]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
gdbstub: processes initialization on new peer connection
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "qemu/cutils.h"
23 #include "trace-root.h"
24 #ifdef CONFIG_USER_ONLY
25 #include "qemu.h"
26 #else
27 #include "monitor/monitor.h"
28 #include "chardev/char.h"
29 #include "chardev/char-fe.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/gdbstub.h"
32 #include "hw/cpu/cluster.h"
33 #endif
34
35 #define MAX_PACKET_LENGTH 4096
36
37 #include "qemu/sockets.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "exec/semihost.h"
41 #include "exec/exec-all.h"
42
43 #ifdef CONFIG_USER_ONLY
44 #define GDB_ATTACHED "0"
45 #else
46 #define GDB_ATTACHED "1"
47 #endif
48
49 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
50 uint8_t *buf, int len, bool is_write)
51 {
52 CPUClass *cc = CPU_GET_CLASS(cpu);
53
54 if (cc->memory_rw_debug) {
55 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
56 }
57 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
58 }
59
60 /* Return the GDB index for a given vCPU state.
61 *
62 * For user mode this is simply the thread id. In system mode GDB
63 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
64 */
65 static inline int cpu_gdb_index(CPUState *cpu)
66 {
67 #if defined(CONFIG_USER_ONLY)
68 TaskState *ts = (TaskState *) cpu->opaque;
69 return ts->ts_tid;
70 #else
71 return cpu->cpu_index + 1;
72 #endif
73 }
74
75 enum {
76 GDB_SIGNAL_0 = 0,
77 GDB_SIGNAL_INT = 2,
78 GDB_SIGNAL_QUIT = 3,
79 GDB_SIGNAL_TRAP = 5,
80 GDB_SIGNAL_ABRT = 6,
81 GDB_SIGNAL_ALRM = 14,
82 GDB_SIGNAL_IO = 23,
83 GDB_SIGNAL_XCPU = 24,
84 GDB_SIGNAL_UNKNOWN = 143
85 };
86
87 #ifdef CONFIG_USER_ONLY
88
89 /* Map target signal numbers to GDB protocol signal numbers and vice
90 * versa. For user emulation's currently supported systems, we can
91 * assume most signals are defined.
92 */
93
94 static int gdb_signal_table[] = {
95 0,
96 TARGET_SIGHUP,
97 TARGET_SIGINT,
98 TARGET_SIGQUIT,
99 TARGET_SIGILL,
100 TARGET_SIGTRAP,
101 TARGET_SIGABRT,
102 -1, /* SIGEMT */
103 TARGET_SIGFPE,
104 TARGET_SIGKILL,
105 TARGET_SIGBUS,
106 TARGET_SIGSEGV,
107 TARGET_SIGSYS,
108 TARGET_SIGPIPE,
109 TARGET_SIGALRM,
110 TARGET_SIGTERM,
111 TARGET_SIGURG,
112 TARGET_SIGSTOP,
113 TARGET_SIGTSTP,
114 TARGET_SIGCONT,
115 TARGET_SIGCHLD,
116 TARGET_SIGTTIN,
117 TARGET_SIGTTOU,
118 TARGET_SIGIO,
119 TARGET_SIGXCPU,
120 TARGET_SIGXFSZ,
121 TARGET_SIGVTALRM,
122 TARGET_SIGPROF,
123 TARGET_SIGWINCH,
124 -1, /* SIGLOST */
125 TARGET_SIGUSR1,
126 TARGET_SIGUSR2,
127 #ifdef TARGET_SIGPWR
128 TARGET_SIGPWR,
129 #else
130 -1,
131 #endif
132 -1, /* SIGPOLL */
133 -1,
134 -1,
135 -1,
136 -1,
137 -1,
138 -1,
139 -1,
140 -1,
141 -1,
142 -1,
143 -1,
144 #ifdef __SIGRTMIN
145 __SIGRTMIN + 1,
146 __SIGRTMIN + 2,
147 __SIGRTMIN + 3,
148 __SIGRTMIN + 4,
149 __SIGRTMIN + 5,
150 __SIGRTMIN + 6,
151 __SIGRTMIN + 7,
152 __SIGRTMIN + 8,
153 __SIGRTMIN + 9,
154 __SIGRTMIN + 10,
155 __SIGRTMIN + 11,
156 __SIGRTMIN + 12,
157 __SIGRTMIN + 13,
158 __SIGRTMIN + 14,
159 __SIGRTMIN + 15,
160 __SIGRTMIN + 16,
161 __SIGRTMIN + 17,
162 __SIGRTMIN + 18,
163 __SIGRTMIN + 19,
164 __SIGRTMIN + 20,
165 __SIGRTMIN + 21,
166 __SIGRTMIN + 22,
167 __SIGRTMIN + 23,
168 __SIGRTMIN + 24,
169 __SIGRTMIN + 25,
170 __SIGRTMIN + 26,
171 __SIGRTMIN + 27,
172 __SIGRTMIN + 28,
173 __SIGRTMIN + 29,
174 __SIGRTMIN + 30,
175 __SIGRTMIN + 31,
176 -1, /* SIGCANCEL */
177 __SIGRTMIN,
178 __SIGRTMIN + 32,
179 __SIGRTMIN + 33,
180 __SIGRTMIN + 34,
181 __SIGRTMIN + 35,
182 __SIGRTMIN + 36,
183 __SIGRTMIN + 37,
184 __SIGRTMIN + 38,
185 __SIGRTMIN + 39,
186 __SIGRTMIN + 40,
187 __SIGRTMIN + 41,
188 __SIGRTMIN + 42,
189 __SIGRTMIN + 43,
190 __SIGRTMIN + 44,
191 __SIGRTMIN + 45,
192 __SIGRTMIN + 46,
193 __SIGRTMIN + 47,
194 __SIGRTMIN + 48,
195 __SIGRTMIN + 49,
196 __SIGRTMIN + 50,
197 __SIGRTMIN + 51,
198 __SIGRTMIN + 52,
199 __SIGRTMIN + 53,
200 __SIGRTMIN + 54,
201 __SIGRTMIN + 55,
202 __SIGRTMIN + 56,
203 __SIGRTMIN + 57,
204 __SIGRTMIN + 58,
205 __SIGRTMIN + 59,
206 __SIGRTMIN + 60,
207 __SIGRTMIN + 61,
208 __SIGRTMIN + 62,
209 __SIGRTMIN + 63,
210 __SIGRTMIN + 64,
211 __SIGRTMIN + 65,
212 __SIGRTMIN + 66,
213 __SIGRTMIN + 67,
214 __SIGRTMIN + 68,
215 __SIGRTMIN + 69,
216 __SIGRTMIN + 70,
217 __SIGRTMIN + 71,
218 __SIGRTMIN + 72,
219 __SIGRTMIN + 73,
220 __SIGRTMIN + 74,
221 __SIGRTMIN + 75,
222 __SIGRTMIN + 76,
223 __SIGRTMIN + 77,
224 __SIGRTMIN + 78,
225 __SIGRTMIN + 79,
226 __SIGRTMIN + 80,
227 __SIGRTMIN + 81,
228 __SIGRTMIN + 82,
229 __SIGRTMIN + 83,
230 __SIGRTMIN + 84,
231 __SIGRTMIN + 85,
232 __SIGRTMIN + 86,
233 __SIGRTMIN + 87,
234 __SIGRTMIN + 88,
235 __SIGRTMIN + 89,
236 __SIGRTMIN + 90,
237 __SIGRTMIN + 91,
238 __SIGRTMIN + 92,
239 __SIGRTMIN + 93,
240 __SIGRTMIN + 94,
241 __SIGRTMIN + 95,
242 -1, /* SIGINFO */
243 -1, /* UNKNOWN */
244 -1, /* DEFAULT */
245 -1,
246 -1,
247 -1,
248 -1,
249 -1,
250 -1
251 #endif
252 };
253 #else
254 /* In system mode we only need SIGINT and SIGTRAP; other signals
255 are not yet supported. */
256
257 enum {
258 TARGET_SIGINT = 2,
259 TARGET_SIGTRAP = 5
260 };
261
262 static int gdb_signal_table[] = {
263 -1,
264 -1,
265 TARGET_SIGINT,
266 -1,
267 -1,
268 TARGET_SIGTRAP
269 };
270 #endif
271
272 #ifdef CONFIG_USER_ONLY
273 static int target_signal_to_gdb (int sig)
274 {
275 int i;
276 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
277 if (gdb_signal_table[i] == sig)
278 return i;
279 return GDB_SIGNAL_UNKNOWN;
280 }
281 #endif
282
283 static int gdb_signal_to_target (int sig)
284 {
285 if (sig < ARRAY_SIZE (gdb_signal_table))
286 return gdb_signal_table[sig];
287 else
288 return -1;
289 }
290
291 typedef struct GDBRegisterState {
292 int base_reg;
293 int num_regs;
294 gdb_reg_cb get_reg;
295 gdb_reg_cb set_reg;
296 const char *xml;
297 struct GDBRegisterState *next;
298 } GDBRegisterState;
299
300 typedef struct GDBProcess {
301 uint32_t pid;
302 bool attached;
303
304 char target_xml[1024];
305 } GDBProcess;
306
307 enum RSState {
308 RS_INACTIVE,
309 RS_IDLE,
310 RS_GETLINE,
311 RS_GETLINE_ESC,
312 RS_GETLINE_RLE,
313 RS_CHKSUM1,
314 RS_CHKSUM2,
315 };
316 typedef struct GDBState {
317 CPUState *c_cpu; /* current CPU for step/continue ops */
318 CPUState *g_cpu; /* current CPU for other ops */
319 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
320 enum RSState state; /* parsing state */
321 char line_buf[MAX_PACKET_LENGTH];
322 int line_buf_index;
323 int line_sum; /* running checksum */
324 int line_csum; /* checksum at the end of the packet */
325 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
326 int last_packet_len;
327 int signal;
328 #ifdef CONFIG_USER_ONLY
329 int fd;
330 int running_state;
331 #else
332 CharBackend chr;
333 Chardev *mon_chr;
334 #endif
335 bool multiprocess;
336 GDBProcess *processes;
337 int process_num;
338 char syscall_buf[256];
339 gdb_syscall_complete_cb current_syscall_cb;
340 } GDBState;
341
342 /* By default use no IRQs and no timers while single stepping so as to
343 * make single stepping like an ICE HW step.
