->regs[n] = tmp;
1243 } else {
1244 env->sregs[n - 32] = tmp;
1245 }
1246 return 4;
1247 }
1248 #elif defined (TARGET_CRIS)
1249
1250 #define NUM_CORE_REGS 49
1251
1252 static int
1253 read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n)
1254 {
1255 if (n < 15) {
1256 GET_REG32(env->regs[n]);
1257 }
1258
1259 if (n == 15) {
1260 GET_REG32(env->pc);
1261 }
1262
1263 if (n < 32) {
1264 switch (n) {
1265 case 16:
1266 GET_REG8(env->pregs[n - 16]);
1267 break;
1268 case 17:
1269 GET_REG8(env->pregs[n - 16]);
1270 break;
1271 case 20:
1272 case 21:
1273 GET_REG16(env->pregs[n - 16]);
1274 break;
1275 default:
1276 if (n >= 23) {
1277 GET_REG32(env->pregs[n - 16]);
1278 }
1279 break;
1280 }
1281 }
1282 return 0;
1283 }
1284
1285 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1286 {
1287 uint8_t srs;
1288
1289 if (env->pregs[PR_VR] < 32)
1290 return read_register_crisv10(env, mem_buf, n);
1291
1292 srs = env->pregs[PR_SRS];
1293 if (n < 16) {
1294 GET_REG32(env->regs[n]);
1295 }
1296
1297 if (n >= 21 && n < 32) {
1298 GET_REG32(env->pregs[n - 16]);
1299 }
1300 if (n >= 33 && n < 49) {
1301 GET_REG32(env->sregs[srs][n - 33]);
1302 }
1303 switch (n) {
1304 case 16: GET_REG8(env->pregs[0]);
1305 case 17: GET_REG8(env->pregs[1]);
1306 case 18: GET_REG32(env->pregs[2]);
1307 case 19: GET_REG8(srs);
1308 case 20: GET_REG16(env->pregs[4]);
1309 case 32: GET_REG32(env->pc);
1310 }
1311
1312 return 0;
1313 }
1314
1315 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1316 {
1317 uint32_t tmp;
1318
1319 if (n > 49)
1320 return 0;
1321
1322 tmp = ldl_p(mem_buf);
1323
1324 if (n < 16) {
1325 env->regs[n] = tmp;
1326 }
1327
1328 if (n >= 21 && n < 32) {
1329 env->pregs[n - 16] = tmp;
1330 }
1331
1332 /* FIXME: Should support function regs be writable? */
1333 switch (n) {
1334 case 16: return 1;
1335 case 17: return 1;
1336 case 18: env->pregs[PR_PID] = tmp; break;
1337 case 19: return 1;
1338 case 20: return 2;
1339 case 32: env->pc = tmp; break;
1340 }
1341
1342 return 4;
1343 }
1344 #elif defined (TARGET_ALPHA)
1345
1346 #define NUM_CORE_REGS 67
1347
1348 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1349 {
1350 uint64_t val;
1351 CPU_DoubleU d;
1352
1353 switch (n) {
1354 case 0 ... 30:
1355 val = env->ir[n];
1356 break;
1357 case 32 ... 62:
1358 d.d = env->fir[n - 32];
1359 val = d.ll;
1360 break;
1361 case 63:
1362 val = cpu_alpha_load_fpcr(env);
1363 break;
1364 case 64:
1365 val = env->pc;
1366 break;
1367 case 66:
1368 val = env->unique;
1369 break;
1370 case 31:
1371 case 65:
1372 /* 31 really is the zero register; 65 is unassigned in the
1373 gdb protocol, but is still required to occupy 8 bytes. */
1374 val = 0;
1375 break;
1376 default:
1377 return 0;
1378 }
1379 GET_REGL(val);
1380 }
1381
1382 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1383 {
1384 target_ulong tmp = ldtul_p(mem_buf);
1385 CPU_DoubleU d;
1386
1387 switch (n) {
1388 case 0 ... 30:
1389 env->ir[n] = tmp;
1390 break;
1391 case 32 ... 62:
1392 d.ll = tmp;
1393 env->fir[n - 32] = d.d;
1394 break;
1395 case 63:
1396 cpu_alpha_store_fpcr(env, tmp);
1397 break;
1398 case 64:
1399 env->pc = tmp;
1400 break;
1401 case 66:
1402 env->unique = tmp;
1403 break;
1404 case 31:
1405 case 65:
1406 /* 31 really is the zero register; 65 is unassigned in the
1407 gdb protocol, but is still required to occupy 8 bytes. */
1408 break;
1409 default:
1410 return 0;
1411 }
1412 return 8;
1413 }
1414 #elif defined (TARGET_S390X)
1415
1416 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1417
1418 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1419 {
1420 switch (n) {
1421 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1422 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1423 case S390_R0_REGNUM ... S390_R15_REGNUM:
1424 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1425 case S390_A0_REGNUM ... S390_A15_REGNUM:
1426 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1427 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1428 case S390_F0_REGNUM ... S390_F15_REGNUM:
1429 /* XXX */
1430 break;
1431 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1432 case S390_CC_REGNUM: GET_REG32(env->cc); break;
1433 }
1434
1435 return 0;
1436 }
1437
1438 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1439 {
1440 target_ulong tmpl;
1441 uint32_t tmp32;
1442 int r = 8;
1443 tmpl = ldtul_p(mem_buf);
1444 tmp32 = ldl_p(mem_buf);
1445
1446 switch (n) {
1447 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1448 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1449 case S390_R0_REGNUM ... S390_R15_REGNUM:
1450 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1451 case S390_A0_REGNUM ... S390_A15_REGNUM:
1452 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1453 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1454 case S390_F0_REGNUM ... S390_F15_REGNUM:
1455 /* XXX */
1456 break;
1457 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1458 case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
1459 }
1460
1461 return r;
1462 }
1463 #else
1464
1465 #define NUM_CORE_REGS 0
1466
1467 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1468 {
1469 return 0;
1470 }
1471
1472 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1473 {
1474 return 0;
1475 }
1476
1477 #endif
1478
1479 static int num_g_regs = NUM_CORE_REGS;
1480
1481 #ifdef GDB_CORE_XML
1482 /* Encode data using the encoding for 'x' packets. */
1483 static int memtox(char *buf, const char *mem, int len)
1484 {
1485 char *p = buf;
1486 char c;
1487
1488 while (len--) {
1489 c = *(mem++);
1490 switch (c) {
1491 case '#': case '$': case '*': case '}':
1492 *(p++) = '}';
1493 *(p++) = c ^ 0x20;
1494 break;
1495 default:
1496 *(p++) = c;
1497 break;
1498 }
1499 }
1500 return p - buf;
1501 }
1502
1503 static const char *get_feature_xml(const char *p, const char **newp)
1504 {
1505 extern const char *const xml_builtin[][2];
1506 size_t len;
1507 int i;
1508 const char *name;
1509 static char target_xml[1024];
1510
1511 len = 0;
1512 while (p[len] && p[len] != ':')
1513 len++;
1514 *newp = p + len;
1515
1516 name = NULL;
1517 if (strncmp(p, "target.xml", len) == 0) {
1518 /* Generate the XML description for this CPU. */
1519 if (!target_xml[0]) {
1520 GDBRegisterState *r;
1521
1522 snprintf(target_xml, sizeof(target_xml),
1523 "<?xml version=\"1.0\"?>"
1524 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1525 "<target>"
1526 "<xi:include href=\"%s\"/>",
1527 GDB_CORE_XML);
1528
1529 for (r = first_cpu->gdb_regs; r; r = r->next) {
1530 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1531 pstrcat(target_xml, sizeof(target_xml), r->xml);
1532 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1533 }
1534 pstrcat(target_xml, sizeof(target_xml), "</target>");
1535 }
1536 return target_xml;
1537 }
1538 for (i = 0; ; i++) {
1539 name = xml_builtin[i][0];
1540 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1541 break;
1542 }
1543 return name ? xml_builtin[i][1] : NULL;
1544 }
1545 #endif
1546
1547 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1548 {
1549 GDBRegisterState *r;
1550
1551 if (reg < NUM_CORE_REGS)
1552 return cpu_gdb_read_register(env, mem_buf, reg);
1553
1554 for (r = env->gdb_regs; r; r = r->next) {
1555 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1556 return r->get_reg(env, mem_buf, reg - r->base_reg);
1557 }
1558 }
1559 return 0;
1560 }
1561
1562 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1563 {
1564 GDBRegisterState *r;
1565
1566 if (reg < NUM_CORE_REGS)
1567 return cpu_gdb_write_register(env, mem_buf, reg);
1568
1569 for (r = env->gdb_regs; r; r = r->next) {
1570 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1571 return r->set_reg(env, mem_buf, reg - r->base_reg);
1572 }
1573 }
1574 return 0;
1575 }
1576
1577 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1578 specifies the first register number and these registers are included in
1579 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1580 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1581 */
1582
1583 void gdb_register_coprocessor(CPUState * env,
1584 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1585 int num_regs, const char *xml, int g_pos)
1586 {
1587 GDBRegisterState *s;
1588 GDBRegisterState **p;
1589 static int last_reg = NUM_CORE_REGS;
1590
1591 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1592 s->base_reg = last_reg;
1593 s->num_regs = num_regs;
1594 s->get_reg = get_reg;
1595 s->set_reg = set_reg;
1596 s->xml = xml;
1597 p = &env->gdb_regs;
1598 while (*p) {
1599 /* Check for duplicates. */
1600 if (strcmp((*p)->xml, xml) == 0)
1601 return;
1602 p = &(*p)->next;
1603 }
1604 /* Add to end of list. */
1605 last_reg += num_regs;
1606 *p = s;
1607 if (g_pos) {
1608 if (g_pos != s->base_reg) {
1609 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1610 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1611 } else {
1612 num_g_regs = last_reg;
1613 }
1614 }
1615 }
1616