344 */
345 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
346
347 static GDBState *gdbserver_state;
348
349 bool gdb_has_xml;
350
351 #ifdef CONFIG_USER_ONLY
352 /* XXX: This is not thread safe. Do we care? */
353 static int gdbserver_fd = -1;
354
355 static int get_char(GDBState *s)
356 {
357 uint8_t ch;
358 int ret;
359
360 for(;;) {
361 ret = qemu_recv(s->fd, &ch, 1, 0);
362 if (ret < 0) {
363 if (errno == ECONNRESET)
364 s->fd = -1;
365 if (errno != EINTR)
366 return -1;
367 } else if (ret == 0) {
368 close(s->fd);
369 s->fd = -1;
370 return -1;
371 } else {
372 break;
373 }
374 }
375 return ch;
376 }
377 #endif
378
379 static enum {
380 GDB_SYS_UNKNOWN,
381 GDB_SYS_ENABLED,
382 GDB_SYS_DISABLED,
383 } gdb_syscall_mode;
384
385 /* Decide if either remote gdb syscalls or native file IO should be used. */
386 int use_gdb_syscalls(void)
387 {
388 SemihostingTarget target = semihosting_get_target();
389 if (target == SEMIHOSTING_TARGET_NATIVE) {
390 /* -semihosting-config target=native */
391 return false;
392 } else if (target == SEMIHOSTING_TARGET_GDB) {
393 /* -semihosting-config target=gdb */
394 return true;
395 }
396
397 /* -semihosting-config target=auto */
398 /* On the first call check if gdb is connected and remember. */
399 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
400 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
401 : GDB_SYS_DISABLED);
402 }
403 return gdb_syscall_mode == GDB_SYS_ENABLED;
404 }
405
406 /* Resume execution. */
407 static inline void gdb_continue(GDBState *s)
408 {
409
410 #ifdef CONFIG_USER_ONLY
411 s->running_state = 1;
412 trace_gdbstub_op_continue();
413 #else
414 if (!runstate_needs_reset()) {
415 trace_gdbstub_op_continue();
416 vm_start();
417 }
418 #endif
419 }
420
421 /*
422 * Resume execution, per CPU actions. For user-mode emulation it's
423 * equivalent to gdb_continue.
424 */
425 static int gdb_continue_partial(GDBState *s, char *newstates)
426 {
427 CPUState *cpu;
428 int res = 0;
429 #ifdef CONFIG_USER_ONLY
430 /*
431 * This is not exactly accurate, but it's an improvement compared to the
432 * previous situation, where only one CPU would be single-stepped.
433 */
434 CPU_FOREACH(cpu) {
435 if (newstates[cpu->cpu_index] == 's') {
436 trace_gdbstub_op_stepping(cpu->cpu_index);
437 cpu_single_step(cpu, sstep_flags);
438 }
439 }
440 s->running_state = 1;
441 #else
442 int flag = 0;
443
444 if (!runstate_needs_reset()) {
445 if (vm_prepare_start()) {
446 return 0;
447 }
448
449 CPU_FOREACH(cpu) {
450 switch (newstates[cpu->cpu_index]) {
451 case 0:
452 case 1:
453 break; /* nothing to do here */
454 case 's':
455 trace_gdbstub_op_stepping(cpu->cpu_index);
456 cpu_single_step(cpu, sstep_flags);
457 cpu_resume(cpu);
458 flag = 1;
459 break;
460 case 'c':
461 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
462 cpu_resume(cpu);
463 flag = 1;
464 break;
465 default:
466 res = -1;
467 break;
468 }
469 }
470 }
471 if (flag) {
472 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
473 }
474 #endif
475 return res;
476 }
477
478 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
479 {
480 #ifdef CONFIG_USER_ONLY
481 int ret;
482
483 while (len > 0) {
484 ret = send(s->fd, buf, len, 0);
485 if (ret < 0) {
486 if (errno != EINTR)
487 return;
488 } else {
489 buf += ret;
490 len -= ret;
491 }
492 }
493 #else
494 /* XXX this blocks entire thread. Rewrite to use
495 * qemu_chr_fe_write and background I/O callbacks */
496 qemu_chr_fe_write_all(&s->chr, buf, len);
497 #endif
498 }
499
500 static inline int fromhex(int v)
501 {
502 if (v >= '0' && v <= '9')
503 return v - '0';
504 else if (v >= 'A' && v <= 'F')
505 return v - 'A' + 10;
506 else if (v >= 'a' && v <= 'f')
507 return v - 'a' + 10;
508 else
509 return 0;
510 }
511
512 static inline int tohex(int v)
513 {
514 if (v < 10)
515 return v + '0';
516 else
517 return v - 10 + 'a';
518 }
519
520 /* writes 2*len+1 bytes in buf */
521 static void memtohex(char *buf, const uint8_t *mem, int len)
522 {
523 int i, c;
524 char *q;
525 q = buf;
526 for(i = 0; i < len; i++) {
527 c = mem[i];
528 *q++ = tohex(c >> 4);
529 *q++ = tohex(c & 0xf);
530 }
531 *q = '\0';
532 }
533
534 static void hextomem(uint8_t *mem, const char *buf, int len)
535 {
536 int i;
537
538 for(i = 0; i < len; i++) {
539 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
540 buf += 2;
541 }
542 }
543
544 static void hexdump(const char *buf, int len,
545 void (*trace_fn)(size_t ofs, char const *text))
546 {
547 char line_buffer[3 * 16 + 4 + 16 + 1];
548
549 size_t i;
550 for (i = 0; i < len || (i & 0xF); ++i) {
551 size_t byte_ofs = i & 15;
552
553 if (byte_ofs == 0) {
554 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
555 line_buffer[3 * 16 + 4 + 16] = 0;
556 }
557
558 size_t col_group = (i >> 2) & 3;
559 size_t hex_col = byte_ofs * 3 + col_group;
560 size_t txt_col = 3 * 16 + 4 + byte_ofs;
561
562 if (i < len) {
563 char value = buf[i];
564
565 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
566 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
567 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
568 ? value
569 : '.';
570 }
571
572 if (byte_ofs == 0xF)
573 trace_fn(i & -16, line_buffer);
574 }
575 }
576
577 /* return -1 if error, 0 if OK */
578 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
579 {
580 int csum, i;
581 uint8_t *p;
582
583 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
584 hexdump(buf, len, trace_gdbstub_io_binaryreply);
585 }
586
587 for(;;) {
588 p = s->last_packet;
589 *(p++) = '$';
590 memcpy(p, buf, len);
591 p += len;
592 csum = 0;
593 for(i = 0; i < len; i++) {
594 csum += buf[i];
595 }
596 *(p++) = '#';
597 *(p++) = tohex((csum >> 4) & 0xf);
598 *(p++) = tohex((csum) & 0xf);
599
600 s->last_packet_len = p - s->last_packet;
601 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
602
603 #ifdef CONFIG_USER_ONLY
604 i = get_char(s);
605 if (i < 0)
606 return -1;
607 if (i == '+')
608 break;
609 #else
610 break;
611 #endif
612 }
613 return 0;
614 }
615
616 /* return -1 if error, 0 if OK */
617 static int put_packet(GDBState *s, const char *buf)
618 {
619 trace_gdbstub_io_reply(buf);
620
621 return put_packet_binary(s, buf, strlen(buf), false);
622 }
623
624 /* Encode data using the encoding for 'x' packets. */
625 static int memtox(char *buf, const char *mem, int len)
626 {
627 char *p = buf;
628 char c;
629
630 while (len--) {
631 c = *(mem++);
632 switch (c) {
633 case '#': case '$': case '*': case '}':
634 *(p++) = '}';
635 *(p++) = c ^ 0x20;
636 break;
637 default:
638 *(p++) = c;
639 break;
640 }
641 }
642 return p - buf;
643 }
644
645 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
646 {
647 #ifndef CONFIG_USER_ONLY
648 gchar *path, *name = NULL;
649 Object *obj;
650 CPUClusterState *cluster;
651 uint32_t ret;
652
653 path = object_get_canonical_path(OBJECT(cpu));
654
655 if (path == NULL) {
656 /* Return the default process' PID */
657 ret = s->processes[s->process_num - 1].pid;
658 goto out;
659 }
660
661 name = object_get_canonical_path_component(OBJECT(cpu));
662 assert(name != NULL);
663
664 /*
665 * Retrieve the CPU parent path by removing the last '/' and the CPU name
666 * from the CPU canonical path.