1617 #ifndef CONFIG_USER_ONLY
1618 static const int xlat_gdb_type[] = {
1619 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1620 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1621 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1622 };
1623 #endif
1624
1625 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1626 {
1627 CPUState *env;
1628 int err = 0;
1629
1630 if (kvm_enabled())
1631 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1632
1633 switch (type) {
1634 case GDB_BREAKPOINT_SW:
1635 case GDB_BREAKPOINT_HW:
1636 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1637 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1638 if (err)
1639 break;
1640 }
1641 return err;
1642 #ifndef CONFIG_USER_ONLY
1643 case GDB_WATCHPOINT_WRITE:
1644 case GDB_WATCHPOINT_READ:
1645 case GDB_WATCHPOINT_ACCESS:
1646 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1647 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1648 NULL);
1649 if (err)
1650 break;
1651 }
1652 return err;
1653 #endif
1654 default:
1655 return -ENOSYS;
1656 }
1657 }
1658
1659 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1660 {
1661 CPUState *env;
1662 int err = 0;
1663
1664 if (kvm_enabled())
1665 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1666
1667 switch (type) {
1668 case GDB_BREAKPOINT_SW:
1669 case GDB_BREAKPOINT_HW:
1670 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1671 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1672 if (err)
1673 break;
1674 }
1675 return err;
1676 #ifndef CONFIG_USER_ONLY
1677 case GDB_WATCHPOINT_WRITE:
1678 case GDB_WATCHPOINT_READ:
1679 case GDB_WATCHPOINT_ACCESS:
1680 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1681 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1682 if (err)
1683 break;
1684 }
1685 return err;
1686 #endif
1687 default:
1688 return -ENOSYS;
1689 }
1690 }
1691
1692 static void gdb_breakpoint_remove_all(void)
1693 {
1694 CPUState *env;
1695
1696 if (kvm_enabled()) {
1697 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1698 return;
1699 }
1700
1701 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1702 cpu_breakpoint_remove_all(env, BP_GDB);
1703 #ifndef CONFIG_USER_ONLY
1704 cpu_watchpoint_remove_all(env, BP_GDB);
1705 #endif
1706 }
1707 }
1708
1709 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1710 {
1711 #if defined(TARGET_I386)
1712 cpu_synchronize_state(s->c_cpu);
1713 s->c_cpu->eip = pc;
1714 #elif defined (TARGET_PPC)
1715 s->c_cpu->nip = pc;
1716 #elif defined (TARGET_SPARC)
1717 s->c_cpu->pc = pc;
1718 s->c_cpu->npc = pc + 4;
1719 #elif defined (TARGET_ARM)
1720 s->c_cpu->regs[15] = pc;
1721 #elif defined (TARGET_SH4)
1722 s->c_cpu->pc = pc;
1723 #elif defined (TARGET_MIPS)
1724 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1725 if (pc & 1) {
1726 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1727 } else {
1728 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1729 }
1730 #elif defined (TARGET_MICROBLAZE)
1731 s->c_cpu->sregs[SR_PC] = pc;
1732 #elif defined (TARGET_CRIS)
1733 s->c_cpu->pc = pc;
1734 #elif defined (TARGET_ALPHA)
1735 s->c_cpu->pc = pc;
1736 #elif defined (TARGET_S390X)
1737 cpu_synchronize_state(s->c_cpu);
1738 s->c_cpu->psw.addr = pc;
1739 #endif
1740 }
1741
1742 static inline int gdb_id(CPUState *env)
1743 {
1744 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1745 return env->host_tid;
1746 #else
1747 return env->cpu_index + 1;
1748 #endif
1749 }
1750
1751 static CPUState *find_cpu(uint32_t thread_id)
1752 {
1753 CPUState *env;
1754
1755 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1756 if (gdb_id(env) == thread_id) {
1757 return env;
1758 }
1759 }
1760
1761 return NULL;
1762 }
1763
1764 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1765 {
1766 CPUState *env;
1767 const char *p;
1768 uint32_t thread;
1769 int ch, reg_size, type, res;
1770 char buf[MAX_PACKET_LENGTH];
1771 uint8_t mem_buf[MAX_PACKET_LENGTH];
1772 uint8_t *registers;
1773 target_ulong addr, len;
1774
1775 #ifdef DEBUG_GDB
1776 printf("command='%s'\n", line_buf);
1777 #endif
1778 p = line_buf;
1779 ch = *p++;
1780 switch(ch) {
1781 case '?':
1782 /* TODO: Make this return the correct value for user-mode. */
1783 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1784 gdb_id(s->c_cpu));
1785 put_packet(s, buf);
1786 /* Remove all the breakpoints when this query is issued,
1787 * because gdb is doing and initial connect and the state
1788 * should be cleaned up.