667 */
668 path[strlen(path) - strlen(name) - 1] = '\0';
669
670 obj = object_resolve_path_type(path, TYPE_CPU_CLUSTER, NULL);
671
672 if (obj == NULL) {
673 /* Return the default process' PID */
674 ret = s->processes[s->process_num - 1].pid;
675 goto out;
676 }
677
678 cluster = CPU_CLUSTER(obj);
679 ret = cluster->cluster_id + 1;
680
681 out:
682 g_free(name);
683 g_free(path);
684
685 return ret;
686
687 #else
688 /* TODO: In user mode, we should use the task state PID */
689 return s->processes[s->process_num - 1].pid;
690 #endif
691 }
692
693 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
694 {
695 int i;
696
697 if (!pid) {
698 /* 0 means any process, we take the first one */
699 return &s->processes[0];
700 }
701
702 for (i = 0; i < s->process_num; i++) {
703 if (s->processes[i].pid == pid) {
704 return &s->processes[i];
705 }
706 }
707
708 return NULL;
709 }
710
711 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
712 {
713 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
714 }
715
716 static CPUState *find_cpu(uint32_t thread_id)
717 {
718 CPUState *cpu;
719
720 CPU_FOREACH(cpu) {
721 if (cpu_gdb_index(cpu) == thread_id) {
722 return cpu;
723 }
724 }
725
726 return NULL;
727 }
728
729 static CPUState *get_first_cpu_in_process(const GDBState *s,
730 GDBProcess *process)
731 {
732 CPUState *cpu;
733
734 CPU_FOREACH(cpu) {
735 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
736 return cpu;
737 }
738 }
739
740 return NULL;
741 }
742
743 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
744 {
745 uint32_t pid = gdb_get_cpu_pid(s, cpu);
746 cpu = CPU_NEXT(cpu);
747
748 while (cpu) {
749 if (gdb_get_cpu_pid(s, cpu) == pid) {
750 break;
751 }
752
753 cpu = CPU_NEXT(cpu);
754 }
755
756 return cpu;
757 }
758
759 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
760 {
761 GDBProcess *process;
762 CPUState *cpu;
763
764 if (!tid) {
765 /* 0 means any thread, we take the first one */
766 tid = 1;
767 }
768
769 cpu = find_cpu(tid);
770
771 if (cpu == NULL) {
772 return NULL;
773 }
774
775 process = gdb_get_cpu_process(s, cpu);
776
777 if (process->pid != pid) {
778 return NULL;
779 }
780
781 if (!process->attached) {
782 return NULL;
783 }
784
785 return cpu;
786 }
787
788 /* Return the cpu following @cpu, while ignoring unattached processes. */
789 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
790 {
791 cpu = CPU_NEXT(cpu);
792
793 while (cpu) {
794 if (gdb_get_cpu_process(s, cpu)->attached) {
795 break;
796 }
797
798 cpu = CPU_NEXT(cpu);
799 }
800
801 return cpu;
802 }
803
804 /* Return the first attached cpu */
805 static CPUState *gdb_first_attached_cpu(const GDBState *s)
806 {
807 CPUState *cpu = first_cpu;
808 GDBProcess *process = gdb_get_cpu_process(s, cpu);
809
810 if (!process->attached) {
811 return gdb_next_attached_cpu(s, cpu);
812 }
813
814 return cpu;
815 }
816
817 static const char *get_feature_xml(const GDBState *s, const char *p,
818 const char **newp, GDBProcess *process)
819 {
820 size_t len;
821 int i;
822 const char *name;
823 CPUState *cpu = get_first_cpu_in_process(s, process);
824 CPUClass *cc = CPU_GET_CLASS(cpu);
825
826 len = 0;
827 while (p[len] && p[len] != ':')
828 len++;
829 *newp = p + len;
830
831 name = NULL;
832 if (strncmp(p, "target.xml", len) == 0) {
833 char *buf = process->target_xml;
834 const size_t buf_sz = sizeof(process->target_xml);
835
836 /* Generate the XML description for this CPU. */
837 if (!buf[0]) {
838 GDBRegisterState *r;
839
840 pstrcat(buf, buf_sz,
841 "<?xml version=\"1.0\"?>"
842 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
843 "<target>");
844 if (cc->gdb_arch_name) {
845 gchar *arch = cc->gdb_arch_name(cpu);
846 pstrcat(buf, buf_sz, "<architecture>");
847 pstrcat(buf, buf_sz, arch);
848 pstrcat(buf, buf_sz, "</architecture>");
849 g_free(arch);
850 }
851 pstrcat(buf, buf_sz, "<xi:include href=\"");
852 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
853 pstrcat(buf, buf_sz, "\"/>");
854 for (r = cpu->gdb_regs; r; r = r->next) {
855 pstrcat(buf, buf_sz, "<xi:include href=\"");
856 pstrcat(buf, buf_sz, r->xml);
857 pstrcat(buf, buf_sz, "\"/>");
858 }
859 pstrcat(buf, buf_sz, "</target>");
860 }
861 return buf;
862 }
863 if (cc->gdb_get_dynamic_xml) {
864 char *xmlname = g_strndup(p, len);
865 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
866
867 g_free(xmlname);
868 if (xml) {
869 return xml;
870 }
871 }
872 for (i = 0; ; i++) {
873 name = xml_builtin[i][0];
874 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
875 break;
876 }
877 return name ? xml_builtin[i][1] : NULL;
878 }
879
880 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
881 {
882 CPUClass *cc = CPU_GET_CLASS(cpu);
883 CPUArchState *env = cpu->env_ptr;
884 GDBRegisterState *r;
885
886 if (reg < cc->gdb_num_core_regs) {
887 return cc->gdb_read_register(cpu, mem_buf, reg);
888 }
889
890 for (r = cpu->gdb_regs; r; r = r->next) {
891 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
892 return r->get_reg(env, mem_buf, reg - r->base_reg);
893 }
894 }
895 return 0;
896 }
897
898 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
899 {
900 CPUClass *cc = CPU_GET_CLASS(cpu);
901 CPUArchState *env = cpu->env_ptr;
902 GDBRegisterState *r;
903
904 if (reg < cc->gdb_num_core_regs) {
905 return cc->gdb_write_register(cpu, mem_buf, reg);
906 }
907
908 for (r = cpu->gdb_regs; r; r = r->next) {
909 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
910 return r->set_reg(env, mem_buf, reg - r->base_reg);
911 }
912 }
913 return 0;
914 }
915
916 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
917 specifies the first register number and these registers are included in
918 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
919 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
920 */
921
922 void gdb_register_coprocessor(CPUState *cpu,
923 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
924 int num_regs, const char *xml, int g_pos)
925 {
926 GDBRegisterState *s;
927 GDBRegisterState **p;
928
929 p = &cpu->gdb_regs;
930 while (*p) {
931 /* Check for duplicates. */
932 if (strcmp((*p)->xml, xml) == 0)
933 return;
934 p = &(*p)->next;
935 }
936
937 s = g_new0(GDBRegisterState, 1);
938 s->base_reg = cpu->gdb_num_regs;
939 s->num_regs = num_regs;
940 s->get_reg = get_reg;
941 s->set_reg = set_reg;
942 s->xml = xml;
943
944 /* Add to end of list. */
945 cpu->gdb_num_regs += num_regs;
946 *p = s;
947 if (g_pos) {
948 if (g_pos != s->base_reg) {
949 error_report("Error: Bad gdb register numbering for '%s', "
950 "expected %d got %d", xml, g_pos, s->base_reg);
951 } else {
952 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
953 }
954 }
955 }
956
957 #ifndef CONFIG_USER_ONLY
958 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
959 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
960 {
961 static const int xlat[] = {
962 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
963 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
964 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
965 };
966
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 int cputype = xlat[gdbtype];
969
970 if (cc->gdb_stop_before_watchpoint) {
971 cputype |= BP_STOP_BEFORE_ACCESS;
972 }
973 return cputype;
974 }
975 #endif
976
977 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
978 {
979 CPUState *cpu;
980 int err = 0;
981
982 if (kvm_enabled()) {
983 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
984 }
985
986 switch (type) {
987 case GDB_BREAKPOINT_SW:
988 case GDB_BREAKPOINT_HW:
989 CPU_FOREACH(cpu) {
990 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
991 if (err) {
992 break;
993 }
994 }
995 return err;
996 #ifndef CONFIG_USER_ONLY
997 case GDB_WATCHPOINT_WRITE:
998 case GDB_WATCHPOINT_READ:
999 case GDB_WATCHPOINT_ACCESS:
1000 CPU_FOREACH(cpu) {
1001 err = cpu_watchpoint_insert(cpu, addr, len,
1002 xlat_gdb_type(cpu, type), NULL);
1003 if (err) {
1004 break;
1005 }
1006 }
1007 return err;
1008 #endif
1009 default:
1010 return -ENOSYS;
1011 }
1012 }
1013
1014 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1015 {
1016 CPUState *cpu;
1017 int err = 0;
1018
1019 if (kvm_enabled()) {
1020 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1021 }
1022
1023 switch (type) {
1024 case GDB_BREAKPOINT_SW:
1025 case GDB_BREAKPOINT_HW:
1026 CPU_FOREACH(cpu) {
1027 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1028 if (err) {
1029 break;
1030 }
1031 }
1032 return err;
1033 #ifndef CONFIG_USER_ONLY
1034 case GDB_WATCHPOINT_WRITE:
1035 case GDB_WATCHPOINT_READ:
1036 case GDB_WATCHPOINT_ACCESS:
1037 CPU_FOREACH(cpu) {
1038 err = cpu_watchpoint_remove(cpu, addr, len,
1039 xlat_gdb_type(cpu, type));
1040 if (err)
1041 break;
1042 }
1043 return err;
1044 #endif
1045 default:
1046 return -ENOSYS;
1047 }
1048 }
1049
1050 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1051 {
1052 cpu_breakpoint_remove_all(cpu, BP_GDB);
1053 #ifndef CONFIG_USER_ONLY
1054 cpu_watchpoint_remove_all(cpu, BP_GDB);
1055 #endif
1056 }
1057
1058 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1059 {
1060 CPUState *cpu = get_first_cpu_in_process(s, p);
1061
1062 while (cpu) {
1063 gdb_cpu_breakpoint_remove_all(cpu);
1064 cpu = gdb_next_cpu_in_process(s, cpu);
1065 }
1066 }
1067
1068 static void gdb_breakpoint_remove_all(void)
1069 {
1070 CPUState *cpu;
1071
1072 if (kvm_enabled()) {
1073 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1074 return;
1075 }
1076
1077 CPU_FOREACH(cpu) {
1078 gdb_cpu_breakpoint_remove_all(cpu);
1079 }
1080 }
1081
1082 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1083 {
1084 CPUState *cpu = s->c_cpu;
1085
1086 cpu_synchronize_state(cpu);
1087 cpu_set_pc(cpu, pc);
1088 }
1089
1090 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1091 char *buf, size_t buf_size)
1092 {
1093 if (s->multiprocess) {
1094 snprintf(buf, buf_size, "p%02x.%02x",
1095 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1096 } else {
1097 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1098 }
1099
1100 return buf;
1101 }
1102
1103 typedef enum GDBThreadIdKind {
1104 GDB_ONE_THREAD = 0,
1105 GDB_ALL_THREADS, /* One process, all threads */
1106 GDB_ALL_PROCESSES,
1107 GDB_READ_THREAD_ERR
1108 } GDBThreadIdKind;
1109
1110 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1111 uint32_t *pid, uint32_t *tid)
1112 {
1113 unsigned long p, t;
1114 int ret;
1115
1116 if (*buf == 'p') {
1117 buf++;
1118 ret = qemu_strtoul(buf, &buf, 16, &p);
1119
1120 if (ret) {
1121 return GDB_READ_THREAD_ERR;
1122 }
1123
1124 /* Skip '.' */
1125 buf++;
1126 } else {
1127 p = 1;
1128 }
1129
1130 ret = qemu_strtoul(buf, &buf, 16, &t);
1131
1132 if (ret) {
1133 return GDB_READ_THREAD_ERR;
1134 }
1135
1136 *end_buf = buf;
1137
1138 if (p == -1) {
1139 return GDB_ALL_PROCESSES;
1140 }
1141
1142 if (pid) {
1143 *pid = p;
1144 }
1145
1146 if (t == -1) {
1147 return GDB_ALL_THREADS;
1148 }
1149
1150 if (tid) {
1151 *tid = t;
1152 }
1153
1154 return GDB_ONE_THREAD;
1155 }
1156
1157 static int is_query_packet(const char *p, const char *query, char separator)
1158 {
1159 unsigned int query_len = strlen(query);
1160
1161 return strncmp(p, query, query_len) == 0 &&
1162 (p[query_len] == '\0' || p[query_len] == separator);
1163 }
1164
1165 /**
1166 * gdb_handle_vcont - Parses and handles a vCont packet.
1167 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1168 * a format error, 0 on success.
1169 */
1170 static int gdb_handle_vcont(GDBState *s, const char *p)
1171 {
1172 int res, signal = 0;
1173 char cur_action;
1174 char *newstates;
1175 unsigned long tmp;
1176 uint32_t pid, tid;
1177 GDBProcess *process;
1178 CPUState *cpu;
1179 #ifdef CONFIG_USER_ONLY
1180 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1181
1182 CPU_FOREACH(cpu) {
1183 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1184 }
1185 #endif
1186 /* uninitialised CPUs stay 0 */
1187 newstates = g_new0(char, max_cpus);
1188
1189 /* mark valid CPUs with 1 */
1190 CPU_FOREACH(cpu) {
1191 newstates[cpu->cpu_index] = 1;
1192 }
1193
1194 /*
1195 * res keeps track of what error we are returning, with -ENOTSUP meaning
1196 * that the command is unknown or unsupported, thus returning an empty
1197 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1198 * or incorrect parameters passed.
1199 */
1200 res = 0;
1201 while (*p) {
1202 if (*p++ != ';') {
1203 res = -ENOTSUP;
1204 goto out;
1205 }
1206
1207 cur_action = *p++;
1208 if (cur_action == 'C' || cur_action == 'S') {
1209 cur_action = qemu_tolower(cur_action);
1210 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1211 if (res) {
1212 goto out;
1213 }
1214 signal = gdb_signal_to_target(tmp);
1215 } else if (cur_action != 'c' && cur_action != 's') {
1216 /* unknown/invalid/unsupported command */
1217 res = -ENOTSUP;
1218 goto out;
1219 }
1220
1221 if (*p++ != ':') {
1222 res = -ENOTSUP;
1223 goto out;
1224 }
1225
1226 switch (read_thread_id(p, &p, &pid, &tid)) {
1227 case GDB_READ_THREAD_ERR:
1228 res = -EINVAL;
1229 goto out;
1230
1231 case GDB_ALL_PROCESSES:
1232 cpu = gdb_first_attached_cpu(s);
1233 while (cpu) {
1234 if (newstates[cpu->cpu_index] == 1) {
1235 newstates[cpu->cpu_index] = cur_action;
1236 }
1237
1238 cpu = gdb_next_attached_cpu(s, cpu);
1239 }
1240 break;
1241
1242 case GDB_ALL_THREADS:
1243 process = gdb_get_process(s, pid);
1244
1245 if (!process->attached) {
1246 res = -EINVAL;
1247 goto out;
1248 }
1249
1250 cpu = get_first_cpu_in_process(s, process);
1251 while (cpu) {
1252 if (newstates[cpu->cpu_index] == 1) {
1253 newstates[cpu->cpu_index] = cur_action;
1254 }
1255
1256 cpu = gdb_next_cpu_in_process(s, cpu);
1257 }
1258 break;
1259
1260 case GDB_ONE_THREAD:
1261 cpu = gdb_get_cpu(s, pid, tid);
1262
1263 /* invalid CPU/thread specified */
1264 if (!cpu) {
1265 res = -EINVAL;
1266 goto out;
1267 }
1268
1269 /* only use if no previous match occourred */
1270 if (newstates[cpu->cpu_index] == 1) {
1271 newstates[cpu->cpu_index] = cur_action;
1272 }
1273 break;
1274 }
1275 }
1276 s->signal = signal;
1277 gdb_continue_partial(s, newstates);
1278
1279 out:
1280 g_free(newstates);
1281
1282 return res;
1283 }
1284
1285 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1286 {
1287 CPUState *cpu;
1288 GDBProcess *process;
1289 CPUClass *cc;
1290 const char *p;
1291 uint32_t pid, tid;
1292 int ch, reg_size, type, res;
1293 uint8_t mem_buf[MAX_PACKET_LENGTH];
1294 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1295 char thread_id[16];
1296 uint8_t *registers;
1297 target_ulong addr, len;
1298 GDBThreadIdKind thread_kind;
1299
1300 trace_gdbstub_io_command(line_buf);
1301
1302 p = line_buf;
1303 ch = *p++;
1304 switch(ch) {
1305 case '!':
1306 put_packet(s, "OK");
1307 break;
1308 case '?':
1309 /* TODO: Make this return the correct value for user-mode. */
1310 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1311 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1312 put_packet(s, buf);
1313 /* Remove all the breakpoints when this query is issued,
1314 * because gdb is doing and initial connect and the state
1315 * should be cleaned up.