1789 */
1790 gdb_breakpoint_remove_all();
1791 break;
1792 case 'c':
1793 if (*p != '\0') {
1794 addr = strtoull(p, (char **)&p, 16);
1795 gdb_set_cpu_pc(s, addr);
1796 }
1797 s->signal = 0;
1798 gdb_continue(s);
1799 return RS_IDLE;
1800 case 'C':
1801 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1802 if (s->signal == -1)
1803 s->signal = 0;
1804 gdb_continue(s);
1805 return RS_IDLE;
1806 case 'v':
1807 if (strncmp(p, "Cont", 4) == 0) {
1808 int res_signal, res_thread;
1809
1810 p += 4;
1811 if (*p == '?') {
1812 put_packet(s, "vCont;c;C;s;S");
1813 break;
1814 }
1815 res = 0;
1816 res_signal = 0;
1817 res_thread = 0;
1818 while (*p) {
1819 int action, signal;
1820
1821 if (*p++ != ';') {
1822 res = 0;
1823 break;
1824 }
1825 action = *p++;
1826 signal = 0;
1827 if (action == 'C' || action == 'S') {
1828 signal = strtoul(p, (char **)&p, 16);
1829 } else if (action != 'c' && action != 's') {
1830 res = 0;
1831 break;
1832 }
1833 thread = 0;
1834 if (*p == ':') {
1835 thread = strtoull(p+1, (char **)&p, 16);
1836 }
1837 action = tolower(action);
1838 if (res == 0 || (res == 'c' && action == 's')) {
1839 res = action;
1840 res_signal = signal;
1841 res_thread = thread;
1842 }
1843 }
1844 if (res) {
1845 if (res_thread != -1 && res_thread != 0) {
1846 env = find_cpu(res_thread);
1847 if (env == NULL) {
1848 put_packet(s, "E22");
1849 break;
1850 }
1851 s->c_cpu = env;
1852 }
1853 if (res == 's') {
1854 cpu_single_step(s->c_cpu, sstep_flags);
1855 }
1856 s->signal = res_signal;
1857 gdb_continue(s);
1858 return RS_IDLE;
1859 }
1860 break;
1861 } else {
1862 goto unknown_command;
1863 }
1864 case 'k':
1865 /* Kill the target */
1866 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1867 exit(0);
1868 case 'D':
1869 /* Detach packet */
1870 gdb_breakpoint_remove_all();
1871 gdb_syscall_mode = GDB_SYS_DISABLED;
1872 gdb_continue(s);
1873 put_packet(s, "OK");
1874 break;
1875 case 's':
1876 if (*p != '\0') {
1877 addr = strtoull(p, (char **)&p, 16);
1878 gdb_set_cpu_pc(s, addr);
1879 }
1880 cpu_single_step(s->c_cpu, sstep_flags);
1881 gdb_continue(s);
1882 return RS_IDLE;
1883 case 'F':
1884 {
1885 target_ulong ret;
1886 target_ulong err;
1887
1888 ret = strtoull(p, (char **)&p, 16);
1889 if (*p == ',') {
1890 p++;
1891 err = strtoull(p, (char **)&p, 16);
1892 } else {
1893 err = 0;
1894 }
1895 if (*p == ',')
1896 p++;
1897 type = *p;
1898 if (gdb_current_syscall_cb)
1899 gdb_current_syscall_cb(s->c_cpu, ret, err);
1900 if (type == 'C') {
1901 put_packet(s, "T02");
1902 } else {
1903 gdb_continue(s);
1904 }
1905 }
1906 break;
1907 case 'g':
1908 cpu_synchronize_state(s->g_cpu);
1909 len = 0;
1910 for (addr = 0; addr < num_g_regs; addr++) {
1911 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1912 len += reg_size;
1913 }
1914 memtohex(buf, mem_buf, len);
1915 put_packet(s, buf);
1916 break;
1917 case 'G':
1918 cpu_synchronize_state(s->g_cpu);
1919 registers = mem_buf;
1920 len = strlen(p) / 2;
1921 hextomem((uint8_t *)registers, p, len);
1922 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1923 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1924 len -= reg_size;
1925 registers += reg_size;
1926 }
1927 put_packet(s, "OK");
1928 break;
1929 case 'm':
1930 addr = strtoull(p, (char **)&p, 16);
1931 if (*p == ',')
1932 p++;
1933 len = strtoull(p, NULL, 16);
1934 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1935 put_packet (s, "E14");
1936 } else {
1937 memtohex(buf, mem_buf, len);
1938 put_packet(s, buf);
1939 }
1940 break;
1941 case 'M':
1942 addr = strtoull(p, (char **)&p, 16);
1943 if (*p == ',')
1944 p++;
1945 len = strtoull(p, (char **)&p, 16);
1946 if (*p == ':')
1947 p++;
1948 hextomem(mem_buf, p, len);
1949 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1950 put_packet(s, "E14");
1951 else
1952 put_packet(s, "OK");
1953 break;
1954 case 'p':
1955 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1956 This works, but can be very slow. Anything new enough to
1957 understand XML also knows how to use this properly. */
1958 if (!gdb_has_xml)
1959 goto unknown_command;
1960 addr = strtoull(p, (char **)&p, 16);
1961 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1962 if (reg_size) {
1963 memtohex(buf, mem_buf, reg_size);
1964 put_packet(s, buf);
1965 } else {
1966 put_packet(s, "E14");
1967 }
1968 break;
1969 case 'P':
1970 if (!gdb_has_xml)
1971 goto unknown_command;
1972 addr = strtoull(p, (char **)&p, 16);
1973 if (*p == '=')
1974 p++;
1975 reg_size = strlen(p) / 2;
1976 hextomem(mem_buf, p, reg_size);
1977 gdb_write_register(s->g_cpu, mem_buf, addr);
1978 put_packet(s, "OK");
1979 break;
1980 case 'Z':
1981 case 'z':
1982 type = strtoul(p, (char **)&p, 16);
1983 if (*p == ',')
1984 p++;
1985 addr = strtoull(p, (char **)&p, 16);
1986 if (*p == ',')
1987 p++;
1988 len = strtoull(p, (char **)&p, 16);
1989 if (ch == 'Z')
1990 res = gdb_breakpoint_insert(addr, len, type);
1991 else
1992 res = gdb_breakpoint_remove(addr, len, type);
1993 if (res >= 0)
1994 put_packet(s, "OK");
1995 else if (res == -ENOSYS)
1996 put_packet(s, "");
1997 else
1998 put_packet(s, "E22");
1999 break;
2000 case 'H':
2001 type = *p++;
2002 thread = strtoull(p, (char **)&p, 16);
2003 if (thread == -1 || thread == 0) {
2004 put_packet(s, "OK");
2005 break;
2006 }
2007 env = find_cpu(thread);
2008 if (env == NULL) {
2009 put_packet(s, "E22");
2010 break;
2011 }
2012 switch (type) {
2013 case 'c':
2014 s->c_cpu = env;
2015 put_packet(s, "OK");
2016 break;
2017 case 'g':
2018 s->g_cpu = env;
2019 put_packet(s, "OK");
2020 break;
2021 default:
2022 put_packet(s, "E22");
2023 break;
2024 }
2025 break;
2026 case 'T':
2027 thread = strtoull(p, (char **)&p, 16);
2028 env = find_cpu(thread);
2029
2030 if (env != NULL) {
2031 put_packet(s, "OK");
2032 } else {
2033 put_packet(s, "E22");
2034 }
2035 break;
2036 case 'q':
2037 case 'Q':
2038 /* parse any 'q' packets here */
2039 if (!strcmp(p,"qemu.sstepbits")) {
2040 /* Query Breakpoint bit definitions */
2041 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2042 SSTEP_ENABLE,
2043 SSTEP_NOIRQ,
2044 SSTEP_NOTIMER);
2045 put_packet(s, buf);
2046 break;
2047 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2048 /* Display or change the sstep_flags */
2049 p += 10;
2050 if (*p != '=') {
2051 /* Display current setting */
2052 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2053 put_packet(s, buf);
2054 break;
2055 }
2056 p++;
2057 type = strtoul(p, (char **)&p, 16);
2058 sstep_flags = type;
2059 put_packet(s, "OK");
2060 break;
2061 } else if (strcmp(p,"C") == 0) {
2062 /* "Current thread" remains vague in the spec, so always return
2063 * the first CPU (gdb returns the first thread). */
2064 put_packet(s, "QC1");
2065 break;
2066 } else if (strcmp(p,"fThreadInfo") == 0) {
2067 s->query_cpu = first_cpu;
2068 goto report_cpuinfo;
2069 } else if (strcmp(p,"sThreadInfo") == 0) {
2070 report_cpuinfo:
2071 if (s->query_cpu) {
2072 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2073 put_packet(s, buf);
2074 s->query_cpu = s->query_cpu->next_cpu;
2075 } else
2076 put_packet(s, "l");
2077 break;
2078 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2079 thread = strtoull(p+16, (char **)&p, 16);
2080 env = find_cpu(thread);
2081 if (env != NULL) {
2082 cpu_synchronize_state(env);
2083 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2084 "CPU#%d [%s]", env->cpu_index,
2085 env->halted ? "halted " : "running");
2086 memtohex(buf, mem_buf, len);
2087 put_packet(s, buf);
2088 }
2089 break;
2090 }
2091 #ifdef CONFIG_USER_ONLY
2092 else if (strncmp(p, "Offsets", 7) == 0) {
2093 TaskState *ts = s->c_cpu->opaque;
2094
2095 snprintf(buf, sizeof(buf),
2096 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2097 ";Bss=" TARGET_ABI_FMT_lx,
2098 ts->info->code_offset,
2099 ts->info->data_offset,
2100 ts->info->data_offset);
2101 put_packet(s, buf);
2102 break;
2103 }
2104 #else /* !CONFIG_USER_ONLY */
2105 else if (strncmp(p, "Rcmd,", 5) == 0) {
2106 int len = strlen(p + 5);
2107
2108 if ((len % 2) != 0) {
2109 put_packet(s, "E01");
2110 break;
2111 }
2112 hextomem(mem_buf, p + 5, len);
2113 len = len / 2;
2114 mem_buf[len++] = 0;
2115 qemu_chr_read(s->mon_chr, mem_buf, len);
2116 put_packet(s, "OK");
2117 break;
2118 }
2119 #endif /* !CONFIG_USER_ONLY */
2120 if (strncmp(p, "Supported", 9) == 0) {
2121 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2122 #ifdef GDB_CORE_XML
2123 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2124 #endif
2125 put_packet(s, buf);
2126 break;
2127 }
2128 #ifdef GDB_CORE_XML
2129 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2130 const char *xml;