1316 */
1317 gdb_breakpoint_remove_all();
1318 break;
1319 case 'c':
1320 if (*p != '\0') {
1321 addr = strtoull(p, (char **)&p, 16);
1322 gdb_set_cpu_pc(s, addr);
1323 }
1324 s->signal = 0;
1325 gdb_continue(s);
1326 return RS_IDLE;
1327 case 'C':
1328 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1329 if (s->signal == -1)
1330 s->signal = 0;
1331 gdb_continue(s);
1332 return RS_IDLE;
1333 case 'v':
1334 if (strncmp(p, "Cont", 4) == 0) {
1335 p += 4;
1336 if (*p == '?') {
1337 put_packet(s, "vCont;c;C;s;S");
1338 break;
1339 }
1340
1341 res = gdb_handle_vcont(s, p);
1342
1343 if (res) {
1344 if ((res == -EINVAL) || (res == -ERANGE)) {
1345 put_packet(s, "E22");
1346 break;
1347 }
1348 goto unknown_command;
1349 }
1350 break;
1351 } else if (strncmp(p, "Attach;", 7) == 0) {
1352 unsigned long pid;
1353
1354 p += 7;
1355
1356 if (qemu_strtoul(p, &p, 16, &pid)) {
1357 put_packet(s, "E22");
1358 break;
1359 }
1360
1361 process = gdb_get_process(s, pid);
1362
1363 if (process == NULL) {
1364 put_packet(s, "E22");
1365 break;
1366 }
1367
1368 cpu = get_first_cpu_in_process(s, process);
1369
1370 if (cpu == NULL) {
1371 /* Refuse to attach an empty process */
1372 put_packet(s, "E22");
1373 break;
1374 }
1375
1376 process->attached = true;
1377
1378 s->g_cpu = cpu;
1379 s->c_cpu = cpu;
1380
1381 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1382 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1383
1384 put_packet(s, buf);
1385 break;
1386 } else {
1387 goto unknown_command;
1388 }
1389 case 'k':
1390 /* Kill the target */
1391 error_report("QEMU: Terminated via GDBstub");
1392 exit(0);
1393 case 'D':
1394 /* Detach packet */
1395 pid = 1;
1396
1397 if (s->multiprocess) {
1398 unsigned long lpid;
1399 if (*p != ';') {
1400 put_packet(s, "E22");
1401 break;
1402 }
1403
1404 if (qemu_strtoul(p + 1, &p, 16, &lpid)) {
1405 put_packet(s, "E22");
1406 break;
1407 }
1408
1409 pid = lpid;
1410 }
1411
1412 process = gdb_get_process(s, pid);
1413 gdb_process_breakpoint_remove_all(s, process);
1414 process->attached = false;
1415
1416 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1417 s->c_cpu = gdb_first_attached_cpu(s);
1418 }
1419
1420 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1421 s->g_cpu = gdb_first_attached_cpu(s);
1422 }
1423
1424 if (s->c_cpu == NULL) {
1425 /* No more process attached */
1426 gdb_syscall_mode = GDB_SYS_DISABLED;
1427 gdb_continue(s);
1428 }
1429 put_packet(s, "OK");
1430 break;
1431 case 's':
1432 if (*p != '\0') {
1433 addr = strtoull(p, (char **)&p, 16);
1434 gdb_set_cpu_pc(s, addr);
1435 }
1436 cpu_single_step(s->c_cpu, sstep_flags);
1437 gdb_continue(s);
1438 return RS_IDLE;
1439 case 'F':
1440 {
1441 target_ulong ret;
1442 target_ulong err;
1443
1444 ret = strtoull(p, (char **)&p, 16);
1445 if (*p == ',') {
1446 p++;
1447 err = strtoull(p, (char **)&p, 16);
1448 } else {
1449 err = 0;
1450 }
1451 if (*p == ',')
1452 p++;
1453 type = *p;
1454 if (s->current_syscall_cb) {
1455 s->current_syscall_cb(s->c_cpu, ret, err);
1456 s->current_syscall_cb = NULL;
1457 }
1458 if (type == 'C') {
1459 put_packet(s, "T02");
1460 } else {
1461 gdb_continue(s);
1462 }
1463 }
1464 break;
1465 case 'g':
1466 cpu_synchronize_state(s->g_cpu);
1467 len = 0;
1468 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs; addr++) {
1469 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1470 len += reg_size;
1471 }
1472 memtohex(buf, mem_buf, len);
1473 put_packet(s, buf);
1474 break;
1475 case 'G':
1476 cpu_synchronize_state(s->g_cpu);
1477 registers = mem_buf;
1478 len = strlen(p) / 2;
1479 hextomem((uint8_t *)registers, p, len);
1480 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs && len > 0; addr++) {
1481 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1482 len -= reg_size;
1483 registers += reg_size;
1484 }
1485 put_packet(s, "OK");
1486 break;
1487 case 'm':
1488 addr = strtoull(p, (char **)&p, 16);
1489 if (*p == ',')
1490 p++;
1491 len = strtoull(p, NULL, 16);
1492
1493 /* memtohex() doubles the required space */
1494 if (len > MAX_PACKET_LENGTH / 2) {
1495 put_packet (s, "E22");
1496 break;
1497 }
1498
1499 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, false) != 0) {
1500 put_packet (s, "E14");
1501 } else {
1502 memtohex(buf, mem_buf, len);
1503 put_packet(s, buf);
1504 }
1505 break;
1506 case 'M':
1507 addr = strtoull(p, (char **)&p, 16);
1508 if (*p == ',')
1509 p++;
1510 len = strtoull(p, (char **)&p, 16);
1511 if (*p == ':')
1512 p++;
1513
1514 /* hextomem() reads 2*len bytes */
1515 if (len > strlen(p) / 2) {
1516 put_packet (s, "E22");
1517 break;
1518 }
1519 hextomem(mem_buf, p, len);
1520 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len,
1521 true) != 0) {
1522 put_packet(s, "E14");
1523 } else {
1524 put_packet(s, "OK");
1525 }
1526 break;
1527 case 'p':
1528 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1529 This works, but can be very slow. Anything new enough to
1530 understand XML also knows how to use this properly. */
1531 if (!gdb_has_xml)
1532 goto unknown_command;
1533 addr = strtoull(p, (char **)&p, 16);
1534 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1535 if (reg_size) {
1536 memtohex(buf, mem_buf, reg_size);
1537 put_packet(s, buf);
1538 } else {
1539 put_packet(s, "E14");
1540 }
1541 break;
1542 case 'P':
1543 if (!gdb_has_xml)
1544 goto unknown_command;
1545 addr = strtoull(p, (char **)&p, 16);
1546 if (*p == '=')
1547 p++;
1548 reg_size = strlen(p) / 2;
1549 hextomem(mem_buf, p, reg_size);
1550 gdb_write_register(s->g_cpu, mem_buf, addr);
1551 put_packet(s, "OK");
1552 break;
1553 case 'Z':
1554 case 'z':
1555 type = strtoul(p, (char **)&p, 16);
1556 if (*p == ',')
1557 p++;
1558 addr = strtoull(p, (char **)&p, 16);
1559 if (*p == ',')
1560 p++;
1561 len = strtoull(p, (char **)&p, 16);
1562 if (ch == 'Z')
1563 res = gdb_breakpoint_insert(addr, len, type);
1564 else
1565 res = gdb_breakpoint_remove(addr, len, type);
1566 if (res >= 0)
1567 put_packet(s, "OK");
1568 else if (res == -ENOSYS)
1569 put_packet(s, "");
1570 else
1571 put_packet(s, "E22");
1572 break;
1573 case 'H':
1574 type = *p++;
1575
1576 thread_kind = read_thread_id(p, &p, &pid, &tid);
1577 if (thread_kind == GDB_READ_THREAD_ERR) {
1578 put_packet(s, "E22");
1579 break;
1580 }
1581
1582 if (thread_kind != GDB_ONE_THREAD) {
1583 put_packet(s, "OK");
1584 break;
1585 }
1586 cpu = gdb_get_cpu(s, pid, tid);
1587 if (cpu == NULL) {
1588 put_packet(s, "E22");
1589 break;
1590 }
1591 switch (type) {
1592 case 'c':
1593 s->c_cpu = cpu;
1594 put_packet(s, "OK");
1595 break;
1596 case 'g':
1597 s->g_cpu = cpu;
1598 put_packet(s, "OK");
1599 break;
1600 default:
1601 put_packet(s, "E22");
1602 break;
1603 }
1604 break;
1605 case 'T':
1606 thread_kind = read_thread_id(p, &p, &pid, &tid);
1607 if (thread_kind == GDB_READ_THREAD_ERR) {
1608 put_packet(s, "E22");
1609 break;
1610 }
1611 cpu = gdb_get_cpu(s, pid, tid);
1612
1613 if (cpu != NULL) {
1614 put_packet(s, "OK");
1615 } else {
1616 put_packet(s, "E22");
1617 }
1618 break;
1619 case 'q':
1620 case 'Q':
1621 /* parse any 'q' packets here */
1622 if (!strcmp(p,"qemu.sstepbits")) {
1623 /* Query Breakpoint bit definitions */
1624 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1625 SSTEP_ENABLE,
1626 SSTEP_NOIRQ,
1627 SSTEP_NOTIMER);
1628 put_packet(s, buf);
1629 break;
1630 } else if (is_query_packet(p, "qemu.sstep", '=')) {
1631 /* Display or change the sstep_flags */
1632 p += 10;
1633 if (*p != '=') {
1634 /* Display current setting */
1635 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1636 put_packet(s, buf);
1637 break;
1638 }
1639 p++;
1640 type = strtoul(p, (char **)&p, 16);
1641 sstep_flags = type;
1642 put_packet(s, "OK");
1643 break;
1644 } else if (strcmp(p,"C") == 0) {
1645 /*
1646 * "Current thread" remains vague in the spec, so always return
1647 * the first thread of the current process (gdb returns the
1648 * first thread).