2131 target_ulong total_len;
2132
2133 gdb_has_xml = 1;
2134 p += 19;
2135 xml = get_feature_xml(p, &p);
2136 if (!xml) {
2137 snprintf(buf, sizeof(buf), "E00");
2138 put_packet(s, buf);
2139 break;
2140 }
2141
2142 if (*p == ':')
2143 p++;
2144 addr = strtoul(p, (char **)&p, 16);
2145 if (*p == ',')
2146 p++;
2147 len = strtoul(p, (char **)&p, 16);
2148
2149 total_len = strlen(xml);
2150 if (addr > total_len) {
2151 snprintf(buf, sizeof(buf), "E00");
2152 put_packet(s, buf);
2153 break;
2154 }
2155 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2156 len = (MAX_PACKET_LENGTH - 5) / 2;
2157 if (len < total_len - addr) {
2158 buf[0] = 'm';
2159 len = memtox(buf + 1, xml + addr, len);
2160 } else {
2161 buf[0] = 'l';
2162 len = memtox(buf + 1, xml + addr, total_len - addr);
2163 }
2164 put_packet_binary(s, buf, len + 1);
2165 break;
2166 }
2167 #endif
2168 /* Unrecognised 'q' command. */
2169 goto unknown_command;
2170
2171 default:
2172 unknown_command:
2173 /* put empty packet */
2174 buf[0] = '\0';
2175 put_packet(s, buf);
2176 break;
2177 }
2178 return RS_IDLE;
2179 }
2180
2181 void gdb_set_stop_cpu(CPUState *env)
2182 {
2183 gdbserver_state->c_cpu = env;
2184 gdbserver_state->g_cpu = env;
2185 }
2186
2187 #ifndef CONFIG_USER_ONLY
2188 static void gdb_vm_state_change(void *opaque, int running, int reason)
2189 {
2190 GDBState *s = gdbserver_state;
2191 CPUState *env = s->c_cpu;
2192 char buf[256];
2193 const char *type;
2194 int ret;
2195
2196 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2197 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
2198 return;
2199
2200 /* disable single step if it was enable */
2201 cpu_single_step(env, 0);
2202
2203 if (reason == EXCP_DEBUG) {
2204 if (env->watchpoint_hit) {
2205 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2206 case BP_MEM_READ:
2207 type = "r";
2208 break;
2209 case BP_MEM_ACCESS:
2210 type = "a";
2211 break;
2212 default:
2213 type = "";
2214 break;
2215 }
2216 snprintf(buf, sizeof(buf),
2217 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2218 GDB_SIGNAL_TRAP, gdb_id(env), type,
2219 env->watchpoint_hit->vaddr);
2220 put_packet(s, buf);
2221 env->watchpoint_hit = NULL;
2222 return;
2223 }
2224 tb_flush(env);
2225 ret = GDB_SIGNAL_TRAP;
2226 } else {
2227 ret = GDB_SIGNAL_INT;
2228 }
2229 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2230 put_packet(s, buf);
2231 }
2232 #endif
2233
2234 /* Send a gdb syscall request.
2235 This accepts limited printf-style format specifiers, specifically:
2236 %x - target_ulong argument printed in hex.
2237 %lx - 64-bit argument printed in hex.
2238 %s - string pointer (target_ulong) and length (int) pair. */
2239 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2240 {
2241 va_list va;
2242 char buf[256];
2243 char *p;
2244 target_ulong addr;
2245 uint64_t i64;
2246 GDBState *s;
2247
2248 s = gdbserver_state;
2249 if (!s)
2250 return;
2251 gdb_current_syscall_cb = cb;
2252 s->state = RS_SYSCALL;
2253 #ifndef CONFIG_USER_ONLY
2254 vm_stop(EXCP_DEBUG);
2255 #endif
2256 s->state = RS_IDLE;
2257 va_start(va, fmt);
2258 p = buf;
2259 *(p++) = 'F';
2260 while (*fmt) {
2261 if (*fmt == '%') {
2262 fmt++;
2263 switch (*fmt++) {
2264 case 'x':
2265 addr = va_arg(va, target_ulong);
2266 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2267 break;
2268 case 'l':
2269 if (*(fmt++) != 'x')
2270 goto bad_format;
2271 i64 = va_arg(va, uint64_t);
2272 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2273 break;
2274 case 's':
2275 addr = va_arg(va, target_ulong);
2276 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2277 addr, va_arg(va, int));
2278 break;
2279 default:
2280 bad_format:
2281 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2282 fmt - 1);
2283 break;
2284 }
2285 } else {
2286 *(p++) = *(fmt++);
2287 }
2288 }
2289 *p = 0;
2290 va_end(va);
2291 put_packet(s, buf);
2292 #ifdef CONFIG_USER_ONLY
2293 gdb_handlesig(s->c_cpu, 0);
2294 #else
2295 cpu_exit(s->c_cpu);
2296 #endif
2297 }
2298
2299 static void gdb_read_byte(GDBState *s, int ch)
2300 {
2301 int i, csum;
2302 uint8_t reply;
2303
2304 #ifndef CONFIG_USER_ONLY
2305 if (s->last_packet_len) {
2306 /* Waiting for a response to the last packet. If we see the start
2307 of a new command then abandon the previous response. */
2308 if (ch == '-') {
2309 #ifdef DEBUG_GDB
2310 printf("Got NACK, retransmitting\n");
2311 #endif
2312 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2313 }
2314 #ifdef DEBUG_GDB
2315 else if (ch == '+')
2316 printf("Got ACK\n");
2317 else
2318 printf("Got '%c' when expecting ACK/NACK\n", ch);
2319 #endif
2320 if (ch == '+' || ch == '$')
2321 s->last_packet_len = 0;
2322 if (ch != '$')
2323 return;
2324 }
2325 if (vm_running) {
2326 /* when the CPU is running, we cannot do anything except stop
2327 it when receiving a char */
2328 vm_stop(EXCP_INTERRUPT);
2329 } else
2330 #endif
2331 {
2332 switch(s->state) {
2333 case RS_IDLE:
2334 if (ch == '$') {
2335 s->line_buf_index = 0;
2336 s->state = RS_GETLINE;
2337 }
2338 break;
2339 case RS_GETLINE:
2340 if (ch == '#') {
2341 s->state = RS_CHKSUM1;
2342 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2343 s->state = RS_IDLE;
2344 } else {
2345 s->line_buf[s->line_buf_index++] = ch;
2346 }
2347 break;
2348 case RS_CHKSUM1:
2349 s->line_buf[s->line_buf_index] = '\0';
2350 s->line_csum = fromhex(ch) << 4;
2351 s->state = RS_CHKSUM2;
2352 break;
2353 case RS_CHKSUM2:
2354 s->line_csum |= fromhex(ch);
2355 csum = 0;
2356 for(i = 0; i < s->line_buf_index; i++) {
2357 csum += s->line_buf[i];
2358 }
2359 if (s->line_csum != (csum & 0xff)) {
2360 reply = '-';
2361 put_buffer(s, &reply, 1);
2362 s->state = RS_IDLE;
2363 } else {
2364 reply = '+';
2365 put_buffer(s, &reply, 1);
2366 s->state = gdb_handle_packet(s, s->line_buf);
2367 }
2368 break;
2369 default:
2370 abort();
2371 }
2372 }
2373 }
2374
2375 #ifdef CONFIG_USER_ONLY
2376 int
2377 gdb_queuesig (void)
2378 {
2379 GDBState *s;
2380
2381 s = gdbserver_state;
2382
2383 if (gdbserver_fd < 0 || s->fd < 0)
2384 return 0;
2385 else
2386 return 1;
2387 }
2388
2389 int
2390 gdb_handlesig (CPUState *env, int sig)
2391 {
2392 GDBState *s;
2393 char buf[256];
2394 int n;
2395
2396 s = gdbserver_state;
2397 if (gdbserver_fd < 0 || s->fd < 0)
2398 return sig;
2399
2400 /* disable single step if it was enabled */
2401 cpu_single_step(env, 0);
2402 tb_flush(env);
2403
2404 if (sig != 0)
2405 {
2406 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2407 put_packet(s, buf);
2408 }
2409 /* put_packet() might have detected that the peer terminated the
2410 connection. */
2411 if (s->fd < 0)
2412 return sig;
2413
2414 sig = 0;
2415 s->state = RS_IDLE;
2416 s->running_state = 0;
2417 while (s->running_state == 0) {
2418 n = read (s->fd, buf, 256);
2419 if (n > 0)
2420 {
2421 int i;
2422
2423 for (i = 0; i < n; i++)
2424 gdb_read_byte (s, buf[i]);
2425 }
2426 else if (n == 0 || errno != EAGAIN)
2427 {
2428 /* XXX: Connection closed. Should probably wait for annother
2429 connection before continuing. */
2430 return sig;
2431 }
2432 }
2433 sig = s->signal;
2434 s->signal = 0;
2435 return sig;
2436 }
2437
2438 /* Tell the remote gdb that the process has exited. */
2439 void gdb_exit(CPUState *env, int code)
2440 {
2441 GDBState *s;
2442 char buf[4];
2443
2444 s = gdbserver_state;
2445 if (gdbserver_fd < 0 || s->fd < 0)
2446 return;
2447
2448 snprintf(buf, sizeof(buf), "W%02x", code);
2449 put_packet(s, buf);
2450 }
2451
2452 /* Tell the remote gdb that the process has exited due to SIG. */
2453 void gdb_signalled(CPUState *env, int sig)
2454 {
2455 GDBState *s;
2456 char buf[4];
2457
2458 s = gdbserver_state;
2459 if (gdbserver_fd < 0 || s->fd < 0)
2460 return;
2461
2462 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2463 put_packet(s, buf);
2464 }
2465
2466 static void gdb_accept(void)
2467 {
2468 GDBState *s;
2469 struct sockaddr_in sockaddr;
2470 socklen_t len;
2471 int val, fd;
2472
2473 for(;;) {
2474 len = sizeof(sockaddr);
2475 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2476 if (fd < 0 && errno != EINTR) {
2477 perror("accept");
2478 return;
2479 } else if (fd >= 0) {
2480 #ifndef _WIN32
2481 fcntl(fd, F_SETFD, FD_CLOEXEC);
2482 #endif
2483 break;
2484 }
2485 }
2486
2487 /* set short latency */
2488 val = 1;
2489 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2490
2491 s = qemu_mallocz(sizeof(GDBState));
2492 s->c_cpu = first_cpu;
2493 s->g_cpu = first_cpu;
2494 s->fd = fd;
2495 gdb_has_xml = 0;
2496
2497 gdbserver_state = s;
2498
2499 fcntl(fd, F_SETFL, O_NONBLOCK);
2500 }
2501
2502 static int gdbserver_open(int port)