1649 */
1650 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
1651 snprintf(buf, sizeof(buf), "QC%s",
1652 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1653 put_packet(s, buf);
1654 break;
1655 } else if (strcmp(p,"fThreadInfo") == 0) {
1656 s->query_cpu = gdb_first_attached_cpu(s);
1657 goto report_cpuinfo;
1658 } else if (strcmp(p,"sThreadInfo") == 0) {
1659 report_cpuinfo:
1660 if (s->query_cpu) {
1661 snprintf(buf, sizeof(buf), "m%s",
1662 gdb_fmt_thread_id(s, s->query_cpu,
1663 thread_id, sizeof(thread_id)));
1664 put_packet(s, buf);
1665 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
1666 } else
1667 put_packet(s, "l");
1668 break;
1669 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1670 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
1671 put_packet(s, "E22");
1672 break;
1673 }
1674 cpu = gdb_get_cpu(s, pid, tid);
1675 if (cpu != NULL) {
1676 cpu_synchronize_state(cpu);
1677
1678 if (s->multiprocess && (s->process_num > 1)) {
1679 /* Print the CPU model and name in multiprocess mode */
1680 ObjectClass *oc = object_get_class(OBJECT(cpu));
1681 const char *cpu_model = object_class_get_name(oc);
1682 char *cpu_name =
1683 object_get_canonical_path_component(OBJECT(cpu));
1684 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1685 "%s %s [%s]", cpu_model, cpu_name,
1686 cpu->halted ? "halted " : "running");
1687 g_free(cpu_name);
1688 } else {
1689 /* memtohex() doubles the required space */
1690 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1691 "CPU#%d [%s]", cpu->cpu_index,
1692 cpu->halted ? "halted " : "running");
1693 }
1694 trace_gdbstub_op_extra_info((char *)mem_buf);
1695 memtohex(buf, mem_buf, len);
1696 put_packet(s, buf);
1697 }
1698 break;
1699 }
1700 #ifdef CONFIG_USER_ONLY
1701 else if (strcmp(p, "Offsets") == 0) {
1702 TaskState *ts = s->c_cpu->opaque;
1703
1704 snprintf(buf, sizeof(buf),
1705 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1706 ";Bss=" TARGET_ABI_FMT_lx,
1707 ts->info->code_offset,
1708 ts->info->data_offset,
1709 ts->info->data_offset);
1710 put_packet(s, buf);
1711 break;
1712 }
1713 #else /* !CONFIG_USER_ONLY */
1714 else if (strncmp(p, "Rcmd,", 5) == 0) {
1715 int len = strlen(p + 5);
1716
1717 if ((len % 2) != 0) {
1718 put_packet(s, "E01");
1719 break;
1720 }
1721 len = len / 2;
1722 hextomem(mem_buf, p + 5, len);
1723 mem_buf[len++] = 0;
1724 qemu_chr_be_write(s->mon_chr, mem_buf, len);
1725 put_packet(s, "OK");
1726 break;
1727 }
1728 #endif /* !CONFIG_USER_ONLY */
1729 if (is_query_packet(p, "Supported", ':')) {
1730 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1731 cc = CPU_GET_CLASS(first_cpu);
1732 if (cc->gdb_core_xml_file != NULL) {
1733 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1734 }
1735 put_packet(s, buf);
1736 break;
1737 }
1738 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1739 const char *xml;
1740 target_ulong total_len;
1741
1742 process = gdb_get_cpu_process(s, s->g_cpu);
1743 cc = CPU_GET_CLASS(s->g_cpu);
1744 if (cc->gdb_core_xml_file == NULL) {
1745 goto unknown_command;
1746 }
1747
1748 gdb_has_xml = true;
1749 p += 19;
1750 xml = get_feature_xml(s, p, &p, process);
1751 if (!xml) {
1752 snprintf(buf, sizeof(buf), "E00");
1753 put_packet(s, buf);
1754 break;
1755 }
1756
1757 if (*p == ':')
1758 p++;
1759 addr = strtoul(p, (char **)&p, 16);
1760 if (*p == ',')
1761 p++;
1762 len = strtoul(p, (char **)&p, 16);
1763
1764 total_len = strlen(xml);
1765 if (addr > total_len) {
1766 snprintf(buf, sizeof(buf), "E00");
1767 put_packet(s, buf);
1768 break;
1769 }
1770 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1771 len = (MAX_PACKET_LENGTH - 5) / 2;
1772 if (len < total_len - addr) {
1773 buf[0] = 'm';
1774 len = memtox(buf + 1, xml + addr, len);
1775 } else {
1776 buf[0] = 'l';
1777 len = memtox(buf + 1, xml + addr, total_len - addr);
1778 }
1779 put_packet_binary(s, buf, len + 1, true);
1780 break;
1781 }
1782 if (is_query_packet(p, "Attached", ':')) {
1783 put_packet(s, GDB_ATTACHED);
1784 break;
1785 }
1786 /* Unrecognised 'q' command. */
1787 goto unknown_command;
1788
1789 default:
1790 unknown_command:
1791 /* put empty packet */
1792 buf[0] = '\0';
1793 put_packet(s, buf);
1794 break;
1795 }
1796 return RS_IDLE;
1797 }
1798
1799 void gdb_set_stop_cpu(CPUState *cpu)
1800 {
1801 gdbserver_state->c_cpu = cpu;
1802 gdbserver_state->g_cpu = cpu;
1803 }
1804
1805 #ifndef CONFIG_USER_ONLY
1806 static void gdb_vm_state_change(void *opaque, int running, RunState state)
1807 {
1808 GDBState *s = gdbserver_state;
1809 CPUState *cpu = s->c_cpu;
1810 char buf[256];
1811 char thread_id[16];
1812 const char *type;
1813 int ret;
1814
1815 if (running || s->state == RS_INACTIVE) {
1816 return;
1817 }
1818 /* Is there a GDB syscall waiting to be sent? */
1819 if (s->current_syscall_cb) {
1820 put_packet(s, s->syscall_buf);
1821 return;
1822 }
1823
1824 if (cpu == NULL) {
1825 /* No process attached */
1826 return;
1827 }
1828
1829 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
1830
1831 switch (state) {
1832 case RUN_STATE_DEBUG:
1833 if (cpu->watchpoint_hit) {
1834 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
1835 case BP_MEM_READ:
1836 type = "r";
1837 break;
1838 case BP_MEM_ACCESS:
1839 type = "a";
1840 break;
1841 default:
1842 type = "";
1843 break;
1844 }
1845 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
1846 (target_ulong)cpu->watchpoint_hit->vaddr);
1847 snprintf(buf, sizeof(buf),
1848 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
1849 GDB_SIGNAL_TRAP, thread_id, type,
1850 (target_ulong)cpu->watchpoint_hit->vaddr);
1851 cpu->watchpoint_hit = NULL;
1852 goto send_packet;
1853 } else {
1854 trace_gdbstub_hit_break();
1855 }
1856 tb_flush(cpu);
1857 ret = GDB_SIGNAL_TRAP;
1858 break;
1859 case RUN_STATE_PAUSED:
1860 trace_gdbstub_hit_paused();
1861 ret = GDB_SIGNAL_INT;
1862 break;
1863 case RUN_STATE_SHUTDOWN:
1864 trace_gdbstub_hit_shutdown();
1865 ret = GDB_SIGNAL_QUIT;
1866 break;
1867 case RUN_STATE_IO_ERROR:
1868 trace_gdbstub_hit_io_error();
1869 ret = GDB_SIGNAL_IO;
1870 break;
1871 case RUN_STATE_WATCHDOG:
1872 trace_gdbstub_hit_watchdog();
1873 ret = GDB_SIGNAL_ALRM;
1874 break;
1875 case RUN_STATE_INTERNAL_ERROR:
1876 trace_gdbstub_hit_internal_error();
1877 ret = GDB_SIGNAL_ABRT;
1878 break;
1879 case RUN_STATE_SAVE_VM:
1880 case RUN_STATE_RESTORE_VM:
1881 return;
1882 case RUN_STATE_FINISH_MIGRATE:
1883 ret = GDB_SIGNAL_XCPU;
1884 break;
1885 default:
1886 trace_gdbstub_hit_unknown(state);
1887 ret = GDB_SIGNAL_UNKNOWN;
1888 break;
1889 }
1890 gdb_set_stop_cpu(cpu);
1891 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
1892
1893 send_packet:
1894 put_packet(s, buf);
1895
1896 /* disable single step if it was enabled */
1897 cpu_single_step(cpu, 0);
1898 }
1899 #endif
1900
1901 /* Send a gdb syscall request.
1902 This accepts limited printf-style format specifiers, specifically:
1903 %x - target_ulong argument printed in hex.
1904 %lx - 64-bit argument printed in hex.
1905 %s - string pointer (target_ulong) and length (int) pair. */
1906 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
1907 {
1908 char *p;
1909 char *p_end;
1910 target_ulong addr;
1911 uint64_t i64;
1912 GDBState *s;
1913
1914 s = gdbserver_state;
1915 if (!s)
1916 return;
1917 s->current_syscall_cb = cb;
1918 #ifndef CONFIG_USER_ONLY
1919 vm_stop(RUN_STATE_DEBUG);
1920 #endif
1921 p = s->syscall_buf;
1922 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
1923 *(p++) = 'F';
1924 while (*fmt) {
1925 if (*fmt == '%') {
1926 fmt++;
1927 switch (*fmt++) {
1928 case 'x':
1929 addr = va_arg(va, target_ulong);
1930 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
1931 break;
1932 case 'l':
1933 if (*(fmt++) != 'x')
1934 goto bad_format;
1935 i64 = va_arg(va, uint64_t);
1936 p += snprintf(p, p_end - p, "%" PRIx64, i64);
1937 break;
1938 case 's':
1939 addr = va_arg(va, target_ulong);
1940 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
1941 addr, va_arg(va, int));
1942 break;
1943 default:
1944 bad_format:
1945 error_report("gdbstub: Bad syscall format string '%s'",
1946 fmt - 1);
1947 break;
1948 }
1949 } else {
1950 *(p++) = *(fmt++);
1951 }
1952 }
1953 *p = 0;
1954 #ifdef CONFIG_USER_ONLY
1955 put_packet(s, s->syscall_buf);
1956 /* Return control to gdb for it to process the syscall request.
1957 * Since the protocol requires that gdb hands control back to us
1958 * using a "here are the results" F packet, we don't need to check
1959 * gdb_handlesig's return value (which is the signal to deliver if
1960 * execution was resumed via a continue packet).
1961 */
1962 gdb_handlesig(s->c_cpu, 0);
1963 #else
1964 /* In this case wait to send the syscall packet until notification that
1965 the CPU has stopped. This must be done because if the packet is sent
1966 now the reply from the syscall request could be received while the CPU
1967 is still in the running state, which can cause packets to be dropped
1968 and state transition 'T' packets to be sent while the syscall is still
1969 being processed. */
1970 qemu_cpu_kick(s->c_cpu);
1971 #endif
1972 }
1973
1974 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1975 {
1976 va_list va;
1977
1978 va_start(va, fmt);
1979 gdb_do_syscallv(cb, fmt, va);
1980 va_end(va);
1981 }
1982
1983 static void gdb_read_byte(GDBState *s, int ch)
1984 {
1985 uint8_t reply;
1986
1987 #ifndef CONFIG_USER_ONLY
1988 if (s->last_packet_len) {
1989 /* Waiting for a response to the last packet. If we see the start
1990 of a new command then abandon the previous response. */
1991 if (ch == '-') {
1992 trace_gdbstub_err_got_nack();
1993 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1994 } else if (ch == '+') {
1995 trace_gdbstub_io_got_ack();
1996 } else {
1997 trace_gdbstub_io_got_unexpected((uint8_t)ch);
1998 }
1999
2000 if (ch == '+' || ch == '$')
2001 s->last_packet_len = 0;
2002 if (ch != '$')
2003 return;
2004 }
2005 if (runstate_is_running()) {
2006 /* when the CPU is running, we cannot do anything except stop
2007 it when receiving a char */
2008 vm_stop(RUN_STATE_PAUSED);
2009 } else
2010 #endif
2011 {
2012 switch(s->state) {
2013 case RS_IDLE:
2014 if (ch == '$') {
2015 /* start of command packet */
2016 s->line_buf_index = 0;
2017 s->line_sum = 0;
2018 s->state = RS_GETLINE;
2019 } else {
2020 trace_gdbstub_err_garbage((uint8_t)ch);
2021 }
2022 break;
2023 case RS_GETLINE:
2024 if (ch == '}') {
2025 /* start escape sequence */
2026 s->state = RS_GETLINE_ESC;
2027 s->line_sum += ch;
2028 } else if (ch == '*') {
2029 /* start run length encoding sequence */
2030 s->state = RS_GETLINE_RLE;
2031 s->line_sum += ch;
2032 } else if (ch == '#') {
2033 /* end of command, start of checksum*/
2034 s->state = RS_CHKSUM1;
2035 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2036 trace_gdbstub_err_overrun();
2037 s->state = RS_IDLE;
2038 } else {
2039 /* unescaped command character */
2040 s->line_buf[s->line_buf_index++] = ch;
2041 s->line_sum += ch;
2042 }
2043 break;
2044 case RS_GETLINE_ESC:
2045 if (ch == '#') {
2046 /* unexpected end of command in escape sequence */
2047 s->state = RS_CHKSUM1;
2048 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2049 /* command buffer overrun */
2050 trace_gdbstub_err_overrun();
2051 s->state = RS_IDLE;
2052 } else {
2053 /* parse escaped character and leave escape state */
2054 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2055 s->line_sum += ch;
2056 s->state = RS_GETLINE;
2057 }
2058 break;
2059 case RS_GETLINE_RLE:
2060 if (ch < ' ') {
2061 /* invalid RLE count encoding */
2062 trace_gdbstub_err_invalid_repeat((uint8_t)ch);
2063 s->state = RS_GETLINE;
2064 } else {
2065 /* decode repeat length */
2066 int repeat = (unsigned char)ch - ' ' + 3;
2067 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2068 /* that many repeats would overrun the command buffer */
2069 trace_gdbstub_err_overrun();
2070 s->state = RS_IDLE;
2071 } else if (s->line_buf_index < 1) {
2072 /* got a repeat but we have nothing to repeat */
2073 trace_gdbstub_err_invalid_rle();
2074 s->state = RS_GETLINE;
2075 } else {
2076 /* repeat the last character */
2077 memset(s->line_buf + s->line_buf_index,
2078 s->line_buf[s->line_buf_index - 1], repeat);
2079 s->line_buf_index += repeat;
2080 s->line_sum += ch;
2081 s->state = RS_GETLINE;
2082 }
2083 }
2084 break;
2085 case RS_CHKSUM1:
2086 /* get high hex digit of checksum */
2087 if (!isxdigit(ch)) {
2088 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2089 s->state = RS_GETLINE;
2090 break;
2091 }
2092 s->line_buf[s->line_buf_index] = '\0';
2093 s->line_csum = fromhex(ch) << 4;
2094 s->state = RS_CHKSUM2;
2095 break;
2096 case RS_CHKSUM2:
2097 /* get low hex digit of checksum */
2098 if (!isxdigit(ch)) {
2099 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2100 s->state = RS_GETLINE;
2101 break;
2102 }
2103 s->line_csum |= fromhex(ch);
2104
2105 if (s->line_csum != (s->line_sum & 0xff)) {
2106 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2107 /* send NAK reply */
2108 reply = '-';
2109 put_buffer(s, &reply, 1);
2110 s->state = RS_IDLE;
2111 } else {
2112 /* send ACK reply */
2113 reply = '+';
2114 put_buffer(s, &reply, 1);
2115 s->state = gdb_handle_packet(s, s->line_buf);
2116 }
2117 break;
2118 default:
2119 abort();
2120 }
2121 }
2122 }
2123
2124 /* Tell the remote gdb that the process has exited. */
2125 void gdb_exit(CPUArchState *env, int code)
2126 {
2127 GDBState *s;
2128 char buf[4];
2129
2130 s = gdbserver_state;
2131 if (!s) {
2132 return;
2133 }
2134 #ifdef CONFIG_USER_ONLY
2135 if (gdbserver_fd < 0 || s->fd < 0) {
2136 return;
2137 }
2138 #endif
2139
2140 trace_gdbstub_op_exiting((uint8_t)code);
2141
2142 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2143 put_packet(s, buf);
2144
2145 #ifndef CONFIG_USER_ONLY
2146 qemu_chr_fe_deinit(&s->chr, true);
2147 #endif
2148 }
2149
2150 /*
2151 * Create the process that will contain all the "orphan" CPUs (that are not
2152 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2153 * be attachable and thus will be invisible to the user.
2154 */
2155 static void create_default_process(GDBState *s)
2156 {
2157 GDBProcess *process;
2158 int max_pid = 0;
2159
2160 if (s->process_num) {
2161 max_pid = s->processes[s->process_num - 1].pid;
2162 }
2163
2164 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2165 process = &s->processes[s->process_num - 1];
2166
2167 /* We need an available PID slot for this process */
2168 assert(max_pid < UINT32_MAX);
2169
2170 process->pid = max_pid + 1;
2171 process->attached = false;
2172 process->target_xml[0] = '\0';
2173 }
2174
2175 #ifdef CONFIG_USER_ONLY
2176 int
2177 gdb_handlesig(CPUState *cpu, int sig)
2178 {
2179 GDBState *s;
2180 char buf[256];
2181 int n;
2182
2183 s = gdbserver_state;
2184 if (gdbserver_fd < 0 || s->fd < 0) {
2185 return sig;
2186 }
2187
2188 /* disable single step if it was enabled */
2189 cpu_single_step(cpu, 0);
2190 tb_flush(cpu);
2191
2192 if (sig != 0) {
2193 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2194 put_packet(s, buf);
2195 }
2196 /* put_packet() might have detected that the peer terminated the
2197 connection. */
2198 if (s->fd < 0) {
2199 return sig;
2200 }
2201
2202 sig = 0;
2203 s->state = RS_IDLE;
2204 s->running_state = 0;
2205 while (s->running_state == 0) {
2206 n = read(s->fd, buf, 256);
2207 if (n > 0) {
2208 int i;
2209
2210 for (i = 0; i < n; i++) {
2211 gdb_read_byte(s, buf[i]);
2212 }
2213 } else {
2214 /* XXX: Connection closed. Should probably wait for another
2215 connection before continuing. */
2216 if (n == 0) {
2217 close(s->fd);
2218 }
2219 s->fd = -1;
2220 return sig;
2221 }
2222 }
2223 sig = s->signal;
2224 s->signal = 0;
2225 return sig;
2226 }
2227
2228 /* Tell the remote gdb that the process has exited due to SIG. */
2229 void gdb_signalled(CPUArchState *env, int sig)
2230 {
2231 GDBState *s;
2232 char buf[4];
2233
2234 s = gdbserver_state;
2235 if (gdbserver_fd < 0 || s->fd < 0) {
2236 return;
2237 }
2238
2239 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2240 put_packet(s, buf);
2241 }
2242
2243 static bool gdb_accept(void)
2244 {
2245 GDBState *s;
2246 struct sockaddr_in sockaddr;
2247 socklen_t len;
2248 int fd;
2249
2250 for(;;) {
2251 len = sizeof(sockaddr);
2252 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2253 if (fd < 0 && errno != EINTR) {
2254 perror("accept");
2255 return false;
2256 } else if (fd >= 0) {
2257 qemu_set_cloexec(fd);
2258 break;
2259 }
2260 }
2261
2262 /* set short latency */
2263 if (socket_set_nodelay(fd)) {
2264 perror("setsockopt");
2265 close(fd);
2266 return false;
2267 }
2268
2269 s = g_malloc0(sizeof(GDBState));
2270 create_default_process(s);
2271 s->processes[0].attached = true;
2272 s->c_cpu = gdb_first_attached_cpu(s);
2273 s->g_cpu = s->c_cpu;
2274 s->fd = fd;
2275 gdb_has_xml = false;
2276
2277 gdbserver_state = s;
2278 return true;
2279 }
2280
2281 static int gdbserver_open(int port)
2282 {
2283 struct sockaddr_in sockaddr;
2284 int fd, ret;
2285
2286 fd = socket(PF_INET, SOCK_STREAM, 0);
2287 if (fd < 0) {
2288 perror("socket");
2289 return -1;
2290 }
2291 qemu_set_cloexec(fd);
2292
2293 socket_set_fast_reuse(fd);
2294
2295 sockaddr.sin_family = AF_INET;
2296 sockaddr.sin_port = htons(port);
2297 sockaddr.sin_addr.s_addr = 0;
2298 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2299 if (ret < 0) {
2300 perror("bind");
2301 close(fd);
2302 return -1;
2303 }
2304 ret = listen(fd, 1);
2305 if (ret < 0) {
2306 perror("listen");
2307 close(fd);
2308 return -1;
2309 }
2310 return fd;
2311 }
2312
2313 int gdbserver_start(int port)
2314 {
2315 gdbserver_fd = gdbserver_open(port);
2316 if (gdbserver_fd < 0)
2317 return -1;
2318 /* accept connections */
2319 if (!gdb_accept()) {
2320 close(gdbserver_fd);
2321 gdbserver_fd = -1;
2322 return -1;
2323 }
2324 return 0;
2325 }
2326
2327 /* Disable gdb stub for child processes. */
2328 void gdbserver_fork(CPUState *cpu)
2329 {
2330 GDBState *s = gdbserver_state;
2331
2332 if (gdbserver_fd < 0 || s->fd < 0) {
2333 return;
2334 }
2335 close(s->fd);
2336 s->fd = -1;
2337 cpu_breakpoint_remove_all(cpu, BP_GDB);
2338 cpu_watchpoint_remove_all(cpu, BP_GDB);
2339 }
2340 #else
2341 static int gdb_chr_can_receive(void *opaque)
2342 {
2343 /* We can handle an arbitrarily large amount of data.