2503 {
2504 struct sockaddr_in sockaddr;
2505 int fd, val, ret;
2506
2507 fd = socket(PF_INET, SOCK_STREAM, 0);
2508 if (fd < 0) {
2509 perror("socket");
2510 return -1;
2511 }
2512 #ifndef _WIN32
2513 fcntl(fd, F_SETFD, FD_CLOEXEC);
2514 #endif
2515
2516 /* allow fast reuse */
2517 val = 1;
2518 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2519
2520 sockaddr.sin_family = AF_INET;
2521 sockaddr.sin_port = htons(port);
2522 sockaddr.sin_addr.s_addr = 0;
2523 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2524 if (ret < 0) {
2525 perror("bind");
2526 return -1;
2527 }
2528 ret = listen(fd, 0);
2529 if (ret < 0) {
2530 perror("listen");
2531 return -1;
2532 }
2533 return fd;
2534 }
2535
2536 int gdbserver_start(int port)
2537 {
2538 gdbserver_fd = gdbserver_open(port);
2539 if (gdbserver_fd < 0)
2540 return -1;
2541 /* accept connections */
2542 gdb_accept();
2543 return 0;
2544 }
2545
2546 /* Disable gdb stub for child processes. */
2547 void gdbserver_fork(CPUState *env)
2548 {
2549 GDBState *s = gdbserver_state;
2550 if (gdbserver_fd < 0 || s->fd < 0)
2551 return;
2552 close(s->fd);
2553 s->fd = -1;
2554 cpu_breakpoint_remove_all(env, BP_GDB);
2555 cpu_watchpoint_remove_all(env, BP_GDB);
2556 }
2557 #else
2558 static int gdb_chr_can_receive(void *opaque)
2559 {
2560 /* We can handle an arbitrarily large amount of data.
2561 Pick the maximum packet size, which is as good as anything. */
2562 return MAX_PACKET_LENGTH;
2563 }
2564
2565 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2566 {
2567 int i;
2568
2569 for (i = 0; i < size; i++) {
2570 gdb_read_byte(gdbserver_state, buf[i]);
2571 }
2572 }
2573
2574 static void gdb_chr_event(void *opaque, int event)
2575 {
2576 switch (event) {
2577 case CHR_EVENT_OPENED:
2578 vm_stop(EXCP_INTERRUPT);
2579 gdb_has_xml = 0;
2580 break;
2581 default:
2582 break;
2583 }
2584 }
2585
2586 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2587 {
2588 char buf[MAX_PACKET_LENGTH];
2589
2590 buf[0] = 'O';
2591 if (len > (MAX_PACKET_LENGTH/2) - 1)
2592 len = (MAX_PACKET_LENGTH/2) - 1;
2593 memtohex(buf + 1, (uint8_t *)msg, len);
2594 put_packet(s, buf);
2595 }
2596
2597 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2598 {
2599 const char *p = (const char *)buf;
2600 int max_sz;
2601
2602 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2603 for (;;) {
2604 if (len <= max_sz) {
2605 gdb_monitor_output(gdbserver_state, p, len);
2606 break;
2607 }
2608 gdb_monitor_output(gdbserver_state, p, max_sz);
2609 p += max_sz;
2610 len -= max_sz;
2611 }
2612 return len;
2613 }
2614
2615 #ifndef _WIN32
2616 static void gdb_sigterm_handler(int signal)
2617 {
2618 if (vm_running)
2619 vm_stop(EXCP_INTERRUPT);
2620 }
2621 #endif
2622
2623 int gdbserver_start(const char *device)
2624 {
2625 GDBState *s;
2626 char gdbstub_device_name[128];
2627 CharDriverState *chr = NULL;
2628 CharDriverState *mon_chr;
2629
2630 if (!device)
2631 return -1;
2632 if (strcmp(device, "none") != 0) {
2633 if (strstart(device, "tcp:", NULL)) {
2634 /* enforce required TCP attributes */
2635 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2636 "%s,nowait,nodelay,server", device);
2637 device = gdbstub_device_name;
2638 }
2639 #ifndef _WIN32
2640 else if (strcmp(device, "stdio") == 0) {
2641 struct sigaction act;
2642
2643 memset(&act, 0, sizeof(act));
2644 act.sa_handler = gdb_sigterm_handler;
2645 sigaction(SIGINT, &act, NULL);
2646 }
2647 #endif
2648 chr = qemu_chr_open("gdb", device, NULL);
2649 if (!chr)
2650 return -1;
2651
2652 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2653 gdb_chr_event, NULL);
2654 }
2655
2656 s = gdbserver_state;
2657 if (!s) {
2658 s = qemu_mallocz(sizeof(GDBState));
2659 gdbserver_state = s;
2660
2661 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2662
2663 /* Initialize a monitor terminal for gdb */
2664 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2665 mon_chr->chr_write = gdb_monitor_write;
2666 monitor_init(mon_chr, 0);
2667 } else {
2668 if (s->chr)
2669 qemu_chr_close(s->chr);
2670 mon_chr = s->mon_chr;
2671 memset(s, 0, sizeof(GDBState));
2672 }
2673 s->c_cpu = first_cpu;
2674 s->g_cpu = first_cpu;
2675 s->chr = chr;
2676 s->state = chr ? RS_IDLE : RS_INACTIVE;
2677 s->mon_chr = mon_chr;
2678
2679 return 0;
2680 }
2681 #endif