2344 Pick the maximum packet size, which is as good as anything. */
2345 return MAX_PACKET_LENGTH;
2346 }
2347
2348 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2349 {
2350 int i;
2351
2352 for (i = 0; i < size; i++) {
2353 gdb_read_byte(gdbserver_state, buf[i]);
2354 }
2355 }
2356
2357 static void gdb_chr_event(void *opaque, int event)
2358 {
2359 int i;
2360 GDBState *s = (GDBState *) opaque;
2361
2362 switch (event) {
2363 case CHR_EVENT_OPENED:
2364 /* Start with first process attached, others detached */
2365 for (i = 0; i < s->process_num; i++) {
2366 s->processes[i].attached = !i;
2367 }
2368
2369 s->c_cpu = gdb_first_attached_cpu(s);
2370 s->g_cpu = s->c_cpu;
2371
2372 vm_stop(RUN_STATE_PAUSED);
2373 gdb_has_xml = false;
2374 break;
2375 default:
2376 break;
2377 }
2378 }
2379
2380 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2381 {
2382 char buf[MAX_PACKET_LENGTH];
2383
2384 buf[0] = 'O';
2385 if (len > (MAX_PACKET_LENGTH/2) - 1)
2386 len = (MAX_PACKET_LENGTH/2) - 1;
2387 memtohex(buf + 1, (uint8_t *)msg, len);
2388 put_packet(s, buf);
2389 }
2390
2391 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2392 {
2393 const char *p = (const char *)buf;
2394 int max_sz;
2395
2396 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2397 for (;;) {
2398 if (len <= max_sz) {
2399 gdb_monitor_output(gdbserver_state, p, len);
2400 break;
2401 }
2402 gdb_monitor_output(gdbserver_state, p, max_sz);
2403 p += max_sz;
2404 len -= max_sz;
2405 }
2406 return len;
2407 }
2408
2409 #ifndef _WIN32
2410 static void gdb_sigterm_handler(int signal)
2411 {
2412 if (runstate_is_running()) {
2413 vm_stop(RUN_STATE_PAUSED);
2414 }
2415 }
2416 #endif
2417
2418 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2419 bool *be_opened, Error **errp)
2420 {
2421 *be_opened = false;
2422 }
2423
2424 static void char_gdb_class_init(ObjectClass *oc, void *data)
2425 {
2426 ChardevClass *cc = CHARDEV_CLASS(oc);
2427
2428 cc->internal = true;
2429 cc->open = gdb_monitor_open;
2430 cc->chr_write = gdb_monitor_write;
2431 }
2432
2433 #define TYPE_CHARDEV_GDB "chardev-gdb"
2434
2435 static const TypeInfo char_gdb_type_info = {
2436 .name = TYPE_CHARDEV_GDB,
2437 .parent = TYPE_CHARDEV,
2438 .class_init = char_gdb_class_init,
2439 };
2440
2441 static int find_cpu_clusters(Object *child, void *opaque)
2442 {
2443 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2444 GDBState *s = (GDBState *) opaque;
2445 CPUClusterState *cluster = CPU_CLUSTER(child);
2446 GDBProcess *process;
2447
2448 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2449
2450 process = &s->processes[s->process_num - 1];
2451
2452 /*
2453 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2454 * runtime, we enforce here that the machine does not use a cluster ID
2455 * that would lead to PID 0.
2456 */
2457 assert(cluster->cluster_id != UINT32_MAX);
2458 process->pid = cluster->cluster_id + 1;
2459 process->attached = false;
2460 process->target_xml[0] = '\0';
2461
2462 return 0;
2463 }
2464
2465 return object_child_foreach(child, find_cpu_clusters, opaque);
2466 }
2467
2468 static int pid_order(const void *a, const void *b)
2469 {
2470 GDBProcess *pa = (GDBProcess *) a;
2471 GDBProcess *pb = (GDBProcess *) b;
2472
2473 if (pa->pid < pb->pid) {
2474 return -1;
2475 } else if (pa->pid > pb->pid) {
2476 return 1;
2477 } else {
2478 return 0;
2479 }
2480 }
2481
2482 static void create_processes(GDBState *s)
2483 {
2484 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2485
2486 if (s->processes) {
2487 /* Sort by PID */
2488 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2489 }
2490
2491 create_default_process(s);
2492 }
2493
2494 static void cleanup_processes(GDBState *s)
2495 {
2496 g_free(s->processes);
2497 s->process_num = 0;
2498 s->processes = NULL;
2499 }
2500
2501 int gdbserver_start(const char *device)
2502 {
2503 trace_gdbstub_op_start(device);
2504
2505 GDBState *s;
2506 char gdbstub_device_name[128];
2507 Chardev *chr = NULL;
2508 Chardev *mon_chr;
2509
2510 if (!first_cpu) {
2511 error_report("gdbstub: meaningless to attach gdb to a "
2512 "machine without any CPU.");
2513 return -1;
2514 }
2515
2516 if (!device)
2517 return -1;
2518 if (strcmp(device, "none") != 0) {
2519 if (strstart(device, "tcp:", NULL)) {
2520 /* enforce required TCP attributes */
2521 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2522 "%s,nowait,nodelay,server", device);
2523 device = gdbstub_device_name;
2524 }
2525 #ifndef _WIN32
2526 else if (strcmp(device, "stdio") == 0) {
2527 struct sigaction act;
2528
2529 memset(&act, 0, sizeof(act));
2530 act.sa_handler = gdb_sigterm_handler;
2531 sigaction(SIGINT, &act, NULL);
2532 }
2533 #endif
2534 /*
2535 * FIXME: it's a bit weird to allow using a mux chardev here
2536 * and implicitly setup a monitor. We may want to break this.
2537 */
2538 chr = qemu_chr_new_noreplay("gdb", device, true);
2539 if (!chr)
2540 return -1;
2541 }
2542
2543 s = gdbserver_state;
2544 if (!s) {
2545 s = g_malloc0(sizeof(GDBState));
2546 gdbserver_state = s;
2547
2548 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2549
2550 /* Initialize a monitor terminal for gdb */
2551 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
2552 NULL, &error_abort);
2553 monitor_init(mon_chr, 0);
2554 } else {
2555 qemu_chr_fe_deinit(&s->chr, true);
2556 mon_chr = s->mon_chr;
2557 cleanup_processes(s);
2558 memset(s, 0, sizeof(GDBState));
2559 s->mon_chr = mon_chr;
2560 }
2561
2562 create_processes(s);
2563
2564 if (chr) {
2565 qemu_chr_fe_init(&s->chr, chr, &error_abort);
2566 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
2567 gdb_chr_event, NULL, s, NULL, true);
2568 }
2569 s->state = chr ? RS_IDLE : RS_INACTIVE;
2570 s->mon_chr = mon_chr;
2571 s->current_syscall_cb = NULL;
2572
2573 return 0;
2574 }
2575
2576 void gdbserver_cleanup(void)
2577 {
2578 if (gdbserver_state) {
2579 put_packet(gdbserver_state, "W00");
2580 }
2581 }
2582
2583 static void register_types(void)
2584 {
2585 type_register_static(&char_gdb_type_info);
2586 }
2587
2588 type_init(register_types);
2589 #endif